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Abstract

A Categorical Theory of Hybrid Systems

by

Aaron David Ames

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Shankar Sastry, Chair

This dissertation uses the formalism of category theory to study hybrid phenomena. One be-

gins with a collection of “non-hybrid” mathematical objects that have been well-studied, together with a

notion of how these objects are related to one another; that is, one begins with a category C of the non-

hybrid objects of interest. The objects being considered can be “hybridized” by considering hybrid objects

over C consisting of pairs (D,A) where D is a small category of a specific form, termed a D-category, which

encodes the discrete structure of the hybrid object and

A : D →C

is a functor encoding its continuous structure. The end result is the category of hybrid objects over C,

denoted by Hy(C).

In Part I, the foundations for the theory of hybrid objects are established. After reviewing the

basics of category theory, inasmuch as they will be needed in this dissertation, D-categories are formally

introduced. Hybrid objects over a general category C are then defined along with the corresponding no-

tion of a category of hybrid objects. Elementary properties of categories of this form are discussed. We

then proceed to relate the formalism of hybrid objects to hybrid systems in their classical form, the end re-

sult of which is a categorical formulation of hybrid systems together with a constructive correspondence

between classical hybrid systems and their categorical counterpart. Finally, executions or trajectories of

both classical and categorical hybrid systems are introduced, and they are related to one another—again

in a constructive fashion.

Part II applies the categorical theory of hybrid objects to obtain novel results related to the re-

duction and stability of hybrid systems. The geometric reduction of simple hybrid systems is first con-

sidered, e.g., conditions are given on when robotic systems undergoing impacts can be reduced. As an

application of these results, it is shown that a three-dimensional bipedal robotic walker can be reduced to

a two-dimensional bipedal walker; the result is walking gaits in three-dimensions based on correspond-

ing walking gaits for a two dimensional biped—walking gaits that simultaneously stabilize the walker to
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the upright position. Using hybrid objects, the reduction results for simple hybrid systems are general-

ized to general hybrid systems; to do so, many familiar geometric objects—manifolds, differential forms,

et cetera—are first “hybrizied.” The end result is a hybrid reduction theorem much in the spirt of the clas-

sical geometric reduction theorem. This part of the dissertation concludes with a partial characterization

of Zeno behavior in hybrid systems. A new type of equilibria, Zeno equilibria, is introduced and sufficient

conditions for the stability of these equilibria are given. Since the stability of these equilibria correspond

to the existence of Zeno behavior, the end result is sufficient conditions for the existence of Zeno behavior.

The final portion of this dissertation, Part III, lays the groundwork for a categorical theory, not

of hybrid systems, but of networked systems. It is shown that a network of tagged systems correspond to a

network over the category of tagged systems and that taking the composition of such a network is equiva-

lent to taking the limit; this allows us to derive necessary and sufficient conditions for the preservation of

semantics, and thus illustrates the possible descriptive power of categories of hybrid and network objects.

Professor Shankar Sastry
Dissertation Committee Chair
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Introduction

Category theory provides a framework for describing objects with like properties and for com-

paring objects with different properties. The concept of classifying objects based on the category in which

they reside can be traced back to Aristotle and his work Categories, written in 350 BC. In modern mathe-

matics, the concept of a category has been formalized into a common language. It is exactly for this reason

that establishing a bridge between engineering and category theory can provide so many benefits.

Yet there remains skepticism about the true usefulness of category theory, especially in the ar-

eas of computer science and engineering where there is common reference to the nickname “abstract

nonsense.” In fact, to quote Mitchell [92],

“A number of sophisticated people tend to disparage category theory as consistently as others
disparage certain kinds of classical music. When obliged to speak of category theory they do
so in an apologetic tone, similar to the way some say ‘It was a gift—I’ve never even played it’
when a record of Chopin Nocturnes is discovered in their possession.”

The purpose of this dissertation is to dispel some of these concerns by demonstrating that hybrid sys-

tems, i.e., systems that display both discrete and continuous behavior, are naturally amendable to the

formalisms of category theory.

Hybrid systems have the ability to model a wide range of phenomena, including: robotic sys-

tems undergoing impacts, biological systems, power systems, dynamical systems with non-smooth con-

trol laws, simplifying approximations of complex systems, networks of embedded and robotic systems,

et cetera. Understanding hybrid systems on a deep level, therefore, has important and practical conse-

quences. The yin to this yang is that a deep understanding of these systems is still lacking.

There is currently no unifying mathematical framework of hybrid systems—one that is analo-

gous to the theory of continuous and discrete systems. This is due, in part, to the fact that hybrid systems

represent a great increase in complexity over their discrete and continuous counterparts; this makes it

difficult to analyze even the simplest hybrid models. In addition, this added complexity results in the ex-

istence of new behavior that is unique to hybrid systems, e.g., Zeno behavior, that can have unexpected

and sometimes catastrophic consequences. This indicates that a new and more sophisticated theory is

needed to describe hybrid phenomena.

This dissertation presents a categorical theory of hybrid systems—the theory of hybrid objects—

which we claim provides a unifying mathematical framework for hybrid systems. The results and applica-
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tions that will be presented support this thesis in that they demonstrate the following properties of hybrid

objects:

Property I: Provide a common language for hybrid systems, i.e., marry the discrete and con-
tinuous components of a hybrid system in such a way that its underlying structure be-
comes apparent.

Property II: Relate hybrid systems to preexisting theory and constructions in mathematics.

Property III: Elucidate the relationship between hybrid systems.

Property IV: Provide novel and practical results that would not be possible without this math-
ematical framework.

This work, therefore, will be devoted to introducing the theoretical underpinnings of hybrid objects, with

a special focus on their usefulness in understanding hybrid systems and other hybrid phenomena. Appli-

cations also will be presented with the express goal of establishing the practical usefulness of categories

of hybrid objects—this should dispel concerns to the effect that these categories are nothing but “abstract

nonsense.”

Following is an overview of the general structure of this dissertation. The specific chapter de-

pendencies can be seen in Table 0.1.

Part I: Foundations. The first portion of this dissertation is devoted to establishing the foundational prin-

ciples underlying the rest of this work. These formulations support the claim that the categorical theory

of hybrid objects display Properties I, II and III.

Chapter 1: Hybrid Objects. The first chapter is devoted to the formal introduction of the theory

of hybrid objects, which is necessarily done on an abstract level. We begin by introducing the theory of

categories, which is done in a self-contained, albeit brief, fashion. With these concepts in hand, a special

class of small categories is introduced: D-categories, denoted by D. Categories of this form describe the

“discrete” component of hybrid objects, and are analogous to graphs. D-categories allow for the introduc-

tion of the notion of a hybrid object over a category C, (D,A), where

A : D →C

is a functor. The category of hybrid objects over C, Hy(C), can thus be formed. These are not the only

hybrid objects of interest; cohybrid objects and network objects also will be introduced.

Chapter 2: Hybrid Systems. Having introduced the notion of a hybrid object over a category,

this abstract concept is related to the standard formulation of a hybrid system. This relationship is estab-

lished in a constructive manner, i.e., it is demonstrated how one can transform the components defining

a hybrid system into the categorical framework for hybrid systems. These correspondences are bijective,

indicating that no information is lost in the reformulation of hybrid systems to this setting; it simply serves

the purpose of reframing hybrid systems so that they can be more easily reasoned about, i.e., it unifies,
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Part I

Foundations

Part II

Hybrid Systems

Part III

Networked Systems

Chapter 1

Hybrid Objects
-

Chapter 6

Universally Composing

Embedded Systems

Chapter 2

Hybrid Systems

?

-

Chapter 3

Simple Hybrid Reduction

& Bipedal Robotic Walking

Chapter 4

Hybrid Geometric Mechanics

?

Chapter 5

Zeno Behavior &

Hybrid Stability Theory

?

-

Table 0.1: Chapter dependency chart.
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but clearly separates, the discrete and continuous components of a hybrid system. The latter half of this

chapter is devoted to the categorical formulation of trajectories of hybrid systems; again, it is demon-

strated that this is in agreement with the standard notion of an execution. Simple examples that clearly

elucidate these concepts and reformulations are discussed throughout.

Part II: Hybrid Systems. The second part of this dissertation is devoted to applications of the theory of

hybrid objects, thus supporting the claim that hybrid objects display Property IV.

Chapter 3: Simple Hybrid Reduction & Bipedal Robotic Walking. This chapter temporar-

ily draws back from the categorical framework for hybrid systems with the goal of better understanding

the relationship between mechanical systems undergoing impacts and hybrid systems. Simple hybrid

systems are studied, with a special focus on Lagrangian hybrid systems and simple hybrid mechanical

systems. We begin by investigating the generalization of Routhian reduction to a hybrid setting, giving

explicit conditions on when this form of Lagrangian reduction can be carried out. The focus then shifts to

Hamiltonian reduction, where conditions are given on when symplectic reduction can be carried out in

the setting of simple hybrid systems. The chapter concludes with the crowning application of this disser-

tation: bipedal robotic walking. The results on the reduction of simple hybrid systems are utilized in order

to reduce a three-dimensional bipedal robot to two-dimensions; we are able to provide walking gaits that

allow the walker to converge to the upright position.

Chapter 4: Hybrid Geometric Mechanics. Drawing intuition from the study of simple hybrid

systems, we use hybrid objects to extend the results presented in Chapter 3 to general hybrid systems. Due

to the categorical and functorial nature of geometric objects, they can be extended to a hybrid setting

through the framework of hybrid objects. Specific examples of this process are discussed, e.g., hybrid

differential forms, hybrid Lie groups and hybrid Lie algebras. In a similar vein, the ingredients necessary to

perform reduction are generalized to a hybrid setting, the end result of which is the hybrid analogue of the

classical symplectic reduction theorem. The implications of this theorem to the geometric reduction of

hybrid dynamics, i.e., hybrid Hamiltonian reduction, is established. This chapter, therefore, demonstrates

the ability of hybrid objects to generalize geometry to a hybrid setting.

Chapter 5: Zeno Behavior & Hybrid Stability Theory. Zeno behavior is unique to hybrid sys-

tems, and thus provides a unique opportunity to better understand not only the similarities between

hybrid and dynamical systems, but also their differences. In order to study Zeno behavior, a type of

equilibria—again unique to hybrid systems—is first introduced: Zeno equilibria. The relationship be-

tween the stability of Zeno equilibria and Zeno behavior is first established for a simple class of hybrid

systems: first quadrant hybrid systems. After revisiting the stability of dynamical systems—specifically,

Lyapunov’s second method—in a categorical light, conditions on the stability of Zeno equilibria for gen-

eral hybrid systems are established, a corollary of which is sufficient conditions on the existence of Zeno

behavior. The similarities between these conditions and the categorical formulation of Lyapunov’s second
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method indicate that hybrid objects are fundamental in understanding the general stability properties of

hybrid systems.

Part II: Networked Systems. The final portion of this dissertation investigates the possibility of using

hybrid objects, and the related notion of network objects, to described networked systems. While this

provides only the first tentative steps toward such a theoretical extension, it could lay the groundwork for

a categorical theory of networked systems.

Chapter 6: Universally Composing Embedded Systems. The final chapter of this dissertation

is devoted not to hybrid systems, but to networked systems. This indicates that hybrid objects, and the

related notion of network objects, may be instrumental in the study of such systems. A heterogeneous

network of embedded systems can be modeled mathematically by a network of tagged systems, which

provides a denotational semantics for such systems. We establish, in a constructive fashion, how a net-

work of tagged systems can be formulated as a network over the category of tagged systems. Taking the

composition of this network corresponds to taking the limit of the corresponding functor. Therefore, com-

position is endowed with a universal property. With this important observation in hand, necessary and

sufficient conditions on the preservation of semantics are derived—that is, when behavior is preserved by

composition.
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Chapter 1

Hybrid Objects

This chapter begins by introducing the basics of category theory in order to establish the neces-

sary language in which to formulate the fundamental notion of a hybrid object over a category. After intro-

ducing category theory, and before introducing hybrid objects, it is necessary to introduce D-categories;

these encode the discrete structure of a hybrid object. We then introduce hybrid objects over a cate-

gory; this allows one to “hybridize” objects in a general category, and thus provides the foundation for our

mathematical theory of hybrid systems. The chapter concludes by introducing other “hybrid” objects of

interest: cohybrid objects over a category and networks over a category. Throughout the chapter, simple

examples are introduced in order to highlight the concepts involved.

Before proceeding to our introduction of categories, we summarize in more detail the contents

of this chapter; it is recommended that those not familiar with category theory first read Section 1.1. In

addition, the motivation for the ideas introduced may seem opaque for those not familiar with hybrid

systems; we refer the reader to Chapter 2 for this motivation. This dissertation, like most systems, is

irrevocably nonlinear.

D-categories. Fundamental to our studies of hybrid objects is the notion of a D-category. These cate-

gories define the “discrete” structure of a hybrid object—the “D” stands for discrete—and dictate how the

“continuous components” of a hybrid object interact. To be more specific, every D-category1 A has the

general form2

• • •

•� •�
-

•
-

· · · •� •
-

In no way is this structure accidental; the objects in the upper half of this diagram dictate the interaction

between the objects in the lower half of the diagram.

1Categories of this form are denoted by calligraphic symbols.
2Where • denotes an arbitrary object in A together with its identity morphism and - denotes an arbitrary (non-identity)

morphism.
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Hybrid Objects

Directionality can be added to D-categories by picking a specific labeling of their morphisms;

this defines an oriented 3 D-category. For example, the D-category above can be oriented as follows:

a1 a2 ai

b1

sa1

�
b2

sa2

�

ta1
-

b3

ta2
-

· · · bi

sai

�
bi+1

tai
-

where sai and tai are morphisms indexed by ai , with “s” standing for source in that bi is the “source” of

ai , and “t” standing for target in that bi+1 is the “target” of ai . Therefore, D-categories are in direct and

formal analogy to graphs, e.g., the above D-category is obtained from or yields a graph of the form:

b1
a1 - b2

a2 - b3 · · · bi
ai- bi+1

and so the reader may prefer to think about D-categories as modified graphs. In fact, this is justified due

to the isomorphism of categories: Dcat∼=Grph, where Dcat is the category of (oriented) D-categories and

Grph is the category of (oriented) graphs. On the other hand, one should not make the mistake of as-

suming that the formalism of D-categories is unnecessary or extraneous; one could not work with graphs

alone.

Hybrid objects. After introducing D-categories, we begin our exposition of hybrid objects and the cat-

egories thereof. Beginning with a category of “non-hybrid” objects of interest, C, the hybrid objects over

this category are diagrams of a specific form, i.e., a hybrid object is a pair (A ,A) where A is a D-category,

and

A : A →C

is a functor. For example, a hybrid vector space is a functor V : V → VectR, where V is a D-category and

VectR is the category of (real) vector spaces.

Morphisms between hybrid objects can be defined; these are functors of a very specific form,

~F : A →B, between D-categories together with a natural transformation:

~f : A
�→ B◦ ~F .

The result of combining this data is the category of hybrid objects over C, Hy(C). This will be our main

object of study. In this light, we devote some energy to establishing some fundamental constructions

relating to categories of this form. For example, given a functor F : C→D, there is an induced functor:

Hy(F ) : Hy(C) →Hy(D)

between categories of hybrid objects over C and D, respectively. Equally important will be the notion of

an element of a hybrid object, e.g., an element of a hybrid vector space is a hybrid vector.

Cohybrid and network objects. Our studies do not end with Hy(C). There are many other interesting

“hybrid” categories that naturally arise. One of these is the category of cohybrid objects over C, CoHy(C).

3These are the only type of D-categories that will be considered, so the prefix “oriented” will often be dropped.
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Hybrid Objects

The objects of this category are contravariant functors A : A → C. These categories frequently appear

when dealing with contravariant functors between categories; if F : C → D is contravariant, then there is

an induced contravariant functor:

Hy(F ) : Hy(C) →CoHy(D).

There is also the notion of an element of a cohybrid objects. Concretely, the dual to a hybrid vector space

is a cohybrid object over the category of vector spaces V? : V →VectR, and an element of such a cohybrid

object is a hybrid covector.

The final category of “hybrid” objects of interest appears not in hybrid systems, but in networked

systems. That is, a network over a category C is a functor N : N → C, where N is the opposite to a D-

category, or a Dop-category. The end result is the category of networks over C, Net(C). These categories

are important in the study of networked systems—as the name suggests—and so will be instrumental in

Chapter 6.

1.1 Categories

The goal of this section is to introduce the basics of category theory in order to provide the

necessary framework in which to introduce our categorical framework for hybrid systems and the more

general notion of a hybrid object over a category. While this review is self-contained, it is clearly not

possible to briefly introduce all of the elementary category theory in a concise fashion. We refer the reader

to [74] for any missing details, although there are many other good references on category theory; see [5],

[21] and [92].

Definition 1.1. A category C consists of the following data:

¦ A class of objects A,B,C , . . ., denoted by Ob(C),

¦ For all A,B ∈Ob(C), a set of morphisms HomC(A,B); a morphism f ∈HomC(A,B) is often written as

f : A → B and in such a case the domain of f , dom( f ), is A and the codomain of f , cod( f ), is B,

¦ For all A,B,C ∈Ob(C) with morphisms f ∈HomC(A,B) and g ∈HomC(B,C ), there exists a morphism

g ◦ f ∈HomC(A,C ) given by composition,

satisfying the axioms:

Associativity: For morphisms f : A → B, g : B →C and h : C → D,

h ◦ (g ◦ f ) = (h ◦ g )◦ f ,

Existence of identity: For all A ∈ Ob(C), there exists an identity morphism idA : A → A which

satisfies, for every f : A → B,

idB ◦ f = f = f ◦ idA.
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Hybrid Objects

Category Objects Morphisms
Grp Groups Group homomorphisms
Ab Abelian groups Group homomorphisms

VectR Real vector spaces Linear maps
Top Topological spaces Continuous functions
Met Metric spaces Nonexpansive functions
Man Smooth manifolds Smooth functions

Table 1.1: Important categories.

A category is called small if its class of objects, Ob(C), is a set.

Remark 1.1. There are variants on the definition of a category. The most important of these is that it is

not always required that the set of morphisms between two objects in a category form a set, but rather a

class. Categories of this form are termed quasi-categories, the most important example of which is CAT,

the category of all categories.

Example 1.1. One of the most fundamental examples of a category is the category of sets, Set, defined

with

Objects: Sets,
Morphisms: Functions between sets.

The composition operation in this category is the usual composition of functions.

The category Set is fundamental because it allows one to endow many familiar collections of

objects with the structure of a category; these are termed concrete categories [5]. Some examples can be

found in Table 1.1; in all of the above examples, composition is given by the standard composition of

functions in Set.

1.1.1 Commuting diagrams. Collections of objects and morphisms in a category are commonly dis-

played in the form of a diagram. That is, for A,B,C ∈ Ob(C) and morphisms f : A → B, g : B → C and

h : A →C , it is often useful to display this data in the form:

A
h - C

B

g

-

f - (1.1)

A diagram of this form is said to commute if h = g ◦ f . Another canonical example of a commuting diagram

is a commuting square:

A
h - C

B

f

? g - D

i

?
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Hybrid Objects

Requiring this diagram to commute is equivalent to requiring that g ◦ f = i ◦h.

To provide an explicit example of the useful visual nature of diagrams, and especially commut-

ing diagrams, the two axioms of a category can be restated as follows:

Associativity: For morphisms f : A → B, g : B →C and h : C → D, the following diagram

A
g ◦ f - C

B

f

? h ◦ g- D

h

?

commutes.

Existence of identity: For all A ∈ Ob(C), there exists an identity morphism idA : A → A such

that, for every f : A → B, the following diagram

A
f - B

A

idA

? f - B

idB

?

f

-

commutes.

1.1.2 Opposite categories. To provide an example of a category obtained from another category, let C

be a category. We can then define the opposite category to C, denoted by Cop. The objects are the same as

C, but the morphisms are reversed. That is, if f : A → B in C, then there is by definition a corresponding

morphism in Cop given by f op : B → A. Composition in Cop is defined by f op◦gop := (g ◦ f )op. Commuting

diagrams allow us to visualize the difference between C and Cop. Specifically, a commuting diagram of the

form (1.1) in C becomes a commuting diagram of the form:

A � hop
C

B

gop
�f op

�

in Cop.

These categories will play an important role when considering categories of cohybrid objects (to

be introduced in Definition 1.12).

1.1.3 Distinguished morphisms. In the category of sets, Set, there is a well-understood notion of in-

jective, surjective and bijective functions. These concepts can be extended to arbitrary categories through

morphisms termed monomorphisms, epimorphisms, and isomorphisms. For a category C, there are the

following classes of morphisms.
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Hybrid Objects

Monomorphisms: A morphism m : A → B is a monomorphism if for every object D and every
pair of morphisms f1, f2 : D → A, i.e., for every diagram:

D
f1 -

f2

- A
m - B,

the following condition holds:

m ◦ f1 = m ◦ f2 ⇒ f1 = f2.

Epimorphisms: A morphism e : A → B is an epimorphism if for every object C and every pair
of morphisms g1, g2 : B →C , i.e., for every diagram:

A
e - B

g1 -

g2

- C ,

the following condition holds:

g1 ◦ e = g2 ◦ e ⇒ g1 = g2.

Isomorphisms: A morphism f : A → B is an isomorphism if there exists a morphism f −1 :
B → A such that:

f ◦ f −1 = idB , f −1 ◦ f = idA.

The morphism f −1 is unique.

Two objects A and B of C are isomorphic, denoted by A ∼= B, if there exists an isomorphism f : A → B.

Example 1.2. In the category of sets, Set, the monomorphisms are injective functions, the epimorphisms

are surjective functions and the isomorphisms are bijective functions.

1.1.4 Distinguished objects. The above definitions dealt with properties of morphisms in a category.

There are also some important properties that objects of a category C can display. Of special interest are

the following distinguished classes of objects:

Terminal Objects: An object ∗ of C is a terminal object if for every object A of C there exists a
unique morphism A →∗.

Initial Objects: An object ; of C is an initial object if for every object B of C there exists a
unique morphism ;→ B.

Zero Objects: An object 0 of C is a zero object if it is both an initial and terminal object.

Example 1.3. In the category of sets, Set, the empty set is the (unique in this case) initial object and every

set consisting of a single point is a terminal object. There are no zero objects.

1.1.5 Functors. It is often important to investigate the relationship between multiple categories; this

relationship is established by functors.

Definition 1.2. A covariant functor F between two categories C and D is given by

¦ An object function (also denoted by) F which associates to each object A of C an object F (A) in D,
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¦ A morphism function (also denoted by) F which associates to each morphism f : A → B in C a

morphism F ( f ) : F (A) → F (B) in D,

satisfying the following two axioms:

¦ F (idA) = idF (A) for every A ∈Ob(C),

¦ F (g ◦ f ) = F (g )◦F ( f ) for morphisms f : A → B and g : B →C in C.

The last axiom in the definition of a functor requires that functors “preserve commuting dia-

grams.” For example:

A
h - C

B

g

-

f
-

⇒

F (A)
F (h) - F (C )

F (B)

F (g )

-

F ( f ) -

where the implication is on the commutativity of the diagram.

Example 1.4. Taking the power set of a set yields a functor P : Set→ Set given on objects of Set, i.e., sets,

by associating to a set X its power set P (X ). To a morphism, i.e., a function, between sets f : X → Y , we

obtain a function P ( f ) where P ( f )(U) = f (U) for U ∈P (X ).

1.1.6 Contravariant functors. A contravariant functor can be thought of as a functor that “reverses”

arrow. It again consists of an object function and a morphism function, except the condition on the mor-

phism function given in Definition 1.2 becomes:

¦ A morphism function (as denoted by) F which associates to each morphism f : A → B in C a mor-

phism F ( f ) : F (B) → F (A) in D.

We also require that the first axiom in Definition 1.2 holds, while the second axiom becomes:

¦ F (g ◦ f ) = F ( f )◦F (g ) for morphisms f : A → B and g : B →C in C.

The last of these two conditions can be visualized best by commuting diagrams:

A
h - C

B

g

-

f
-

⇒

F (A) � F (h)
F (C )

F (B)

F (g )
�

F ( f )

�

where, again, the implication is on the commutativity of the diagram.

Notation 1.1. All functors are assumed to be covariant unless otherwise stated.

Example 1.5. The process of associating to a vector space its dual and to a linear map its dual results in a

contravariant functor

( − )? : VectR→VectR

where V maps to V? and f : V → W maps to f ? : W? → V?.
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1.1.7 Distinguished functors. Just as there are distinguished morphisms, e.g., monomorphisms and

epimorphisms, there are also distinguished functors. Specifically, a functor:

F : C→D,

is

Full: if for every pair of objects A and B of C and morphism f : F (A) → F (B) in D there exists a
morphism g : A → B in C such that f = F (g ). More compactly:

f : F (A) → F (B) ⇒ ∃ g : A → B s.t. f = F (g ).

If the functor F is full, for any two objects A and B of C, the morphism function:

F : HomC(A,B) → HomD(F (A),F (B))

g : A → B 7→ F (g ) : F (A) → F (B)

is surjective.
Faithful: if for every pair of objects A and B and morphisms f1, f2 : A → B,

F ( f1) = F ( f2) ⇒ f1 = f2.

If the functor F is faithful, for any two objects A and B of C, the morphism function:

F : HomC(A,B) →HomD(F (A),F (B))

is injective.
Fully Faithful: if it is full and faithful.
Surjective on Objects: if for all objects X of D, there exists an object A of C such that F (A) = X .

Surjective: if it is surjective on objects and full, i.e., surjective on objects and morphisms.
Essentially Surjective: if for any object X of D there exists an object A of C such that F (A) ∼= X .

Injective on Objects: if for any two objects A,B of C:

F (A) = F (B) ⇒ A = B.

Injective: if it is injective on objects and faithful, i.e., injective on objects and morphisms.
Bijective: if it is bijective on objects and fully faithful, i.e., bijective on objects and mor-

phisms.

1.1.8 Forgetful functors. As indicated in Example 1.1, it is often the case that objects of a category C

are sets together with some additional structure. More specifically, suppose that every object A of C is a

set together with some additional structure, i.e., satisfying some additional axioms, and every morphism

of C is a function together with some additional structure, i.e., satisfying some additional axioms. In this

case, there is a forgetful functor:

U : C→ Set,

given by viewing U(A) as only a set, i.e., forgetting about any additional structure it may have, and viewing

U( f ) as a function (again forgetting about any additional structure is may have). In this case, we often

write a ∈ A if a ∈U(A). Categories of this form are related to concrete categories [5] (if U is faithful, then C

is a concrete category).
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Example 1.6. For the category of vector spaces VectR, there is a forgetful functor:

U : VectR→ Set,

given by forgetting about the vector space structure of a vector space and the linearity of a morphism

between vector spaces.

1.1.9 Subcategories. Let D be a category. A subcategory of this category is a category C such that

Ob(C) ⊆ Ob(D) and HomC(A,B) ⊆ HomD(A,B) for all A,B ∈ Ob(C). It follows that there is an inclusion

functor I : C → D which is the identity on objects and morphisms, i.e., the object function is the iden-

tity and the morphism function is the identity. A special class of subcategories that is of interest are full

subcategories; these are subcategories in which the inclusion functor is a full functor. In particular, this

implies that for any two objects A and B in C:

HomC(A,B) =HomD(A,B).

So, when defining a full subcategory of a category D, one need only specify the objects of this category.

Example 1.7. The category of abelian groups, Ab, is a full subcategory of the category of groups, Grp.

1.1.10 The category of categories. Functors can be thought of as “morphisms between categories.” In

fact, we can define the quasi-category of all categories, CAT, with

Objects: All categories,
Morphisms: Functors between categories.

This is technically not a category as defined in Paragraph 1.1 since the collection of functors HomCAT(C,D)

does not form a set. Regardless, the category of all categories can still be (at least conceptually) useful. For

example, we can give a notion of when two categories are isomorphic.

Definition 1.3. Two categories C and D are isomorphic, denoted by C ∼= D, if there exists two functors

F : C→D and G : D→C such that F ◦G = IdD and G ◦F = IdC where Id is the identity functor.

There is a useful characterization of when two categories are isomorphic based upon the proper-

ties of a functor between these categories: two categories C and D are isomorphic iff there exists a bijective

functor F : C→D.

1.1.11 The category of small categories. We can restrict the categories in CAT being considered in

order to get a category in the classical sense. Let Cat be the category of all small categories, with

Objects: All small categories,
Morphisms: Functors between small categories.

In this case, the collection HomCat(C,D) forms a set. This category is very important in the study of hybrid

objects over a category since it can be thought of as the “category of all indexing categories.”
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1.1.12 Natural transformations. Natural transformations can be viewed as “morphisms between func-

tors.” As such, they play a vital role in all of category theory, and especially categories of hybrid objects.

Definition 1.4. Let F,G : C→D be functors. A natural transformation τ : F
�→G from F to G consists of a

collection of morphisms τA : F (A) →G(A) in D such that for every f : A → B in C, the following diagram:

F (A)
τA- G(A)

F (B)

F ( f )

? τB- G(B)

G( f )

?

commutes.

1.1.13 Composing natural transformations. Let F,G ,H : C → D be functors. Natural transformations

τ : F
�→ G and υ : G

�→ H , can be composed “objectwise.” That is, composing τ and υ results in a natural

transformation:

υ•τ : F
�→ H ,

defined objectwise by: (υ•τ)A := υA ◦τA for all A ∈Ob(C).

A natural transformation τ : F
�→G is a natural isomorphism if it is objectwise an isomorphism,

i.e., τA : F (A) →G(A) is an isomorphism for every object A of C. Equivalently, a natural transformation τ is

a natural isomorphism if there exists a natural transformation τ−1 : G
�→ F such that:

τ•τ−1 = idG , τ−1 •τ= idF ,

where idG and idF are natural transformations that are objectwise the identity.

Two functors F and G are isomorphic , F ∼=G , if there exists a natural isomorphism τ : F
�→G .

Using the notion of natural isomorphisms, an equivalence of categories can be defined; this

turns out frequently to be a better notion of equivalence between categories than requiring the categories

to be isomorphic.

Definition 1.5. A functor F : C→D is an equivalence of categories if there exists a functor G : D→C and

natural isomorphisms:

F ◦G ∼= ID, G ◦F ∼= IC.

Two categories C and D are equivalent, written C≈D, if there exists an equivalence of categories

F : C→D (or G : D→C); F is an equivalence of categories iff F is fully faithful and essentially surjective.

