Multi-objective Compositions for Collision-Free Connectivity
Maintenance in Teams of Mobile Robots *

Li Wang, Aaron D. Ames, and Magnus Egerstedt†

Abstract—Compositional barrier functions are proposed in this paper to systematically compose multiple objectives for teams of mobile robots. The objectives are first encoded as barrier functions, and then composed using AND and OR logical operators. The advantage of this approach is that compositional barrier functions can provably guarantee the simultaneous satisfaction of all composed objectives. The compositional barrier functions are applied to the example of ensuring collision avoidance and static/dynamical graph connectivity of teams of mobile robots. The resulting composite safety and connectivity barrier certificates are verified experimentally on a team of four mobile robots.

I. INTRODUCTION

Multi-robot coordination strategies are often designed to achieve team level collective goals, such as covering areas, forming specified shapes, search and surveillance, see e.g. [9], [4], [10]. As the number of robots and the complexity of the task increases, it becomes increasingly difficult to design one single controller that simultaneously achieves multiple objectives, e.g., forming shapes, collision avoidance and connectivity maintenance. Therefore, there is a need to devise a formal approach that can provably compose multiple objectives for the teams of robots.

Multi-objective controls for multi-agent systems have been extensively studied. The recently barrier function was used to unify the go-to-goal behavior, collision avoidance, and proximity maintenance [12]; however, it was specifically constructed for go-to-goal task and thus can not be extended to complex situations easily. [24] studied connectivity preserving flocking and simultaneously achieved alignment, cohesion, separation, and connectivity, which is again a task-specific solution. To enable provably correct and more general objective compositions, the non-negotiable objectives, e.g., collision avoidance and connectivity maintenance, are encoded with compositional barrier functions in this paper. Barrier functions, which were explored in various applications such as robotics [5], safety verification [17], and adaptive cruise control [1], can be used to provably ensure the forward invariance of desired sets [14], [18], [22]. Earlier works on safety barrier certificates for multi-robot system [3], [21] encoded multiple objectives by assembling multiple barrier functions. The agents are safe if they satisfy the safety barrier certificates, while the existence of a common solution to multiple barrier functions becomes unclear when the number of objectives increases. This motivates our work of composing multiple barrier functions into a single barrier function, so that the solutions to ensure multiple objectives always exist.

In this paper, compositional barrier functions are applied to provably ensure collision avoidance and graph connectivity for the coordination control of teams of mobile robots. This is motivated by the fact that many of the multi-agent strategies, such as consensus, flocking, and formation control, implicitly assumes collision avoidance, communication graph connectivity, or both [23]. These safety and connectivity objectives are often ensured by some secondary controllers, which take over and modify the higher level control command when violations occur. Typical methods used in these secondary controllers are artificial potential functions [13], behavior based approaches [2], and edge energy functions [6]. However, when the team of robots are either too concentrated or too scattered, the avoidance behavior becomes dominant with the robots spending most of the time avoiding collisions or losses of connectivity, and the higher level objectives can not be achieved [15]. The idea pursued in this paper is to design a secondary controller utilizing compositional barrier functions, which is minimally invasive to the higher level controller, i.e., the avoidance behavior only takes place when collisions or losses of connectivity are truly imminent. Similar collision avoidance strategies were explored in [3], [21], [19].

The main contributions of this paper are twofold. Firstly, compositional barrier functions are introduced to enable more general compositions of multiple non-negotiable objectives with provable guarantees. Secondly, composite safety and connectivity barrier certificates are synthesized with compositional barrier functions, which provably guarantees collision avoidance and connectivity for teams of mobile robots that perform general coordination tasks.

