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Abstract— This paper considers the application of classical
control methods, designed for unconstrained nonlinear systems,
to systems with nontrivial input constraints. As shown through-
out the literature, unconstrained classical methods can be used
to stabilize constrained systems, however, (without modification)
these unconstrained methods are not guaranteed to work for a
general control problem. In this paper, we propose conditions
for which classical unconstrained methods can be guaranteed
to exponentially stabilize constrained systems – which we term
“feasibility” conditions – and we provide examples of how
to construct explicitly feasible controllers. The control design
methods leverage control Lyapunov functions (CLF) describing
the “desired behavior” of the system; and we claim that in the
event that a system’s input constraints prevent the production
of an exponentially stabilizing input for a particular CLF, a
new, locally feasible CLF must be produced. To this end, we
propose a novel hybrid feasibility controller consisting of a
continuous-time controller which implements a CLF and a
discrete parameter update law which finds feasible controller
parameters as needed. Simulation results suggest that the
proposed method can be used to overcome certain catastrophic
infeasibility events encountered in robot locomotion.

I. INTRODUCTION

A constant challenge in the construction of nonlinear con-
trol systems for physical applications is the task of producing
control laws which are feasible: laws in which stabilizing
control actions are within a system’s input limits. In recent
years, quadratic programming has become an increasingly
prevalent tool in the design of feasible control systems for
robot locomotion [1], [3], [11]. In affine control systems,
such as those used to model walking robots, stabilizing
constraints can be expressed as linear inequality constraints
on the control input and included as constraints in a quadratic
program (QP)-based controller. Unlike classical, monolithic
control laws, controllers implemented via quadratic programs
can also include constraints on the input that reflect physical
limitations of the system being controlled. Thus QP-based
controllers can be used to stabilize real-world systems with-
out having to algebraically produce a control law which is
both stabilizing and which satisfies input bounds (often a
difficult task). However, input and stability constraints are
not always consistent. Intuitively, if the control objective is
aggressive and the admissible control set is conservative, it
is possible that the corresponding set of inequalities does
not have a solution; i.e. the physical system cannot produce
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a stabilizing input; such conditions are termed “infeasible
points”. When a quadratic program encounters an infeasible
point, it will generally exit without a solution; consequently,
controllers based on quadratic programs fail when they en-
counter infeasible points. One approach to address infeasible
points is to relax stability constraints, such as in [1]; this
will allow (local) drift in control objectives to accommodate
input constraints. However, the control engineer does not any
influence as to how the control objectives drift.

The feasible control problem can sometimes be addressed
offline, i.e. before run-time of the controller. Nonlinear
optimization methods, such as [18], [19] and [21], can
produce parameterized controller outputs which satisfy both
convergence and physical constraints over an operating range
of consideration. These methods work extremely well – when
the physical system is within the operating range. However,
it is often the case that operating conditions will diverge
from the planned conditions. In such scenarios, there is
often not enough time to recalculate a new, feasible set of
controller parameters using these methods (as these methods
are generally not real-time), and as such, they must also
incorporate an additional strategy for overcoming real-time
controller infeasibilities.

The literature is rich with a variety of approaches of
producing feasible controllers. One subset of the literature
leverages properties of systems experiencing input saturation
to guarantee conditions for stability, see for example [4], [9]
[7], or [24]. In Model Predictive Control (MPC), the control
is obtained through solution of a nonlinear program for which
the objective function is made to be a CLF, see for example
[15], [12], or [2]. Additionally, constrained control Lyapunov
Functions have been considered, see for example [14] or [3].
Other approaches to relax Lyapunov constraints would be to
use dynamic CLFs as in [20] or flexible CLFs as in [13].

In this paper, we address feasibility directly. Specifically,
we consider the definition of the width of the feasible set
[16] for a system of linear inequalities comprised of control
Lyapunov function convergence and physical constraints. We
show how to leverage the quadratic structure of control
Lyaupnov function constraints to construct a Quadratically
Constrained Quadratic Program which can be used to modify
an infeasible CLF to make it feasible. Next, we exploit
linearity in controller parameters to express the CLF modi-
fication scheme in terms of modifications to control param-
eters. Finally, we propose a hybrid control scheme which
uses the parameter modification scheme to produce feasible
controller parameters in the event that the CLF using the
“old parameters” becomes infeasible.