1.1.14 Natural transformations between contravariant functors. If F,G : C → D are contravariant

functors, then a natural transformation τ : F
�→ D between these functors is again a collection of mor-
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F (A)
τA- G(A)

F (B)

F ( f )

? τB- G(B)

G( f )

?

F (A)
τA- G(A)

F (B)

F ( f )
6

τB- G(B)

G( f )
6

F covariant, G covariant F contravariant, G contravariant

F (A)
τA- G(A)

F (B)

F ( f )

? τB- G(B)

G( f )
6

F (A)
τA- G(A)

F (B)

F ( f )
6

τB- G(B)

G( f )

?

F covariant, G contravariant F contravariant, G covariant

Table 1.2: Different variations of natural transformations.

phisms τA : F (A) →G(A), except we now require that for every f : A → B in C the following diagram:

F (A)
τA- G(A)

F (B)

F ( f )
6

τB- G(B)

G( f )
6

commutes. Natural transformations also can be defined when considering mixed covariant/contravariant

functors as illustrated in Table 1.2.

1.1.15 Diagrams. A diagram (or J-diagram) in a category C is a functor F : J→ C for some small cate-

gory J (an indexing category). We can form the category of all J-diagrams in the category C, denoted by

CJ, with

Objects: Functors F : J→C,
Morphisms: Natural transformations.

Categories of this form are commonly referred to as functor categories.

1.1.16 The constant functor. A very important, yet simple, functor is the constant functor, ∆J. This is

a functor:

∆J : C→CJ,

given on objects A ∈Ob(C) by

∆J(A)(a) = A
∆J(A)(α) = idA- ∆J(A)(b) = A

for α : a → b in J. On morphisms f : A → B in C, ∆J( f )a := f for every object a of J.

12
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1.1.17 Basic diagrams. Diagrams play a central role in the theory of hybrid objects, except we will

restrict our attention to a specific class of small categories termed D-categories. In preparation, we now

enumerate some of the basic diagrams of interest in category theory.

(•): A category consisting of a single object and an identity morphism. A functor F : (•) → C
can be identified with an object of C, i.e., it is just the object F (•) ∈ Ob(C). Therefore, the
category C(•) =Ob(C).

(•→ •): A category consisting of two objects, the identity morphisms for these objects and a
non-identity morphism. A functor

F : (•→•) →C

is just a diagram:

F (•→•) = A
f - B

in C. Therefore, the category C(•→•) can be identified with the morphisms in C.
(•→→•): A category with two objects and two non-identity morphisms. A functor

F : (•→→•) →C

is just a diagram:

F (•→→•) = A
f1-

f2

- B

in C. Diagrams of this form are important when considering equalizers and coequalizers.
(•←•→•): A category with three objects and two non-identity morphisms. A functor

F : (•←•→•) →C

is just a diagram:

F (•←•→•) = A � f
B

g- C

in C. Diagrams of this form are important when considering pushouts.
(•→•←•): A category with three objects and two non-identity morphisms. A functor

F : (•→•←•) →C

is just a diagram:

F (•→•←•) = A
f - B �g

C

in C. Diagrams of this form are important when considering pullbacks.

1.2 D-categories

In this section, we introduce an important class of small categories: D-categories. These cate-

gories are very simple small categories that essentially can be thought of as graphs. In fact, we will demon-

strate that the category of (oriented) D-categories is isomorphic to the category of (oriented) graphs:

Dcat∼=Grph .

13



Hybrid Objects

The proof of this fact is constructive in nature, i.e., it is shown how to obtain a graph from a D-category

and a D-category from a graph.

The motivation for considering D-categories is that they play a fundamental role in defining

hybrid objects over a category. The motivation for the name D-categories is that they define the “discrete”

structure of a hybrid object over a category.

1.2.a Axioms and Orientations

We must define a specific type of small category, termed a D-category, in order to introduce

hybrid objects. This is a small category in which every diagram has the form:

• • •

•� •�
-

•
-

· · · •� •
-

That is, a D-category has as its basic atomic unit a diagram of the form:

•

•� •
-

and any other diagram in this category must be obtainable by gluing such atomic units along the codomain

of a morphism (and not the domain). More formally, consider the following:

Definition 1.6. A D-category is a small category D satisfying the following two axioms:

AD1 Every object in D is either the domain of a non-identity morphism in D or the codomain of a non-

identity morphism but never both, i.e., for every diagram

a0
α1- a1

α2- · · · αn- an

in D, all but one morphism must be the identity (the longest chain of composable non-identity

morphisms is of length one).

AD2 If an object in D is the domain of a non-identity morphism, then it is the domain of exactly two

non-identity morphisms, i.e., for every diagram in D of the form

a0

a1
�

α1

a2
�

α 2

a3

�
α

3

· · · · · · · · ·an

α
n -

consisting of all morphisms with domain a0, either all of the morphisms are the identity or two and

only two morphisms are not the identity.

Remark 1.2. We could form the category of D-categories with objects D-categories and morphisms all

functors. This being said, we actually do not consider this category as it does not yet have enough struc-

ture, i.e., we will consider D-categories that are oriented and functors between D-categories that preserve

these orientations.
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Example 1.8. An example of a D-category is given in the following diagram:

•

• •

•�

-
•

-

�

•

-

•�

•

-

•

�

•
-

• �

• •

•

-

-

•

�

�

•
-

�

This D-category can be justifiably thought of as a “cycle” D-category.

1.2.1 Important objects in D-categories. Let D be a D-category. We use Mor(D) to denote the mor-

phisms of D, i.e.,

Mor(D) = ⋃
(a,b)∈Ob(D)×Ob(D)

HomD(a, b),

and Morid� (D) to denote the set of non-identity morphisms of D, i.e.,

Morid� (D) = {α ∈Mor(D) :α 6= id}.

For a morphism α : a → b in D, recall from Definition 1.1 that its domain is denoted by dom(α) = a and its

codomain is denoted by cod(α) = b.

For D-categories, there are two sets of objects that are of particular interest; these are subsets of

Ob(D). The first of these is termed the edge set of D, denoted by E(D), and defined to be:

E(D) = {a ∈Ob(D) : a = dom(α), a = dom(β), α,β ∈Morid� (D), α 6=β}.

That is, for all a ∈ E(D) there are two and only two morphisms (which are not the identity) α,β ∈Mor(D)

such that a = dom(α) and a = dom(β), so we denote these morphisms by sa and ta (the specific choice will

define an orientation). Conversely, given a morphism γ ∈ Morid� (D), there exists a unique a ∈ E(D) such

that γ= sa or γ= ta . Therefore, every object a ∈E(D) sits in a diagram of the form:

dom(sa) = a = dom(ta)

b = cod(sa)

sa

�
cod(ta) = c

ta

-
(1.2)
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Note that giving all diagrams of this form (for which there is one for each a ∈E(D)) gives all the objects in

D, i.e., every object of D is the domain or codomain of sa or ta for some a ∈E(D).

Define the vertex set of D by:

V(D) = (E(D))c ,

where here (E(D))c is the complement of E(D) in the set Ob(D). It follows by definition that

E(D)∩V(D) = ;,

E(D)∪V(D) = Ob(D).

The above choice of morphisms sa and ta can be used to define an orientation on a D-category.

Figure 1.1: The edge and vertex sets for a D-category.

Example 1.9. For the D-category introduced in Example 1.8, the edge and vertex sets can be seen in Figure

1.1; in this figure “•” is now just an object, not an object together with its identity morphism.

Definition 1.7. An orientation of a D-category D is a pair of functions (s,t) between sets:

E(D)
s-

t
- Morid� (D),

16
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that fit into a diagram

E(D)

E(D)
s-

t
-

id
-

Morid� (D)

dom

6

V(D)

cod

?

(1.3)

in which the top triangle commutes.

Notation 1.2. We will always assume that a given D-category has an orientation. Therefore, we will not

explicitly say “oriented D-category” since all D-categories considered will be oriented.

The notion of a D-category, together with an orientation thereon, can be summarized succinctly

as follows:

Definition 1.8. A D-category is a small category D such that:

¦ There exist two subsets of Ob(D), E(D) and V(D), termed the edge set and vertex set, satisfying:

E(D)∩V(D) = ;,

E(D)∪V(D) = Ob(D),

¦ There exists a pair of functions:

E(D)
s-

t
- Morid� (D),

such that:

s(E(D))∩ t(E(D)) = ;,

s(E(D))∪ t(E(D)) = Morid� (D).

and the diagram in (1.3) is well-defined and commutes; the pair (s,t) is termed an orientation of D.

Remark 1.3. By requiring that the diagram in (1.3) is well-defined we are imposing the condition that

dom(Morid� (D)) =E(D) and cod(Morid� (D)) =V(D). In addition, for every a ∈E(D), there is a correspond-

ing diagram (1.2) in which b, c ∈V(D).

To verify that the (oriented) D-categories, as defined in 1.8, satisfy the axioms of a D-category as

given in Definition 1.6, we demonstrate the following:.

Lemma 1.1. A D-category, as defined in 1.8, satisfies AD1 and AD2.

17
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Proof. Beginning with AD1, we argue by way of contradiction. Suppose that there are two morphisms

a
α - b

β - c

with α 6= id and β 6= id. Then, since s(E(D))∪ t(E(D)) = Morid� (D), α = sa or ta and β = sb or tb . Since

b = cod(α), and because (1.3) is well-defined, it follows that b ∈ V(D). But b = dom(β) and so, again

because of the fact that (1.3) is well-defined, it follows that b ∈ E(D). Since E(D)∩V(D) = ; we have

established the desired contradiction.

To show that AD2 holds, let a = dom(α) with α 6= id. Then a ∈ E(D) by the fact that (1.3) is

well-defined; moreover a = dom(sa) and a = dom(ta) by the commutativity of this diagram. Therefore,

a is the domain of two non-identity morphisms. Now, for any other non-identity morphism β such that

a = dom(β), since s(E(D))∪t(E(D)) =Morid� (D), it follows that β= sa or β= ta . Therefore, a is the domain

of exactly two non-identity morphisms.

Example 1.10. We can pick an orientation for the D-category given in Example 1.8. This orientation is

displayed in the following diagram:

a1

a8 a2

b1

sa1

�

ta8
-

b2

ta1

- sa2

�

b8

sa8 -

b3

ta2

�

a7

ta7 -

a3

sa3
�

b7
sa7

-
b4

ta3�

b6 b5

a6

ta6

-

sa6

-

a4

sa4

�

ta4

�

a5

sa5

-

ta5

�

This is by no means the only orientation that we could impose; it was chosen because it makes this D-

category into a “directed cycle” D-category or a D-cycle. D-categories of this form will be fundamental in

the study of Zeno behavior in hybrid systems (cf. Chapter 5).

1.2.2 The category of D-categories. Define the category of (oriented) D-categories, Dcat, to have ob-

jects D-categories. A morphism between two D-categories, D and D′ (with orientations (s,t) and (s′,t′),

respectively) is a functor ~F : D →D′ such that

~F (E(D)) ⊆E(D′), ~F (V(D)) ⊆V(D′), (1.4)
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and the following diagrams

E(D)
~F - E(D′) E(D)

~F - E(D′)

Morid� (D)

s

? ~F- Morid� (D′)

s′

?
Morid� (D)

t

? ~F- Morid� (D′)

t′

?

(1.5)

commute. By requiring these diagrams to commute, it implies that for all diagrams of the form:

a

b

sa

�
c

ta

-

in D, i.e., a ∈E(D) and b, c ∈V(D), there are corresponding diagrams:

~F (a)

~F (b)

~F (sa) = s′
~F (a)

�
~F (c)

~F (ta) = t′~F (a)

-

in D′, where ~F (a) ∈E(D′) and ~F (b), ~F (c) ∈V(D′).

Example 1.11. Let D and D′ be the D-categories given by the following diagrams:

a

D =

b1

sa

�
b2

ta

-

a′

D′ =

b′

s′
a′

?

t′a′

?

There is a morphism ~F : D →D′ of D-categories given by:

~F (a) = a′, ~F (b1) = ~F (b2) = b′, ~F (sa) = s′a′ , ~F (ta) = t′a′ .

This morphism can be visualized by the following diagram:

a

D

b1

sa

�
b2

ta

-

a′
?

...........................................

D′

~F

?

b′

s′
a′

?

t′a′

?�..
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

.........................................................................-

19



Hybrid Objects

Example 1.12. Let D′′ be the D-category given by the following diagram:

a1 a2

D′′ =

b1

sa1

�
b2

sa2

�

ta1

-

b3

ta2

-

In this case, there is not a morphism from D′′ to D as any such morphism would not preserve the orienta-

tions of these D-categories.

1.2.3 Elementary properties. At this point, we verify some elementary properties of D-categories.

Lemma 1.2. For any two objects a, b in D, if a ∼= b then a = b.

Proof. We argue by contradiction. If a ∼= b and a 6= b, then there exist two non-identity morphisms:

a
α - b

α−1
- a.

This violates AD1.

Using this result, we characterize equivalences between D-categories.

Lemma 1.3. A morphism ~F : D →D′ is an equivalence of categories iff it is an isomorphism of categories.

1.2.b D-categories and Graphs

We now turn our attention to relating D-categories to graphs.

1.2.4 Oriented graphs. A (directed or oriented) graph is a pair Γ = (Q,E), where Q is a set of vertices

and E is a set of edges (assumed to be disjoint), together with a pair of functions:

E
sor -

tar
- Q

called the source and target functions; for e ∈ E , sor(e) is the source of e and tar(e) is the target of e.

A morphism of graphs is a pair F = (FQ ,FE ) : Γ = (Q,E) → Γ′ = (Q′,E ′), where FQ : Q → Q′ and

FE : E → E ′, such that the following diagrams commute:

E
FE - E ′ E

FE - E ′

Q

sor

? FQ - Q′

sor′

?
Q

tar

? FQ - Q′

tar′

?

(1.6)

Thus we have defined the category of graphs, Grph.
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Example 1.13. An example of a graph is given by the following directed cycle graph:

1
e1 - 2

8

e8 -

3

e2-

7

e7

6

4

e3

?

6 � e5

e6
�

5

e4
�

A graph of this form is often denoted by C8.

1.2.5 D-categories from graphs. Given a graph, Γ= (Q,E), we can associate to this graph a D-category

DΓ. Define the objects of DΓ by defining

E(DΓ) := E , V(DΓ) :=Q, Ob(DΓ) =E(DΓ)∪V(DΓ).

To define the morphisms of DΓ we define, for every e ∈ E , morphisms:

e

sor(e)

se

�
tar(e)

te

-

We complete the description of DΓ by defining an identity morphism on each object of DΓ. Note that in

the definition of DΓ, we gave it a canonical orientation; namely, (s,t) where se and te are defined as above

for every e ∈ E .

Given a morphism F = (FQ ,FE ) : Γ→ Γ′, we can define a functor ~F : DΓ → DΓ′ by defining it on

objects and morphisms as follows:

~F (a) :=
 FE (a) if a ∈E(DΓ)

FQ(a) if a ∈V(DΓ)
~F (γ) :=

 s′
~F (e)

if γ= se

t′~F (e)
if γ= te

Of course, ~F is defined on identity morphisms in the obvious fashion: ~F (ida) := id~F (a). It follows by the

commutativity of (1.6) that ~F is a valid morphism of D-categories.

The method of associating a D-category to a graph defines a functor:

dcat : Grph→Dcat

We will introduce the inverse of this construction, but first consider the following:

Example 1.14. The D-category obtained from the graph C8 is just the D-category given in Example 1.10.

To make explicit the fact that this D-category is obtained from the graph C8, we could denote it by DC8 ,
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and label its objects and morphisms as follows:

e1

e8 e2

1

se1

�

te8
-

2

te1

- se2

�

8

se8 -

3

te2

�

e7

te7
-

e3

se3

�

7
se7

-
4

te3�

6 5

e6

te6

-

se6

-

e4

se4

�

te4

�

e5

se5

-

te5

�

This is in accordance with the construction given in the previous paragraph.

1.2.6 Graphs from D-categories. Given a D-category D, we can obtain a graph from this D-category,

ΓD = (QD ,ED) := (V(D),E(D)),

with source and target functions:

ED

sor= cod(s(− ))-

tar= cod(t(− ))
- QD

For a morphism between D-categories, ~F : D → D′, we obtain a morphism between the graphs ΓD and

ΓD′ :

F := (~F |QD
, ~F |ED

) = (~F |V(D), ~F |E(D)).

It follows that F is a valid morphism of graphs; (1.6) commutes because (1.5) commutes.

The result of these constructions is a functor:

grph : Dcat → Grph .

Example 1.15. The graph obtained from the D-category given in Example 1.10 is just the graph C8. To

make explicit that this graph was obtained from this D-category, we could label the vertices and edges of
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this graph as follows:

b1
a1 - b2

b8

a8-

b3

a2-

b7

a7

6

b4

a3

?

b6
� a5

a6
�

b5

a4
�

This is in accordance with the construction given in the previous paragraph.

We now introduce a very important, although fairly obvious, result. Its importance lies in the fact

that many of the properties that the category of graphs displays—which is a fair number—the category of

D-categories will inherit. This will be made explicit, for example, in Appendix A

Theorem 1.1. There is an isomorphism of categories:

Dcat∼=Grph,

where this isomorphism is given by the functor grph : Dcat→Grph with inverse dcat : Grph→Dcat.

Proof. We first verify that dcat◦grph = IdDcat. On objects, this holds since

Morid� (dcat◦grph(D)) = {se }e∈ED
∪ {te }e∈ED

= {se }e∈E(D) ∪ {te }e∈E(D) =Morid� (D),

Ob(dcat◦grph(D)) = ED ∪QD =V(D)∪E(D) =Ob(D),

and the identity morphisms of D and dcat ◦ grph(D) are the same by definition. Consider a morphism

~F : D →D′ of D-categories. For all a ∈Ob(D),

dcat◦grph(~F )(a) =
 ~F (a) if a ∈ ED =E(DΓD

) =E(D)

~F (a) if a ∈QD =V(DΓD
) =V(D)

= ~F (a),

and for all γ ∈Mor(D),

dcat◦grph(~F )(γ) =
 s′

~F (a)
if γ= sa

t′~F (a)
if γ= ta

=
 ~F (γ) if γ= sa

~F (γ) if γ= ta

= ~F (γ).

Therefore dcat◦grph = IdDcat.
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Next we verify that grph◦dcat = IdGrph. For a graph Γ= (Q,E), we have

grph◦dcat(Γ) = ΓDΓ
= (QDΓ

,EDΓ
) = (V(DΓ),E(DΓ)) = (Q,E) = Γ.

For a morphism of graphs F = (FQ ,FE ) : Γ→ Γ′,

grph◦dcat(F )Q = ~F |Q = FQ , grph◦dcat(F )E = ~F |E = FE .

1.3 Hybrid Objects

The starting point for theory of hybrid objects is the observation that systems that display both

continuous and discrete behavior, i.e., hybrid systems, can be represented by a D-category together with

a functor. This relates hybrid systems to the two most fundamental objects in category theory: a functor

and a natural transformation.

In this section, and from this point on, we will denote D-categories by the calligraphic symbols:

A , B, C , et cetera.

Using the notion of a D-category, we have the following definition of a hybrid object over a

category.

Definition 1.9. Let C be a category. A hybrid object over C is a pair (A ,A), where A is a D-category and

A : A →C

is a (covariant) functor.

For a hybrid object (A ,A) over C, the category C is called the target category, the functor A is

called the continuous component of the hybrid object, and the category A is called its discrete component.

Notation 1.3. We denote the value of a functor A : A → C on objects and morphisms of A by Aa and

Aα, i.e., Aa = A(a) and Aα = A(α). This is done to notationally differentiate the “continuous” portion of a

hybrid object from other functors.

Example 1.16. A (real) hybrid vector space is a hybrid object (V ,V) over VectR, i.e.,

V : V →VectR .

In particular, Va is a vector space for every object a of V and Vα : Va → Vb is a linear map for everyα : a → b

in V .

Having defined hybrid objects, there is a natural definition of morphisms between hybrid ob-

jects.
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Definition 1.10. Let (A ,A) and (B,B) be two hybrid objects over the category C. A morphism of hybrid

objects, or just a hybrid morphism, is a pair

(~F , ~f ) : (A ,A) → (B,B), (1.7)

where ~F : A →B is a morphism in Dcat and ~f is a natural transformation

~f : A
�→ B◦ ~F (1.8)

in CA .

A morphism (~F , ~f ) : (A ,A) → (B,B) of hybrid objects can be visualized in the following diagram:

A

A -
~f ↓.

B◦ ~F
- C

B

B

-

~F

-

and has, like a hybrid object, both a discrete and a continuous component, which justifies the term “hy-

brid morphism.” The discrete component is given by the functor ~F : A →B, and the continuous compo-

nent is given by the natural transformation ~f .

As morphisms of hybrid objects play a central role, we devote some energy to discussing their

meaning. First, we introduce some notation and examples.

Notation 1.4. Often, hybrid objects are simply denoted by

A : A →C .

It is clear that the corresponding hybrid object is the pair (A ,A). We will often only be interested in a

single hybrid object and its relation to hybrid objects with the same discrete structure, i.e., the same D-

category. In this case, we will denote such a hybrid object by A and a morphism between it and another

hybrid object, B, by ~f : A
�→ B; that is, A represents the hybrid object (A ,A), B represents the hybrid object

(A ,B) and ~f represents the hybrid morphism (~IdA , ~f ), where ~IdA is the identity functor (or the identity

morphism of A in Dcat).

Example 1.17. Consider the D-categories A and B given by the following diagrams:

a

A =

b1

sa

�
b2

ta

-

a′

B =

b′

s′
a′

?

t′a′

?

Let ~F : A →B be the morphism of D-categories given in Example 1.11.
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For A : A →C and B : B →C, which can be visualized in the following diagrams:

Aa

A(A ) =

Ab1

Asa

�
Ab2

Ata

-

Ba′

B(B) =

Bb′

Bs′
a′

?

Bt′
a′

?

A morphism ~f : A
�→ ~F∗(B) in CA consists of three morphisms ~fa , ~fb1 and ~fb2 in C such that the following

diagram

Aa

A

Ab1

Asa

�
Ab2

Ata

-

Ba′

~fa

?

~F∗(B)

~f

?

Bb′

~fb1

?

Bs′
a′

�
Bb′

~fb2

?

Bt′
a′

-

commutes. The end result is a morphism of hybrid objects: (~F , ~f ) : (A ,A) → (B,B).

Example 1.18. For two hybrid vector spaces (V ,V) and (V ′,V′), a hybrid morphism between these hybrid

objects consists of a functor ~F : V → V ′ between their discrete components and a hybrid linear map, i.e.,

natural transformation:

~f : V
�→ V′ ◦ ~F .

That is, for every α : a → b in V , there is a commuting diagram:

Va

~fa- V~F (a)

Vb

Vα

? ~fb- V~F (b)

V~F (α)

?

where ~fa and ~fb are linear maps.

Morphisms of hybrid objects can be defined in an equivalent and possible more enlightening

way through the use of pullbacks of functors.

1.3.1 Pullbacks. The pullback of a functor ~F : A →B is a functor:

~F∗ : CB →CA
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given on objects, i.e., functors B : B → C, and morphisms, i.e., natural transformations ~g : B
�→ B′, of CB

by:

~F∗(B) = B◦ ~F , ~F∗(~g ) = ~g ◦ ~F ,

where ~F∗(~g ) is the natural transformation given on objects a of A by

(~F∗(~g ))a = ~g~F (a) : B~F (a) → B′
~F (a)

.

This implies that for a morphism of hybrid objects (1.7),

~f : A
�→ ~F∗(B),

which is simply a reformulation of (1.8). This is the notation we will most frequently use.

1.3.2 Composing hybrid morphisms. Given two hybrid morphisms (~F , ~f ) : (A ,A) → (B,B) and (~G , ~g ) :

(B,B) → (C ,C), the composite morphism is given by:

(~G , ~g )◦◦◦ (~F , ~f ) := (~G ◦ ~F , ~F∗(~g )• ~f ) : (A ,A) → (C ,C).

Specifically, the composite morphism is just the standard composition of functors and objectwise com-

position of natural transformations, i.e.,

~F∗(~g )• ~f : A
�→ (~G ◦ ~F )∗(C) = ~F∗(~G∗(C)),

in CA is defined objectwise by (~F∗(~g )• ~f )a = ~F∗(~g )a ◦ ~fa = ~g~F (a) ◦ ~fa .

1.3.3 Decomposing hybrid morphisms. Every morphism (~F , ~f ) : (A ,A) → (B,B) has a canonical fac-

torization:

(A ,A)
(~F , ~f ) - (B,B)

(A , ~F∗(B))

(~F , ~F∗(~idB))

-

(~IdA , ~f ) -

into its continuous and discrete component.

1.3.4 Categories of hybrid objects. Utilizing hybrid objects and hybrid morphisms, we have the fol-

lowing:

Definition 1.11. Let C be a category. The category of hybrid objects over the category C, denoted by

Hy(C), has as

Objects: Hybrid objects over C, i.e., pairs (A ,A), where A : A →C.
Morphisms: Morphisms of hybrid objects, i.e., pairs

(~F , ~f ) : (A ,A) → (B,B),

where ~F : A →B is a morphism in Dcat and ~f : A
�→ ~F∗(B) is a morphism in CA .
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It is useful to know that the collection of morphisms between any two objects in Hy(C) form a

set. This makes Hy(C) a category in the classical sense.

Lemma 1.4. For any two objects (A ,A) and (B,B) of Hy(C), HomHy(C)((A ,A), (B,B)) forms a set.

Proof. Since HomCat(A ,B) is a set and

HomDcat(A ,B) ⊆HomCat(A ,B),

it follows that HomDcat(A ,B) is a set. Moreover, HomCA (A, ~F∗(B)) form sets for any ~F ∈HomDcat(A ,B).

So

HomHy(C)((A ,A), (B,B)) ⊆HomDcat(A ,B)×
( ⋃
~F∈HomDcat(A ,B)

HomCA (A, ~F∗(B))

)

is a set.

Example 1.19. We already have introduced the notion of a hybrid vector space. The collection of all

hybrid vector spaces forms the category of hybrid vector spaces: Hy(VectR).

1.3.5 Left comma categories. The notion of a hybrid object over a category has not yet appeared in the

literature as it was originally formulated by the author. There is a notion that is “close” to this one, that of a

left comma category (as introduced by Saunders Mac Lane [74], where is was referred to as a super comma

category4), and it in fact supports the terminology “hybrid object over a category.” We briefly discuss left

comma categories, comparing and contrasting them to categories of hybrid objects.

Let C be a category. The left comma category (Cat ·↓·C) is a category with

Objects: Pairs (A, A), where A is a small category and A : A→C is a functor,

Morphisms: Pairs (F, f ) : (A, A) → (B,B), where F : A → B is a functor and f : B ◦F
�→ A is a

natural transformation.

If we consider the left comma category (Dcat ·↓·C), then this category has as

Objects: Pairs (A ,A) where A is a small category and A : A →C is a functor,

Morphisms: Pairs (~F , f ) : (A ,A) → (B,B) where ~F : A →B is a functor and f : B◦ ~F �→ A is a
natural transformation.

This is “almost” the category of hybrid objects over C, except the direction of the natural transformations

are reversed, i.e.,

f : B◦ ~F �→ A for (Dcat ·↓·C) f : A
�→ B◦ ~F for Hy(C).

This is a not-so-subtle difference that has important ramifications. We only note that the motivation for

considering categories of hybrid objects rather than left comma categories can be seen when the notion

of a trajectory is introduced in Section 2.3.

4We avoid the name “super comma category” since there is an entire area of “super” mathematics and we want to prevent the
possibility of confusion.
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1.3.6 Pushforwards. Consider a functor G : C→D. For a D-category A , this induces a functor:

G∗ : CA →DA

given on objects, i.e., functors A : A →C by

G∗(A) =G ◦A.

This functor can be visualized as follows:

A

C

A

? G - D

G∗(A)

-

From a natural transformation ~f : A
�→ A′ in CA , we obtain a natural transformation:

G∗(~f ) : G∗(A)
�→G∗(A′)

defined objectwise by: G∗(~f )a :=G(~fa) : G(Aa) →G(A′
a). The relationship between pushforwards and pull-

backs is given as follows:

Lemma 1.5. For G : C→D and ~F : A →B, the following diagram

CB G∗- DB

CA

~F∗

?
G∗- DA

~F∗

?

(1.9)

commutes.

Proof. For B : B →C,

~F∗(G∗(B)) = ~F∗(G ◦B) =G ◦B◦ ~F =G ◦ ~F∗(B) =G∗(~F∗(B)).

For ~g : B
�→ B′ in CB , it is enough to check that the commutativity condition holds objectwise:

~F∗(G∗(~g ))a =G∗(~g )~F (a) =G(~g~F (a)) =G(~F∗(~g )a) =G∗(~F∗(~g ))a .

1.3.7 Functors between categories of hybrid objects. Consider a functor G : C→D between two cate-

gories. Using the pushforward of the functor G , this induces a functor:

Hy(G) : Hy(C) →Hy(D)
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between categories of hybrid objects. On objects (A ,A) and morphisms (~F , ~f ) : (A ,A) → (B,B) of Hy(C),

the functor Hy(G) is given by:

Hy(G)(A ,A) = (A ,G∗(A)),

Hy(G)(~F , ~f ) = (~F ,G∗(~f )) : (A ,G∗(A)) → (B,G∗(B)),

where G∗(~f ) is well-defined by (1.9).

Example 1.20. Recall from Example 1.6 that there is a forgetful functor U : VectR → Set. This induces a

“forgetful” functor:

Hy(U) : Hy(VectR) →Hy(Set)

between hybrid categories.

1.3.8 Elements of hybrid objects. Consider a set S. We can regard the elements of S as morphisms

from the set with one point, ∗, to S:

S ∼=HomSet(∗,S),

where the isomorphism is given by sending an element s ∈ S to es : ∗→ S with es (∗) := s, and a morphism

e : ∗→ S to e(∗) ∈ S. This inspires the definition of elements of a hybrid object.

Suppose that A : A →C is a hybrid object and C is a category such that there is a forgetful functor

U : C→ Set. Define the elements of (A ,A) by5

ElemHy(C)(A ,A) :=HomSetA (∆A (∗),U∗(A)). (1.10)

So the elements of a hybrid object are natural transformations ~e : ∆A (∗)
�→U∗(A), i.e., morphisms:

(~IdA ,~e) : (A ,∆A (∗)) → (A ,U∗(A)) =Hy(U)(A ,A),

in Hy(Set). In particular, for ~e ∈ ElemHy(C)(A ,A), the following diagram must commute:

∗ ~ea- U(Aa)

∗

id∗

? ~eb- U(Ab)

U(Aα)

?

for all α : a → b in A .