The rest of this paper is organized as follows. Section II briefly revisits the control barrier function, and extends it to the piecewise smooth case, which is essential to enable the barrier function composition in Section III. The compositional barrier functions are then used to synthesize the safety and connectivity barrier certificates for teams of mobile robots in Section IV. Experimental implementations on a team of four Khepera III robots are the topics of Section V. The conclusions are given in Section VI.
II. PIECEWISE SMOOTH CONTROL BARRIER FUNCTIONS

Control barrier functions are a class of Lyapunov-like functions, which can provably guarantee the forward invariance of desired sets without explicitly computing the system’s forward reachable sets. This paper follows the idea of a type of barrier functions similar to [1], [22], which expands the admissible control space and enables less restrictive controls. In order to encode more general objectives, we will introduce methods to compose barrier functions with AND and OR logical operators in Section III.

After composition, these originally smooth barrier functions might become piecewise smooth. Therefore, this section will set the stage for multi-objective composition by constructing Piecewise Barrier Functions (PBF).

Some useful mathematical definitions and tools, i.e., PC^r—functions and B—derivative, for dealing with piecewise smooth functions are first revisited.

Definition 2.1: A continuous function $f: \mathcal{D} \rightarrow \mathbb{R}^m$ defined on an open set $\mathcal{D} \subseteq \mathbb{R}^r$, $r \geq 1$, if there exists an open neighborhood $V \subseteq \mathcal{D}$ and a finite collection of C^r functions $\{f_1, f_2, ..., f_k\}$ at $\forall x_0 \in \mathcal{D}$, such that the index set $I(x_0) = \{i \mid f(x_0) = f_i(x_0), \forall x \in V\}$ is non-empty.

Note that a PC^r—function can be viewed as a continuous selection of a finite number of C^r functions on \mathcal{D}. The summation, product, superposition maximum or minimum operations on PC^r—functions still generate PC^r—functions [8], [16]. PC^r—functions have the favourable properties of locally Lipschitz continuous and B-differentiable [16].

Definition 2.2: A locally Lipschitz function $f: \mathcal{D} \rightarrow \mathbb{R}^m$ defined on an open set $\mathcal{D} \subseteq \mathbb{R}^r$ is B-differentiable at $x_0 \in \mathcal{D}$, if its B-derivative $f'(x_0; \cdot): \mathbb{R}^r \rightarrow \mathbb{R}^m$ at x_0 is well defined, i.e. the limit

$$f'(x_0; q) = \lim_{a \to 0^+} \frac{f(x_0 + aq) - f(x_0)}{a},$$

in any direction $q \in \mathbb{R}^r$ exists.

For the generality of discussion, consider a dynamical system in control affine form

$$\dot{x} = f(x) + g(x)u,$$

where $x \in \mathbb{R}^n, u \in \mathbb{R}^m, f$ and g are locally Lipschitz functions. (2) is assumed to be forward complete, i.e., solutions $x(t)$ are well defined $\forall t > 0$.

Let a set $\mathcal{C} \subseteq \mathcal{D}$ be defined such that

$$\mathcal{C} = \{x \in \mathbb{R}^n \mid B(x) > 0\},$$

$$\mathcal{C}^c = \{x \in \mathbb{R}^n \mid B(x) = 0\},$$

where the PC^r—function $B: \mathcal{D} \rightarrow \mathbb{R}^+_0$ is constructed to be positive in \mathcal{C} and zero outside of \mathcal{C}. This construction of \mathcal{C} and $B(x)$ enables easy compositions of multiple barrier functions, which will become clear in Section III.

Definition 2.3: Given a dynamical system defined in (2) and a set $\mathcal{C} \subseteq \mathcal{D}$ defined in (3), the PC^r—function $B: \mathcal{D} \rightarrow \mathbb{R}^+_0$ is a Piecewise Barrier Function (PBF) if there exists a class \mathcal{X} function α such that

$$\sup_{u \in U} | -B'(x; -f(x) - g(x)u + \alpha(B(x))| \geq 0,$$

for all $x \in \mathcal{C}$.