II. LOCALLY FEASIBLE CONTROL

In classical nonlinear control design, see for example [8],
[10], or [22], analysis is performed on dynamical systems of
the following form

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊆ Rn and u ∈ U ⊆ Rm. The state-space,
X , and the input-space, U , are typically chosen to be n
and m dimensional Euclidean spaces, respectively. Thus,
classical nonlinear control design and analysis is performed
on unconstrained nonlinear control systems. We posit the
reason for analyzing unconstrained systems (rather than
constrained ones) is likely one or both of the following
reasons: unconstrained systems are general and provable.
It is difficult enough to design a controller to provably
stabilize an unconstrained dynamical system; constraints add
complexity and remove generality.

In real-world applications, however, nonlinear control sys-
tems are often constrained. That is, the set of admissible
states, X , and the set of admissible inputs, U , are defined
implicitly by constraint functions

X = {x ∈ Rn : Cx(x) ≤ 0}, (2)
U(x) = {u ∈ Rm : Cu(x, u) ≤ 0}, (3)

where Cx(x) and Cu(x, u) are functions describing the
constraints on the nonlinear control system. These constraints
are properties of real systems, and thus, cannot be violated.

Interestingly, classical nonlinear control techniques like-
wise rely on inequality constraints. For example, when the
control design specification is to exponentially stabilize (in
the sense of Lyapunov) the origin of (1), one (either directly
or indirectly) constructs a control Lyapunov function (CLF)
V (x) > 0 with the property that V̇ (x, u) ≤ − c3ε V (x). This
constraint implicitly defines a set, K(x), of control values:

K(x) := {u ∈ Rm : LfV (x) + LgV (x)u+
c3
ε
V (x) ≤ 0},

for all x ∈ X . The constraint describing this set is a stability
constraint; it can be violated in a physical system, but if it
is violated, the system will no longer meet the control design
specifications, i.e. exponential stability at a rate 0 < ε < 1.

Challenges arise when there is disagreement between sta-
bility constraints and input constraints, i.e. when the physical
system cannot produce a stabilizing input:

U(x) ∩K(x) = {∅}. (4)

In this situation, the input constraint will always dominate;
the system will continue to evolve according to the dynamics
(1), but the behavior will not be stable in the originally
intended sense. The control engineer is presented with a chal-
lenge: design (directly or indirectly) a new control Lyapunov
function that satisfies both

Cu(x, u) ≤ 0 (5)

LfV (x) + LgV (x)u+
c3
ε
V (x) ≤ 0 (6)

over the operating range, or domain, of the system.

Intuitively, if the control objective is aggressive and the
admissible control set is conservative, the intersection of the
two sets U and Kε(x) will be empty. In this paper we set
out to construct a control method that avoids situations in
which the intersection of these two sets is empty, or in other
words, a control method that is always locally feasible.

Definition 1: For the system (1), a RES-CLF, Vε(x), de-
signed with U = Rm, is said to be locally feasible for the
same system with U(x) = {u ∈ Rm : Cu(x, u) ≤ 0}, at a
point x0 ∈ X , if there exists a u ∈ Rm such that

Cu(x0, u) ≤ 0, (7)

LfVε(x0) + LgVε(x0)u+
c3
ε
V (x0) ≤ 0, (8)

and locally infeasible otherwise.
In this paper, we will consider constrained control systems

with input constraints of the (affine) form

Cu(x, u) = Au(x)u− bu(x) (9)

where Au(x) and bu(x) are mathematical representations of
the system’s input limits. Constraints of this form are used to
model several constraints in robot locomotion, e.g. actuator
power limitations and zero-moment point constraints.

The local feasibility (or infeasibility) of a CLF at a point
x0 ∈ X , in the sense of Definition 1 with input constraints
of the form (9), can be established by determining whether
a solution u exists to the following set of inequalities[

LgVε(x0)
Au(x0)

]
︸ ︷︷ ︸

A(x0)

u−
[
−LfVε(x0)− c3

ε V (x0)
bu(x0)

]
︸ ︷︷ ︸

b(x0)

≤ 0. (10)

A concrete metric for establishing the feasibility of a set
of linear inequalities comes from the following metric, the
width of the feasible set, as defined by [16].