By slight abuse of notation, we will identify ~ea with ~ea(∗) ∈ Aa ; with this notation, we write ~e ∈
(A ,A). Note that ~e ∈ (A ,A) must satisfy the following properties:

¦ ~ea ∈ Aa for all objects a of A ,

¦ ~eb = Aα(~ea) for all α : a → b in A .

5It follows that the elements of a hybrid object form a set, i.e., a hybrid object has a set of elements.
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Note that ~e inherits the structure of the objects of C objectwise. Therefore, the elements of a hybrid object

can be thought of as “vectors” in an abstract sense of the word; this is one of the motivations for the vector

notation.

Lemma 1.6. If ~f : A
�→ A′ and ~e ∈ (A ,A) then ~f (~e) ∈ (A ,A′) where ~f (~e)a := ~fa(~ea).

Proof. It trivially follows that ~f (~e)a ∈ A′
a . The second condition follows from the fact that:

A′
α(~f (~e)a) = A′

α(~fa(~ea)) = ~fb(Aα(~ea)) = ~fb(~eb) = ~f (~e)b .

Example 1.21. Let (V ,V) be a hybrid vector space. A hybrid vector is an element of this hybrid object:

~v ∈ (V ,V).

In particular, a hybrid vector must satisfy the following properties:

¦ ~va ∈ Va for all objects a of V , i.e., ~va is a vector,

¦ ~vb = Vα(~va) for all α : a → b in V .

In fact, we can justify the use of the term hybrid vector since we have two operations: hybrid

vector addition and hybrid scalar multiplication. These are operations:

ElemHy(VectR)(V ,V)×ElemHy(VectR)(V ,V) → ElemHy(VectR)(V ,V)

(~v, ~w) 7→ ~v + ~w

R×ElemHy(VectR)(V ,V) → ElemHy(VectR)(V ,V)

(r,~v) 7→ r~v

defined objectwise by (~v+ ~w)a := (~va+ ~wa) and (r~v)a := r~va . It follows from the additivity and homogeneity

of linear maps that ~v + ~w and r~v are again hybrid vectors.

More generally, the set of elements of a hybrid vector space, ElemHy(VectR)(V ,V), is again a vec-

tor space. The vector addition identity element is given by ~0 which is defined objectwise ~0a = 0Va where

0Va is the vector addition identity element for Va . Similarly, there is a scalar multiplication identity ele-

ment~1. The axioms of a vector space are easy to verify since they hold objectwise.

1.4 Cohybrid Objects

Thus far, we have only considered covariant functors. Contravariant functors will also arise nat-

urally in a hybrid setting as they naturally arise in category theory. In order to deal with these functors in

a systematic fashion, we introduce categories of cohybrid objects. First, we discuss:
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1.4.1 Covariant functor categories. For a category C, we use A C to denote the category of contravari-

ant functors A : A → C, with morphisms natural transformations between contravariant functors (see

Paragraph 1.1.14). Given a morphism ~F : A →B of D-categories, it induces a morphism of contravariant

functor categories:

~F∗ : BC→A C.

Given a covariant functor G : C→D, there is a corresponding covariant functor:

G∗ : A C→A D

for every D-category A . Similarly, if G is contravariant, it induces functors:

G∗ : A C→DA , G∗ : CA →A D.

In all cases ~F∗ ◦G∗ =G∗ ◦ ~F∗.

Definition 1.12. Let C be a category. The category of cohybrid objects over the category C, denoted by

CoHy(C), is given by:

Objects: Cohybrid objects over C, which are pairs (A ,A) where A is a D-category and A is a
contravariant functor A : A →C.

Morphisms: Pairs (~Fop, ~f ) : (A ,A) → (B,B) where

¦ ~Fop : A →B is the morphism in Dcatop corresponding to the morphism ~F : B →A

in Dcat,

¦ ~f : ~F∗(A)
�→ B in BC.

1.4.2 Relating categories of hybrid and cohybrid objects. The numerous morphisms in the different

categories used to define categories of hybrid objects leave a lot of freedom for dualization. To better

understand this, we relate categories of hybrid and cohybrid objects.

Specifying a contravariant functor A : A →C is equivalent to specifying a covariant functor Aop :

A →Cop given by:

Aop
(

a
α - a′

)
= Aop

a = Aa
Aop
α = (Aα)op- Aop

a′ = Aa′ .

Therefore, the objects of CoHy(C) are in bijective correspondence with the objects of Hy(Cop) and hence

the objects of Hy(Cop)op.

For a morphism (~Fop, ~f ) : (A ,A) → (B,B) of cohybrid objects, ~f : ~F∗(A)
�→ B in BC. That is, for

every β : b → b′ in B, there is a corresponding commuting diagram:

A~F (b)

~fb - Bb

A~F (b′)

A~F (β)

6

~fb′- Bb′

Bβ

6
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in C. Taking opposites yields a commuting diagram:

Aop
~F (b)

�
~f op
b Bop

b

Aop
~F (b′)

Aop
~F (β)

?
�

~f op
b′

Bop
b′

Bop
β

?

in Cop. Therefore, ~f op : Bop �→ ~F∗(Aop) in CB and associated to (~Fop, ~f ) in CoHy(C) is a morphism

(~F , ~f op) : (B,Bop) → (A ,Aop)

in Hy(Cop). Since the direction of (~Fop, ~f ) and (~F , ~f op) are opposite to one another, we conclude that:

Proposition 1.1. For every category C,

CoHy(C) ∼=Hy(Cop)op.

The motivation for considering categories of cohybrid objects is that they arise naturally in the

context of contravariant functors. That is, the functors induced from contravariant functors are functors

between categories of hybrid objects and categories of cohybrid objects.

1.4.3 Contravariant functors and categories of hybrid objects. Let G : C→D be a contravariant func-

tor between two categories. This induces a contravariant functor:

Hy(G) : Hy(C) →CoHy(D).

This functor is given on objects (A ,A) and morphisms (~F , ~f ) : (A ,A) → (B,B) of Hy(C) by:

Hy(G)(A ,A) := (A ,G∗(A)),

Hy(G)(~F , ~f ) := (~Fop,G∗(~f )) : (B,G∗(B)) → (A ,G∗(A)),

where ~Fop : B →A is the morphism in Dcatop corresponding to the morphism ~F : A →B in Dcat.

Similarly, there is a contravariant functor:

CoHy(G) : CoHy(C) →Hy(D),

defined in an analogous manner. Finally, if G is covariant then there is a covariant functor:

CoHy(G) : CoHy(C) →CoHy(D)

defined in a manner analogous to the induced functor given in Paragraph 1.3.7.

Example 1.22. The functor that associates to a vector space its dual:

( − )? : VectR→VectR
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induces a contravariant functor:

Hy(( − )?) : Hy(VectR) →CoHy(VectR).

In particular, for a hybrid vector space (V ,V), the corresponding cohybrid object

Hy(( − )?)(V ,V) := (V ,V?)

is the dual hybrid vector space to the hybrid vector space (V ,V) and so V? is a contravariant functor:

V? : V →VectR .

This motivates the terminology “cohybrid object.”

1.4.4 Elements of cohybrid objects. Suppose that A : A →C is a cohybrid object, i.e., A is a contravari-

ant functor, and C is a category such that there is a forgetful functor U : C → Set. This yields a covariant

functor CoHy(U) : CoHy(C) →CoHy(Set) where CoHy(U)(A ,A) := (A ,U∗(A)).

As with hybrid objects, define the elements of (A ,A) by

ElemCoHy(C)(A ,A) :=HomA Set(∆op
A

(∗),U∗(A)), (1.11)

where ∆
op
A

is the contravariant constant functor defined in the obvious manner. Therefore, elements of

a cohybrid object are natural transformations ~ω : ∆op
A

(∗)
�→ U∗(A) in A Set, i.e., we have a commuting

diagram:

∗ ~ωa- U(Aa)

∗

id∗
6

~ωb- U(Ab)

U(Aα)
6

for every α : a → b in A . Therefore, again identifying ~ωa with ~ωa(∗) ∈ Aa and writing ~ω ∈ (A ,A) in this

case, an element ~ω ∈ (A ,A) must satisfy the following properties:

¦ ~ωa ∈ Aa for all objects a of A ,

¦ Aα(~ωb) = ~ωa for all α : a → b in A .

Again, ~ω inherits the structure of the objects of C objectwise.

Example 1.23. For the dual hybrid vector space (V ,V?) to the hybrid vector space (V ,V), an element of

this cohybrid object:

~ω ∈ (V ,V?),

is a hybrid covector.

In particular, it must satisfy the conditions:
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¦ ~ωa ∈ V?
a for all objects a of V , i.e., ~ωa : Va →R is a covector,

¦ V?
α(~ωb) = ~ωa , i.e., ~ωb ◦Vα = ~ωa , for all α : a → b in V .

This implies that, for the covariant functor ∆V (R) : V →VectR, a hybrid covector corresponds to a natural

transformation:

~ω : V
�→∆V (R),

which is the hybrid analogue of the condition that, for a vector space V , a covector is a linear map

w : V →R.

1.5 Network Objects

There is one more important “hybrid” object that will be important when considering net-

worked systems, or networks of systems. These can be thought of as the dual to hybrid objects; their

building block is not D-categories but Dop-categories. While these are just the opposite to D-categories,

we devote some time to their development as they, along with the notion of a category of network objects,

will be fundamental to Chapter 6.

1.5.1 Dop-categories. The opposite of a D-category, or a Dop-category, is given by reversing all of the

arrows in a D-category. Therefore, a Dop-category has the general form:

• • • · · · • •

•�
-

•�
-

•�
-

with its basic atomic unit a diagram of the form:

• •

•�
-

and any other diagram in this category must be obtainable by gluing such atomic units along the domain

of a morphism (and not the codomain, as was the case for D-categories).

Notation 1.5. In order to differentiate between D-categories and Dop-categories, we denote Dop-categories

by N, i.e., N=N op for some D-category N .

1.5.2 Oriented Dop-categories. Just as with D-categories, Dop-categories can be oriented. All of the

formalisms are the same except that the arrows are reversed. In particular, let N be a Dop-category such

that N=N op. Then

E(N) =E(N ), V(N) =V(N ),
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since the objects in a category and its opposite category are the same. An orientation of a Dop-category

is obtained from the orientation (s,t) of N , i.e., it is given by (sop,top). That is, an orientation of a Dop-

category is a pair of maps (sop,top) between sets:

E(N)
sop -

top
- Morid� (N)

that fit into a diagram

E(N)

E(N)
sop-

top
-

id
-

Morid� (N)

cod

6

V(N)

dom

?

in which the top triangle commutes. Therefore, for every a ∈E(N), there is a diagram in N:

b = dom(sopa ) dom(t
op
a ) = c

cod(sopa ) = a = cod(t
op
a )

t
op
a

�
sopa -

where b, c ∈V(N).

Morphisms between Dop-categories are defined in a way analogous to morphisms between D-

categories (see 1.2.2). In particular, for ~F : N→M, for every diagram of the form:

b c

a

t
op
a

�

sopa -

in N, i.e., a ∈E(N) and b, c ∈V(N), there are corresponding diagrams:

~F (b) ~F (c)

~F (a)

~F (t
op
a )

�
~F (sopa ) -

in M, where ~F (a) ∈E(M) and ~F (b), ~F (c) ∈V(M).

We denote the category of Dop-categories by Dopcat. Note that Dopcat ∼= Dcat, where the iso-

morphism is given by sending N to N with its inverse given by sending N to N.
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1.5.3 Graphs and Dop-categories. Since Dcat∼=Grph and Dopcat∼=Dcat, it follows that:

Dopcat∼=Grph .

For example, given a graph Γ, the corresponding Dop-category, NΓ, is given by associating to every e ∈ E a

diagram of the form

sor(e) tar(e)

e

t
op
e

�

sope -

in NΓ. The identity morphisms must be added to each object in NΓ in order to complete the definition.

Example 1.24. The following diagram shows a directed cycle graph, Γ = Ck , and the associated Dop-

category NCk :

e1

ek e2

1
e1 - 2 1

sope1

-

t
op
ek

�

2

t
op
e1

�

sope2
-

k

ek -

3

e2-

k

sopek

�

3

t
op
e2

-

... Ck
...

... NCk

...

i +2 i −1 i +2 i −1

i +1 � ei

ei+1
�

i

ei−1

�
i +1 i

ei+1

t
op
ei+1

� sopei+1
�

ei−1

sopei−1

-

t
op
ei−1

-

ei

sopei

�

t
op
ei -

1.5.4 Networks over a category. We now define the notion of a network over a category.

Definition 1.13. Let C be a category. The category of networks over the category C, denoted by Net(C),

has as

Objects: Networks over C, which are pairs (N,N) where N is a Dop-category and N is a covari-
ant functor N : N→C.

Morphisms: Pairs (~F , ~f ) : (N,N) → (M,M) where

¦ ~F : N→M is the morphism in Dopcat,

¦ ~f : N
�→ ~F∗(M) in CN.

We refer the reader to Chapter 6 for examples of network objects. Constructions similar to the

cases of categories of hybrid and cohybrid objects also can be introduced, although doing so would be

repetitious.
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Chapter 2

Hybrid Systems

Hybrid systems effectively describe systems with discrete and continuous behavior; as such,

they are able to model a wide range of phenomena. With this expressiveness comes an increase in com-

plexity; current models are difficult to manipulate as they consist of many different mathematical objects—

a graph, domains, guards, reset maps and vector fields. This presents obvious difficulties in understanding

and analyzing hybrid systems, and so indicates the need for a more coherent mathematical description

of hybrid systems. We claim that the theory of hybrid objects can provide such a description.

We begin by introducing the “standard” model of a hybrid system. The first half of this chapter

is devoted to transforming this standard model, in a constructive manner, into the framework of hybrid

objects, i.e., it is demonstrated how hybrid systems can be viewed categorically. The end result is that a

hybrid system can be represented by a triple:

(M ,M,X),

were (M ,M) is a hybrid manifold, i.e., M : M → Man, and X is a collection of vector fields (indexed by

V(M )) on this hybrid manifold. Therefore, the categorical formulation of hybrid systems is in direct anal-

ogy with dynamical systems, i.e., pairs (M ,X ) where M is a manifold and X is a vector field on that mani-

fold. This analogy is further extended by defining the category of hybrid systems utilizing the category of

dynamical systems.

It is important to consider not only hybrid systems, but how hybrid systems execute or evolve.

The latter half of this chapter is devoted to this topic. We again begin by introducing the “standard” notion

of an execution for a hybrid system, and demonstrate in a constructive fashion how to obtain from this

its categorical analogue. That is, we show that specifying an execution of a hybrid system is equivalent to

specifying a morphism of categorical hybrid systems

(I ,I,d///dt) → (M ,M,X),

where (I ,I,d///dt) is a hybrid system which, roughly speaking, consists of a collection of “intervals” to-

gether with “unit clocks” on these intervals. This again nicely parallels the notion of a trajectory of a
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dynamical system, which is just a morphism of dynamical systems

(I ,d/dt) → (M ,X ),

with I an interval and d/dt a “unit clock.”

The categorical formulation of hybrid systems and trajectories thereof is fundamental in under-

standing these systems in a broad mathematical context. For example, it is through this formulation of

hybrid systems that we are able to generalize reduction to a hybrid setting and give sufficient conditions

for the existence of Zeno behavior. Without these constructions, these results would have been difficult

to derive. Aside from these results, the categorical formulation of hybrid systems is useful simply because

of the manner in which it simplifies the representation of a hybrid system. We hope that the subsequent

chapters of this dissertation will provide support for these claims.

Related work. There is a wealth of literature on hybrid systems. Instead of providing a complete review

of the subject, we only note that the formulation of the “standard tuple” defining a hybrid systems intro-

duced here is drawn from the series of papers [68, 69, 82, 83, 118, 119]; our definition differs slightly, but

we think that it accurately describes a wide range of hybrid phenomena. Hybrid systems have also been

studied in a categorical context, most notably in [56]. The need for a unifying mathematical framework in

which to study hybrid systems was remarked upon in [103] and [104]; although the constructions in that

work are different than ours, there are many philosophical similarities. Finally, concepts from geometry

are used freely throughout this chapter; we refer the reader to [79] for more on the subject.

The categorical formulation of hybrid systems introduced here first appeared in [14], and has

since appeared in [13, 18].

2.1 Hybrid Systems

This section formally introduces hybrid systems and the corresponding notion of a hybrid space.

We characterize the relationship between hybrid spaces and hybrid manifolds. Utilizing hybrid manifolds,

we define “categorical” hybrid systems and characterize the relationship between these systems and “clas-

sical” hybrid systems. We conclude by introducing the category of hybrid systems. All of these concepts

are illustrated through a series of examples.

Definition 2.1. A hybrid system is a tuple:

H= (Γ,D,G ,R,X ),

where

¦ Γ= (Q,E) is an oriented graph (possibly infinite).

¦ D = {Di }i∈Q is a set of domains where Di is a smooth manifold.
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Figure 2.1: The bouncing ball.

¦ G = {Ge }e∈E is a set of guards, where Ge ⊆ Dsor(e) is an embedded submanifold of Dsor(e).

¦ R = {Re }e∈E is a set of reset maps; these are smooth maps Re : Ge → Dtar(e).

¦ X = {Xi }i∈Q is a collection of vector fields, i.e., Xi is a vector field on the manifold Di .

2.1.1 Hybrid spaces. As with dynamical systems, it is sometimes desirable to consider the underlying

“space" of a hybrid system. This amounts to “forgetting" about the vector field on each domain. More

specifically, we can define a (smooth) hybrid space to be a tuple:

H= (Γ,D,G ,R).

It will be seen that hybrid spaces are just hybrid objects over the category of manifolds: hybrid manifolds.

Example 2.1. The quintessential example of a hybrid system is given by the one-dimensional bouncing

ball; see Figure 2.1. While this system has, arguably, been over-studied, we will utilize it in order to illus-

trate non-trivial ideas in a trivial setting.

A ball bouncing in one-dimension is naturally modeled as a hybrid system:

Hball = (Γball,Dball,Gball,Rball,X ball).

That is, we consider a ball dropped from some positive height, say x1, above a surface defined by x1 = 0.

Since the velocity of the ball will reset when it impacts the floor, the graph for this hybrid system is given

by:

Γball = (Qball,Eball), Qball = {1}, Eball = {e = (1,1)}.

That is, by a graph of the form:
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x1

x2
Dball
1

Gballe

Rballe

Figure 2.2: The hybrid model of a bouncing ball.

Since the phase space of the bouncing ball will consist of two variables, the position x1 and velocity x2,

the domain for the hybrid system is given by:

Dball
1 =


 x1

x2

 ∈R2 : x1 ≥ 0

 ,

and Dball = {Dball
1 }. The guard condition encodes the fact that a transition in the velocities of the system

should occur when the position is zero and the velocity is “downward pointing.” Therefore,

Gball
e =


 x1

x2

 ∈R2 : x1 = 0 and x2 ≤ 0

 ,

and Gball = {Gball
e }. The reset map for the system is given by:

Rball
e (x1, x2) =

 x1

−r x2

 ,

where 0 ≤ r ≤ 1 is the coefficient of restitution for the ball; this map encodes the fact that when the ball

impacts the ground, its velocity is reversed and scaled down by the amount of energy lost through impact.
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Finally, the vector field for this system is given by:

X ball
1 (x1, x2) =

 x2

−g

 ,

where g is the acceleration due to gravity. A graphical representation of this system can be seen in Figure

2.2.

Example 2.2. The classical example of a system that models a physical system being controlled is the two

water tanks hybrid system. This system models two tanks that are draining at rates v1 and v2 together with

a spout that is inputting water into one of the two tanks at a rate of w. The control objective is to ensure

that there is water in each tank at all times.

The hybrid system modeling the two water tanks is given by:

Htank = (Γtank,Dtank,G tank,Rtank,X tank).

The graph for the hybrid system, Γtank, is given by:

1
e1 -�
e2

2.

To define the remaining portion of the hybrid system, we consider two state variables, x1 and x2, where

x1 is the level of water in tank 1 and x2 is the level of water in tank 2. Since the goal is to keep the water

in both tanks at all time, we are interested in domains for the hybrid system that capture the fact that the

level of water in each tank must be greater than or equal to zero. Specifically, define Dtank = {Dtank
1 ,Dtank

2 }

where

Dtank
1 = Dtank

2 =


 x1

x2

 ∈R2 : x1 ≥ 0 and x2 ≥ 0

 .

The guard sets for this system should capture the fact that the water spout will switch from one

tank to the other tank if it detects that the other tank is empty. That is, if water is inflowing into tank 1 and

the level of water in tank 2 decreases to 0, i.e., x2 = 0, then the spout should start inflowing water into tank

2. This yields the first guard expression:

G tank
e1

=


 x1

x2

 ∈R2 : x1 ≥ 0 and x2 = 0

 .

Conversely, if water is inflowing into tank 2 and the system detects that x1 = 0, the spout should switch

from tank 2 to tank 1. This yields the second guard expression:

G tank
e2

=


 x1

x2

 ∈R2 : x1 = 0 and x2 ≥ 0

 ,

and G tank = {G tank
1 ,G tank

2 }.
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x1

x2

Dtank
1

Rtanke1

Rtanke2

Gtanke1

Gtanke2

Dtank
2

Figure 2.3: The hybrid model of a two water tank system.

It is assumed that the transition from one tank to the other is made in zero time, so the reset

maps for the system are the identity:

Rtank
e1

(x1, x2) = Rtank
e2

(x1, x2) =
 x1

x2

 .

Finally, if water is inflowing into the first tank at a rate w, and since water is flowing out of each

tank at a rate of v1 and v2, the ODE governing the system is given by:

X tank
1 (x1, x2) =

 w − v1

−v2


Similarly, if water is inflowing into the second tank, the resulting dynamics are given by:

X tank
2 (x1, x2) =

 −v1

w − v2
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Setting X tank = {X tank
1 ,X tank

2 } completes the description of the hybrid system Htank. This hybrid model can

be seen in Figure 2.3

To make the behavior of the model interesting, we will assume that

max{v1, v2} < w < v1 + v2.

That is, we assume that the inflow is greater than the outflow of each tank, and that the total outflow of

the system is greater than the inflow to the system. This assumption results in Zeno behavior—this type

of behavior will be discussed in detail in Chapter 5, where we will prove that the two water tanks hybrid

system is Zeno (see Example 5.4).

2.1.2 Hybrid manifolds. A (smooth) hybrid manifold is given by a pair (M ,M), where M is a D-category

and M is a functor to the category of smooth manifolds, Man,

M : M →Man . (2.1)

That is, a hybrid manifold is a hybrid object over the category of (smooth) manifolds.

In physical systems, it often is the case that for every a ∈E(M ), and hence every diagram

a

cod(sa)

sa

�
cod(ta)

ta

-

in M , the corresponding diagram in Man is given by:

Ma

Mcod(sa )

Msa = ı

�

⊃

Mcod(ta )

Mta

-
(2.2)

where Ma ⊆ Mcod(sa ) is an embedded submanifold and Msa = ı is the natural inclusion. We denote hybrid

manifolds of this form by Mııı .

Although we do not explicitly assume that Msa is an inclusion, this often is the case, as the fol-

lowing proposition indicates.

Proposition 2.1. There is a bijective correspondence:

{Hybrid Spaces, H= (Γ,D,G ,R)} ↔ {Hybrid Manifolds, (M ,Mııı )}.

Proof. Given a hybrid space H = (Γ,D,G ,R), we define the corresponding hybrid manifold by M(D,G ,R) :

MΓ → Man, where MΓ = dcat(Γ) is the D-category obtained from the graph Γ and M(D,G ,R) is defined for
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every e ∈E(MΓ) = E by

M(D,G ,R)


e

sor(e)

se

�
tar(e)

te

-

 :=

M(D,G ,R)
e :=Ge

M(D,G ,R)
sor(e) := Dsor(e)

M(D,G ,R)
se

:= ı

�

⊃

M(D,G ,R)
tar(e) := Dtar(e)

M(D,G ,R)
te

:= Re

-

It is clear that M(D,G ,R) is a hybrid manifold.

Conversely, consider a hybrid manifold Mııı : M → Man. Let ΓM = grph(M ) = (QM ,EM ) be the

graph obtained from the D-category M . We define

H(M ,Mııı ) = (ΓM ,DMııı ,GMııı ,RMııı ),

where

DMııı := {Mııı
b}b∈V(M )=QM

,

GMııı := {Mııı
a}a∈E(M )=EM

,

RMııı := {Mııı
ta

}a∈E(M )=EM
.

Example 2.3. The hybrid space for the bouncing ball is given by:

Hball = (Γball,Dball,Gball,Rball).

We will construct the associated hybrid object (M ball,Mball). The D-category associated with the graph

Γball is given by:

a

M ball =

b

sa

?

ta

?

together with the identity morphisms ida : a → a and idb : b → b. The functor

Mball : M ball →Man

takes the following values:

Mball


a

b

sa

?

ta

?

=

Mball
a =Gball

e

Mball
b = Dball

1

Mball
sa

= ı
?

∩

Mball
ta

= Rball
e

?
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x1

x2

Mball
a = Gballe

Mball
sa = ı

Mball
b = Dball

1

Mball
ta = Rballe

Figure 2.4: The hybrid manifold for the bouncing ball.

A graphical representation of this hybrid manifold can be seen in Figure 2.4

We now see the original motivation for considering D-categories; the edge sets of these cate-

gories serve the purpose of “pulling out the guard.” The claim is that small categories of any other shape

would not allow for the representation of hybrid systems as functors in such a clear fashion.

Example 2.4. The hybrid space for the water tank system is given by:

Htank = (Γtank,Dtank,G tank,Rtank).

We will construct the associated hybrid object (M tank,Mtank). The D-category associated with Γtank is

given by

a1

M tank = b1

sa1

�
b2

ta1

-

a2

sa2

-

ta2

�
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Mtank
a2 = Gtanke2

Mtank
sa2

= ı

Mtank
ta2

= Rtanke2

Mtank
b1

= Dtank
1 Mtank

b2
= Dtank

2

Mtank
ta1

= Rtanke1Mtank
sa1

= ı

Mtank
a1 = Gtanke1

Figure 2.5: The hybrid manifold for the water tank system.

together with the identity morphisms on each object. The functor

Mtank : M tank →Man

takes the following values:

Mtank(M tank) =

Mtank
a1

=G tank
e1

Mtank
b1

= Dtank
1

Mtank
sa1

= ı

�

⊃

Mtank
b2

= Dtank
2

Mtank
ta1

= Rtank
e1

-

Mtank
a2

=G tank
e2

Mtank
sa2

= ı
⊂

-

Mtank
ta2

= Rtank
e2

�

which completes the description of (M tank,Mtank). This hybrid manifold can be seen in Figure 2.5
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2.1.3 Morphisms of hybrid manifolds. Morphisms between hybrid manifolds are just the standard

morphisms in the category of hybrid objects over Man. That is, for two hybrid manifolds (N ,N) and

(M ,M), a morphism is just a pair (~F , ~f ) : (N ,N) → (M ,M) where ~F : N → M and ~f : N
�→ ~F∗(M). This

defines the category of hybrid manifolds Hy(Man).

When considering hybrid manifolds of the form Nııı : N →Man and Mııı : M →Man, the require-

ment that ~f : Nııı �→ ~F∗(Mııı ) implies that, for every a ∈E(N ), there must be a commuting diagram:

Nııı
a

Nııı
cod(sa )

ı

�

⊃

Nııı
cod(ta )

Nııı
ta

-

Mııı
~F (a)

~fa

?

Mııı
~F (cod(sa ))

~fcod(sa )

?

ı

�

⊃

Mııı
~F (cod(ta ))

~fcod(ta )

?

Mııı
~F (ta )

-

Using this, one could define the category of hybrid spaces utilizing the “classical” notation.

Example 2.5. To provide a non-trivial example of a morphism of hybrid manifolds, let us consider a hybrid

path for the bouncing ball hybrid manifold (M ball,Mball). One begins with a hybrid interval (I ,I) where

I : I → Interval(Man); the notion of a hybrid interval will be formally introduced in Section 2.3. For the

time being, it suffices to let I be the D-category defined by the following (infinite) diagram

a1 a2 a j+1

b0

sI
a1

�

b1

sI
a2

�

tIa1

-

b2

tIa2

-

· · · b j

sI
a j+1

�

b j+1

tIa j+1

-

· · ·
and I be a functor such that

I


a j+1

b j

sI
a j+1

�

b j+1

tIa j+1

-

=

Ia j+1 = {τ j+1}

Ib j = [τ j ,τ j+1]

IsI
aj+1

= ı

�

⊃

Ib j+1 = [τ j+1,τ j+2]

ItI
aj+1

= ı
⊂

-

for all j ∈N and some τ j ,τ j+1,τ j+2 ∈R such that τ j ≤ τ j+1 ≤ τ j+2.

Now a hybrid path is a morphism of hybrid manifolds:

(~C ,~c) : (I ,I) → (M ball,Mball),
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where ~C : I → M ball and ~c : I
�→ ~C∗(Mball). To better understand such a morphism, note that the condi-

tions on morphisms of D-categories imply that ~C must take the following values on objects: ~C (a j ) ≡ a and

~C (b j ) ≡ b, where in this case {a} = E(M ball) and {b} = V(M ball), and the symbol ≡ denotes “identically

equal to.” In addition, it must be orientation preserving, i.e., if s and t are the orientation functions for

M ball, the morphism ~C must take the following values on morphisms: ~C (sI
a j

) ≡ sa and ~C (tIa j
) ≡ ta . The

morphism ~C can be visualized as follows:

a j+1

I

b j

sI
a j+1

�
b j+1

tIa j+1

-

a
?

............................................

M ball

~C

?

b

sa

?

ta

?�..
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

........................................................................-

The natural transformation ~c can be thought of as a collection of paths (in the “non-hybrid” sense of the

word) on Mball
b such that they satisfy certain “discrete” consistency conditions. Specifically, the natural

transformation can be visualized in the following diagram

Ia j+1 = {τ j+1}

Ib j = [τ j ,τ j+1]

ı

�

⊃

Ib j+1 = [τ j+1,τ j+2]

ı

⊂

-

Mball
a

~ca j

?

Mball
b

ı
?

∩

Mball
ta

?