Note that $B'(x; -f(x) - g(x)u)$ is the B-derivative of $B(x)$ at x in the direction of $-f(x) - g(x)u$. When $B(x)$ is smooth, it is equivalent to say

$$-B'(x; -f(x) - g(x)u) = L_f B(x) + L_g B(x)u,$$

where the Lie derivative formulation comes from

$$\dot{B}(x) = \frac{\partial B(x)}{\partial x}(f(x) + g(x)u) = L_f B(x) + L_g B(x)u.$$

The B-derivative can be calculated for PC^r—functions in a straightforward manner. Let $\{b_1(x), b_2(x), ..., b_k(x)\}$ be the set of selection functions for $B(x)$, then the B-derivative of $B(x)$ along the direction q is a continuous selection of $\{\nabla b_1(x)q, \nabla b_2(x)q, ..., \nabla b_k(x)q\}$. The B-derivative of $B(x)$ can be determined by selecting the correct directional derivative from this selection set at x.

With the definition of PBFs, the admissible control space for the control system is

$$K(x) = \{u \in U \mid -B'(x; -f(x) - g(x)u + \alpha(B(x)) \geq 0\}$$

Theorem 2.1: Given a set $\mathcal{C} \subseteq \mathcal{D}$ defined by (3) with the associated PBF $B: \mathcal{D} \rightarrow \mathbb{R}^+_0$, any Lipschitz continuous controller $u(x) \in K(x)$ for the dynamical system (2) renders \mathcal{C} forward invariant, i.e., $x(t) \in \mathcal{C}, \forall t \geq 0, \text{if} \ x(0) \in \mathcal{C}$.

Proof: See [20], Theorem 2.1.

To sum up, we can get set invariance properties similar to [1], [22] using PBFs.

III. COMPOSITION OF MULTIPLE OBJECTIVES

In this section, we will use PBFs developed in Section II to compose multiple non-negotiable objectives with AND and OR logical operators. Each objective is encoded as a set. The objective is satisfied as long as the states of the system stay within the desired set. Define $\mathcal{C}_i \subseteq \mathcal{D}, i = 1, 2$, similar to (3),

$$\mathcal{C}_i = \{x \in \mathbb{R}^n \mid B_i(x) > 0\},$$

$$\mathcal{C}_i^c = \{x \in \mathbb{R}^n \mid B_i(x) = 0\}.$$

Let $B_{\alpha} = B_1 + B_2$ and $B_{\gamma} = B_1 B_2$.

$$\mathcal{E} = \{x \in \mathbb{R}^n \mid B_{\alpha}(x) > 0\},$$

$$\mathcal{F} = \{x \in \mathbb{R}^n \mid B_{\gamma}(x) > 0\}.$$

Lemma 3.1: Given $\mathcal{C}_{i_1}, i_1 = 1, 2$ defined in (6), \mathcal{E} and \mathcal{F} defined in (7), $\mathcal{E} = \mathcal{E}_1 \cup \mathcal{E}_2$ and $\mathcal{F} = \mathcal{C}_1 \cap \mathcal{C}_2$.

Proof: See [20], Lemma 3.1.

With this result, we can compose two objectives into one set using AND or OR logical operators. The existence of a negation operator is not clear in the current problem setup. Note that Lemma 3.1 shows that B_{γ} is precise PBFs to encode AND or OR logical operators, which allows us to have truly minimal invasive avoidance behaviors in Section IV.B.

Next, we will present the result to formally ensure OR logical operator for two objectives using PBFs.

Theorem 3.2: Given $\mathcal{C}_i, i = 1, 2$, defined in (6), \mathcal{E} defined in (7), and a valid PBF B_{γ} on \mathcal{E}, then any Lipschitz
Note that \(B_i, i = 1, 2 \) are valid PBFs does not imply \(B_\cup \) is a valid PBF. We still need to check if \(B_i \) is a valid PBF before applying Theorem 3.2, which means

\[
\sup_{u \in U_i} \left[-B'_i(x; f(x) - g(x)u) + \alpha(B_i(x))\right] \geq 0,
\]

for all \(x \in \mathcal{C}_i \cup \mathcal{C}_2 \). This condition guarantees that the admissible control space is strictly non-empty.