Definition 2: For the system of inequalities (10), the
width of the feasible set is the unique solution to the
following Linear Program (LP):

ω(x0) = max
(u,w)∈Rm+1

w (11)

s.t.

[
A(x0) 1
0 −1

] [
u
w

]
≤
[
b(x0)

0

]
where A and b are defined in (10).

Thus, for controllers, utilizing an unconstrained CLF ap-
plied to a control system under affine constraints of the form
(9), such as the following Quadratic Program:

u∗ =argmin
µ∈Rm

uTu (12)

s.t. A(x0)u− b(x0) < 0,

if we can show that the width of the corresponding fea-
sible set is greater than zero, we can guarantee that the
unconstrained CLF can be used to achieve local exponential
stability in the constrained system. In the following section,
we give an example of how to design a parameterized CLF
which explicitly ensures that the width of the feasible set is
always greater than zero and thus (12) is always solvable.



III. FEASIBLE CONTROL PARAMETER MODIFICATION

In this section, we provide an example of one way of using
Definition 2 to design feasible control systems. The method
will entail modification of parameters α of desired reference
trajectories in input-output control systems of the form

ẋ = f(x) + g(x)u, (13)

y = ya(x)− yd(t, α), (14)

where x ∈ X ⊆ Rn and u ∈ U ⊆ Rm, and ya : X → Rm
and yd : R × Ra → Rm are smooth functions encoding
the desired behavior to be realized via control. For the
following analysis, assume that the system (13) is feedback
linearizable, with corresponding control law

u = A−1io (−bio + (µ+ ÿd)). (15)

where Aio = LgLfy and bio = L2
f are Lie derivatives of the

(relative degree two) outputs y along f(x) and g(x). Ap-
plying (15) to (13) and defining coordinates η = (yT , ẏT )T

results in a local coordinate transformation Φ : x 7→ η, with
corresponding linear dynamics η̇ = Fη +Gµ.

A. Local CLF-Based Control
As the control objective is to drive ya(x)→ yd(t, α) and

equivalently η → 0, the method of [1] is used to construct a
rapidly exponentially stabilizing control Lyapunov function
(RES-CLF) denoted V (η) = ηTPεη, where Pε is obtained
from (47) in [1] (a modified continuous-time algebraic Ric-
cati equation). The time derivative of V is

V̇ (η, µ) = ηT (FTPε + PεF )η + 2ηTPεGµ. (16)

The stabilizing constraint (8) can thus be expressed as:

2ηTPεG︸ ︷︷ ︸
ACLF (η)

µ ≤ −ηTMη︸ ︷︷ ︸
bCLF (η)

, (17)

where M := FTPε + PεF + c3
ε Pε is used to simplify the

expression. As (17) is affine in µ, it can be incorporated as
a constraint in a µ-based QP of the form (12)

B. Constraints
In input-output systems of the form (13), constraints are

placed on u, e.g. in the control of robot locomotion, the
constraints (9) come in the form of torque bounds and ZMP
constraints. These bounds can be mapped (locally) into µ
bounds using the feedback linearization control law (15)

AuA
−1
io︸ ︷︷ ︸

Aµ

(µ+ ÿd)− (AuA
−1
io bio + bu)︸ ︷︷ ︸
bµ

≤ 0, (18)

and included in a QP-based controller of the form (12)

µ∗ = argmin
µ∈Rm

µTµ (19)[
ACLF
Aµ

]
µ−

[
bCLF

bµ −Aµÿd
]
< 0.

As the input constraints are properties of the system, we will
have to modify the control objectives to resolve feasibility of
(19). In the following section, we propose a method of mod-
ifying the parameters α of the desired outputs corresponding
to a minimal (local) change in the RES-CLF.

C. A Modified Control Lyapunov Function

To ensure that the QP-based controller (19) is feasible, we
propose the following modification to the RES-CLF:

V ∗(η) = (η − η∗)TPε(η − η∗), (20)

in which the zero level set of the Lyapunov function has
been shifted from the origin to η∗ ∈ Rn. The corresponding
CLF constraint is quadratic (bilinear) in η∗ and µ

2(η − η∗)TPεGµ+ (η − η∗)TM(η − η∗) ≤ 0. (21)

To remove dependence on the control, we will make an
explicit choice of the input

µ = −K(η − η∗), (22)

where K is obtained by solving the LQR problem for
the system (F,G) with cost function J(η, η∗, µ) = (η −
η∗)TPε(η − η∗) + µTRµ, with R > 0. This results in a
quadratic constraint on η∗.