~cb j+1

�

~cb j

-

where the condition that this diagram commutes is equivalent to requiring that transitions occur when

the guard is reached.
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2.1.4 The category of dynamical systems. Let M be a manifold and let X : M → T M be a smooth vector

field, i.e., a section of the tangent bundle. Objects of this form are termed dynamical systems. The category

of dynamical systems, Dyn, has as

Objects: Dynamical systems, i.e., pairs (M ,X ), where M is a manifold and X is a vector field
on that manifold.

Morphisms: Smooth maps of manifolds f : N → M such that the following diagram

T N
T f- T M

N

Y
6

f- M

X
6

(2.3)

commutes; here T f is the pushforward of f .

Remark 2.1. One might be tempted to define a (categorical) hybrid dynamical system as an object over the

category of dynamical systems, i.e., a functor: D : D →Dyn . While this is a hybrid system (in the classical

sense), it is not an especially interesting one.

Definition 2.2. A (categorical) hybrid system is a tuple1

H= (M ,M,X),

where

¦ (M ,M) is a hybrid manifold,

¦ X = {Xb}b∈V(M ) is a collection of vector fields with Xb : Mb → T Mb a smooth vector field on Mb , i.e.,

(Mb ,Xb) is an object of Dyn for all b ∈V(M ).

Remark 2.2. The categorical definition of a hybrid system nicely parallels the classical definition of a

dynamical system. A dynamical system consists of a pair (M ,X ), where M is a manifold and X is a vector

field on that manifold. Similarly, a hybrid system is a tuple (M ,M,X), where (M ,M) is a hybrid manifold

and X is a collection of vector fields “on” that hybrid manifold.

Proposition 2.2. There is a bijective correspondence:

{Classical Hybrid Systems, (Γ,D,G ,R,X )}

l
{Categorical Hybrid Systems, (M ,Mııı ,X)}.

Proof. Beginning with a classical hybrid system (Γ,D,G ,R,X ), from the hybrid space associated to this

hybrid system,H= (Γ,D,G ,R), we obtain a hybrid manifold (MΓ,M(D,G ,R)). Define the collection of vector

fields on this hybrid manifold by:

XX = {Xi }i∈Q=V(MΓ).

1We denote both “classical” and “categorical” hybrid systems by the symbol H; the reason for this will soon become transparent.
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The tuple (MΓ,M(D,G ,R),XX ) is clearly a categorical hybrid system.

Conversely, for a categorical hybrid system (M ,Mııı ,X), from (M ,Mııı ) we obtain a hybrid space:

H(M ,Mııı ) = (ΓM = (QM ,EM ),DMııı ,GMııı ,RMııı ).

Defining

XX = {Xb}b∈QM=V(M ),

the end result is a classical hybrid system (ΓM ,DMııı ,GMııı ,RMııı ,XX).

Example 2.6. From the bouncing ball hybrid system Hball = (Γball,Dball,Gball,Rball,X ball) introduced in

Example 2.1, we obtain a categorical hybrid system:

(M ball,Mball,Xball),

where (M ball,Mball) is the hybrid manifold associated to the hybrid space of the bouncing ball as intro-

duced in Example 2.3 and Xball = {X ball
1 }. This categorical hybrid system can be visualized graphically using

the original data defining the system Hball as follows2

(M ball,Mball,Xball) =

Gball
e

(Dball
1 ,X ball

1 )

ı
?

∩

Rball
e

?

Example 2.7. For the water tank hybrid system Htank = (Γtank,Dtank,G tank,Rtank,X tank) introduced in Ex-

ample 2.2 we obtain a categorical hybrid system:

(M tank,Mtank,Xtank),

where (M tank,Mtank) is the hybrid manifold associated to the hybrid space of the bouncing ball as intro-

duced in Example 2.4, and Xtank = {X tank
b }b∈V(M tank)=Qtank = {X tank

1 ,X tank
2 }. This categorical hybrid system

can be visualized graphically using the original data defining the system Htank as follows

(M tank,Mtank,Xtank) =

G tank
e1

(Dtank
1 ,X tank

1 )

ı

�

⊃

(Dtank
2 ,X tank

2 )

Rtank
e1

-

G tank
e2

ı
⊂

-

Rtank
e2

�

2Note that this is not a diagram in a category, but rather a convenient way for representing the data defining a categorical hybrid
system.
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2.1.5 The category of hybrid systems. With the categorical formulation of hybrid systems, we can form

the category of hybrid systems, HySys, with

Objects: Hybrid systems, (M ,M,X),
Morphisms: Pairs (~F , ~f ) : (N ,N,Y) → (M ,M,X), where (~F , ~f ) : (N ,N) → (M ,M) is a mor-

phism in Hy(Man) such that there is a commuting diagram:

T Nb
T ~fb- T M~F (b)

Nb

Yb

6

~fb- M~F (b)

X~F (b)

6

for all b ∈ V(N ). That is, for all b ∈ V(N ), ~fb : (Nb ,Yb) → (M~F (b),X~F (b)) is a morphism in
Dyn.

Remark 2.3. The definition of the category of hybrid systems again nicely parallels the definition of the

category of dynamical systems. In the latter case, morphisms are morphisms of manifolds such that the

vector fields on each manifold are f -related. Similarly, a morphism of hybrid systems is a morphism of

hybrid manifolds such that the collections of vector fields are “hybrid (~F , ~f )-related.”

2.2 Hybrid Intervals

This section begins with the introduction of the “standard” hybrid interval (much in the spirit

of [68, 69, 82, 83, 118, 119]). We then associate to a hybrid interval its categorical counterpart, i.e., a

categorical hybrid interval. In order to do so, we introduce interval subcategories of some categories of

interest:

Grph, Dcat, Man, Hy(Man). (2.4)

These interval subcategories can be thought of as a generalization of the standard interval (for example,

in R) and, as such, will be instrumental in defining trajectories of hybrid systems. For example, a trajec-

tory of an object in any of the categories given in (2.4) is just a morphism from an object of the interval

subcategory to this object.

2.2.1 Hybrid intervals. Hybrid intervals can be thought of as the “time domain” for trajectories of hy-

brid systems. A hybrid interval is a pair (Λ, I), where

¦ Λ= {0,1,2, . . .} ⊆N is a finite or infinite indexing set,

¦ I = {Ii }i∈Λ where for each i ∈Λ, Ii is defined as follows:

Ii = [τi ,τi+1] if i , i +1 ∈Λ

IN−1 = [τN−1,τN ] or [τN−1,τN ) or [τN−1,∞) if |Λ| = N , N finite.
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Here, for all i , i +1 ∈Λ, τi ≤ τi+1 with τi ,τi+1 ∈R, and τN−1 ≤ τN with τN−1,τN ∈R.

Remark 2.4. It is sometimes notationally convenient to utilize a set of switching times instead of intervals.

Specifically, we can specify a hybrid interval equivalently as a pair (Λ, {τi }i∈Λ) such that τi ≤ τi+1. From

this we obtain intervals Ii = [τi ,τi+1] when i , i +1 ∈ Λ. If |Λ| = N is finite, we can specify a final interval

IN−1 as above.

Example 2.8. To provide a simple example, let Λ= {0,1,2}. Associated to this indexing set there are three

intervals, e.g.,

I0 = [τ0,τ1], I1 = [τ1,τ2], I2 = [τ2,∞).

Example 2.9. To provide a much more interesting example, let {ar n}n∈N be a geometric sequence. Then

to this geometric sequence, we have an associated hybrid interval (N, I (a,r)), termed the geometric hybrid

interval, where

I (a,r)
i = [τ(a,r)

i ,τ(a,r)
i+1 ],

with τ(a,r)
0 = 0 and

τ(a,r)
i+1 = τ(a,r)

i +ar i =
i∑

n=0
ar n .

Hybrid intervals of this form, as we will see, naturally arise in Zeno hybrid systems.

We would like to understand hybrid intervals categorically. In order to do so, we will introduce

the notion of an interval subcategory of a category. We first introduce intervals in the category of graphs,

which define intervals in the category of D-categories. Finally, we use intervals in the category of mani-

folds to define hybrid intervals categorically.

2.2.2 Intervals in Grph. For a finite or infinite indexing set Λ= {0,1,2, . . .} ⊆N we have an associated a

graph ΓΛ = (QΛ,EΛ), where QΛ =Λ and EΛ is the set of pairs η j+1 = ( j , j +1) such that j , j +1 ∈Λ. Define

Interval(Grph) as the full subcategory of Grph with objects graphs of this form, i.e., graphs obtained from

indexing sets. That is, Interval(Grph) consists of graphs of the form:

0
η1 - 1

η2 - 2 · · · j
η j+1- j +1 · · · (2.5)

Example 2.10. For the simple indexing set Λ= {0,1,2} , ΓΛ is the graph:

0
η1 - 1

η2 - 2.

For an indexing set Λ=N, the graph is of the form given in (2.5).

2.2.3 Intervals in Dcat. Intervals in D-categories are obtained from the intervals in Grph, i.e., using the

isomorphism of categories given in Theorem 1.1, we define:

Interval(Dcat) := dcat(Interval(Grph)).
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To be slightly more explicit, from a graph ΓΛ obtained from a finite or infinite indexing set Λ we obtain a

D-category:

IΛ = dcat(ΓΛ),

which implies that V(IΛ) = QΛ = Λ and E(IΛ) = EΛ. Therefore, every diagram • ←− • −→ • in this D-

category must have the form:

η j = ( j −1, j )

j −1

sη j

�
j

tη j

-
(2.6)

That is, the D-categories in Interval(Dcat) have the form:

η1 η2 η j+1

0

sη1

�

1

sη2

�

tη1

-

2

tη2

-

· · · j

sη j+1

�

j +1

tη j+1

-

· · ·

(2.7)

This particular D-category is the one obtained from the graph given in (2.5).

The category Interval(Dcat) is, therefore, the full subcategory of Dcat consisting of all D-categories

obtained from graphs of this form.

Example 2.11. For the simple indexing set Λ= {0,1,2} , IΛ is the D-category:

(0,1) (1,2)

0

s(0,1)

�

1

s(1,2)

�

t(0,1)

-

2

t(1,2)

-

(2.8)

For an indexing set Λ=N, the associated D-category is of the form given in (2.7).

2.2.4 Intervals in Man. To study trajectories (of both dynamical and hybrid systems), we must first

understand intervals in the category Man. For t , t ′ ∈ R∪ {∞}, t ≤ t ′, an interval in Man is given by any of

the following sets:

I = [t , t ′], (t , t ′], [t , t ′), (t , t ′), {t }. (2.9)

where [t , t ′] is a manifold with boundary (and so is (t , t ′] and [t , t ′)) and {t } is a zero-dimensional manifold

consisting of the single point t (which is trivially a smooth manifold).

We can form the full subcategory of Man, Interval(Man), with objects intervals, i.e., manifolds

of the form (2.9), and morphisms smooth maps (note that any smooth map from a zero-dimensional

manifold is automatically smooth).
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Definition 2.3. An interval in Hy(Man) is a pair (I ,I), where

I : I → Interval(Man),

which must satisfy:

¦ I is an object of Interval(Dcat).

¦ For all i ∈V(I ),

Ii = [τi ,τi+1] if i , i +1 ∈V(I )

IN−1 = [τN−1,τN ] or [τN−1,τN ) or [τN−1,∞) if |V(I )| = N , N finite.

¦ For every η ∈E(I ), there is the associated diagram in I :

Iη = Icod(sη) ∩ Icod(tη)

Icod(sη)

Isη = ι

�

⊃

Icod(tη).

Itη = ι
⊂

-

2.2.5 Intervals in Hy(Man). For every η ∈ E(I ), η = (i , i +1) for i , i +1 ∈ V(I ), Definition 2.3 implies

that for every such edge there exist τ,τ′,τ′′ ∈R, with τ≤ τ′ ≤ τ′′, such that

I(i ,i+1) = {τ′}

Ii = [τ,τ′]

Is(i ,i+1) = ι

�

⊃

Ii+1 = [τ′,τ′′] or [τ′,τ′′) or [τ′,∞).

It(i ,i+1) = ι

⊂

-

If I is the D-category in (2.7), an example of an interval in Man is given by I : I → Interval(Man) where

I(I ) =

{τ1} {τ2} {τ j+1}

[τ0,τ1]

�

⊃

[τ1,τ2]

�

⊃⊂

-

[τ2,τ3]

⊂

-

· · · [τ j ,τ j+1]

�

⊃

[τ j+1,τ j+2]

⊂

-

· · ·

(2.10)

with τ1,τ2, . . . ,τ j+1, . . . the set of switching times.

Let Interval(Hy(Man)) be the full subcategory of Hy(Man) with objects all intervals in Hy(Man).

The importance of intervals in Hy(Man) is that to every hybrid interval (as introduced in Paragraph 2.2.1),

we can associate an object of Interval(Hy(Man)), and vice versa.

Remark 2.5. One can now define paths as in Example 2.5. A hybrid path of a hybrid manifold (M ,M) is an

object (I ,I) of Interval(Hy(Man)) together with a morphism of hybrid manifolds: (~C ,~c) : (I ,I) → (M ,M).

Paths can also be considered in Hy(Top) and other related categories of hybrid objects.

Proposition 2.3. There is a bijective correspondence:

{Hybrid Intervals, (Λ, I)} ↔ {Intervals in Hy(Man), I : I → Interval(Man)}.
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Proof. Consider a hybrid interval (Λ, I) with I = {Ii }i∈Λ. We have the following associations:

Λ 7→ ΓΛ ∈Ob(Interval(Grph)) 7→ IΛ ∈Ob(Interval(Dcat)).

Therefore, to the pair (Λ, I) we have the associated functor and D-category:

II : IΛ → Interval(Man)

where

II


e

sor(e)

se

�
tar(e)

te

-

 :=

II
e := Isor(e) ∩ Itar(e)

II
sor(e) := Isor(e)

ι

�

⊃

II
tar(e) := Itar(e),

ι

⊂

-

for every e ∈E(IΛ) = EΛ.

Conversely, given an object (I ,I) of Interval(Hy(Man)), we have an associated hybrid interval:

(V(I ), II = {Ii }i∈V(I )).

The definition of intervals in Hy(Man) imply that this is a hybrid interval.

Notation 2.1. As a result of Proposition 2.3, we will refer to objects of Interval(Hy(Man)) as categorical

hybrid intervals or just hybrid intervals.

Example 2.12. For the simple hybrid interval (Λ, I) introduced in Example 2.8, the associated categorical

interval is given by:

II : IΛ → Interval(Man),

where IΛ is the D-category given in (2.8) and II is defined by:

II


(0,1) (1,2)

0

s(0,1)

�

1

s(1,2)

�

t(0,1)

-

2

t(1,2)

-

=

II
(0,1) = {τ1} II

(1,2) = {τ2}

II
0 = [τ0,τ1]

II
s(0,1)

= ı

�

⊃

II
2 = [τ1,τ2]

II
s(1,2)

= ı

�

⊃
II
t(0,1)

= ı
⊂

-

II
2 = [τ2,∞)

II
t(1,2)

= ı
⊂

-
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Example 2.13. For the geometric hybrid interval (N, I (a,r)) introduced in Example 2.9, the associated cat-

egorical interval is given by:

I(a,r) : IN→ Interval(Man),

where I(a,r) takes the values indicated in the following diagram:

I(a,r)


η1 η2 η j+1

0

sη1

�

1

sη2
�

tη1

-

2

tη2

-

· · · j

sη j+1

�

j +1

tη j+1

-

· · ·

=

I(a,r)
η1

= {a} I(a,r)
η2

= {a(1+ r)}

I(a,r)
0 = [0, a]

ı

�

⊃

I(a,r)
1 = [a, a(1+ r)]

ı

�

⊃

ı

⊂

-

I(a,r)
2 = [a(1+ r), a(1+ r + r 2)]

ı

⊂

-

· · ·

I(a,r)
η j+1

=
{

j∑
n=0

ar n

}

I(a,r)
j =

[
j−1∑
n=0

ar n ,
j∑

n=0
ar n

]ı
�

⊃

I(a,r)
j+1 =

[
j∑

n=0
ar n ,

j+1∑
n=0

ar n

]ı
⊂

-

· · ·

2.3 Hybrid Trajectories

This goal of this section is to introduce trajectories of hybrid systems in the context of our cate-

gorical formulation of hybrid system. Utilizing (categorical) hybrid intervals it is a simple matter to define

trajectories of hybrid systems. We define the interval subcategory of Dyn, which is used to construct the

interval subcategory of HySys. A trajectory of a hybrid system is just a morphism from an object in the

interval subcategory of HySys to the hybrid system. We conclude by demonstrating that this formulation

is equivalent to the “standard” notion of an execution.

The constructions presented in this section are motivated by similar ideas that appeared in the

study of bisimulation relations; see [56] and the references therein.

2.3.1 Intervals in Dyn. Trajectories of dynamical systems are morphisms in Dyn whose domain is an

interval in Man together with a vector field that is a “clock”. Specifically, let I be an interval in Man, M a

smooth manifold, and X a vector field on that manifold. Consider a smooth map c : I → M . This map is

said to be a trajectory (or flow or integral curve) of X on M if

ċ(t ) = X (c(t )) (2.11)
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for t ∈ I . This is equivalent to requiring that the following diagram

T I
T c- T M

I

d
dt

6

c - M

X

6

(2.12)

commute. That is, for t ′ ∈ I ,

ċ(t ′) = Tt ′c

(
d

dt

∣∣∣∣
t ′

)
∈ Tc(t ′)M

So the commutativity of (2.12) enforces condition 2.11, or just ċ = X (c), which is the usual requirement on

a trajectory.

Therefore, we define the category Interval(Dyn) to be the full subcategory of Dyn consisting of all

objects of the form (I ,d/dt) where I is an object in Interval(Man); here, the vector field d/dt can be thought

of as a unit clock, i.e., the vector field ẋ = 1.

Definition 2.4. A trajectory of a dynamical system (M ,X ) is a morphism in Dyn:

c : (I ,d/dt) → (M ,X ),

where (I ,d/dt) is an object of Interval(Dyn).

Some further explanation of trajectories of dynamical systems is needed because of the specific

domains for these curves that we are considering; that is, I may be a closed interval or a point.

In the case when I = [t0, t1] with t1 > t0, we view I as a manifold with boundary ∂I = {t0, t1}. We

define ċ at these endpoints by:

ċ(t0) := lim
t→t+0

ċ(t ), ċ(t1) := lim
t→t−1

ċ(t ).

Similar definitions hold when I = [t0, t1) and I = (t0, t1]. In either of these cases, we again consider the

dynamical system (I ,d/dt), and say that c : I → M is an integral curve of X if c : (I ,d/dt) → (M ,X ) is a

morphism in Dyn, i.e., if (2.12) commutes.

When I = {t0} every map c : I = {t0} → M is an integral curve of X , and we define ċ(t0) := X (c(t0)).

There are ways to justify this by (for example, when dimM > 0 and c(t0) is not on the boundary of M)

considering an open interval containing t0. By slight abuse of notation, we still write ({t0},d/dt) in this

case; although, it should be understood that what is meant by this is (2.12) trivially commutes, since the

diagram commuting amounts to evaluating X at c(t0).

Example 2.14. For the “dynamical system” portion of the bouncing ball hybrid system as introduced in

Example 2.1, (Dball
1 ,X ball

1 ), for an interval [t0, t1] and an initial condition x = (x1, x2)T we obtain a trajectory

for this dynamical system c : ([t0, t1],d/dt) → (Dball
1 ,X ball

1 ) given by:

c(t ) =
 − g (t−t0)2

2 +x2(t − t0)+x1

−g (t − t0)+x2


Clearly, ċ = X ball

1 (c).
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Ge
D1
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c0(τ1)

c1(τ2)

c0(τ0) c1(τ1) c2(τ2)

Figure 2.6: A graphical illustration of an execution.

Definition 2.5. An execution of a hybrid system H= (Γ,D,G ,R,X ) is a tuple:

ε= (Λ, I ,ρ,C )

where

¦ (Λ, I) is a hybrid interval.

¦ ρ : Λ→Q is a map such that for all i , i +1 ∈Λ, ei := (ρ(i ),ρ(i +1)) ∈ E . This is the discrete evolution

of the execution.

¦ C = {ci }i∈Λ is a set of continuous trajectories such that ci : (Ii ,d/dt) → (Dρ(i ),Xρ(i )) for all i ∈ Λ, i.e.,

ci : Ii → Dρ(i ) is a trajectory of Xρ(i ) and thus satisfies ċi (t ) = Xρ(i )(ci (t )) for t ∈ Ii .

We require that for all i , i +1 ∈Λ,

(1) ci (τi+1) ∈Gei

(2) Rei (ci (τi+1)) = ci+1(τi+1).

The continuous initial condition of an execution ε is, when I0 = [τ0,τ1], given by c0(τ0) ∈ Dρ(0).

The discrete initial condition is given by ρ(0). Note that given an initial condition, it is by no means

assumed that there is a unique execution with this initial condition. We never concern ourselves with

uniqueness because the results presented never need to make this assumption in order to be valid.

Remark 2.6. In the definition of an execution we did not specify when the switching should occur once the

guard is reached, i.e., we did not specify whether we are considering as-is (forced) or enabling semantics

(see [109] for more on the semantics of hybrid systems). Again, the theorems introduced do not depend

on this choice, so we opted for simplicity by not making a specific choice regarding transition semantics.

In all of the examples, as-is semantics are used.
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Example 2.15. An graphical illustration of an execution with the same hybrid interval as the one given in

Example 2.8 can be seen in Figure 2.6. In this case, the hybrid system consists of a single domain, guard

and reset map; therefore, the discrete evolution ρ(i ) = 1 for i = 1,2,3. Hybrid systems of this form are

termed simple hybrid systems and will be discussed in detail in Chapter 3.

Example 2.16. The bouncing ball hybrid system allows for the unique luxury of explicitly solving for its

executions. That is, given an initial condition, we can explicitly produce a corresponding execution.

Starting at the initial condition x = (x1, x2)T ∈ Dball
1 at time τ0, the system evolves according to

the dynamics X ball
1 ,

c0(t ) =
 − g (t−τ0)2

2 +x2(t −τ0)+x1

−g (t −τ0)+x2


until the guard Gball

e is reached, which occurs in time and space at:

τ1 = τ0 +
x2 +

√
2g x1 +x2

2

g

c0(τ1) =
 0

−
√

2g x1 +x2
2


Applying the reset map Rball

e to c0(τ1) yields the initial condition to subsequent trajectory c1(t ) on Dball
1

which starts at time τ1, i.e.,

c1(t ) =
 − g (t−τ1)2

2 + r(t −τ1)
√

2g x1 +x2
2

−g (t −τ1)+ r
√

2g x1 +x2
2


wherein we can again determine the subsequent time and point in which the guard is reached:

τ2 = τ1 +2r

√
2g x1 +x2

2

g

c0(τ1) =
 0

−r
√

2g x1 +x2
2


Repeating this process iteratively yields an execution:

ε= (Λ, I ,ρ,C ).

Here Λ=N, I = {Ii }i∈N where Ii = [τi ,τi+1] with

τ1 = τ0 +
x2 +

√
2g x1 +x2

2

g
,

τi+1 = τi +2r i

√
2g x1 +x2

2

g
, i ≥ 1.

Since there is only one domain, ρ(i ) ≡ 1. Finally, C = {ci }i∈N with

ci (t ) =
 − g (t−τi )2

2 + r i (t −τi )
√

2g x1 +x2
2

−g (t −τi )+ r i
√

2g x1 +x2
2

 .
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Figure 2.7: Positions and velocities over time of an execution of the bouncing ball hybrid system.

An execution of the bouncing ball can be seen in Figure 2.7.

2.3.2 Zeno executions. A particular class of executions of hybrid systems that will be of particular in-

terest are Zeno executions.

Definition 2.6. An execution ε= (Λ, I ,ρ,C ) of H is Zeno if Λ=N and

∞∑
i=0

(τi+1 −τi ) = lim
i→∞

τi = τ∞

for some finite constant τ∞, termed the Zeno time.

Example 2.17. Using the constructed executions for the bouncing ball hybrid system, we can verify that

it is Zeno. That is,

∞∑
i=0

(τi+1 −τi ) =
x2 + (1−2g )

√
2g x1 +x2

2

g
+

∞∑
i=0

2

√
2g x1 +x2

2

g
r i

where the series on the right is a geometric series, and converges if 0 ≤ r < 1. What this says physically is

if the ball looses energy on each bounce, then it will eventually stop bouncing; moreover, it will do so in

finite time. We give conditions (in Chapter 5) on the Zenoness of the bouncing ball without solving for the

vector fields.

Consider again the geometric hybrid interval, (N, I (a,r)). It is easy to see that

∞∑
i=0

(τ(a,r)
i+1 −τ(a,r)

i ) =
∞∑

i=0
ar i .

Now, picking initial conditions x1 = a2g /8 and x2 = 0 for an execution of the bouncing ball yields

∞∑
i=0

(τi+1 −τi ) =±
(

1

2
a(1−2g )+

∞∑
i=0

ar i

)
,

where the expression on the right is positive if a is positive and negative if a is negative. Therefore, the

hybrid interval for the bouncing ball is an example of a geometric hybrid interval.
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2.3.3 Intervals in HySys. The interval category of HySys, denoted by Interval(HySys), is the full subcat-

egory of HySys with objects consisting of hybrid systems of the form:

(I ,I,d///dt),

where

¦ (I ,I) is a hybrid interval, i.e., an object of Interval(Hy(Man)),

¦ d///dt j = d/dt for all j ∈Ob(I ).

For example, if (I ,I) is the hybrid interval given in (2.10), the corresponding object (I ,I,d///dt)

of Interval(HySys) can be visualized graphically as follows:

{τ1} {τ2} {τ j+1}

([τ0,τ1],d/dt)

�

⊃

([τ1,τ2],d/dt)

�

⊃⊂

-

([τ2,τ3],d/dt)

⊂

-

· · · ([τ j ,τ j+1],d/dt)

�

⊃

([τ j+1,τ j+2],d/dt)

⊂

-

· · ·
One of the many benefits of defining intervals in HySys is the way in which they allow us to

parallel the definition of trajectories of dynamical systems as given in Definition 2.4.

Definition 2.7. A trajectory of a hybrid system (M ,M,X) is a morphism in HySys:

(~C ,~c) : (I ,I,d///dt) → (M ,M,X),

where (I ,I,d///dt) is an object of Interval(HySys).

Note that the functor ~C corresponds to the “discrete” portion of the trajectory, while the natural

transformation ~c corresponds to the “continuous” portion. In particular, it follows that

~̇c j (t ) = X~C ( j )(~c j (t ))

for every object j ∈V(I ).

The discrete initial condition is given by ~C (0) and the continuous initial condition is given by

~c0(τ0) ∈ M~C (0) with τ0 the right endpoint of I0, i.e., the initial condition to the trajectory is (~C (0),~c0(τ0)).

Proposition 2.4. There is a bijective correspondence:

{Executions of H} ↔ {Trajectories of (M ,Mııı ,X)}.

Proof. If ε= (Λ, I ,ρ,C ) is an execution of H= (Γ,D,G ,R,X ), to the pair (Λ, I) we have an associated object

of Interval(Hy(Man)):

II : IΛ → Interval(Man).

From this, we obtain an object of Interval(HySys):

(IΛ,II ,d///dt).
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The remaining data defining the execution ε= (Λ, I ,ρ,C ), i.e., the discrete evolution ρ and the continuous

evolution C , allows us to define a morphism:

(~Cρ,~cC ) : (IΛ,II ,d///dt) → (MΓ,M(D,G ,R),XX ),

where (MΓ,M(D,G ,R),XX ) is the categorical hybrid system obtained from the classical hybrid system H via

Proposition 2.2. The morphism of D-categories ~Cρ : IΛ →MΓ is defined on objects of IΛ by

~Cρ(a) =
 e j = (ρ( j ),ρ( j +1)) if a = ( j , j +1) ∈E(IΛ)

ρ( j ) if a = j ∈V(IΛ)

and on morphisms in the obvious way:

~Cρ(sIΛ
a ) := sMΓ

~Cρ(a)
, ~Cρ(tIΛ

a ) := tMΓ

~Cρ(a)
,

with (sIΛ ,tIΛ ) the orientation for IΛ and (sMΓ ,tMΓ ) the orientation for MΓ. It follows that this is a valid

morphism of D-categories. Finally, define the natural transformation

~cC : II �→ ~C∗
ρ (M(D,G ,R))

on objects of IΛ as follows:

(~cC )a =
 c j |I j ∩I j+1 if a = ( j , j +1) ∈E(IΛ)

c j if a = j ∈V(IΛ).

To verify that this is a natural transformation, we need only verify that the following diagram

II
j = I j

� ⊃ II
( j , j+1) = I j ∩ I j+1 ⊂ - II

j+1 = I j+1

M(D,G ,R)
~Cρ( j )

= Dρ( j )

(~cC ) j = c j

?
�ı ⊃ M(D,G ,R)

~Cρ( j , j+1)
=Ge j

(~cC )( j , j+1) = c j |I j ∩I j+1

? M(D,G ,R)

~Cρ(s
IΛ
( j , j+1))

= Re j

- M(D,G ,R)
~Cρ( j+1)

= Dρ( j+1)

(~cC ) j+1 = c j+1

?

commutes for every ( j , j +1) ∈E(I ). But this happens exactly when, for I j = [τ j ,τ j+1],

c j (τ j+1) ∈Ge j , c j+1(τ j+1) = Re j (c j (τ j+1)),

which are just requirements (1) and (2) given in Definition 2.5.

The converse direction proceeds in much the same manner, so we will be brief. Let (M ,Mııı ,X)

be a categorical hybrid system for which we have an associated hybrid system (ΓM ,DMııı ,GMııı ,RMııı ,XX)

as given in Proposition 2.2. For a trajectory (~C ,~c) : (I ,I,d///dt) → (M ,Mııı ,X), we define a corresponding

execution as

(V(I ), II, ~C |V(I ), {~c j } j∈V(I )),

where (V(I ), II) is the hybrid interval obtained from I : I → Interval(Man) via Proposition 2.3 and ~C |V(I )

is the object function of the functor ~C restricted to the elements of V(I ). It is easy to verify that this is a

valid execution.
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Example 2.18. Consider the categorical bouncing ball hybrid system (M ball,Mball,Xball) and a trajectory

(~C ,~c) : (I ,I,d///dt) → (M ball,Mball,Xball),

which, for example, can be obtained from the executions of Hball introduced in Example 2.16. The con-

dition that this is a trajectory implies that (~C ,~c) : (I ,I) → (M ball,Mball) in Hy(Man) is a hybrid path as

discussed in Example 2.5. The additional condition, and the one that makes (~C ,~c) a trajectory, is that the

collection of paths defined by ~c satisfy the ordinary differential equation Xball
b .