An easier but more restrictive condition to check for the compositability is

\[
\sup_{u \in U_i} \min_{i \neq j} \left[-B'_i(x; f(x) - g(x)u) + \alpha(B_i(x))\right] \geq 0,
\]

for all \(x \in \mathcal{C}_i \cup \mathcal{C}_2 \), which means there is always a common \(u \) to satisfy both PBF constraints.

The result for ensuring AND logical operator for two objectives using PBFs can be derived similarly.

Theorem 3.3: Given \(\mathcal{C}_i, i = 1, 2 \), defined in (6), \(\mathcal{F} \) defined in (7), and a valid PBF \(B_\cap \) on \(\mathcal{F} \), then any Lipschitz continuous controller \(u(x) \in K_\cap(x) \) for the dynamical system (2) render \(\mathcal{C}_1 \cap \mathcal{C}_2 \) forward invariant, where

\[
K_\cap(x) = \{ u \in U \mid -B'_\cap(x; f(x) - g(x)u) + \alpha(B_\cap(x)) \geq 0 \}.
\]

The proof of this theorem is similar to Theorem 3.2.

Up until now, we have a provably correct method for composing multiple objectives. Conditions have also been provided to check whether the objectives are composable using the AND or OR logical operators. Next, the compositional barrier functions will be applied to safety and connectivity maintenance for teams of mobile robots.

IV. COLLISION AVOIDANCE AND CONNECTIVITY MAINTENANCE FOR TEAMS OF MOBILE ROBOTS

The design of control algorithms for teams of mobile robots often involves simultaneous fulfillment of multiple objectives, e.g., keeping certain formation, covering areas, avoiding collision, and maintaining connectivity. It is often-times a challenging task to synthesize a single controller that achieves all these objectives. In this section, we will use the compositional barrier functions to provably ensure safety (in terms of collision avoidance) and connectivity of teams of mobile robots, while achieving higher level collective behaviors.

A. Composite Safety and Connectivity Barrier Certificates

Let \(\mathcal{M} = \{1, 2, ..., N\} \) be the index set of a team of \(N \) mobile robots. The mobile robot \(i \in \mathcal{M} \) is modelled with double integrator dynamics given by

\[
\begin{bmatrix}
\dot{p}_i \\
\dot{v}_i
\end{bmatrix} =
\begin{bmatrix}
0 & I_{2 \times 2} \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
p_i \\
v_i
\end{bmatrix} +
\begin{bmatrix}
0 \\
I_{2 \times 2}
\end{bmatrix}
\begin{bmatrix}
u_i
\end{bmatrix},
\]

where \(p_i \in \mathbb{R}^2 \), \(v_i \in \mathbb{R}^2 \), and \(u_i \in \mathbb{R}^2 \) represent the current position, velocity and acceleration control input of robot \(i \). The ensemble position, velocity, and acceleration of the team of mobile robots are \(p \in \mathbb{R}^{2N} \), \(v \in \mathbb{R}^{2N} \), and \(u \in \mathbb{R}^ {2N} \).

\(x = (p, v) \) is denoted as the ensemble state of the multi-robot system. The velocity and acceleration of the robot \(i \) are bounded by \(|v_i| \leq \beta \), and \(|u_i| \leq \alpha \).

To ensure the safety and connectivity of the team of mobile robots, a mathematical representation of safety and connectivity is formulated first. Two robots \(i \) and \(j \) need to always keep a safety distance \(D_s \) away from each other to avoid collision, meanwhile stay within a connectivity distance \(D_c \) of each other to communicate.

Considering the worst case scenario that the maximum braking force is applied to avoid collisions, a pairwise safety constraint between robots \(i \) and \(j \) can be written as

\[
h_{ij} = 2\sqrt{\alpha(||\Delta p_{ij}|| - D_s)} + \frac{\Delta p_{ij}^T}{||\Delta p_{ij}||} \Delta v_{ij} > 0.
\]

The detailed derivation of this pairwise safety constraint can be found in [3]. A pairwise safe set \(\mathcal{C}_{ij} \) and a PBF candidate \(B_{ij}(x) \) are defined as

\[
\mathcal{C}_{ij} = \{ x \mid B_{ij}(x) > 0 \},
\]

\[
B_{ij}(x) = \max\{h_{ij}(x), 0\}.
\]

To guarantee that all pairwise collisions are prevented, the safe set \(\mathcal{C} \) for the team of mobile robots can be written as the intersection of all pairwise safe sets.

\[
\mathcal{C} = \bigcap_{j \neq i} \mathcal{C}_{ij}.
\]

With the safe set \(\mathcal{C} \), we will formally define what is safe for the team of mobile robots.