When the parameters α appear linearly in yd and ẏd, the
shift in outputs η∗ = (y∗, ẏ∗) can be written

η∗ = τ(t)(α∗ − α). (23)

where τ(t) = ∂η
∂α . Substituting (23) and (22) into (21) results

in a quadratic constraint on the updated parameters α∗. This
constraint can be combined with the input constraints (18)
and the definition of the width of the feasible set (11) to
construct a quadratically constrained quadratic program with
decision variables α∗ as follows

Feasible Parameter Optimization

P(t, x, α, ω∗) = argmin
(α∗,w)

α∗TQα∗ + fTα∗ + c (24)

s.t.

αT∗Hα∗ + kTα∗ + d+ w ≤ 0,

Aα∗ + b+ w ≤ 0,

−w + ω∗ ≤ 0.

The cost function, η∗T η∗ = (α∗ − α)T τ(t)T τ(t)(α∗ − α),
is represented using the following quantities:

Q = τT τ, fT = −2αT τT τ, c = αT τT τ, α

and the constraints are represented by

H = τT (M − 2PεGK)τ,

kT = −2(η + τα)T (M − 2PεGK)τ,

d = (η + τα)T (M − 2PεGK)(η + τα),

A = Aµ(Kτ + κ̈),

b = −AµK(η + τα)− bµ.

These quantities are computed with η = η(t, x, α).
This program solves for new parameters α∗ corresponding

to minimal changes in the desired trajectories yd subject
to the corresponding CLF being feasible. In the following
section we show how to use this QCQP to in a hybrid
system which updates parameters as needed, i.e. when a CLF
computed with unmodified parameters becomes infeasible.



IV. HYBRID FEASIBILITY CONTROLLER

In this section we present a novel control scheme that
updates its parameters in the event of a significant drop
in feasibility. Specifically, we propose a hybrid control
system consisting of: (1) a continuous-time controller that
implements a control Lyapunov function subject to input
constraints and (2) a discrete-time component which updates
desired trajectories in the event that the CLF computed with
“old” parameters becomes infeasible. Here a hybrid control
system, H C , is defined as a tuple

H C = (D, S,∆, f, g, U), (25)

where
• D is the domain with D ⊆ X a smooth submanifold of

the state space X ⊆ Rn+nα ,
• S ⊂ D is a proper subset of D called the guard or

switching surface,
• ∆ : S → D is a smooth map called the reset map,
• (f, g) is a control system on D,
• U ⊆ Rm is the set of admissible control.

The admissible control takes the form (9), stated again for
reference:

U(x) = {u ∈ Rm : Au(x)u− bu(x) ≤ 0}. (26)

The coordinates for this system is a vector of state variables
together with a vector of controller coefficients q = (x, α);
thus, the control system is

ẋ = f(x) + g(x)u (27)
α̇ = 0 (28)

The controller u is input-output linearization (15) with µ =
µ∗ obtained through the solution of (19). The following
hybrid elements of the controller ensure that the inequality
constraints in (19) are always feasible through use of the
proposed parameter update law.

Here, the domain is characterized by the width of the
feasible set (11) for the constraints in (19) being above a
threshold ω∗ and the guard is hit when the width of the
feasible set reaches the threshold, i.e.

D(t) = {x ∈ Rn, α ∈ Rnα : ω(t, x, α)− ω∗ ≥ 0}, (29)
S(t) = {x ∈ Rn, α ∈ Rnα : ω(t, x, α)− ω∗ = 0}. (30)

The restriction of the reset map to the state variables is
simply the identity function, i.e. x+ = ∆x(x−) = x−.
However, the restriction of the reset map to the controller
parameters is where feasibility is resolved. Here, we solve
for a new set of parameters α = ∆α(η, t, α, ω∗), using the
parameter modification QCQP (24)

∆α(t, x, α, ω∗) = P(t, x, α, ω∗). (31)

The idea is to empower the robot control system to handle
infeasibilities “on-the-fly”, rather than having to synthesize a
library of feasible parameters for every conceivable evolution
of the system. In the following section, the proposed hybrid
feasibility controller is applied to the control of constrained
bipedal robotic locomotion.
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Fig. 1. Results from simulation of the proposed method applied to a
planar, 5-DOF walking robot. Snapshots of the robot from one continuous-
time step of walking are shown in the top left, and the corresponding width
of the feasible set is shown in the top right. The original desired trajectories
(dashed, black) are shown together with modified trajectories (solid, blue)
in the middle and bottom rows.