Another of the many benefits obtained from defining trajectories of hybrid systems categorically

is that morphisms of hybrid systems carry trajectories of one hybrid system to trajectories of another

hybrid system.

Lemma 2.1. If (~F , ~f ) : (N ,N,Y) → (M ,M,X) is a morphism of hybrid systems, and (~C ,~c) : (I ,I,d///dt) →
(N ,N,Y) is a trajectory of (N ,N,Y), then

(~F , ~f )◦◦◦ (~C ,~c) : (I ,I,d///dt) → (M ,M,X)

is a trajectory of (M ,M,X).

The proof of this statement is immediately obvious using the categorical framework for hybrid

systems, while it is not immediately clear if one were to consider the standard notion of an execution.
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Chapter 3

Simple Hybrid Reduction & Bipedal

Robotic Walking

Hybrid systems introduce a level of complexity not found in their continuous and discrete coun-

terparts, e.g., simulating hybrid systems is orders of magnitude more difficult than simulating their con-

tinuous counterparts due to the presence of state dependent events. This added complexity makes the

dimensionality of hybrid systems a critical factor in understanding, analyzing, verifying and control-

ling these systems and motivates the importance of understanding geometric reduction in a hybrid set-

ting. Since it is not possible to directly apply classical (continuous) reduction to hybrid systems—the

nonsmooth nature of these systems inherently violates the assumptions needed to perform this type of

reduction—we would like to answer the question:

If it is possible to reduce the continuous components of a hybrid system, when is it possible to
reduce the entire hybrid system?

This chapter addresses this question in the context of mechanical systems undergoing impacts;

we will address this question for general hybrid system in Chapter 4. The simple structure of mechan-

ical systems undergoing impacts allows us to derive explicit conditions on when continuous reduction

can be applied to the continuous component of these systems so as to be consistent with the discrete

component, i.e., when hybrid reduction can be performed.

History. Lagrangians and Hamiltonians provide the basic elements for describing the behavior of physical

systems. For mechanical systems, one begins with a configuration space Q and a Lagrangian L : TQ → R

or a Hamiltonian H : T ∗Q →R given in coordinates by1

L(q, q̇) = 1

2
q̇T M(q)q̇ −V (q), H(q, p) = 1

2
pT M(q)−1p +V (q).

1We slightly abuse notation here by using “matrix” notation; this is done only in the introduction because of its (presumed)
familiarity.
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It is possible to reduce the dimensionality of systems of this form when they have symmetries through

reduction; this process plays a fundamental role in understanding the many important and interesting

properties of these systems.

The first form of reduction was discovered by Routh in 1860 [100] (see [87] for a more mod-

ern account)—now understood to be an abelian form of Lagrangian reduction—which is concerned with

cyclic Lagrangians, i.e., Lagrangians that are independent of certain “cyclic” variables. The symmetries

of these systems are generated by these cyclic variables. Given a cyclic Lagrangian, the phase space of

the system (the tangent bundle of the configuration space) can be reduced, flows of the original system

can be projected down to flows of the reduced system, and flows of the reduced system can be used to

reconstruct flows of the full-order system.

Lagrangian reduction provides the first step toward a more general type of reduction: Hamil-

tonian (or symplectic) reduction. This form of reduction begins with a Lie group together with an action

of this Lie group on the phase space (a symplectic manifold); this makes explicit the symmetries of the

system. One then looks for a momentum map from the phase space to the dual of the Lie algebra of

the Lie group; this makes explicit the conserved quantities of the system. The combination of this data

defines a Hamiltonian G-space, which provides the ingredients necessary for classical Hamiltonian reduc-

tion. The classical reduction theorem, first established by Marsden and Weinstein [88], says that when the

Hamiltonian G-space satisfies certain conditions, the phase space can be reduced to a new space which is

also a symplectic manifold, with a symplectic structure induced from the one on the phase space. More-

over, given a G-invariant Hamiltonian on the phase space, the corresponding trajectories of the associated

Hamiltonian vector field reduce to trajectories on the reduced phase space.

Simple hybrid reduction. In this chapter, we begin by considering a class of mechanical systems with

unilateral constraints (usually physical in nature) on the configuration space, i.e., there is a function h :

Q →R describing the admissible configurations of the system: Q|{h(q)≥0}. When considering Lagrangians,

a unilateral constraint function defines a hybrid Lagrangian, which is a tuple L = (Q,L, h). In the case

of Hamiltonians, simple hybrid mechanical systems (HMS’s), H = (Q,H , h), are considered. In both cases,

the term “hybrid” is used because the constraints on the configuration space result in discontinuities in

the vector field describing the evolution of the mechanical system. Therefore, we can explicitly associate

hybrid systems, HL and HH, to hybrid Lagrangians and HMS’s, respectively. We provide conditions on

when it is possible to reduce hybrid systems of this form, along with more general simple hybrid systems

(hybrid systems consisting of one domain and one edge) whose dynamics are dictated by a Hamiltonian

system.

A cyclic hybrid Lagrangian is a hybrid Lagrangian in which L is cyclic (coupled with the cyclicity

of the unilateral constraint function h); we demonstrate explicitly how a Lagrangian hybrid system, HL,

can be obtained from a hybrid Lagrangian, L, with dynamics dictated by the Euler-Lagrange equations

of a Lagrangian. From a cyclic hybrid Lagrangian we obtain a hybrid Routhian Lµ = (Qµ,Lµ, hµ), which

is also a hybrid Lagrangian, and so has an associated hybrid system, HLµ , with dynamics dictated by the
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Routhian. We prove that hybrid flows (or executions) of HL project to hybrid flows of HLµ , and that hybrid

flows of HL can be reconstructed from hybrid flows of HLµ . These results motivate the consideration of a

more general form of hybrid reduction: hybrid Hamiltonian (or symplectic) reduction.

In order to perform Hamiltonian reduction, we begin by considering a Hamiltonian G-space

and give conditions on the elements of this G-space so that it defines a hybrid Hamiltonian G-space.

Explicitly, this involves defining the notion of a hybrid group action and a hybrid momentum map, which

is first done in the general setting of simple hybrid systems, followed by the special case of HMS’s. Using

these general notions, conditions are obtained on when a simple hybrid system, H, can be reduced; the

result is a simple hybrid system Hµ.

Bipedal Walking. A very interesting and promising application of hybrid reduction is bipedal robotic

walking since bipedal walkers are naturally modeled by hybrid systems—the continuous component con-

sists of the dynamics dictated by the Lagrangian modeling this system, and the discrete component con-

sists of the impact equations which instantaneously change the velocity of the system when the foot con-

tacts the ground. In order to apply reduction to systems of this form in a useful manner, we introduce

a variation of classical Routhian reduction, functional Routhian reduction, which can be extended to a

hybrid setting in a manner analogous to the extension of classical Routhian reduction.

In classical geometric reduction the conserved quantities used to reduce and reconstruct sys-

tems are constants; this indicates that the “cyclic” variables eliminated when passing to the reduced phase

space are typically uncontrolled. Yet it is often the case that these variables are the ones of interest—it may

be desirable to control the cyclic variables while not affecting the reduced order system. This motivates

an extension of Routhian reduction to the case when the conserved quantities are functions of the cyclic

variables instead of constants.

These concepts motivate our main goal:

Develop a feedback control law that results in walking gaits on flat ground for a three-dimensional
bipedal robotic walker given walking gaits for a two-dimensional bipedal robotic walker.

In order to achieve this goal, we begin by considering Lagrangians that are cyclic except for an

additional non-cyclic term in the potential energy, i.e., almost-cyclic Lagrangians. When Routhian reduc-

tion is performed with a function (of the cyclic variables) the result is a Lagrangian on the reduced phase-

space: the functional Routhian. We are able to show that the dynamics of an almost-cyclic Lagrangian

satisfying certain initial conditions project to dynamics of the corresponding functional Routhian, and

dynamics of the functional Routhian can be used to reconstruct dynamics of the full-order system. In

order to use this result to develop control strategies for bipedal walkers, it first must be generalized to a

hybrid setting. That is, after discussing how to explicitly obtain a hybrid system model of a bipedal walker,

we generalize functional Routhian reduction to a hybrid setting, demonstrating that hybrid flows of the

reduced and full order system are related in a way analogous to the continuous result.

We then proceed to consider two-dimensional (2D) bipedal walkers. It is well-known that 2D

bipedal walkers can walk down shallow slopes without actuation (cf. [90], [54]). [107] used this observa-

68



Simple Hybrid Reduction & Bipedal Robotic Walking

tion to develop a positional feedback control strategy that allows for walking on flat ground. We use these

results to obtain a hybrid system, Hs
2D, modeling a 2D bipedal robot that walks on flat ground.

We conclude by considering three-dimensional (3D) bipedal walkers. Our main result is a po-

sitional feedback control law that produces walking gaits in three-dimensions. To obtain this controller

we shape the potential energy of the Lagrangian describing the dynamics of the 3D bipedal walker so that

it becomes an almost-cyclic Lagrangian, where the cyclic variable is the roll (the unstable component) of

the walker. We are able to control the roll through our choice of a non-cyclic term in the potential energy.

Since the functional Routhian hybrid system obtained by reducing this system is Hs
2D, by picking the “cor-

rect” function of the roll, we can force the roll to go to zero for certain initial conditions. That is, we obtain

a non-trivial set of initial conditions that provably result in three-dimensional walking.

Related work. The simple hybrid mechanical systems considered have been well-studied in the literature

under many names and incarnations (cf. [36] and the more than 1000 references therein). Amazingly, the

authors are unaware of any results regarding the reduction of systems of this form. General hybrid systems

have been studied extensively; especially relevant are [38] which studies hybrid mechanical systems of

a more general form than considered here, and [66] which considers hybrid systems with symmetries.

Again, the authors are unaware of any results regarding the reduction of these systems; although, the

“non-geometric” reduction of these systems in the context of abstraction and bisimulation relations [96]

has been well-studied and proven useful for verification techniques such as reachability analysis [57].

Classical reduction has developed into a mature area of study over the last forty years (see [89]

for a nice overview of the history of the subject). We will assume that the reader is at least tentatively

familiar with classical reduction, although we briefly review crucial prerequisite material. We refer the

reader to [4, 79, 86, 87, 88] for any necessary background material not covered. Although never explicitly

mentioned, the literature on classical reduction has touched upon issues relating to hybrid reduction.

In [86] a form of discrete reduction is discussed where the assumptions needed to perform this form of

reduction are very similar to conditions enumerated later. Similarly, the reduction of continuous systems

with constraints has been studied in [85] and related references therein. Therefore, the results proven

can be viewed as the next logical step in understanding how to reduce the dimensionality of systems with

symmetry.

The results presented in this chapter have appeared, or will appear, in the following papers:

[8, 15, 17].

3.1 Simple Hybrid Lagrangians & Simple Hybrid Mechanical Systems

In this section, we introduce the notion of simple hybrid Lagrangians and simple hybrid me-

chanical systems. While introducing these definitions, we simultaneously review their continuous “non-

hybrid” counterparts. This is done both to introduce the reader to the notation and simultaneously to

make explicit the natural way that these “hybrid objects” relate to fundamental objects in classical me-
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chanics. This relationship is further explored by introducing examples.

3.1.a Simple Hybrid Lagrangians

We begin by considering simple hybrid Lagrangians.

3.1.1 Lagrangians. Let Q be the configuration space, assumed to be a smooth manifold, and TQ the

tangent bundle of Q (the velocity phase space). Suppose L : TQ → R is a hyperregular Lagrangian (cf.

[4, 87]). In this case, there is a Lagrangian vector field XL on TQ, XL : TQ → T (TQ), associated to L; that

is, there is a dynamical system (TQ,XL) associated to the Lagrangian. For t ∈ [t0, t1], we say that c(t ) =
(q(t ), q̇(t )) is an integral curve of XL with initial condition c(t0) = x0 if

c : ([t0, t1],d/dt) → (TQ,XL)

is a morphism in Dyn, i.e., if

ċ(t ) = XL(c(t )).

This is equivalent to the curve q(t ) satisfying the classical Euler-Lagrange equations:

d

dt

∂L

∂q̇
(q(t ), q̇(t ))− ∂L

∂q
(q(t ), q̇(t )) = 0. (3.1)

We will consider primarily Lagrangians describing mechanical, or robotic, systems; that is, La-

grangians given in coordinates by

L(q, q̇) = 1

2
q̇T M(q)q̇ −V (q), (3.2)

where M(q) is the inertial matrix, 1
2 q̇T M(q)q̇ is the kinetic energy and V (q) is the potential energy. In this

case, the Euler-Lagrange equations yield the equations of motion for the system:

M(q)q̈ +C (q, q̇)q̇ +N(q) = 0, (3.3)

where C (q, q̇) is the Coriolis matrix (cf. [93]) and N(q) = ∂V
∂q (q). Setting x = (q, q̇), the Lagrangian vector

field, XL, associated to L takes the familiar form.

ẋ = XL(x) = (
q̇,M(q)−1(−C (q, q̇)q̇ −N(q))

)
. (3.4)

This process of associating a dynamical system to a Lagrangian will be mirrored in the setting of hybrid

systems. First, we introduce the notion of a hybrid Lagrangian.

Remark 3.1. It is common for other authors to write x as a single vector, i.e., x = (qT , q̇T )T , rather than a

pair of vectors; we opt for the latter notation in order to avoid the proliferation of transposes. Also, our

notation is supported by the fact that an element of TQ is typically denoted by a pair (q, q̇) with q ∈Q and

q̇ ∈ TqQ.
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Figure 3.1: Ball bouncing on a sinusoidal surface.

Definition 3.1. A simple hybrid Lagrangian is defined to be a tuple

L = (Q,L, h),

where

¦ Q is the configuration space,

¦ L : TQ →R is a hyperregular Lagrangian,

¦ h : Q → R is a smooth function providing unilateral constraints on the configuration space; we as-

sume that h−1(0) is a manifold.

Example 3.1. Our first running example of this chapter is a ball bouncing on a sinusoidal surface (cf.

Figure 3.1). In this case

B = (QB,LB, hB),

where QB =R3, and for x = (x1, x2, x3)T ,

LB(x, ẋ) = 1

2
m‖ẋ‖2 −mg x3.

Finally, we make the problem interesting by considering the sinusoidal constraint function

hB(x1, x2, x3) = x3 − sin(x2).

For this example there are trivial dynamics and a nontrivial constraint function. Note that this system

certainly is more complex then the simple one-dimensional bouncing ball introduced in Example 2.1
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Figure 3.2: Pendulum on a cart.

Example 3.2. Our second running example is a constrained pendulum on a cart (cf. Figure 3.2); this is a

variation on the classical pendulum on a cart, where the pendulum is not allowed to “pass through” the

cart, i.e., the cart gives physical constraints on the configuration space. In this case

C = (QC,LC, hC),

where QC =S1 ×R, q = (θ, x)T , and

LC(θ, θ̇, x, ẋ) = 1

2

(
θ̇ ẋ

) mR2 mR cos(θ)

mR cos(θ) M +m

 θ̇

ẋ

−mg R cos(θ).

Finally, the constraint that the pendulum in not allowed to pass through the cart is manifested in the

constraint function

hC(θ, x) = cos(θ).

3.1.b Simple Hybrid Mechanical Systems

We now turn our attention toward Hamiltonians and their hybrid analogues.

3.1.2 Hamiltonians. The starting point for simple mechanical systems is a configuration space Q. Let

T ?Q be the cotangent bundle of Q (the momentum phase space). We denote the pairing between the

vector spaces2 T ?
q Q and TqQ by

〈 · , · 〉 : T ?
q Q ×TqQ →R,

which for (p, v) ∈ T ?
q Q ×TqQ is given in coordinates by 〈p, v〉 :=∑n

i=1 pi v i , with n = dim(Q).

2We later will use the same notation to denote the pairing between a Lie algebra and its dual.
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Let M(q) be the inertial matrix for a mechanical system and K (q) = M(q)−1. For each q ∈Q, we

consider the K (q)-inner product on the vector space T ?
q Q given in coordinates by3

〈〈p, p′〉〉q = pT K (q)p′ :=
n∑

i , j=1
pi p′

j Ki j (q)

for p, p′ ∈ T ?
q Q; we use || · ||q to denote the corresponding norm on T ?

q Q. This induces (or is obtained from,

depending on the perspective taken) an inner product on TqQ (the M(q)-inner product, which defines a

Riemannian metric on Q) via the Legendre transformation: FL : TQ → T ?Q, where FL(q, q̇) = (q,M(q)q̇).

A Hamiltonian is a map H : T ?Q →R. We suppose that the Hamiltonian H describes a mechan-

ical system, i.e., that it has the following form

H(q, p) = 1

2
||p||2q +V (q), (3.5)

where 1
2 ||p||2q is the kinetic energy and V (q) is the potential energy. Note that this Hamiltonian is obtained

from a Lagrangian of the form given in (3.2) via the Legendre transformation.

The cotangent bundle, T ?Q, is a symplectic manifold with its symplectic structure obtained

from the canonical symplectic form given in coordinates by:

ωcanonical =
n∑

i=1
dq i ∧dpi .

With this symplectic form, we obtain a vector field on T ?Q from a Hamiltonian, XH : T ?Q → T (T ?Q), by

requiring that it satisfies:

d(H) = ιXHωcanonical.

In coordinates, this yields the classical Hamiltonian equations

(q̇, ṗ) = XH (q, p) =
(
∂H

∂p
(q, p),−∂H

∂q
(q, p)

)
. (3.6)

We refer the reader to [4, 27] and [87] for more details.

Definition 3.2. A simple hybrid mechanical system (HMS) is defined to be a tuple:

H = (Q,H , h),

where H is defined as in (3.5), and h : Q →R is a smooth function that defines constraints on the configu-

ration of the system; again, h−1(0) is assumed to be a manifold.

Utilizing the Legendre transformation, to a hybrid Lagrangian we obtain an associated hybrid

mechanical system. That is, the classical relationship between Lagrangians and Hamiltonians can be

extended to the hybrid setting considered here. This relationship implies that in considering hybrid La-

grangians, one automatically is considering hybrid mechanical systems and vice versa (since we are as-

suming that L is a hyperregular Lagrangian). Therefore, our later results on hybrid Hamiltonian reduction
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Figure 3.3: Spherical pendulum mounted on the floor.

(which are more general then the earlier results on hybrid Lagrangian reduction) are automatically ap-

plicable to hybrid Lagrangians.

Example 3.3. The running example of a HMS will be a spherical pendulum mounted on the floor (Figure

3.3). Here QP = S2 and, using the standard spherical coordinates, we denote an element q ∈ S2 by q =
(θ,ϕ)T and we denote an element p ∈ T ?

q S
2 by p = (pθ, pϕ)T . For this example, the Hamiltonian HP is

given by

HP(q, p) = 1

2mR2

(
p2
θ +

p2
ϕ

sin2(θ)

)
−mg R cos(θ).

Finally, hP is the height function hP(θ,ϕ) = cos(θ), i.e., we have a simple hybrid mechanical system given

by P = (QP,HP, hP).

3.2 Simple Hybrid Systems

In this section, we introduce simple hybrid systems, and show explicitly how to associate to hy-

brid Lagrangians and HMS’s simple hybrid systems. This association is achieved through the use of New-

tonian impact equations, which provide a method for describing the behavior of a mechanical system

undergoing impacts. It is important to note that this construction has support in the literature (cf. [36],

[38], [49]), and hybrid systems of this form have the ability to model a large class of physical systems.

Definition 3.3. A simple hybrid system4 is a tuple:

H= (D,S,R,X ),

3We use the notation “pT K (q)p′” so as to relate “matrix” notation (which is more common when discussing Lagrangians) with
summation notation (which is more common when discussing Hamiltonians and reduction in general). Typically, We will only use
“matrix notation” when discussing Lagrangians.

4So named because of its connection with simple HMS’s, coupled with its “simple” structure.

74



Simple Hybrid Reduction & Bipedal Robotic Walking

where

¦ D is a smooth manifold called the domain,

¦ S is an embedded submanifold of D called the switching surface or guard,

¦ R : S → D is a smooth map called the reset map,

¦ X is a vector field on D.

In this case, the hybrid manifold associated to this hybrid system is a tuple DH = (D,S,R) with elements as

defined above. That is, since the graph Γ for a simple hybrid system consists of a single edge and vertex,

i.e., it is of the form:

the associated D-category DΓ is given by:

a

b

sa

?

ta

?

and DH is a functor DH : DΓ →Man defined by:

DH


a

b

sa

?

ta

?

=

S

D

ı

?

R

?

where ı is the natural inclusion.

Remark 3.2. Note that simple hybrid systems are clearly just a special case of the notion of a hybrid system

introduced in Definition 2.1, although we have opted to shift notation slightly. The first noticeable differ-

ence is that there is no reference to an indexing graph Γ. This is because simple hybrid systems always

have as an indexing graph a graph with a single edge and vertex. This also explains why we do not index

the domains, guards, reset maps and vector fields—there is only one of each. Finally, for simple hybrid

systems, we denote the guard by “S” instead of “G”. The motivation for this is that we will use the symbol

“G” to denote groups in this chapter.

Executions for simple hybrid systems are of a somewhat simpler form than the executions for

general hybrid systems as introduced in Definition 2.5. That is, since there is only one domain, the discrete

evolution ρ : Λ → Q must take a single value, and so need not be mentioned. To make this explicit, we

restate the definition of an execution in the context of simple hybrid systems. Moreover, to highlight the

difference between executions of hybrid systems and executions of simple hybrid systems, we refer to the

later as hybrid flows.
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3.2.1 Hybrid flows. A hybrid flow is a tuple:

εH = (Λ, I ,C ),

where

¦ Λ= {0,1,2, . . .} ⊆N is a finite or infinite indexing set.

¦ I = {Ii }i∈Λ is a collection of intervals where Ii = [τi ,τi+1] if i , i + 1 ∈ Λ and IN−1 = [τN−1,τN ] or

[τN−1,τN ) or [τN−1,∞) if |Λ| = N , N finite; here τi ,τi+1,τN ∈R and τi ≤ τi+1,

¦ C = {ci }i∈Λ is a collection of integral curves of X , i.e., ċi (t ) = X (ci (t )) for all i ∈Λ.

In addition, we require that the following conditions hold for every i , i +1 ∈Λ,

(i) ci (τi+1) ∈ S,

(ii) R(ci (τi+1)) = ci+1(τi+1).

The initial condition for the execution is x0 = c0(τ0). When we wish to make explicit the initial condition

of εH we write εH(x0).

Example 3.4. A graphical illustration of a hybrid flow can be seen Figure 2.6. The reader should make the

appropriate changes of notion in this figure as discussed in Remark 3.2.

3.2.a Lagrangian Hybrid Systems

We now discuss how to obtain simple hybrid systems from simple hybrid Lagrangians.

3.2.2 Domains from constraints. Given a smooth (constraint) function h : Q → R on a configuration

space Q such that h−1(0) is a smooth manifold, i.e., 0 is a regular value of h, we can construct a domain

and a guard explicitly. To this constraint function we have an associated domain, Dh , defined to be the

manifold (with boundary):

Dh = {(q, q̇) ∈ TQ : h(q) ≥ 0}.

Similarly, we have an associated guard, Sh , defined as the following submanifold of Dh :

Sh = {(q, q̇) ∈ TQ : h(q) = 0 and dhq q̇ ≤ 0},

where in coordinates

dhq =
(

∂h
∂q1

(q) · · · ∂h
∂qn

(q)
)

.

These constructions will be utilized throughout this chapter.

Definition 3.4. A hybrid system is said to be a Lagrangian hybrid system with respect to a hybrid La-

grangian L = (Q,L, h) if it is of the form:

H= (Dh ,Sh ,R,XL),

where Dh and Sh are the domain and guard associated to h and XL is the vector field associated to L.
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3.2.3 Special Lagrangian hybrid systems. There is a class of Lagrangian hybrid systems that are of

special interest; these model unilaterally constrained systems undergoing impacts [36], and so have reset

maps obtained from Newtonian impact equations.

Given a hybrid Lagrangian L = (Q,L, h), the Lagrangian hybrid system associated to L is the hy-

brid system

HL = (DL,SL,RL,XL),

where DL = Dh , SL =Gh , XL = XL and

RL(q, q̇) = (q,PL(q, q̇)),

with PL given in coordinates by:

PL(q, q̇) = q̇ − (1+ e)
dhq q̇

dhq M(q)−1dhT
q

M(q)−1dhT
q , (3.7)

where 0 ≤ e ≤ 1 is the coefficient of restitution, e.g., for a perfectly elastic impact e = 1, and for a perfectly

plastic impact e = 0.

Of course, the Lagrangian hybrid system associated to a hybrid Lagrangian is a Lagrangian hy-

brid system w.r.t. this hybrid Lagrangian. The converse statement is not true. General Lagrangian hybrid

systems, as introduced in Definition 3.4, describe a much larger class of systems, e.g., it is not assumed

that the reset map is continuous in the configuration variables. An important class of systems that gen-

eral Lagrangian hybrid systems describe are bipedal robotic walkers (cf. [55, 107, 116]). In fact, general

Lagrangian hybrid systems and the hybrid reduction thereof are used in Section 3.5 to reduce the dimen-

sionality of bipedal walkers. It is then possible to use results relating to two-dimensional bipedal walkers

to allow three-dimensional bipedal walkers to walk while stabilizing to the upright position.

Example 3.5. The Lagrangian hybrid system for the bouncing ball on a sinusoidal surface is given by

HB = (DB,SB,RB,XB).

First, we define

DB = {(x, ẋ) ∈R3 ×R3 : x3 − sin(x2) ≥ 0},

SB = {(x, ẋ) ∈R3 ×R3 : x3 = sin(x2) and ẋ3 −cos(x2)ẋ2 ≤ 0},

and RB(x, ẋ) = (x,PB(x, ẋ)), where

PB(x, ẋ) =


ẋ1

(1−e cos(x2)2)ẋ2+(1+e)cos(x2)ẋ3
1+cos(x2)2

(1+e)cos(x2)ẋ2+(−e+cos(x2)2)ẋ3
1+cos(x2)2


with 0 ≤ e ≤ 1 the coefficient of restitution. Finally,

XB(x, ẋ) =

ẋ,


0

0

−g


 .
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Example 3.6. For the pendulum on a cart example:

HC = (DC,SC,RC,XC),

where q = (θ, x)T , q̇ = (θ̇, ẋ)T ,

DC = {(q, q̇) ∈ (S1 ×R)×R2 : cos(θ) ≥ 0},

SC = {(q, q̇) ∈ (S1 ×R)×R2 : cos(θ) = 0 and sin(θ)θ̇≥ 0},

and RC(q, q̇) = (q,PC(q, q̇)), where

PC(q, q̇) =
 −eθ̇

ẋ


with 0 ≤ e ≤ 1 the coefficient of restitution. Finally,

XC(q, q̇) =
q̇,

 sin(θ)(−g (m+M)+mR cos(θ)θ̇2)
−(m+M)R+mR cos(θ)2

−m sin(θ)(g cos(θ)−Rθ̇2)
m+M−m cos(θ)2


3.2.b Hamiltonian Hybrid Systems

We now discuss how to obtain simple hybrid systems from simple hybrid mechanical systems.

Definition 3.5. We say that H= (D,S,R,X ) is a Hamiltonian hybrid system with respect to a Hamiltonian

H if there exists a symplectic form ω on D such that (D,ω,X ) is a Hamiltonian system with respect to the

Hamiltonian H , i.e., d(H) = ιXω.

3.2.4 Hybrid manifolds from HMS’s. In order to construct a hybrid system from a HMS, we begin by

constructing the hybrid manfold DH
H = (DH,SH,RH) from a HMS H = (Q,H , h). First, DH and SH are given

as follows:

DH = {(q, p) ∈ T ?Q : h(q) ≥ 0},

SH = {(q, p) ∈ T ?Q : h(q) = 0 and 〈〈p, dhq〉〉q ≤ 0}.

This is exactly the set up in mechanical systems with unilateral constraints. With this in mind, we can

define a reset map RH by

RH(q, p) = (q,Pq (p)), (3.8)

where Pq : T ?
q Q → T ?

q Q is given by

Pq (p) = p − (1+ e)
〈〈p, dhq〉〉q

||dhq ||2q
dhq (3.9)

with 0 ≤ e ≤ 1 is the coefficient of restitution.
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3.2.5 Hybrid systems from HMS’s. We already have constructed a hybrid manifold DH
H = (DH,SH,RH)

from the hybrid mechanical system H, so it only remains to define the vector field XH. Using the canonical

symplectic form, ωcanonical, we define XH = XH as given in (3.6). Finally, HH = (DH,SH,RH,XH). Therefore,

for H = (Q,H , h), the hybrid system HH is a Hamiltonian hybrid system w.r.t. the Hamiltonian H .

Example 3.7. The hybrid manifold for the spherical pendulum (Example 3.3),

DHP
P = (DP,SP,RP),

is given by

DP = {(q, p) ∈S2 ×R2 : cos(θ) ≥ 0},

SP = {(q, p) ∈S2 ×R2 : cos(θ) = 0 and pθ ≥ 0},

and

RP(q, p) =
q,

 −epθ

pϕ

 .

Finally, the vector field is given by

XP(q, p) =
 pθ

mR2

pϕ
mR2 sin2(θ)

 ,

 −p2
ϕ

mR2 cos(θ)sin2(θ)
−mg R sin(θ)

0


and HP = (DP,SP,RP,XP).

3.3 Hybrid Routhian Reduction

In this section, we begin by reviewing classical (or “non-hybrid”) Routhian reduction (cf. [87]

and the references to the subject therein). The motivation for this is that the hybrid version of Routhian

reduction nicely mirrors the classical version, and the construction and definitions needed for classical

Routhian reduction are also needed for hybrid Routhian reduction.

We then proceed to generalize Routhian reduction to a hybrid setting, first for Lagrangian hybrid

systems associated to hybrid Lagrangians, and then for general Lagrangian hybrid systems. In both cases

we derive conditions on when “hybrid” Routhian reduction can be carried out. In the first case, these

conditions are concrete and easily verifiable, and in the later case, they are more general but also more

abstract. Finally, Routhian hybrid systems are related to Lagrangian hybrid systems obtained from hybrid

Routhians.