Definition 4.1: The team of \(N \) mobile robots with dynamics given in (8) is safe, if the ensemble state \(x \) stays in the set \(\mathcal{C} \) for all time \(t \geq 0 \).

Let \(\mathcal{G} = (V, E) \) be the required connectivity graph, where \(V = \{1, 2, ..., N\} \) is the set of \(N \) mobile robots, \(E \) is the required edge set. The presence of a required edge \((i,j)\) indicates that robots \(i \) and \(j \) should always stay within a connectivity distance of \(D_c \).

Similarly, a pairwise connectivity constraint can be developed by considering the maximum acceleration to avoid breaking connectivity, i.e.,

\[
h_{ij} = 2\sqrt{\alpha(D_c - ||\Delta p_{ij}||)} + \frac{\Delta p_{ij}^T}{||\Delta p_{ij}||} \Delta v_{ij} > 0.
\]

The corresponding pairwise connectivity set \(\mathcal{C}_{ij} \) and PBF candidate are

\[
\mathcal{C}_{ij} = \{ x \mid B_{ij}(x) > 0 \},
\]

\[
B_{ij}(x) = \max\{h_{ij}(x), 0\}.
\]

In order to maintain all required edges, the connectivity set \(\mathcal{C} \) for the team of mobile robots can be written as

\[
\mathcal{C} = \bigcap_{(i,j) \in E} \mathcal{C}_{ij}.
\]
With the connectivity set, we can formally define when the team of mobile robots is connected.

Definition 4.2: Given a required connectivity graph \mathcal{G}, the team of N mobile robots with dynamics given in (8) is connected, if the ensemble state x stays in the set \mathcal{C} for all time $t \geq 0$.

In order for the team of mobile robots to stay safe and connected, the ensemble state x shall stay within

$$\mathcal{T} = \bigcap_{i,j \in \mathcal{M}} \mathcal{C}_{ij} \cap \mathcal{C}_{ij},$$

for all time $t \geq 0$. Since \mathcal{T} is the intersection of multiple sets, the compositional barrier function in Section II can be used to ensure the forward invariance of \mathcal{T}. The composite PBF for safety and connectivity maintenance is

$$B(x) = \prod_{i,j \in \mathcal{M}} B_{ij}(x) \prod_{(i,j) \in \mathcal{E}} \bar{B}_{ij}(x).$$

Before using this composite PBF, we need to check whether $B(x)$ is a valid PBF, which is ensured by the following lemma.

Lemma 4.1: The composite barrier function candidate $B(x)$ defined in (14) is a valid PBF, i.e.,

$$\sup_{u \in U} [-B'(x; f(x) - g(x)u + \alpha(B(x)))] \geq 0,$$

for all $x \in \mathcal{T}$.

Proof: See [20], Lemma 4.1.

Lemma 4.1 also implies that the admissible control space, $K(\mathcal{T}) = \{u \in U \mid L_j B(x) + L_k B(x) u + \alpha(B(x)) \geq 0\}$, (16) is always non-empty. With this result, we will present the main theorem of this paper.

Theorem 4.2: Given any required connectivity graph $\mathcal{G} = (V, E)$, a PBF $B(x)$ defined in (14), any Lipschitz continuous controller $u(x) \in K(\mathcal{T})$ for the dynamical system (8) guarantees that the team of mobile robots are safe and connected.

Proof: See [20], Theorem 4.2.