V. APPLICATION: ROBOT WALKING

This section presents the results from simulation of the
proposed hybrid feasibility controller applied to two bipedal
robotic walking platforms. The first system is a fully-
actuated, planar biped with point feet and five independently
actuated joints. The second system considered is a ten DOF,
3D biped walking with both torque and ZMP constraints.
Simulation results for the 3D biped show how catastrophic
events (events in which the ZMP constraints vanish) can be
avoided via the proposed hybrid feasibility controller.

A. Walking Dynamics and Control System

The standard robot dynamics (see [17], [23]) are

D(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = u, (32)

with joint angles and velocities, (θ, θ̇), inertia matrix D(θ),
Coriolis matrix C(θ, θ̇), gravity vector G(θ), and actuator
torque vector u ∈ Rm. These dynamics can be used to
express a general nonlinear control system for the robot:

ẋ = f(x) + g(x)u, (33)

in which x = (θ, θ̇)T ∈ Rn. In light of the current paper, we
consider constrained control systems with constraints of the
form (9), stated again for reference:

U(x) = {u : Au(x)u− bu(x) ≤ 0}.

We first consider the case when the input (torque) constraints
Au(x) and bu(x) are simply constant torque bounds, and
then we consider both torque bounds and zero moment point
(ZMP) constraints.



B. Walking Control Objectives

For the sagittal outputs in both the 2D and the 3D robots,
we’ve chosen to control quantities which are common in the
control of robot locomotion: the x-z coordinates of the center
of mass (2 outputs), the x-z coordinates of the swing foot
(2 outputs), and the torso angle with respect to the vertical
axis. The actual quantities are

ya(θ) =


xcom(θ)
zcom(θ)
xnsf (θ)
znsf (θ)
θtor(θ)

 . (34)

To show the generality of the proposed method, and for quick
controller development, we’ve chosen 4th-order polynomials
to describe the desired walking trajectories, yd(t, α)

ydi (t, α) :=

4∑
j=0

αi,jt
j , i ∈ 1, 2, . . . , 5. (35)

For a nominal α, these reference trajectories encode the
following goals: move the horizontal components of the
center of mass and the nonstance foot forward at constant
velocity, regulate the vertical center of mass and the torso
angles to constant values and follow a parabolic path for the
vertical position of the nonstance foot.

C. Robot Locomotion Case 1: a 2D Robot Walking with
Torque Bounds.

In the first case study, we consider a planar, fully actuated
point-foot robot walking with torque bounds. The control
objectives described in Section V-B are implemented via a
control Lyapunov function of the form (20). The physical
constraint set of interest for this example is

Au =

[
I
−I

]
, bu =

[
umax

umax

]
.

These physical constraints are mapped into µ space using
(18) and included with the CLF constraints to form the total
constraint set:[

ACLF
Aµ

]
µ−

[
bCLF

bµ −Aµÿd(t, α)

]
< 0.

In the simulation, one continuous-time phase of walking
(impact-to-impact) is considered. The proposed hybrid fea-
sibility controller (25) is employed to ensure that the robot
completes an entire step despite drops in feasibility. The
feasible set threshold is chosen (heuristically) to be ω∗ = 70.