3.3.a A Review of Routhian Reduction

Consider the Lie group

G= (S1 ×S1 ×·· ·×S1)︸ ︷︷ ︸
m−times

×Rp (3.10)
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with k = m + p = dim(G); here S1 is the circle. The starting point for classical Routhian reduction is a

configuration space of the form5

Q =Qµ×G,

where Qµ is called the shape space; we denote an element q ∈Q by q = (θ,ϕ) where θ ∈Qµ and ϕ ∈G. Note

thatG is an abelian Lie group, with Lie algebra g∼=Rk ; this observation relates Routhian reduction to more

general “non-abelian” forms of reduction (cf. [4, 86, 87]) that will be discussed in Chapter 4.

3.3.1 Cyclic Lagrangians. If L : TQ → R is a Lagrangian—as given in (3.2)—then in order to carry out

Routhian reduction, we must assume that L is cyclic, that is, independent of ϕ:

∂L

∂ϕ
= 0.

This implies that we can write L in coordinates as6

L(θ, θ̇,ϕ,ϕ̇) = 1

2

 θ̇

ϕ̇

T  Mθ(θ) Mϕ,θ(θ)T

Mϕ,θ(θ) Mϕ(θ)

 θ̇

ϕ̇

−V (θ) (3.11)

= 1

2

(
θ̇T Mθ(θ)θ̇+ ϕ̇T Mϕ(θ)ϕ̇

)+ ϕ̇T Mϕ,θ(θ)θ̇−V (θ).

Here Mθ(θ) ∈ Rn×n and Mϕ(θ) ∈ Rk×k are both symmetric positive definite matrices and Mϕ,θ(θ) ∈ Rk×n

with n = dim(Qµ) and k = dim(G).

3.3.2 Routhians. Fundamental to reduction is the notion of a momentum map J : TQ → g? ∼= Rk ,

which makes explicit the conserved quantities in the system. In the framework we are considering here,

J(θ, θ̇,ϕ,ϕ̇) = ∂L

∂ϕ̇
(θ, θ̇,ϕ,ϕ̇) = Mϕ,θ(θ)θ̇+Mϕ(θ)ϕ̇. (3.12)

The Routhian Lµ : TQµ →R is given by, for µ ∈Rk ,

Lµ(θ, θ̇) = [
L(θ, θ̇,ϕ,ϕ̇)−µT ϕ̇

]∣∣
J−1(µ) . (3.13)

Because

J(θ, θ̇,ϕ,ϕ̇) =µ ⇒ ϕ̇= Mϕ(θ)−1(µ−Mϕ,θ(θ)θ̇), (3.14)

by direct calculation, the Routhian is given by

Lµ(θ, θ̇) = 1

2
θ̇T (

Mθ(θ)−Mϕ,θ(θ)T Mϕ(θ)−1Mϕ,θ(θ)
)
θ̇+µT Mϕ(θ)−1Mϕ,θ(θ)θ̇−Vµ(θ)

:= 1

2
θ̇T Mµ(θ)θ̇+µT A(θ)θ̇−Vµ(θ), (3.15)

where

Vµ(θ) = V (θ)+ 1

2
µT Mϕ(θ)−1µ

is the amended potential.

5The shape space Qµ is often denoted by “S” is the literature. We use the former notation rather than the later because we are
reserving the symbol S for the switching surface of a hybrid system.

6Throughout the rest of this section, we will work in coordinates.

80



Simple Hybrid Reduction & Bipedal Robotic Walking

3.3.3 Reduction. From the vector field XL on TQ, we obtain a vector field XLµ on TQµ from the Routhian

via the Euler-Lagrange equations (3.1); see [87] for more details.

Note that we have a projection map

π : TQ → TQµ

(θ, θ̇,ϕ,ϕ̇) 7→ (θ, θ̇).

The main result of Routhian reduction is that flows of XL project to flows of XLµ , i.e., there is the following

well-known proposition (see [87]).

Proposition 3.1. Let L be a cyclic Lagrangian, Lµ the associated Routhian, with XL and XLµ the associated

Lagrangian vector fields. If c(t ) is a flow of the XL such that c(t0) ∈ J−1(µ), then π(c(t )) is a flow of XLµ with

initial condition π(c(t0)).

3.3.b Hybrid Routhians

We now proceed to generalize Routhian reduction to a hybrid setting by considering cyclic hy-

brid Lagrangians. The intuition gained from considering these systems will be vital; for example, the

similarity between the diagram in (3.17) and the diagram in (3.27) is not coincidental.

Definition 3.6. A cyclic hybrid Lagrangian is a hybrid Lagrangian, L = (Q,L, h), such that Q =Qµ×G, L is

a cyclic Lagrangian and h is cyclic, i.e.,

∂h

∂ϕ
= 0. (3.16)

3.3.4 Hybrid Routhians. For a cyclic hybrid Lagrangian, L = (Q = Qµ ×G,L, h), we obtain a reduced

constraint function hµ : Qµ →R, where hµ is the function h viewed as a function on S; this makes sense be-

cause h is assumed to be cyclic. From the cyclic Lagrangian L, define the corresponding hybrid Routhian

by:

Lµ = (Qµ,Lµ, hµ),

which is again a hybrid Lagranigan. From this hybrid Routhian, we obtain a Routhian hybrid system

associated to the hybrid Routhian Lµ:

HLµ = (DLµ ,SLµ ,RLµ ,XLµ ),

with DLµ = Dhµ , SLµ = Shµ , XLµ = XLµ and

RLµ (θ, θ̇) = (θ,Pµ(θ, θ̇)),

where

Pµ(θ, θ̇) = θ̇− (1+ e)
d(hµ)θθ̇

d(hµ)θMµ(θ)−1d(hµ)T
θ

Mµ(θ)−1d(hµ)T
θ .

Here Mµ(θ) is defined as in (3.15).
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Theorem 3.1. Let L be a cyclic hybrid Lagrangian, Lµ the associated hybrid Routhian, with HL and HLµ the

associated Lagrangian hybrid systems. If εHL (x0) = (Λ, I ,C ) is a hybrid flow of HL with x0 ∈ J−1(µ), then

εHLµ (π(x0)) = (Λ, I ,π(C ))

is a hybrid flow of HLµ , where π(C ) = {π(ci ) : ci ∈C }.

Before proving this theorem, we establish the following proposition which says that the con-

served quantities are preserved by the reset map when they are obtained from cyclic hybrid Lagrangians.

Proposition 3.2. If L is cyclic, then the following diagram

Rk

(I)

SL RL
-

J |SL

-

DL

J |DL

�

J−1(µ)|SL

∪

6

RL|J−1(µ)|SL- J−1(µ)|DL

∪

6

(II)

SLµ

π

?

RLµ

- DLµ

π

?

(3.17)

commutes for all µ ∈ g? ∼=Rk .

Proof. To show the commutativity of (3.17), we need to show that (I) and (II) commute. Before doing this,

some set-up is required, i.e., we will first find an explicit formulation for PL, as defined in (3.7), based on

the assumption that L is cyclic.

By (3.11) and block diagonal matrix inversion,

M(θ,ϕ)−1 =
 Mµ(θ)−1 −Mµ(θ)−1 A(θ)T

−A(θ)Mµ(θ)−1 Mϕ(θ)−1 + A(θ)Mµ(θ)−1 A(θ)T

 .

By (3.16),

dh(θ,ϕ) =
(

d(hµ)θ 0
)

. (3.18)

Combining these two equations implies that in the case when L is cyclic

PL(θ,ϕ, θ̇,ϕ̇) = (3.19) θ̇

ϕ̇

− (1+ e)
d(hµ)θθ̇

d(hµ)θMµ(θ)−1d(hµ)T
θ

 Mµ(θ)−1d(hµ)T
θ

−A(θ)Mµ(θ)−1d(hµ)T
θ

 .

Using this, we demonstrate the commutativity of (I) and (II) in turn.

82



Simple Hybrid Reduction & Bipedal Robotic Walking

Commutativity of (I): Because of (3.12), to show the commutativity of (I) we need to show that

(
Mϕ,θ(θ) Mϕ(θ)

) θ̇

ϕ̇

=
(

Mϕ,θ(θ) Mϕ(θ)
)

PL(θ,ϕ, θ̇,ϕ̇).

By (3.19), this is equivalent to showing that

(
Mϕ,θ(θ) Mϕ(θ)

) Mµ(θ)−1d(hµ)T
θ

−A(θ)Mµ(θ)−1d(hµ)T
θ

= 0,

which follows from the fact that

Mϕ,θ(θ)Mµ(θ)−1d(hµ)T
θ = Mϕ(θ)Mϕ(θ)−1Mϕ,θ(θ)Mµ(θ)−1d(hµ)T

θ

= Mϕ(θ)A(θ)Mµ(θ)−1d(hµ)T
θ .

Commutativity of (II): First note that this diagram is well-defined (the codomain of π is SLµ )

because
h(θ,ϕ) = 0 ⇒ hµ(θ) = 0,

dh(θ,ϕ)

 θ̇

ϕ̇

≤ 0 ⇒ d(hµ)θθ̇≤ 0,

by (3.18). Now, to show the commutativity of (II), we need only show that

πθ̇
(
PL(θ,ϕ, θ̇,Mϕ(θ)−1(µ−Mϕ,θ(θ)θ̇))

)= PLµ (θ, θ̇),

where πθ̇ is the projection onto the θ̇-component of PL and

PLµ (θ, θ̇) = θ̇− (1+ e)
d(hµ)θθ̇

d(hµ)θMµ(θ)−1d(hµ)T
θ

Mµ(θ)−1d(hµ)T
θ .

But, this can be seen by directly inspecting (3.19).

Proof of Theorem 3.1. Let cµi (t ) =π(ci (t )). We need only show that

(iµ) cµi (τi+1) ∈ SLµ ,

(iiµ) RLµ (cµi (τi+1)) = cµi+1(τi+1),

(iiiµ) ċµi (t ) = XLµ (cµi (t )) = XLµ (cµi (t )).

First, consider the case when i = 0. Since by assumption x0 = c0(τ0) ∈ J−1(µ), we know that

c0(t ) ∈ J−1(µ) for all t ∈ [τ0,τ1]; since c0(τ1) ∈ SL, this implies that c0(τ1) ∈ J−1(µ)|SL .

Condition (iµ): Follows from the fact that

c0(τ1) ∈ J−1(µ)|SL ⇒ π(c0(τ1)) = cµ0 (τ1) ∈ SLµ .

Condition (iiµ): Follows from the commutativity of (II) in (3.17) since it implies that

RLµ (cµ0 (τ1)) = RLµ (π(c0(τ1))) =π(RL(c0(τ1))) =π(c1(τ1)) = cµ1 (τ1).
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Condition (iiiµ): Follows from Proposition 3.1.

Finally, the commutativity of (I) in (3.17) implies that c1(τ1) ∈ J−1(µ). Therefore, the result fol-

lows by induction on i , i.e., the same argument that was utilized for i = 0 can be applied to any i such that

i , i +1 ∈Λ together with the assumption that ci (τi ) ∈ J−1(µ).

3.3.c Routhian Hybrid Systems

Definition 3.7. A Lagrangian hybrid system H= (Dh ,Sh ,R,XL) w.r.t. a hybrid Lagrangian L = (Q,L, h) is a

cyclic Lagrangian hybrid system if L is a cyclic hybrid Lagrangian and the following diagram

Rk

Sh R
-

J |Sh

-

Dh

J |Dh

�

(3.20)

commutes.

3.3.5 Routhian hybrid systems. From a cyclic Lagrangian hybrid system, H, we can construct a Routhian

hybrid system, Hµ, which is a Lagrangian hybrid system with respect to the hybrid Routhian Lµ. We define

this hybrid system as follows:

Hµ = (Dµ,Sµ,Rµ,Xµ) = (Dhµ ,Shµ ,Rµ,XLµ ),

where Rµ : Shµ → Dhµ (possibly dependent on µ) is the induced map defined by the requirement that it

make the following diagram

J−1(µ)|Sh

R|J−1(µ)|Sh- J−1(µ)|Dh

Shµ

π

? Rµ - Dhµ

π

?

(3.21)

commute for all µ ∈Rk .

Theorem 3.2. Let H be a cyclic Lagrangian hybrid system, and Hµ the associated Routhian hybrid system.

If εH(x0) = (Λ, I ,C ) is a hybrid flow of H with x0 ∈ J−1(µ), then

εHµ (π(x0)) = (Λ, I ,π(C ))

is a hybrid flow of Hµ, where π(C ) = {π(ci ) : ci ∈C }.

Proof. The proof of this theorem is analogous to the proof of Theorem 3.1.

It follows from Proposition 3.2, and specifically from the fact that the commutativity of (3.17)

implies the commutativity (3.20) and (3.21), that the operation of “reduction” commutes.
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Proposition 3.3. Let HL be the Lagrangian hybrid system associated to a cyclic hybrid Lagrangian L, then

HL is a cyclic Lagrangian hybrid system and

(HL)µ =HLµ

where HLµ is the Routhian hybrid system associated to the hybrid Routhian Lµ.

3.3.6 Commutativity of reduction. In the case when L is cyclic, HL is cyclic and we can carry out

Routhian reduction on this hybrid system to obtain a Routhian hybrid system (HL)µ. This process is de-

scribed graphically by the following diagram:

L
association- HL

reduction- (HL)µ.

Alternately, a cyclic hybrid Lagrangian can be reduced to obtain a hybrid Routhian Lµ, and to this hybrid

Routhian we can associate a Lagrangian hybrid system HLµ ; this again is described graphically by

L
reduction- Lµ

association- HLµ .

Proposition 3.3 implies that the processes of “association” and “reduction” commute, i.e., the order in

which they are taken is irrelevant. This can be visualized in a commuting diagram of the form:

L
association - HL

Lµ

reduction

? association- (HL)µ =HLµ

reduction

?

This result yields an explicit method for computing Routhian hybrid systems from cyclic hybrid Lagrangians.

3.3.7 Hybrid reconstruction. Suppose that εHLµ (cµ0 (τ0)) = (Λ, I ,Cµ) is a hybrid flow of HLµ . Then we

can construct a hybrid flow εHL (c0(τ0)) = (Λ, I ,C ) of HL by reconstructing the flow recursively. Writing

cµi (t ) = (θi (t ), θ̇i (t )), we define

ci (t ) = (θi (t ), θ̇i (t ),ϕi (t ),ϕ̇i (t ))

recursively to be:

ϕ̇i (t ) = Mϕ(θi (t ))−1(µ−Mϕ,θ(θi (t ))θ̇i (t )),

ϕi (t ) = πϕ(R(ci−1(τi )))+
∫ t−τi

τi

ϕ̇i (s)ds,

where t ∈ [τi ,τi+1] and πϕ(R(ci−1(τi ))) is the ϕ-component of R(ci−1(τi )).

Example 3.8. For the ball bouncing on a sinusoidal surface (Example 3.1 and Example 3.5), the La-

grangian LB has two cyclic variables: x1 and x2. Since hB is only independent of one of these variables, the
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Figure 3.4: Positions y1 vs. y2 and velocities over time of HBµ .

only “hybrid” cyclic variable is x1. That is, through continuous reduction we could reduce the dimension-

ality of the phase space by four, while through hybrid reduction we can only reduce the dimensionality of

the phase space by two. Therefore, we will carry out hybrid Routhian reduction on the system with G=R.

Specifically, our hybrid Routhian is given by

Bµ = (QBµ ,LBµ , hBµ ),

where QBµ =R2, and for y = (y1, y2)T ,

LBµ (y, ẏ) = 1

2
m‖ẏ‖2 −mg y2 − 1

2

µ2

m
.

Finally, hBµ (y1, y2) = y2 − sin(y1).

The Routhian hybrid system for the bouncing ball on a sinusoidal surface, as obtained from Bµ,

is given by

HBµ = (DBµ ,SBµ ,RBµ ,XBµ ).
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First, we define

DBµ = {(y, ẏ) ∈R2 ×R2 : y2 − sin(y1) ≥ 0},

SBµ = {(y, ẏ) ∈R2 ×R2 : y2 = sin(y1) and ẏ2 −cos(y1)ẏ1 ≤ 0},

and RBµ (y, ẏ) = (y,PBµ (y, ẏ)), where

PBµ (y, ẏ) =
 (1−e cos(y1)2)ẏ1+(1+e)cos(x1)ẏ2

1+cos(y1)2

(1+e)cos(y1)ẏ1+(−e+cos(y1)2)ẏ2

1+cos(y1)2


with 0 ≤ e ≤ 1 the coefficient of restitution. Finally,

XBµ (y, ẏ) =
ẏ ,

 0

−g

 .

A simulation of the reduced system HBµ can be seen in Figure 3.4. Note that this system is Zeno

(both the reduced and full-order system display Zeno behavior). This type of behavior will be discussed in

detail in Chapter 5; in fact, Section 5.5 of this chapter discusses how to extend the hybrid flows of hybrid

Lagrangians—a process which is illustrated on this example.

Example 3.9. For the pendulum on a cart (Example 3.2 and Example 3.6), the x variable is a cyclic variable

for both the Lagrangian LC and the hybrid Lagrangian C. Therefore, we can carry out Routhian reduction

with G=R. In this case

Cµ = (QCµ ,LCµ , hCµ ),

where QCµ =S1, and

J(θ, θ̇, x, ẋ) = mR cos(θ)θ̇+ (M +m)ẋ.

So

LCµ (θ, θ̇) = 1

2

(
mR2 − m2R2 cos(θ)2

M +m

)
θ̇2 +µ

(
mR cos(θ)

M +m

)
θ̇−VCµ (θ),

with

VCµ (θ) = mg R cos(θ)+ µ2

2(M +m)

the amended potential. Finally, hCµ (θ, ) = cos(θ).

The Routhian hybrid system for the pendulum on a cart example is given by:

HCµ = (DCµ ,SCµ ,RCµ ,XCµ ),

where

DCµ = {(θ, θ̇) ∈S1 ×R : cos(θ) ≥ 0},

SCµ = {(θ, θ̇) ∈S1 ×R : cos(θ) = 0 and sin(θ)θ̇≥ 0},

and RCµ (θ, θ̇) = (θ,PCµ (θ, θ̇)), where

PCµ (θ, θ̇) =
(
−eθ̇

)
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Figure 3.5: Positions and velocities over time, as reconstructed from the reduced system HCµ .

with 0 ≤ e ≤ 1 the coefficient of restitution. Finally,

XCµ (θ, θ̇) =
(
θ̇,

sin(θ)(−g (m +M)+mR cos(θ)θ̇2)

R(−(m +M)+m cos(θ)2)

)
.

The positions and velocities of the full-order system, as reconstructed from the reduced systems,

can be see in Figure 3.5; in this simulation m = 5,M = 50,R = 10, e = 0.9 and µ= 0.1. In this example, both

the reduced and full order model are Zeno; again, Section 5.5 of Chapter 5 discusses how to extend the

hybrid flow of this system past the Zeno point.

3.4 Simple Hybrid Reduction

We now turn our attention toward hybrid Hamiltonian reduction. Doing so necessarily requires

the basic ingredients needed for classical reduction to be understood in a hybrid setting. As Hamiltonian

reduction is more general than Routhian reduction, the ingredients necessary to perform this type of

reduction are necessarily more sophisticated. We refer the reader to [4, 27, 79]-[88] for the prerequisite

background material.
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The main result of this section is the generalization of the classical reduction theorem [88] (as

stated in Theorem 4.1) to simple hybrid Hamiltonian systems.

Remark 3.3. The hybrid objects studied in this section are studied in their more general form in Chapter 4.

For example, here we consider hybrid Hamiltonian G-spaces which are a special case of the more general

notion of a hybrid Hamiltonian G-space. The motivation for considering these “simple” hybrid objects

is that they motivate the concepts introduced in Chapter 4, while simultaneously allowing us to better

understand simple hybrid mechanical systems.

3.4.a Hybrid Hamiltonian G-spaces.

We begin by introducing the notion of a hybrid Hamiltonian G-space, the starting point for

which is a Hamiltonian G-space (see Paragraph 4.4.1) with respect to the continuous portion of H. We

discuss hybrid Hamiltonian G-spaces in the context of both simple hybrid systems and HMS’s; in the later

case, explicit constructions are carried out.

3.4.1 Hybrid group actions. Let H= (D,S,R,X ) be a hybrid system. Consider an action Φ : G ×D → D

of a Lie group G on D. We say that this is a hybrid action if Φ|S is an action of G on S and for all g ∈G

R ◦Φg |S =Φg ◦R.

That is, for all g ∈G we have a commuting diagram:

S
R - D

S

Φg |S
? R - D

Φg

?

(3.22)

Or in other words, R is equivariant with respect to the actions Φ and Φ|S . We say that Φ is a free and proper

hybrid action, if Φ is a free and proper action that is hybrid. Similarly, Φ is a symplectic hybrid action if it

is both symplectic and hybrid.

3.4.2 Hybrid orbit spaces. For the hybrid manifold DH = (D,S,R), a Lie group G , and a hybrid action

Φ, we define the hybrid orbit space as a tuple:

DH/G = (D/G ,S/G , R̂),

where D/G and S/G are the orbit spaces of Φ and Φ|S , respectively, and R̂ : D/G → S/G is the induced

map. Specifically, the map π : D → D/G , π(x) = [x], is given by sending x to the Φ-orbit containing x:

x ∼Φg (x) for all g ∈G . The map R̂ is defined by requiring that R̂([x]) = [R(x)]; it is well-defined because of

the commutativity of the diagram (3.22).
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We would like to give conditions on the hybrid action Φ so that DH/G is a hybrid manifold, i.e.,

such that we have a diagram

D/G � ı ⊃ S/G
R̂- D/G

in which D/G is a smooth manifold, S/G is an embedded submanifold and R̂ is a smooth map. In fact,

conditions for when these occur are well-known (cf. [4]).

Proposition 3.4. If Φ : G ×D → D is a free and proper hybrid action, then DH/G is a hybrid manifold.

Moreover, there is a submersion π : D → D/G such that the following diagram

D � ı ⊃ S
R - D

D/G

π

?
� ı ⊃ S/G

π|S
? R̂- D/G

π

?

commutes and π|S is a submersion.

Definition 3.8. An Ad?-equivariant momentum map J : D → g? is said to be a hybrid Ad?-equivariant

momentum map if the following diagram

g?

D � ı ⊃

J
-

S

J |S
6

R - D

J

�

(3.23)

commutes.

Definition 3.9. A hybrid Hamiltonian G-space is defined to be a tuple

(DH,ω,Φ, J)

such that (D,ω) is a symplectic manifold, Φ is a symplectic hybrid action, and J is a hybrid Ad∗-equivariant

momentum map.

3.4.3 Lifted group actions. For a hybrid mechanical system, H = (Q,H , h),

DH = T ?Q|{h(q)≥0}.

Therefore, it is natural to consider actions on T ?Q that are obtained by lifting an action on Q. Specifically,

for an action Ψ : G ×Q →Q, we obtain an action of G on T ?Q by cotangent lifts, i.e., we obtain an action

ΨT ?
: G ×T ?Q → T ?Q by defining

ΨT ?

(g , (q, p)) := T ?Ψg−1 (q, p) = (Ψg (q),Ψ?
g−1 (p)).

It is possible to give conditions on when this action is a hybrid action by considering the constraint func-

tion h, the potential energy V , and H .
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Definition 3.10. A simple hybrid mechanical system H = (Q,H , h) is said to be G-invariant if there is an

action Ψ of G on Q such that h, the potential energy V , and H are G-invariant:

h(Ψg (q)) = h(q), V (Ψg (q)) = V (q), H(ΨT ?

g (q, p)) = H(q, p),

for all g ∈ G and q ∈ Q; note that the last assumption says that H is G-invariant under the lifted action,

which holds iff

〈〈Ψ?
g−1 ( · ),Ψ?

g−1 ( · )〉〉Ψg (q) = 〈〈· , · 〉〉q , (3.24)

when coupled with the assumption on the G-invariance of the potential energy.

Proposition 3.5. If H = (Q,H , h) is G-invariant, then the lifted action ΨT ?
of G on DH is a hybrid action.

Proof. We need to show that for all g ∈G we have a commuting diagram

SH
RH- DH

SH

ΨT ?

g |SH

? RH- DH

ΨT ?

g

?

where RH is given in (3.9). Because of the special form of RH, this is equivalent to showing that the follow-

ing diagram commutes

T ?
q Q

Pq - T ?
q Q

T ?
Ψg (q)Q

Ψ?
g−1

? PΨg (q)- T ?
Ψg (q)Q

Ψ?
g−1

?

for all g ∈G and q ∈ h−1(0). First, note that by the G-invariance of h, Ψ?
g−1 (dhq ) = dhΨg (q). This, coupled

with our assumption on the invariance of the inner-product under the lifted action (3.24), implies that

Ψ?
g−1 ◦Pq (p) = Ψ?

g−1 (p)+Ψ?
g−1 (−(1+ e)

〈〈p, dhq〉〉q

||dhq ||2q
dhq )

= Ψ?
g−1 (p)− (1+ e)

〈〈p, dhq〉〉q

||dhq ||2q
Ψ?

g−1 (dhq )

= Ψ?
g−1 (p)− (1+ e)

〈〈p, dhq〉〉q

||dhq ||2q
dhΨg (q).

= Ψ?
g−1 (p)− (1+ e)

〈〈Ψ?
g−1 (p),Ψ?

g−1 (dhq )〉〉Ψg (q)

||Ψ?
g−1 (dhq )||2

Ψg (q)

dhΨg (q).

= Ψ?
g−1 (p)− (1+ e)

〈〈Ψ?
g−1 (p), dhΨg (q)〉〉Ψg (q)

||dhΨg (q)||2Ψg (q)

dhΨg (q).

= PΨg (q) ◦Ψ?
g−1 (p)

as desired.
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3.4.4 Momentum maps for HMS’s. For simple mechanical systems, there is an explicit definition of an

Ad?-equivariant momentum map JH. Let Ψ be the action of G on Q, and define a vector field on Q by

ξQ(q) = d

dt
Ψ(exp(tξ), q)

∣∣∣∣
t=0

∈ TqQ, (3.25)

for ξ ∈ TeG ∼= g. Using this, we can define JH, and prove that it is a hybrid Ad?-equivariant momentum

map under easily verifiable conditions.

Proposition 3.6. For H = (Q,H , h), if h is G-invariant, then JH : DH → g? defined by

〈JH(q, p),ξ〉 = 〈p,ξQ(q)〉,

is a hybrid Ad?-equivariant momentum map.

Proof. We are assuming that h−1(0) is a manifold. For q ∈ h−1(0), the first step is to show that ξQ(q) ∈
Tq h−1(0), but this follows from the assumption that h is G-invariant, i.e., h(Ψ(exp(tξ), q)) = h(q) = 0 for

all t . Therefore, for q ∈ h−1(0),

〈dhq ,ξQ(q)〉 = 0.

Now for (q, p) ∈ SH, (wherein it follows that h(q) = 0),

〈JH(RH(q, p)),ξ〉 = 〈p − (1+ e)
〈〈p, dhq〉〉q

||dhq ||2q
dhq ,ξQ(q)〉

= 〈p,ξQ(q)〉− (1+ e)
〈〈p, dhq〉〉q

||dhq ||2q
〈dhq ,ξQ(q)〉

= 〈JH(q, p),ξ〉.

This, coupled with the fact that JH is Ad?-equivariant (cf. [4]), yields the desired result.

Combining the results from Propositions 3.5 and 3.6, we have the following theorem that pro-

vides easily verifiable conditions on when a specific Hamiltonian G-space associated to a HMS is a hybrid

Hamiltonian G-space.

Theorem 3.3. If H = (Q,H , h) is G-invariant, then

(DH
H ,ω,ΨT ?

, JH)

is a hybrid Hamiltonian G-space.

Example 3.10. For the spherical pendulum mounted on the ground (Example 3.3 and Example 3.7), GP =
S1, which acts by rotations about the vertical axis, i.e., ΨP :S1 ×QP →QP is given by

ΨP(ψ, (θ,ϕ)) =
 θ

ϕ+ψ

 ,
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and the lifted action on DP is given by

ΨT ?

P (ψ, (θ,ϕ, pθ, pϕ)) =
 θ

ϕ+ψ

 ,

 pθ

pϕ

 ,

which is clearly a hybrid action by Proposition 3.5. Now for ξ ∈ gP
∼=R,

ξQP (θ,ϕ) =
 0

ξ

 ∈ T(θ,ϕ)QP

so the momentum map is given by

JP(θ,ϕ, pθ, pϕ) = pϕ,

which is a hybrid momentum map by Proposition 3.6. Finally, it follows from Theorem 3.3 that

(DHP
P ,ωcanonical,Ψ

T ?

P , JP)

is a hybrid Hamiltonian G-space.

3.4.b Simple Hybrid System Reduction

We use the classical reduction theorem (see Theorem 4.1) to prove the existence of a reduced

Hamiltonian hybrid system given a Hamiltonian hybrid system together with a hybrid Hamiltonian G-

space. Moreover, we are able to prove a relationship between the hybrid flows of these two systems—a

result that is very similar to the classical trajectory reduction theorem.

3.4.5 The reduced phase space. Let (D,ω,Φ, J) be a Hamiltonian G-space, and assume that µ ∈ g? is a

regular value of J . If

Gµ = {g ∈G : Ad?
g−1 (µ) =µ}

is the isotropy subgroup of G (see Paragraph 4.2.6 and Paragraph 4.2.7), then the action Φ of G on D

restricts to an action of Gµ on J−1(µ),

Φ : Gµ× J−1(µ) → J−1(µ)

because of the Ad?-equivariance of J . Moreover, if the action of Gµ on J−1(µ) is free and proper, then

Dµ = J−1(µ)/Gµ is a manifold, referred to as the reduced phase space, and there is a submersion πµ :

J−1(µ) → Dµ. Finally, the main theorem of [88] (see Theorem 4.1 for a formal statement of this theorem)

says that Dµ has a unique symplectic form ωµ with the property

Ω2(πµ)(ωµ) =Ω2(ıµ)(ω)

where ıµ : J−1(µ) → D is the inclusion and Ω2 is the 2-form functor (see Paragraph 4.1.3).
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3.4.6 Hybrid regular values. Let H = (D,S,R,X ) be a hybrid system. Suppose that µ is a regular value

of J : D → g?. We say that this is a hybrid regular value if it is also a regular value of J |S . This implies, when

coupled with the commuting diagram (3.23), that the following diagram

J−1(µ) �ı ⊃ J |−1
S (µ)

R|J |−1
S (µ)- J−1(µ)

D
?