Theorem 4.2 ensures that the team of mobile robots remains safe and connected as long as the controller $u(x)$ stays within the admissible control space $K(\mathcal{T})$. Up until now, we have a strategy to formally ensure safety and connectivity of the team of mobile robots. Next, an optimization based controller will be presented to inject higher level goals, e.g., visiting waypoints, form certain shapes, and covering area, into the controller design.

B. Minimally Invasive Optimization based Controller

Designing a single controller for a multi-robot system that achieves certain goals while ensuring safety and connectivity might render the problem untractable. An alternative approach is to design a nominal controller \hat{u} that assumes safety and connectivity, and then correct the controller in a minimally invasive way when it violates safety or connectivity. This is achieved by running the following QP-based controller,

$$u^* = \underset{u}{\text{argmin}} \; J(u) = \sum_{i=1}^{N} \|u_i - \hat{u}_i\|^2$$

s.t. $L_j B(x) + L_k B(x) u + \alpha(B(x)) \geq 0,$

$$\|u\|_{\infty} \leq \alpha, \; \forall i \in \mathcal{M}.$$

This QP-based controller allows the nominal controller to execute as long as it satisfies the composite safety and connectivity barrier certificates. When violations of safety or connectivity are imminent, the nominal controller will be modified with a minimal possible impact in the least-squares sense. By running this QP-based controller, the higher level objectives specified by the nominal controller are unified with the safety and connectivity requirements encoded by the safety and connectivity barrier certificates.

C. Maintaining Dynamical Connectivity Graphs

Due to the dynamically changing environment and robot states, it would sometimes be favourable to allow the robots to switch between different connectivity graphs [7]. The safety and connectivity barrier certificates can also be designed to maintain dynamically changing connectivity graphs for the team of mobile robots.

Let $\hat{\mathcal{G}} = \{\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_M\}$ denote the set of all allowable connectivity graphs, where $\mathcal{G}_i = (V, E_i), i \in \mathcal{P}$, $\mathcal{P} = \{1, 2, \ldots, M\}$ is the index set of $\hat{\mathcal{G}}$. To stay connected, the team of mobile robots needs to satisfy at least one of these allowable connectivity graphs. The set that encodes the dynamical connectivity graph requirement is

$$\mathcal{C} = \bigcup_{k \in \mathcal{P}} \bigcap_{(i,j) \in E_k} \mathcal{C}_{ij}.$$

Definition 4.3: Given a set of allowable connectivity graphs $\hat{\mathcal{G}}$, the team of N mobile robots with dynamics given in (8) is dynamically connected, if the ensemble state x stays in the set $\hat{\mathcal{C}}$ for all time $t \geq 0$.

In order for the team of mobile robots to stay both safe and dynamically connected, the ensemble state x shall stay in

$$\hat{\mathcal{T}} = \left(\cap_{i,j \in \mathcal{M}} \mathcal{C}_{ij} \right) \left(\bigcup_{k \in \mathcal{P}} \bigcap_{(i,j) \in E_k} \mathcal{C}_{ij} \right),$$

for all time $t \geq 0$. Safety and dynamical connectivity guarantees similar to Theorem 4.2 can be achieved by using a composite PBF introduced in Section III,

$$B(x) = \prod_{i,j \in \mathcal{M}} B_{ij}(x) \prod_{(k,i,j) \in E_k} \bar{B}_{ij}(x).$$

It can be shown that $\bar{B}(x)$ is a valid PBF on $\hat{\mathcal{T}}$ using the same techniques like Lemma 4.1, i.e., the admissible control space

$$K(\hat{\mathcal{T}}) = \{u \in U \mid L_j B(x) + L_k B(x) u + \alpha(B(x)) \geq 0\},$$

is non-empty.
is always non-empty.

Theorem 4.3: Given a set of allowable connectivity graphs \(\mathcal{G} = \{G_1, G_2, \ldots, G_M\} \), a PBF \(\tilde{B}(x) \) defined in (20), any Lipschitz continuous controller \(u(x) \in K_{\mathcal{G}}(x) \) for the dynamical system (8) guarantees that the team of mobile robots are safe and dynamically connected.