Fig. 1 shows results from simulation of this case study.
In the top left subplot, a depiction of the robot is shown at
the beginning, middle and end of the continuous-time step.
A plot of the width of the feasible set versus time shows
that the guard, ω = ω∗, is hit very near 0.055 seconds.
This prompts the hybrid feasibility controller to produce new,
feasible parameters via the reset map (31) which uses the
proposed feasible parameter optimization (24). The resulting
modified trajectories are shown against the originals in Fig.
1. Note that in this case, the optimization produces horizontal
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Fig. 2. Simulation results of the 3D robot walking with ZMP and torque
bounds. In this simulation no modification is made to the desired trajectories.
Note that very near 0.42 seconds, the width of the feasible set plummets,
the torques chatter, the ZMP constraints vanish and the simulation stops.
We would expect the robot to fall (a catastrophic event).
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Fig. 3. Simulation results of the 3D robot walking with ZMP and torque
bounds. In this simulation, the parameters α for the desired trajectories
over IT = [0, 0.42] seconds are the same as those used in 3D simulation
corresponding to Fig. 2. Note, in the current simulation, that very near 0.42s
the guard of the hybrid feasibility controller is met ω = ω∗, and a new
set of feasible parameters α are resolved via the proposed feasible control
design method. The robot continues to take a step, (it does not fall), and
the catastrophic event is successfully avoided.

center of mass and swing foot trajectories which are similar
in shape to the originals, but it allows the vertical center of
mass trajectory to drift 4 cm from its original desired value.

D. Robot Locomotion Case 2: a 3D Robot Walking with
Torque and ZMP Bounds.

In the second case study, we consider a more complex
example: a 10-DOF robot walking in 3D under torque and
ZMP constraints. As in the planar case, the control objectives
described in Section V-B – together with objectives which
minimize lateral movement and keep the swing foot parallel
to the ground – are implemented via a control Lyapunov
function of the form (20). The ZMP constraints, as in [5],
are linear inequalities in u, thus, we can write them as
AZMP (x)u− bZMP (x) ≤ 0, and include them with torque



bounds, yielding the constraint set:

Au =

 I
−I

AZMP (x)

 , bu =

 umax

umax

bZMP (x)

 .
In this simulation study, as in the first, one continuous-time
phase of walking (impact-to-impact) is considered. Maintain-
ing feasibility is a greater challenge in this case study due
to the inclusion of ZMP constraints; without explicit update
of the parameters, and without some prior optimization of
the parameters, ZMP is unlikely to be satisfied. Fig. 2 shows
the results of simulation of a local QP controller without
the proposed feasible parameter update, wherein the width
of the feasible set drops to zero very near 0.42 seconds, the
controller torques chatter, the ZMP constraints vanish and
the numeric integration solver stops. As ZMP constraints
determine whether the robot is balanced, we would expect
the robot to fall in this case.

Fig. 3 show results from simulation of the robot under the
same conditions as the simulation shown in Fig. 2, except
now the proposed hybrid feasibility controller is employed.
The feasible set threshold is chosen (heuristically) to be
ω∗ = 66. Note that in this case the guard, ω = ω∗, is met
milliseconds before the time the catastrophic event occurs,
the proposed feasible parameter optimization (24) is used to
solve for new (feasible) parameters which are then used in
the local CLF controller and the robot is able to successfully
complete a continuous-time step.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel method for updating
control parameters to overcome infeasibilities that arise due
to the conflict between aggressive control and physical input
limitations. The method is a hybrid control system which
continually evaluates the local feasibility of the current
controller and updates parameters as needed. Parameter
modifications are performed through a novel quadratically
constrained quadratic program. Initial simulation results of
the proposed method show promising performance and mo-
tivate further development of the method.

The parameter optimization is a quadratically constrained
quadratic program; however, actual implementation of the
method uses MATLAB’s fmincon function for solving gen-
eral nonlinear optimization problems. Although the gradient
and Hessian of the problem can be supplied to fmincon to
increase convergence speed, future work will be to further
take advantage of the structure of the QCQP and use more
efficient methods to bring it to real-time computation.

It is important to note that the proposed method addresses
feasibility of continuous-time control of (fully actuated) robot
locomotion. However, robot locomotion is hybrid by nature:
collisions between the robot and the ground destabilize
walking if not accounted for. Furthermore, locomotion often
involves phases of under-actuation wherein the evolution
of the system includes uncontrollable dynamics. To fully
ensure feasibility of underactuated robotic walking, one must
address hybrid system constraints, as in [6], in addition to

continuous-time control and physical constraints; existing
methods to solving this class of problems use (offline)
nonlinear optimization. The goal of future work is to develop
a method of including hybrid system constraints in the
proposed continuous-time feasibility QCQP of this paper to
achieve feasible, underactuated robot walking in real-time.
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