∩

� ı ⊃ S
?

∩

R - D
?

∩

(3.26)

commutes, where J−1(µ) and J |−1
S (µ) are embedded submanifolds.

Theorem 3.4. Let (DH,ω,Φ, J) be a hybrid Hamiltonian G-space. Assume µ ∈ g? is a hybrid regular value of

a hybrid Ad?-equivariant momentum map J and that the action of Gµ on J−1(µ) is free, proper and hybrid.

Then

DH
µ = (Dµ,Sµ,Rµ)

:=
(

J−1(µ)/Gµ, J |−1
S (µ)/Gµ, R̂|J |−1

S (µ)

)
is a hybrid manifold.

Proof. We need to show that a hybrid action Φ of G on D restricts to a hybrid action of Gµ on J−1(µ), and

then the result follows from Proposition 3.4.

Because µ is a hybrid regular value, J |−1
S (µ) is a manifold that is clearly a submanifold of J−1(µ).

We are assuming that Φ is a hybrid action, so by the Ad?-equivariance of J , Φ|S restricts to an action of Gµ

on J |−1
S (µ):

Φ|S : Gµ× J |−1
S (µ) → J |−1

S (µ).

To see this, note that for x ∈ J |−1
S (µ), i.e., x ∈ S such that J(x) =µ, and for g ∈Gµ, Φg (x) ∈ S and

J(Φg (x)) = Ad?
g−1 (µ) =µ,

so Φg (x) ∈ J |−1
S (µ).

Therefore, to complete the proof we must show that R|J |−1
S (µ) is equivariant with respect to the

action of Gµ on J |−1
S (µ) and the action of Gµ on J−1(µ), i.e., we must show that the following diagram

J |−1
S (µ)

R|J |−1
S (µ)- J−1(µ)

J |−1
S (µ)

Φg |S
? R|J |−1

S (µ)- J−1(µ)

Φg

?

commutes for g ∈Gµ. This follows from the equivariance of R.
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3.4.7 The reduced hybrid phase space. The hybrid manifold introduced in the above theorem is re-

ferred to as the reduced hybrid phase space. To better understand this hybrid manifold, note that the

submersion πµ together with (3.23) and (3.26) yields the following commuting diagram

g?

D � ı ⊃

J

-

S

J |S

6

R - D

J

�

J−1(µ)
∪

6

� ı ⊃ J |−1
S (µ)

∪

6

R|J |−1
S (µ) - J−1(µ)

∪

6

Dµ = J−1(µ)/Gµ

πµ

?
� ı ⊃ Sµ = J |−1

S (µ)/Gµ

πµ|J |−1
S (µ)

? Rµ- Dµ = J−1(µ)/Gµ

πµ

?

(3.27)

where πµ|J |−1
S (µ) is also a submersion; this implies that Rµ is defined by requiring that the bottom right

square in this diagram commute. Note the similarity between this diagram and the one given in Proposi-

tion 3.2.

3.4.8 Reduced Hamiltonians. We refer the reader to Section 4.5 for the definition of G-invariant Hamil-

tonians and Hamiltonian systems. If H is a G-invariant Hamiltonian on D, then the reduced Hamiltonian

Hµ on Dµ is defined uniquely by requiring that

Hµ ◦πµ = H ◦ ıµ. (3.28)

If (D,ω,XH ) is a Hamiltonian system for the Hamiltonian H , then the classical reduction theorem of [88]

says that there is an associated reduced Hamiltonian system (Dµ,ωµ,XHµ ) for the Hamiltonian Hµ. More-

over, these two Hamiltonian Systems are related to each other in a way analogous to the relationship given

in Proposition 3.1. If c(t ) is the flow of XH with initial condition c(t0) ∈ J−1(µ), then πµ(c(t )) is a flow of

XHµ with initial condition πµ(c(t0)). This fact will be used to prove a result similar to Theorem 3.1, but first

we give conditions on when a reduced Hamiltonian hybrid system can be obtained.

Theorem 3.5. Given a Hamiltonian hybrid system H = (D,S,R,X ) w.r.t. a G-invariant Hamiltonian H,

and an associated hybrid Hamiltonian G-space satisfying the assumptions of Theorem 3.4, then there is a

reduced Hamiltonian hybrid system w.r.t. Hµ,

Hµ = (Dµ,Sµ,Rµ,Xµ),

where DH
µ = (Dµ,Sµ,Rµ) is defined as in Theorem 3.4, and Xµ is defined by d(Hµ) = ιXµωµ.
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Proof. Follows from Theorem 3.4, coupled with the classical reduction results.

Theorem 3.6. With H and Hµ as in Theorem 3.5, if εH(x0) is a hybrid flow of H with x0 ∈ J−1(µ), then there

is a corresponding hybrid flow εHµ of Hµ defined by

εHµ (πµ(x0)) = (Λ, I ,πµ(C )),

where πµ(C ) := {πµ(ci ) : ci ∈C }.

Proof. We need only show that

(iµ) cµi (τi+1) ∈ Sµ,

(iiµ) Rµ(cµi (τi+1)) = cµi+1(τi+1),

(iiiµ) ċµi (t ) = Xµ(cµi (t )),

where cµi (t ) = πµ(ci (t )). Using arguments completely analogous to those given in the proof of Theorem

3.1, the commutativity of (3.27) and the classical trajectory reduction theorem, it is easy to see that condi-

tions (iµ)-(iiiµ) are satisfied.

The hybrid reduction result given in Theorem 3.5 only provides, to quote [102], “soft” infor-

mation about the reduced Hamiltonian hybrid system in that it does not yield a method for explicitly

constructing this system. There are more concrete methods for computing the reduced system by using

methods from classical mechanics which allow for the explicit reduction of Hamiltonians (see [4, 86, 102]).

The end result is two methods for reducing a hybrid system associated to a HMS, described graphically

by:

H
association- HH

reduction- (HH)µ

H
reduction- Hµ

association- HHµ

It is possible to show that the processes of “association” and “reduction” commute, i.e., the order in which

they are taken is irrelevant as was the case with Routhian reduction (see Proposition 3.3). This can be

visualized in a commuting diagram of the form:

H
association - HH

H~µ

reduction

? association- (HH)µ =HHµ

reduction

?

This result yields a method for computing reduced hybrid systems obtained from HMS’s.

Example 3.11. Returning to the spherical pendulum mounted on the ground, we can explicitly calcu-

late the reduced hybrid system for this example. We first compute the associated reduced HMS Pµ =
(QPµ ,HPµ , hPµ ) and then associate to the system a simple hybrid system using the techniques outlined in
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Figure 3.6: Reconstruction of the reduced spherical pendulum: position of the mass and angular velocities
over time.

Section 3.2. The continuous portion of the reduction follows from [86]. In this example, T ?(QP/GP) is

identified with T ?(S1/Z2), i.e., QPµ = S1/Z2. The reduced Hamiltonian HPµ : T ?(QPµ ) = T ?(S1/Z2) → R is

given by

HPµ (θ, pθ) = 1

2

p2
θ

mR2 +mg R cos(θ)+ 1

2

µ2

mR2 sin2(θ)
.

Finally, we have hPµ (θ) = cos(θ).

The hybrid manifold for the reduced spherical pendulum D
HPµ

Pµ
= (DPµ ,SPµ ,RPµ ) is given by

DPµ = {(θ, pθ) ∈ T ?(QPµ ) : cos(θ) ≥ 0},

SPµ = {(θ, pθ) ∈ T ?(QPµ ) : cos(θ) = 0 and pθ ≥ 0},

and

RPµ (θ, pθ) = (θ,−epθ).

Finally, the vector field is given by

XPµ (θ, pθ) =
(

pθ
mR2 , mg R sin(θ)+ µ2 cos(θ)

mR2 sin3(θ)

)
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and HPµ = (DPµ ,SPµ ,RPµ ,XPµ ). It can be verified by direct inspection that in fact this hybrid system is

the reduced hybrid system associated to HP as given in Theorem 3.5 as it makes the diagram in (3.27)

commute.

Note that in this example it is easy to reconstruct the trajectories of the full-order pendulum

from the reduced pendulum through integration. A trajectory of the full-order pendulum mounted on

the ground, as reconstructed from the reduced system, can be found in Figure 3.6; here e = .95, R = 1 and

m = 1. As in the previous examples, both the full-order pendulum and the reduced pendulum are Zeno

with these parameters. Section 5.5 of Chapter 5 discusses how to extend the hybrid flow of this system

past the Zeno point.

3.5 Bipedal Robotic Walking

The purpose of this section is to apply methods from geometric mechanics to the analysis and

control of bipedal robotic walkers. We begin by introducing a generalization of Routhian reduction, func-

tional Routhian Reduction, which allows for the conserved quantities to be functions of the cyclic vari-

ables rather than constants. Since bipedal robotic walkers are naturally modeled as hybrid systems, which

are inherently nonsmooth, in order to apply this framework to these systems it is necessary to first extend

functional Routhian reduction to a hybrid setting. We apply this extension, along with potential shaping

and controlled symmetries, to derive a feedback control law that provably results in walking gaits on flat

ground for a three-dimensional bipedal walker given walking gaits in two-dimensions.

3.5.a Controlled Lagrangians

In order to discuss how to control bipedal walkers, we must discuss how to model them as con-

trol systems. So far, we have only introduced “passive” Lagrangian models; we now introduce their “con-

trolled” analogues.

3.5.1 Controlled Lagrangians. Controlled Lagrangians will now be of interest. As in Paragraph 3.1.1,

we begin with a Lagrangian L : TQ →R given in coordinates7 by

L(q, q̇) = 1

2
q̇T M(q)q̇ −V (q). (3.29)

The controlled Euler-Lagrange equations yield the equations of motion:

M(q)q̈ +C (q, q̇)q̇ +N(q) = Bu,

where we assume that B is an invertible matrix. The result is a control system of the form:

(q̇, q̈) = XL(q, q̇, u)

= (
q̇,M(q)−1(−C (q, q̇)q̇ −N(q)+Bu)

)
.

7In this section, we will again only work in coordinates.
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In the future, it will be clear from context whether, for a Lagrangian L, we are dealing with a corresponding

vector field (q̇, q̈) = XL(q, q̇) (as given in (3.4)) or a control system (q̇, q̈) = XL(q, q̇, u).

If H = (Dh ,Sh ,R,XL) is a hybrid system w.r.t. a hybrid Lagrangian L = (Q,L, h) in which XL is a

control system we call H a controlled hybrid system or a hybrid control system.

3.5.2 Impact equations. In Paragraph 3.2.2 it was shown how to associate to a unilateral constraint

function a domain and guard. This motivated the definition of a Lagrangian hybrid system w.r.t. a hybrid

lagrangian (Definition 3.4). For such a hybrid system, H = (Dh ,Sh ,R,XL), we have still yet to specify the

reset map. In order to determine this map in the context of bipedal robots, we will utilize an additional

constraint function.

A kinematic constraint function is a smooth function Υ : Q → Rυ (υ ≥ 1); this function usually

describes the position of the end-effector of a kinematic chain, e.g., in the case of bipedal robots, this is

the position of the swing foot.

For a unilateral constraint function h : Q → R and a kinematic constraint function Υ : Q → Rυ,

we define a corresponding map:

RΥ : Sh → Dh

where RΥ(q, q̇) = (q,PΥ(q̇)), with

PΥ(q̇) = q̇ −M(q)−1dΥT
q (dΥq M(q)−1dΥT

q )−1dΥq q̇. (3.30)

This reset map models a perfectly plastic impact without slipping and was derived using the set-up in [55]

together with block-diagonal matrix inversion.

Note that for a bipedal walker, to compute such a map one must use a coordinate system in-

cluding the position of the stance foot. In reality, after computing the reset map using this full-order

coordinate system, one can assume that the foot is located at origin. This allows for the construction of

a reduced coordinate system. In the reduced system, the reset map is obtained from the one determined

in the full-order coordinate system, although it will no longer be constant for the configuration variables.

For further details, we refer the reader to [55].

3.5.b Functional Routhian Reduction

We now introduce a variation of classical Routhian reduction termed functional Routhian reduc-

tion. The main differences between these two types of reduction are that we allow the original Lagrangian

to have a non-cyclic term in the potential energy, and we allow the conserved quantities to be functions

(of the cyclic variable) rather than constants. The author is unaware of similar procedures in the literature.

Notation 3.1. In the rest of this section, the notation utilized in Section 3.3 is in force.
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3.5.3 Almost-cyclic Lagrangians. We will be interested (in the context of bipedal walking) in Lagrangians

of a very special form. We say that a Lagrangian Lλ : TQµ×TG→R is almost-cyclic if it has the form:

Lλ(θ, θ̇,ϕ,ϕ̇) = 1

2

 θ̇

ϕ̇

T  Mθ(θ) 0

0 Mϕ(θ)

 θ̇

ϕ̇

−Vλ(θ,ϕ), (3.31)

where

Vλ(θ,ϕ) = Ṽ (θ)− 1

2
λ(ϕ)T Mϕ(θ)−1λ(ϕ)

for some function λ :G→Rk such that (
∂λ

∂ϕ

)T

= ∂λ

∂ϕ
. (3.32)

HereG is the abelian Lie group given in (3.10), Mθ(θ) ∈Rn×n and Mϕ(θ) ∈Rk×k are both symmetric positive

definite matrices. The most important difference between a cyclic Lagrangian (as introduced in Paragraph

3.3.1) and an almost-cyclic Lagrangian is the presence of a non-cyclic term in the potential energy.

3.5.4 Functional momentum maps. In the framework we are considering here, the momentum map

J : TQ → g? ∼=Rk , takes the form

J(θ, θ̇,ϕ,ϕ̇) = ∂Lλ
∂ϕ̇

(θ, θ̇,ϕ,ϕ̇) = Mϕ(θ)ϕ̇.

As we have seen in (3.13), one typically sets the momentum map equal to a constant µ ∈ Rk ; this defines

the conserved quantities of the system. In our framework, we will breach this convention and set J equal

to a function: this motivates the name functional Routhian reduction.

3.5.5 Functional Routhians. For an almost-cyclic Lagrangian Lλ as given in (3.31), define the corre-

sponding functional Routhian L̃ : TQµ →R by

L̃(θ, θ̇) = [
Lλ(θ, θ̇,ϕ,ϕ̇)−λ(ϕ)T ϕ̇

]∣∣
J(θ,θ̇,ϕ,ϕ̇)=λ(ϕ)

Because J(θ, θ̇,ϕ,ϕ̇) =λ(ϕ) implies that

ϕ̇= Mϕ(θ)−1λ(ϕ), (3.33)

and so by direct calculation the functional Routhian is given by

L̃(θ, θ̇) = 1

2
θ̇T Mθ(θ)θ̇− Ṽ (θ).

That is, any Lagrangian of the form given in (3.29) is the functional Routhian of an almost-cyclic La-

grangian.

The goal is to relate the flows of the Lagrangian vector field XL̃ to the flows of the Lagrangian vec-

tor field XLλ and vice versa in a way analogous to the classical Routhian reduction result given in Proposi-

tion 3.1. This relationship is made clear in the following proposition.
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Proposition 3.7. Let Lλ be an almost-cyclic Lagrangian, and L̃ the corresponding functional Routhian.

Then (θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t )) is a flow of the vector field XLλ on [t0, tF ] with

ϕ̇(t0) = Mϕ(θ(t0))−1λ(ϕ(t0)),

if and only if (θ(t ), θ̇(t )) is a flow of the vector field XL̃ on [t0, tF ] and (ϕ(t ),ϕ̇(t )) satisfies:

ϕ̇(t ) = Mϕ(θ(t ))−1λ(ϕ(t )).

Proof. We begin by noting that

Lλ(θ, θ̇,ϕ,ϕ̇) = 1

2
θ̇T Mθ(θ)θ̇+ 1

2
ϕ̇T Mϕ(θ)ϕ̇−Vλ(θ,ϕ)

= 1

2
θ̇T Mθ(θ)θ̇+ 1

2
ϕ̇T Mϕ(θ)ϕ̇− Ṽ (θ)+ 1

2
λ(ϕ)T Mϕ(θ)−1λ(ϕ)

= L̃(θ, θ̇)+ 1

2
ϕ̇T Mϕ(θ)ϕ̇+ 1

2
λ(ϕ)T Mϕ(θ)−1λ(ϕ).

Let

Rem(θ,ϕ,ϕ̇) := 1

2
ϕ̇T Mϕ(θ)ϕ̇+ 1

2
λ(ϕ)T Mϕ(θ)−1λ(ϕ),

in which case

Lλ(θ, θ̇,ϕ,ϕ̇) = L̃(θ, θ̇)+Rem(θ,ϕ,ϕ̇).

With this notation, the Euler-Lagrange equations for Lλ become:

d

dt

∂Lλ
∂θ̇

− ∂Lλ
∂θ

= d

dt

∂L̃

∂θ̇
− ∂L̃

∂θ
− ∂Rem

∂θ

d

dt

∂Lλ
∂ϕ̇

− ∂Lλ
∂ϕ

= d

dt

∂Rem

∂ϕ̇
− ∂Rem

∂ϕ

By direct calculation, we have that

∂Rem

∂θ
= 1

2
ϕ̇T ∂

∂θ

(
Mϕ(θ)

)
ϕ̇+ 1

2
λ(ϕ)T ∂

∂θ

(
Mϕ(θ)−1)λ(ϕ)

= 1

2
ϕ̇T ∂

∂θ

(
Mϕ(θ)

)
ϕ̇− 1

2
λ(ϕ)T Mϕ(θ)−1 ∂

∂θ

(
Mϕ(θ)

)
Mϕ(θ)−1λ(ϕ) (3.34)

d

dt

∂Rem

∂ϕ̇
= d

dt

(
Mϕ(θ)ϕ̇

)
= d

dt

(
Mϕ(θ)

)
ϕ̇+Mϕ(θ)ϕ̈

∂Rem

∂ϕ
= ∂

∂ϕ

(
1

2
λ(ϕ)T Mϕ(θ)−1λ(ϕ)

)
= 1

2

∂

∂ϕ

(
λ(ϕ)

)T Mϕ(θ)−1λ(ϕ)T + 1

2
λ(ϕ)Mϕ(θ)−1 ∂

∂ϕ

(
λ(ϕ)

)
= ∂

∂ϕ

(
λ(ϕ)

)
Mϕ(θ)−1λ(ϕ).

Therefore,

d

dt

∂Rem

∂ϕ̇
− ∂Rem

∂ϕ
= d

dt

(
Mϕ(θ)

)
ϕ̇+Mϕ(θ)ϕ̈− ∂

∂ϕ

(
λ(ϕ)

)
Mϕ(θ)−1λ(ϕ). (3.35)
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Now, in the case when ϕ̇= Mϕ(θ)−1λ(ϕ), we have that:

ϕ̈ = d

dt

(
Mϕ(θ)−1)λ(ϕ)+Mϕ(θ)−1 d

dt

(
λ(ϕ)

)
= −Mϕ(θ)−1 d

dt

(
Mϕ(θ)

)
Mϕ(θ)−1λ(ϕ)+Mϕ(θ)−1 ∂

∂ϕ

(
λ(ϕ)

)T
ϕ̇

= Mϕ(θ)−1
(
∂

∂ϕ

(
λ(ϕ)

)T − d

dt

(
Mϕ(θ)

))
Mϕ(θ)−1λ(ϕ)

= Mϕ(θ)−1
(
∂

∂ϕ

(
λ(ϕ)

)− d

dt

(
Mϕ(θ)

))
Mϕ(θ)−1λ(ϕ), (3.36)

where the last equality follows from (3.32), i.e., we assumed that λ was a function such that:

∂

∂ϕ

(
λ(ϕ)

)T = ∂

∂ϕ

(
λ(ϕ)

)
.

From (3.34), (3.35) and (3.36) we conclude that:

∂Rem

∂θ
(θ,ϕ,Mϕ(θ)−1λ(ϕ)) = 0 (3.37)

d

dt

∂Rem

∂ϕ̇
(θ,ϕ,Mϕ(θ)−1λ(ϕ))− ∂Rem

∂ϕ
(θ,ϕ,Mϕ(θ)−1λ(ϕ)) = 0 (3.38)

Using this, we establish necessity and sufficiency.

(⇒) Let (θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t )) is a flow of the vector field XLλ on [t0, tF ] with

ϕ̇(t0) = Mϕ(θ(t0))−1λ(ϕ(t0)),

and let (θ(t ), θ̇(t )) be a flow of the vector field XL̃ on [t0, tF ] with θ(t0) = θ(t0) and θ̇(t0) = θ̇(t0). In addition,

let ϕ(t ) be a curve satisfying

ϕ(t0) =ϕ(t0), ϕ̇(t ) = Mϕ(θ(t ))−1λ(ϕ(t )).

By (3.37) and (3.38) it follows that:

d

dt

∂Lλ
∂θ̇

(θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t ))− ∂Lλ
∂θ

(θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t )) = 0

d

dt

∂Lλ
∂ϕ̇

(θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t ))− ∂Lλ
∂ϕ

(θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t )) = 0.

Therefore, (θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t )) is a flow of the vector field XLλ on [t0, tF ]. Moreover, since

(θ(t0), θ̇(t0),ϕ(t0),ϕ̇(t0)) = (θ(t0), θ̇(t0),ϕ(t0),ϕ̇(t0))

and by the uniqueness of solutions of XLλ (to flows with the same initial condition must be the same), it

follows that

(θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t )) = (θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t ))

or (θ(t ), θ̇(t )) is a flow of the vector field XL̃ and (ϕ(t ),ϕ̇(t )) satisfies:

ϕ̇(t ) = Mϕ(θ(t ))−1λ(ϕ(t )).
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(⇐) Let (θ(t ), θ̇(t )) be a flow of the vector field XL̃ on [t0, tF ] and (ϕ(t ),ϕ̇(t )) a pair satisfying

ϕ̇(t ) = Mϕ(θ(t ))−1λ(ϕ(t )).

We need only show that

d

dt

∂Lλ
∂θ̇

(θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t ))− ∂Lλ
∂θ

(θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t )) = 0

d

dt

∂Lλ
∂ϕ̇

(θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t ))− ∂Lλ
∂ϕ

(θ(t ), θ̇(t ),ϕ(t ),ϕ̇(t )) = 0.

This follows from (3.37) and (3.38) together with the fact that, since (θ(t ), θ̇(t )) is a flow of XL̃,

d

dt

∂L̃

∂θ̇
(θ(t ), θ̇(t ))− ∂L̃

∂θ
(θ(t ), θ̇(t )) = 0

Note that Proposition 3.7 has some interesting implications.

¦ It implies that flows of XLλ can be determined solving 2n+k ordinary differential equations rather

than 2(n+k) ordinary differential equations; this has important ramifications in the context of nu-

merical integration (and errors thereof).

¦ It implies that the (θ(t ), θ̇(t )) component of flows of XLλ with certain initial conditions can be effec-

tively decoupled from the (ϕ(t ),ϕ̇(t )) component of the solution; this will have important ramifica-

tions in the context of bipedal walking.

We now have the necessary background material needed to introduce our framework for hy-

brid functional Routhian reduction. We will first define the notion of an almost-cyclic Lagrangian hybrid

system and then introduce the hybrid functional Routhian reduction theorem which is analogous to The-

orem 3.1. It is important to note that this definition is not the most general one, but provides sufficient

generality for the systems under consideration, i.e., bipedal walkers.

Definition 3.11. If Hλ = (Dh ,Sh ,R,XLλ ) is a Lagrangian hybrid system with respect to the hybrid La-

grangian Lλ = (Q,Lλ, h), then Hλ is almost-cyclic if the following conditions hold:

¦ Q =Qµ×G

¦ h : Qµ×G→R is cyclic,
∂h

∂ϕ
= 0,

and so can be viewed as a function hµ : Qµ →R.

¦ Lλ : TQµ×TG→R is almost-cyclic,

¦ πϕ(R(θ, θ̇,ϕ,ϕ̇)) =ϕ, where πϕ(R(θ, θ̇,ϕ,ϕ̇)) is the ϕ-component of R(θ, θ̇,ϕ,ϕ̇),
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¦ The following diagram commutes:

Rk

(I)

Sh
R -

J |Sh

-

Dh

J |Dh

�

(II)

Shµ

π

? R̃ - Dhµ

π

?

(3.39)

for some map R̃ : Shµ → Dhµ .

3.5.6 Hybrid functional Routhian. If Hλ = (Dh ,Sh ,R,XLλ ) is an almost-cyclic Lagrangian hybrid sys-

tem, we can associate to this hybrid system a reduced hybrid system, termed a functional Routhian hybrid

system, denoted by H̃ and defined by:

H̃ := (Dhµ ,Shµ , R̃,XL̃).

The following theorem quantifies the relationship between Hλ and H̃.

Theorem 3.7. Let Hλ be an almost-cyclic Lagrangian hybrid system, and H̃ the associated functional Routhian

hybrid system. Then

εHλ = (Λ, I , {(θi , θ̇i ,ϕi ,ϕ̇i )}i∈Λ)

is a hybrid flow of Hλ with

ϕ̇0(τ0) = Mϕ(θ0(τ0))−1λ(ϕ0(τ0)),

if and only if

εH̃ = (Λ, I , {θi , θ̇i }i∈Λ)

is a hybrid flow of H̃ and {(ϕi ,ϕ̇i )}i∈Λ satisfies:

ϕ̇i (t ) = Mϕ(θi (t ))−1λ(ϕi (t )), ϕi+1(τi+1) =ϕi (τi+1).

Proof. (⇒) By Proposition 3.7, we need only show that the following conditions hold:

(i) (θi (τi+1), θ̇i (τi+1)) ∈ Shµ ,

(ii) R̃(θi (τi+1), θ̇i (τi+1)) = (θi+1(τi+1), θ̇i+1(τi+1)),

(iii) ϕ̇0(τ0) = Mϕ(θ0(τ0))−1λ(ϕ0(τ0)) ⇒ ϕ̇i (τi ) = Mϕ(θi (τi ))−1λ(ϕi (τi )).

Condition (i) follows from the cyclicity of h which implies that the codomain of π is Shµ (see the proof of

Proposition 3.2). For

(θi (τi+1), θ̇i (τi+1),ϕi (τi+1),ϕ̇i (τi+1)) ∈ Sh
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it follows by the commutativity of (3.39), and specifically (II), that

R̃(θi (τi+1), θ̇i (τi+1)) = R̃(π(θi (τi+1), θ̇i (τi+1),ϕi (τi+1),ϕ̇i (τi+1)))

= π(R(θi (τi+1), θ̇i (τi+1),ϕi (τi+1),ϕ̇i (τi+1)))

= π(θi+1(τi+1), θ̇i+1(τi+1),ϕi+1(τi+1),ϕ̇i+1(τi+1))

= (θi+1(τi+1), θ̇i+1(τi+1)).

Therefore, condition (ii) holds. Finally, we show condition (iii) through induction. It holds by assumption

for i = 0, therefore, assume that

ϕ̇i (τi ) = Mϕ(θi (τi ))−1λ(ϕi (τi )).

Then, Proposition 3.7 implies that

ϕ̇i (t ) = Mϕ(θi (t ))−1λ(ϕi (t )).

for all t ∈ Ii . Specifically,

ϕ̇i (τi+1) = Mϕ(θi (τi+1))−1λ(ϕi (τi+1)),

or

J(θi (τi+1), θ̇i (τi+1),ϕi (τi+1),ϕ̇i (τi+1)) =λ(ϕi (τi+1)).

By the commutativity of (3.39), and specifically (I), it follows that

J(θi+1(τi+1), θ̇i+1(τi+1),ϕi+1(τi+1),ϕ̇i+1(τi+1)) =λ(ϕi (τi+1)).

To complete the induction step, we note that:

πϕ(R(θi (τi+1), θ̇i (τi+1),ϕi (τi+1),ϕ̇i (τi+1))) = πϕ(θi+1(τi+1), θ̇i+1(τi+1),ϕi+1(τi+1),ϕ̇i+1(τi+1))

= ϕi+1(τi+1).

Therefore, by the assumption that πϕ(R(θ, θ̇,ϕ,ϕ̇)) =ϕ,

λ(ϕi+1(τi+1)) =λ(πϕ(R(θi (τi+1), θ̇i (τi+1),ϕi (τi+1),ϕ̇i (τi+1)))) =λ(ϕi (τi+1)),

and so

J(θi+1(τi+1), θ̇i+1(τi+1),ϕi+1(τi+1),ϕ̇i+1(τi+1)) =λ(ϕi+1(τi+1)),

or

ϕ̇i+1(τi+1) = Mϕ(θi+1(τi+1))−1λ(ϕi+1(τi+1)),

as desired.

(⇐) By Proposition 3.7, we need only show that the following conditions hold:

(i) (θi (τi+1), θ̇i (τi+1),ϕi (τi+1),ϕ̇i (τi+1)) ∈ Sh ,

(ii) R(θi (τi+1), θ̇i (τi+1),ϕi (τi+1),ϕ̇i (τi+1)) = (θi+1(τi+1), θ̇i+1(τi+1),ϕi+1(τi+1),ϕ̇i+1(τi+1)),
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where ϕi and ϕ̇i satisfy:

ϕ̇i (t ) = Mϕ(θi (t ))−1λ(ϕi (t )).

for all t ∈ Ii . Condition (i) follows from the cyclicity of h. Since by assumption

πϕ(R(θ, θ̇,ϕ,ϕ̇)) =ϕ,

and by the commutativity of (3.39), it follows that

Mϕ(θ)ϕ̇= Mϕ(πθ(R̃(θ, θ̇)))πϕ̇(R(θ, θ̇,ϕ,ϕ̇))

for all (θ, θ̇,ϕ,ϕ̇) ∈ Sh . By the commutativity of the same diagram we have that:

ϕ̇i+1(τi+1) = Mϕ(θi+1(τi+1))−1λ(ϕi+1(τi+1))

= Mϕ(πθ(R̃(θi (τi+1), θ̇i (τi+1))))−1λ(ϕi+1(τi+1))

= Mϕ(πθ(R̃(θi (τi+1), θ̇i (τi+1))))−1λ(ϕi (τi+1))

= Mϕ(πθ(R̃(θi (τi+1), θ̇i (τi+1))))−1Mϕ(θi (τi+1))ϕ̇i (τi+1)

= πϕ̇(R(θi (τi+1), θ̇i (τi+1),ϕi (τi+1),ϕ̇i (τi+1)).

Thus we have shown that condition (ii) holds.