The proof of this theorem is similar to Lemma 4.1, Theorem 3.2, and Theorem 4.2.

V. ROBOTIC IMPLEMENTATIONS

The composite safety and connectivity barrier certificates were tested on a team of four Khepera robots. Positions of the robots are tracked by the Optitrack Motion Capture System. The multi-robot communications and controls are coordinated by the Robot Operating System (ROS).

The nominal controller was a waypoint controller without consideration of safety and connectivity. As illustrated in Fig. 1, each robot needs to visit three waypoints sequentially.

![Fig. 1: Planned waypoints for four robot agents. Ri stands for robot i, i = 1, 2, 3, 4. The lines represent the nominal trajectories of the robots.](image)

A. Composite Safety Barrier Certificates

In the first experiment, the composite safety barrier certificates were wrapped around the nominal waypoint controller using the QP-based strategy (17). The composite PBF was formulated as

\[
B = B_{12}B_{13}B_{14}B_{23}B_{24}B_{34},
\]

so that all possible pairwise collisions are avoided. No connectivity constraints were considered in this experiment.

As shown in Fig. 2, all inter-robot distances are always larger than the safety distance \(D_s \), i.e., no collision happened. Fig. 3 are snapshots taken by an overhead camera and plotted robot trajectories. All robots successfully visited the specified waypoints without colliding into each other. Note that without the connectivity constraints, the mobile robot team sometimes got disconnected during the experiment, e.g., the team split into two parts in Fig. 3a.

![Fig. 2: Evolution of inter-robot distances. \(D_{ij} \) represents the distance between robot i and j. \(D_s = 0.15m \) and \(D_c = 0.6m \) are the safety and connectivity distances.](image)

![Fig. 3: Experiment of four mobile robots executing waypoint controller regulated by safety barrier certificates. The left pictures are taken by an overhead camera. The star, square, cross and triangular markers representing waypoints are projected onto the ground. The right figures visualize the trajectories, current positions and current velocities of the robots. A video of the experiment can be found online [11].](image)
B. Composite Safety and Connectivity Barrier Certificates

During the second experiment, the composite safety and connectivity barrier certificates were wrapped around the waypoint controller. The composite PBF is designed as

\[B = B_{12}B_{13}B_{14}B_{23}B_{24}B_{34}(\bar{B}_{12} + \bar{B}_{13})(\bar{B}_{24} + \bar{B}_{34}), \]

which encodes that: 1) there should be no inter-robot collisions; 2) robot 2 and 3 should always be connected; 3) robot 1 should be connected to robot 2 or 3; 4) robot 4 should be connected to robot 2 or 3.

The snapshots during the experiment in Fig. 4 illustrated that the team of mobile robots satisfied all the safety and connectivity requirements specified by the safety and connectivity barrier certificates. Note that robots visited all specified waypoints except the last one. This is because the last set of waypoints violated the connectivity constraints, i.e., robot 1 can’t reach its waypoint without breaking its connectivity to robot 2 and 3. This experiment also indicates that not all higher level objectives are compatible with the safety and connectivity constraints.

![Fig. 4: Experiment of four mobile robots executing waypoint controllers regulated by safety and connectivity barrier certificates.](image_url)

Fig. 4: Experiment of four mobile robots executing waypoint controllers regulated by safety and connectivity barrier certificates. The lines representing inter-robot connectivity are projected onto the ground using a projector. The safety and connectivity distances are \(D_s = 0.15m \) and \(D_c = 0.6m \), respectively. A video of the experiment can be found online [11].

VI. CONCLUSIONS

This paper presented a systematic way to compose multiple objectives using the compositional barrier functions. AND and OR logical operators were designed to provably compose multiple non-negotiable objectives, with conditions for composibility provided. The composite safety and connectivity barrier certificates were synthesized to formally ensure safety and connectivity for teams of mobile robots. Robotic experimental implementations validated the effectiveness of the proposed method.

REFERENCES