3.5.c 2D Bipedal Walkers

We now turn our attention toward the standard model of a two-dimensional bipedal robotic

walker walking down a slope; walkers of this form have been well-studied by [106], [90] and [54], to name

a few. We then use controlled symmetries to shape the potential energy of the Lagrangian describing this

model so that it can walk stably on flat ground. The result is two important hybrid systems; they will be

used to construct a control law for a three-dimensional walker that results in a walking gait on flat ground.

3.5.7 2D biped model. We begin by introducing a model describing a controlled bipedal robot walking

in two-dimensions, walking down a slope of γ degrees; see Figure 3.7. That is, we explicitly construct the

controlled hybrid system

H
γ

2D = (Dγ

2D,Sγ2D,R2D,X2D)

which describes this robotic system.

The configuration space for the 2D biped is Q2D =T2, the 2-torus, and the Lagrangian describing

this system is given by:

L2D(θ, θ̇) = 1

2
θ̇T M2D(θ)θ̇−V2D(θ),

where θ= (θns,θs)T with M2D(θ) and V2D(θ) given in Table 3.1.

Using the controlled Euler-Lagrange equations, the dynamics for the walker are given by

M2D(θ)θ̈+C2D(θ, θ̇)θ̇+N2D(θ) = B2Du.
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l = a+ b
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−θns

θ
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Figure 3.7: Two-dimensional bipedal robot.

These equations yield the control system:

(θ̇, θ̈) = X2D(θ, θ̇, u) := XL2D (θ, θ̇, u).

We construct Dγ

2D and Sγ2D by using the unilateral constraint function

hγ

2D(θ) = cos(θs)−cos(θns)+ (sin(θs)− sin(θns)) tan(γ),

which gives the height of the foot of the walker above the slope with normalized unit leg length.

Finally, the reset map R2D is given by

R2D(θ, θ̇) = (
T2Dθ,P2D(θ)θ̇

)
,

where T2D and P2D(θ) are given in Table 3.1. Note that this reset map was computed using (3.30) coupled

with the condition that the stance foot is fixed (see [55] for more details).

Setting the control u = 0 yields the standard model of a 2D passive bipedal robot walking down

a slope. For such a model, it has been well-established (for example, in [54]) that for certain γ, H
γ

2D has a

walking gait. For the rest of the paper we pick, once and for all, such a γ.

3.5.8 Controlled symmetries. Controlled symmetries were introduced in [106] and later in [107] in

order to shape the potential energy of bipedal robotic walkers to allow for stable walking on flat ground

107



Simple Hybrid Reduction & Bipedal Robotic Walking

Additional equations for H2D:

M2D(θ) =
 l2m

4 − l2m cos(θs−θns)
2

− l2m cos(θs−θns)
2

l2m
4 + l2(m +M)


V2D(θ) = 1

2
g l((3m +2M)cos(θs)−m cos(θns))

B2D =
 −1 0

1 1



T2D =
 0 1

1 0


P2D(θ) = 1

−3m −4M +2m cos(2(θs −θns)) 2m cos(θns −θs) m −4(m +M)cos(2(θns −θs))

m −2(m +2M)cos(θns −θs)


Additional equations for H3D:

m3D(θ) = 1

8
(l2(6m +4M)+ l2(m cos(2θns)

−8m cos(θns)cos(θs)+ (5m +4M)cos(2θs))

V3D(θ,ϕ) = V2D(θ)cos(ϕ)

p3D(θ) = −m cos(2θns)+8(m +M)cos(θns)cos(θs)−m(2+cos(2θs))

6m +4M + (5m +4M)cos(2θns)−8m cos(θns)cos(θs)+m cos(2θs)

Table 3.1: Additional equations for H2D and H3D.

based on stable walking down a slope. We will briefly apply the results of this work to derive a feedback

control law that yields a hybrid system, Hs
2D, with stable walking gaits on flat ground.

The main idea of [107] is that inherent symmetries in H
γ

2D can be used to “rotate the world” (via

a group action) to allow for walking on flat ground. Specifically, we have a group action Φ :S1×Q2D →Q2D

denoted by:

Φ(γ,θ) :=
 θns −γ

θs −γ

 ,

for γ ∈S1. Using this, define the following feedback control law:

u = Kγ

2D(θ) = B−1
2D

∂

∂θ

(
V2D(θ)−V2D(Φ(γ,θ))

)
.
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Applying this control law to the control system (q̇, q̈) = X2D(θ, θ̇, u) yields the dynamical system:

(θ̇, θ̈) = Xγ

2D(θ, θ̇) := X2D(θ, θ̇,Kγ

2D(θ))

which is just the vector field associated to the Lagrangian

Lγ2D(θ, θ̇) = 1

2
θ̇T M2D(θ)θ̇−V γ

2D(θ),

where V γ

2D(θ) := V2D(Φ(γ,θ)). That is, Xγ

2D = XL
γ

2D
.

Now define, for some γ that results in stable passive walking for H
γ

2D,

Hs
2D := (D0

2D,S0
2D,R2D,Xγ

2D),

which is a Lagrangian hybrid system. In particular, it is related to H
γ

2D via the main result of [107] as

follows:

Theorem 3.8. Let

εH
γ

2D = (Λ, I , {(θi , θ̇i )}i∈Λ)

be a hybrid flow of H
γ

2D (with u = 0), then

εH
s
2D = (Λ, I , {(Φ(γ,θi ), θ̇i )}i∈Λ)

is a hybrid flow of Hs
2D.

Theorem 3.8 implies that if H
γ

2D walks (stably) on a slope, then Hs
2D walks (stably) on flat ground.

3.5.d Functional Routhian Reduction Applied to 3D Bipedal Walkers

In this section we construct a control law that results in stable walking for a simple model of

a three-dimensional bipedal robotic walker. In order to achieve this goal, we shape the potential energy

of this model via feedback control so that when hybrid functional Routhian reduction is carried out, the

result is the stable 2D walker introduced in the previous section. We utilize Theorem 3.7 to demonstrate

that this implies that the 3D walker has a walking gait on flat ground (in three dimensions).

3.5.9 3D biped model. We now introduce the model describing a controlled bipedal robot walking in

three-dimensions on flat ground, i.e., we will explicitly construct the controlled hybrid system describing

this system:

H3D = (D3D,S3D,R3D,X3D).

The configuration space for the 3D biped is Q3D = T2 ×S and the Lagrangian describing this

system is given by:

L3D(θ, θ̇,ϕ,ϕ̇) = 1

2

 θ̇

ϕ̇

T  M2D(θ) 0

0 m3D(θ)

 θ̇

ϕ̇

−V3D(θ,ϕ), (3.40)
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Figure 3.8: Three-dimensional bipedal robot.

where m3D(θ) and V3D(θ,ϕ) are given in the Table 3.1. Note that, referring to the notation introduced in

(3.31), Mθ(θ) = M2D(θ) and Mϕ(θ) = m3D(θ). Also note that L3D is nearly cyclic; it is only the potential

energy that prevents its cyclicity. This will motivate the use of a control law that shapes this potential

energy.

Using the controlled Euler-Lagrange equations, the dynamics for the walker are given by

M3D(q)q̈ +C3D(q, q̇)q̇ +N3D(q) = B3Du

with q = (θ,ϕ) and

B3D =
 B2D 0

0 1

 .

These equations yield the control system:

(q̇, q̈) = X3D(q, q̇, u) := XL3D (q, q̇, u).

We construct D3D and S3D by utilizing the unilateral constraint function

h3D(θ,ϕ) = h0
2D(θ) = cos(θs)−cos(θns).

This function gives the normalized height of the foot of the walker above the ground with the implicit

assumption that ϕ ∈ (−π/2,π/2) (which allows us to disregard the scaling factor cos(ϕ) that would have

been present). The result is that h3D is cyclic.
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Finally, the reset map R3D is given by

R3D(θ, θ̇,ϕ,ϕ̇) = (
T2Dθ,P2D(θ)θ̇,ϕ, p3D(θ)ϕ̇

)
where p3D(θ) is given in Table 3.1. Note that this map was again computed using (3.30) coupled with the

condition that the stance foot is fixed.

3.5.10 Control law construction. We now proceed to construct a feedback control law for H3D that

makes this hybrid system an almost-cyclic Lagrangian hybrid system, Hα
3D. We will then demonstrate,

using Theorem 3.7, that Hα
3D has a walking gait by relating it to Hs

2D.

Define the feedback control law parameterized by α ∈R:

u = Kα
3D(q) = B−1

3D
∂

∂q

(
V3D(q)−V γ

2D(θ)+ 1

2

α2ϕ2

m3D(θ)

)
.

Applying this control law to the control system (q̇, q̈) = X3D(q, q̇, u) yields the dynamical system:

(q̇, q̈) = Xα
3D(q, q̇) := X3D(q, q̇,Kα

3D(q)),

which is just the vector field associated to the almost-cyclic Lagrangian

Lα3D(θ, θ̇,ϕ,ϕ̇) = 1

2

 θ̇

ϕ̇

T  M2D(θ) 0

0 m3D(θ)

 θ̇

ϕ̇

−Vα
3D(θ,ϕ), (3.41)

where

Vα
3D(θ,ϕ) = V γ

2D(θ)− 1

2

α2ϕ2

m3D(θ)
.

That is, Xα
3D = XLα3D

.

We now define

Hα
3D := (D3D,S3D,R3D,Xα

3D),

which is a Lagrangian hybrid system.

3.5.11 Applying hybrid functional Routhian reduction. Using the methods outlined in Subsection

3.5.b, there is a momentum map J3D : TQ3D →R given by

J3D(θ, θ̇,ϕ,ϕ̇) = m3D(θ)ϕ̇,

and so setting J3D(θ, θ̇,ϕ,ϕ̇) =λ(ϕ) =−αϕ implies that

ϕ̇=− αϕ

m3D(θ)
.

The importance of Hα
3D is illustrated by the following theorem.
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Theorem 3.9. Hα
3D is an almost-cyclic Lagrangian hybrid system. Moreover, the following diagram com-

mutes:

Rk

S3D
R3D -

J3D|S3D

-

D3D

J3D|D3D

�

S2D

π

? R2D - D2D

π

?

Therefore, Hs
2D is the functional Routhian hybrid system associated with Hα

3D.

Proof. By the construction of Hα
3D, one need only show that:

m3D(θ) = m3D(T2Dθ)p3D(θ),

which follows by direct calculation.

This result allows us to prove—using Theorem 3.7—that the control law used to construct Hα
3D

in fact results in walking in three-dimensions when α> 0.

Theorem 3.10.

εH
α
3D = (Λ, I , {(θi , θ̇i ,ϕi ,ϕ̇i )}i∈Λ)

is a hybrid flow of Hα
3D with

ϕ̇0(τ0) =− αϕ0(τ0)

m3D(θ0(τ0))
, (3.42)

if and only if

εH
s
2D = (Λ, I , {θi , θ̇i }i∈Λ)

is a hybrid flow of Hs
2D and {(ϕi ,ϕ̇i )}i∈Λ satisfies:

ϕ̇i (t ) =− αϕi (t )

m3D(θi (t ))
, ϕi+1(τi+1) =ϕi (τi+1). (3.43)

Proof. Follows from Theorem 3.7 and Theorem 3.9.

3.5.12 Simulation results. We conclude this Chapter by discussing the implications of Theorem 3.10.

Moreover, we demonstrate the usefulness of this result by showing through simulation that it does result

in walking the three-dimensions. To better visualize the following discussion, refer to Figure 3.11 for an

initial configuration of the robot and Figure 3.12 for a walking sequence of the robot.

Suppose that εH
α
3D = (Λ, I , {(θi , θ̇i ,ϕi ,ϕ̇i )}i∈Λ) is a hybrid flow of Hα

3D. If this hybrid flow has an

initial condition satisfying (3.42) with α> 0 and the corresponding hybrid flow, εH
s
2D = (Λ, I , {θi , θ̇i }i∈Λ), of

Hs
2D is a walking gait in 2D:

Λ=N, lim
i→∞

τi =∞, θi (τi ) = θi+1(τi+1),
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Figure 3.9: θns, θs and ϕ over time for a stable walking gait and different initial values of ϕ.

then the result is walking in three-dimensions. This follows from the fact that θ and θ̇ will have the same

behavior over time for the full-order system—the bipedal robot will walk. Moreover, since Theorem 3.10

implies that (3.43) holds, the walker stabilizes to the “upright” position. This follows from the fact that

the roll, ϕ, will tend to zero as time goes to infinity since (3.43) essentially defines a stable linear system

ϕ̇ = −αϕ (because m3D(θi (t )) > 0 and α > 0), which controls the behavior of ϕ when (3.42) is satisfied.

This convergence can be seen in Figure 3.9.

Theorem 3.10 only implies that the 3D biped has walking gaits for hybrid flows with initial con-

ditions that satisfy (3.42); the set of all such initial conditions defines a region that is stable to the origin

(ϕ,ϕ̇) = (0,0), which corresponds to “upright” walking (see Figure 3.10). This illustrates that our control

law for the 3D biped is not a locally stabilizing controller (as would be the case if we were to linearize, see

[73]) but rather stabilizes a nonlinear subset of the initial conditions. It is possible to extend this region of

convergence by stabilizing to the manifold defined by

ϕ̇+ αϕ

m3D(θ)
= 0.

This indicates that hybrid reduction can be used to stabilize a three-dimensional walker from a large set

of initial conditions.
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Chapter 4

Hybrid Geometric Mechanics

Mechanics, and the geometry thereof, plays a fundamental role in engineering. This chapter

gives a general outline on how to extend classical ideas from geometry and mechanics to a hybrid setting

through the use of hybrid objects.

The objects of study in geometry display the fundamental property of being categorical, i.e., they

reside in certain categories. Collections of geometric objects in a category relate to one another naturally,

i.e., morphisms between geometric objects in two diagrams extend naturally to morphisms between dia-

grams. The relationship between different classes of geometric objects is functorial, i.e. one can translate

from one class of geometric objects to another through the use of functors. Therefore, using the categori-

cal, natural and functorial nature of geometric objects, one can hybridize these objects. Specifically, given

a category C consisting of the geometric objects of interest, e.g., manifolds, Lie groups, Lie algebras, etc.,

one can form the “hybrid version” of these objects:

A : A →C,

with A either covariant or contravariant, i.e., (A ,A) is a hybrid or cohybrid object. We thus form the

category of hybrid or cohybrid objects, Hy(C) or CoHy(C), depending on the contravariance or covariance

of A. Using the functorial relationship between different categories of geometric objects, e.g., the functor

that associated to a Lie group its Lie algebra, we obtain functors between the categories of hybrid objects

of interest. Some of the hybrid objects, hybrid morphisms and functors between categories of hybrid

objects that will be introduced in this chapter can be seen in Table 4.1.

Recall from Chapter 3 that we were interested in answering the following question:

If it is possible to reduce the continuous components of a hybrid system, when is it possible to
reduce the entire hybrid system?

In that chapter, we were only able to answer this question for simple hybrid systems. Using the framework

established by hybrid geometry, we will be able to answer this question for general hybrid systems. First,

we recall the classical reduction theorem.
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Hybrid Geometric Mechanics

Important hybrid objects :

Hybrid vector space : V : V → VectR

Hybrid manifold : M : M → Man

Hybrid tanget bundle : T∗(M) : M → VectBundR

Hybrid differential k− forms : Ωk∗(M) : M → VectR

Hybrid de Rham cohomology : Hn
dR∗(M) : M → VectR

Hybrid Lie group : G : G → LieGrp

Hybrid Lie algebra : g : G → LieAlg

Dual hybrid Lie algebra : g? : G → VectR

Hybrid isotropy group : G~µ : G → LieGrp

Hybrid orbit space : M///G : M → Top

Reduced hybrid phase space : M~µ : M → Man

Important hybrid morphisms :

Hybrid exterior derivative : ~d : Ωk∗(M)
�→ Ωk+1∗ (M)

Hybrid wedge product : − ~∧ − : Ωk∗(M)×Ωl∗(M)
�→ Ωk+l∗ (M)

Hybrid conjunction map : I~g : G
�→ G

Hybrid adjoint action : Ad~g : g
�→ g

Hybrid group action : ~Φ : G×M
�→ M

Hybrid infintesimal generator : ~ξM : M
�→ T∗(M)

Hybrid momentum map : ~J : M
�→ g?

Important functors :

Hybrid tangent bundle functor : Hy(T ) : Hy(Man) → Hy(VectBundR)

Hybrid k− form functor : Hy(Ωk ) : Hy(Man) → CoHy(VectR)

Hybrid Lie functor : Hy(Lie) : Hy(LieGrp) → Hy(LieAlg)

Dual vector space functor : Hy(( − )?) : Hy(VectR) → CoHy(VectR)

Table 4.1: Important hybrid objects, morphisms between hybrid objects and functors between categories
of hybrid objects.
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Hybrid Geometric Mechanics

Marsden mathematically describes, [86], the reduction theorem for classical mechanics as fol-

lows:

Given a symplectic manifold M (the phase space), there exists a symplectic manifold Mµ such
that “Mµ inherits the symplectic structure from that of M, so it can be used as a new phase space.
Also, dynamical trajectories of the Hamiltonian H on M determine corresponding trajectories
on the reduced space.”

Upon inspection, it is clear that a rather copious mathematical framework is needed to perform reduction:

there must be a Lie group G acting on the symplectic manifold M , and an Ad∗-equivariant momentum

map J : M → g∗, and the Hamiltonian H must be G-invariant.

Hybrid objects will allow us to generalize all of the ingredients necessary for reduction to a hy-

brid setting. The main result is the following hybrid reduction theorem:

Given a hybrid symplectic manifold M (the hybrid phase space), there exists a hybrid symplectic
manifold M~µ such that M~µ inherits the hybrid symplectic structure from that of M, so it can be
used as a new hybrid phase space. Also, dynamical trajectories of the hybrid Hamiltonian H on
M determine corresponding trajectories on the reduced hybrid space.

That is, if (M,~ω,H) is a hybrid Hamiltonian system (M is a hybrid manifold, ~ω is a hybrid symplectic form

on M and H is a hybrid Hamiltonian), then this theorem says that under certain conditions we can reduce

this hybrid Hamiltonian system to obtain a reduced hybrid Hamiltonian system (M~µ,~ω~µ,H~µ).

The hybrid reduction theorem can be used to explicitly reduce hybrid systems since we can

associate to a hybrid Hamiltonian system (Mııı ,~ω,H) a “classical” hybrid system H(Mııı ,~ω,H) (see Paragraph

2.1.2, Proposition 2.1 and Proposition 2.2). Therefore, the ability to reduce hybrid Hamiltonian systems

yields a method for reducing hybrid systems; graphically, the operation of “hybrid system reduction” is

defined by requiring the following diagram to commute:

(Mııı ,~ω,H)
reduction- (Mııı

~µ,~ω~µ,H~µ)

H(Mııı ,~ω,H)

association
? reduction- H(Mııı

~µ
,~ω~µ,H~µ).

association
?

Moreover, since this association is constructive in nature, the result is a concrete method for reducing

hybrid systems. Finally, the hybrid reduction theorem proven in this chapter can be used to show that

trajectories (or executions) of H(Mııı ,~ω,H) determine corresponding trajectories of H(Mııı
~µ

,~ω~µ,H~µ).

The work on which this chapter builds is the same as that of Chapter 3; see the related work

paragraph in that chapter.

Examples will be sparse in this chapter as we believe that we have more than motivated the

importance of reduction in Chapter 3, especially given the application of reduction to bipedal walking.

We will utilize a simple example throughout the chapter in order to illustrate the concepts involved.

Running example. Throughout this chapter, we will consider a ball bouncing in two-dimensions; this

differs from the one-dimensional version introduced earlier as well as the three-dimensional version ball
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Figure 4.1: A trajectory of the two-dimensional (completed) bouncing ball model.

bouncing on a sinusoidal surface. We will not use the standard model of this system (which has a single

domain) but rather the completed version of the system (obtained using the procedure outlined in Section

5.5 of Chapter 5) which allows the ball to “stop bouncing” after the Zeno point is reached; see Figure 4.1.

We introduce the model of this system directly as a categorical hybrid system rather than trans-

lating the definition from the standard definition as has been our custom. Since the goal is to define a

hybrid system, we first define its discrete structure.

Define M ball as the D-category given by the following diagram:

ab

M ball =

b

sab

?

tab

?
�

sas as
tas - s.

where “b” will correspond to the state where the ball is “bouncing” and “s” will correspond to the state

where the ball is “sliding.”

Define the hybrid manifold:

Mball : M ball →Man

by:

Mball
(
M ball

)
=

Mball
ab

Mball
b =R4

Mball
sab

= ı
?

∩

Mball
tab

?
�

Mball
sas

= ı
⊃ Mball

as
=R2

Mball
tas

= id
- Mball

s =R2

where here the coordinates onR4 are (x, y, px , py )T , the coordinates onR2 are (x, px )T , with Mball
ab

and Mball
tab
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Hybrid Geometric Mechanics

given by:

Mball
ab

=




x

y

px

py

 ∈R4 : y = 0 and py ≤ 0


,

Mball
tab

(x,0, px , py ) =


x

0

px

−epy

 ,

with 0 ≤ e ≤ 1 the coefficient of restitution.

Finally, the hybrid system is given by (M ball,Mball,Xball) where

Xball = {Xball
b ,Xball

s },

with:

Xball
b (x, y, px , py ) = 1

m


px

py

0

−m2g

 ,

Xball
s (x, px ) = 1

m

 px

0

 .

and m the mass of the ball.

4.1 Hybrid Differential Forms

In order to discuss the general geometric reduction of hybrid systems, we introduce hybrid dif-

ferential forms. The framework of hybrid objects makes this a relatively easy task, although it is nontrivial

as the constructions are not always the obvious ones. Note that we could first build up the general frame-

work of tensor bundles, etc., but since the construction is essentially the same, we proceed directly to the

notion of differential forms which is the main concept of interest.

Note that when dealing with hybrid differential forms, we are forced to deal with both covari-

ant and contravariant functors. To avoid confusion, we will explicitly state which type of functor we are

considering when necessary.

We refer the reader to [79] for any necessary background material.

4.1.1 Hybrid tangent bundles. We begin by discussing how one associates to a hybrid manifold its

hybrid tangent bundle. This will be useful for understanding later constructions.
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The process of associating a tangent bundle to a manifold defines a functor:

T : Man→VectBundR

where VectBundR is the category of (real) vector bundles. Specifically, we have T (M) = T M , where T M is

the tangent bundle of M ; implicit in this notation is the canonical projection π : T M → M that makes T M

into a vector bundle. In addition, for a morphism f of manifolds T f is the pushfoward of this function.

The functor T induces a functor:

Hy(T ) : Hy(Man) →Hy(VectBundR).

That is, for a hybrid manifold (M ,M), we can associate to this hybrid manifold its hybrid tangent bundle

(M ,T∗(M)) :=Hy(T )(M ,M),

where

T∗(M) : M →VectBundR

is given by, for every a
α→ b in M ,

T∗(M)a := T Ma
T∗(M)α := T Mα- T∗(M)b := T Mb .

Here T Mα is the pushforward of Mα,

T Mα(p,X ) = (Mα(p),Tp Mα(X )),

for (p,X ) ∈ T Ma , i.e., for X ∈ Tp Ma and p ∈ Ma .

If (~F , ~f ) : (M ,M) → (N ,N) is a morphism of hybrid manifolds, then there is an induced mor-

phism:

Hy(T )(~F , ~f ) = (~F ,T∗(~f )) : Hy(T )(M ,M) = (M ,T∗(M)) → (N ,T∗(N))

between the hybrid tangent bundles of these hybrid manifolds as outlined in Paragraph 1.3.7.

4.1.2 Hybrid sections. Note that we have a natural transformation ~π : T∗(M)
�→ M, i.e., a hybrid mor-

phism:

(~IdM ,~π) : (M ,T∗(M)) → (M ,M),

called the canonical hybrid projection map, and given objectwise by the natural projection, i.e., ~πa :

T∗(M)a = T Ma → Ma .

We can consider sections of the hybrid tangent bundle of a hybrid manifold:

Γ(M) := {~X : M
�→ T∗(M) : ~π• ~X = ~idM},

which in fact defines a collection of vector fields (of a very special form) on the hybrid manifold (M ,M),

i.e., associated to the hybrid section, ~X , we have the collection of vector fields X := {~Xb}b∈V(M ). That being

said, hybrid sections are typically not of interest as they are too restrictive.
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4.1.3 Differential forms. Let M be a manifold and let Λk (M) be the vector bundle consisting of all

alternating tensors, i.e., we have a canonical projection map π : Λk (M) → M . A section of this vector

bundle

ω : M →Λk (M) s.t. π◦ω= idM

is a differential k-form or just a k-form. The set of all differential k-forms is denoted by:

Ωk (M) = {ω : M →Λk (M) :π◦ω= idM }.

The process of associating to a manifold its differential k-forms induces a contravariant functor:

Ωk : Man→VectR,

where for f : M → N ,

Ωk ( f ) : Ωk (N) →Ωk (M)

is the pullback of f given by, for ω ∈Ωk (N), p ∈ M and X1, . . .Xk ∈ TpM ,

Ωk ( f )(ω)p(X1, . . . ,Xk ) :=ω f (p)(Tp f (X1), . . . ,Tp f (Xk )),

where Tp f (X1), . . . ,Tp f (Xk ) ∈ T f (p)N .

Remark 4.1. Note that Ωk ( f ), termed the pullback of the function f , is typically denoted by f ∗. We opt for

the non-standard notation because it demonstrates that the pullback of a function is functorally obtained

from the original function. In addition, it avoids the proliferation of ∗’s that would be inevitable due to

the notation utilized to denote the pushforward of a functor.

4.1.4 Hybrid differential forms. The contravariant functor Ωk induces a contravariant functor:

Hy(Ωk ) : Hy(Man) →CoHy(VectR).

For a hybrid manifold (M ,M),

Hy(Ωk )(M ,M) := (M ,Ωk
∗(M)),

withΩk∗(M) : M →VectR a contravariant functor given on objects byΩk∗(M)a =Ωk (Ma) and on morphisms

α : a → b in M by

Ωk
∗(M)α =Ωk (Mα) : Ωk

∗(M)b →Ωk
∗(M)a .

For a morphism (~F , ~f ) : (M ,M) → (N ,N) in Hy(Man), we have the corresponding morphism in CoHy(VectR):

Hy(Ωk )(~F , ~f ) := (~Fop,Ωk
∗(~f )) : (N ,Ωk

∗(N)) → (M ,Ωk
∗(M)),

where ~Fop : N → M is the morphism in Dcatop corresponding to ~F and Ωk∗(~f ) : ~F∗(Ωk∗(N))
�→Ωk∗(M) in

M VectR. In particular, there is the following relationship

Ma

~fa- N~F (a)

Mb

Mα

? ~fb- N~F (b)

N~F (α)

?

7→

Ωk (Ma) �Ω
k (~fa)

Ωk (N~F (a))

Ωk (Mb)

Ωk (Mα)
6

�Ω
k (~fb)

Ωk (N~F (b))

Ωk (N~F (α))
6
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in Man and VectR, respectively, for every α : a → b in M .

We are especially interested in elements of the cohybrid object (M ,Ωk∗(M)).

Definition 4.1. Let (M ,M) be a hybrid manifold. A hybrid differential k-form is an element of the cohy-

brid object (M ,Ωk∗(M)), i.e.,

~ω ∈ (M ,Ωk
∗(M)).

Therefore, a hybrid differential k-form must satisfy:

¦ ~ωa ∈Ωk (Ma), i.e, ~ωa is a differential k-form,

¦ Ωk (Mα)(~ωb) = ~ωa for all α : a → b in M .

Notation 4.1. To simplify notation, when referring to elements of (M ,Ωk∗(M)) we will often write ~ω ∈
Ωk∗(M) since we will always be considering the same D-category M .

4.1.5 Hybrid symplectic manifolds. The formulation of hybrid differential forms allows us to define

hybrid symplectic manifolds. Note that the definition of a hybrid symplectic manifold is not the most

obvious one—we do not require a hybrid differential 2-form to be objectwise a symplectic form.

Definition 4.2. A hybrid symplectic manifold is a hybrid manifold (M ,M) together with a hybrid 2-form

~ω ∈Ω2(M) such that ~ωb is smooth, closed and nondegenerate, i.e., a symplectic form, for all b ∈V(M ).

Example 4.1. On the hybrid manifold (M ball,Mball), we will consider the canonical hybrid symplectic

form, i.e., ~ωball is specified by ~ωball
b and ~ωball

s , which are the standard symplectic forms on R4 and R2,

respectively, with

~ωball
as

:= ~ωball
s , ~ωball

ab
:=Ω2(ı)(~ωball

b ).

A simple calculation verifies that:

Ω2(ı)(~ωball
b ) = ~ωball

as
, ~ωball

ab
=Ω2(Mball

tab
)(~ωball

b ),

so Definition 4.2 is satisfied and (M ball,Mball,~ωball) is a hybrid symplectic manifold.

We are now interested in defining some elementary operations on Ωk∗(M).

4.1.6 Hybrid exterior derivatives. For a hybrid manifold (M ,M), the hybrid exterior derivative is a nat-

ural transformation:

~d : Ωk
∗(M)

�→Ωk+1
∗ (M)

defined for all k ∈N. It is given on objects a of D by:

~da : Ωk (Ma)
�→Ωk+1(Ma),

where ~da is the exterior derivative on Ma . It follows that the hybrid exterior derivative is a hybrid linear

map, i.e., that it is objectwise linear. Moreover, if ~ω ∈Ωk∗(M), then ~d(~ω) ∈Ωk+1∗ (M) where ~d(~ω)a = ~da(~ωa).

The hybrid exterior derivative displays the following obvious and yet important property:
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Lemma 4.1. ~d • ~d =~0.

In the preceding lemma,~0 is a natural transformation that is objectwise zero.

4.1.7 Hybrid wedge product. For a hybrid manifold (M ,M), the hybrid wedge product or hybrid inte-

rior product is a natural transformation:

− ~∧ − : Ωk
∗(M)×Ωl

∗(M)
�→Ωk+l

∗ (M)

such that for all a ∈Ob(M ), the following map:

− ~∧a − : Ωk (Ma)×Ωl (Ma)
�→Ωk+l (Ma)

is the wedge product. It follows that if ~ω ∈ Ωk∗(M) and ~η ∈ Ωk∗(M) then ~ω~∧~η ∈ Ωk+l∗ (M) where (~ω~∧~η)a :=
~ωa~∧a~ηa .

Hybrid wedge products and hybrid exterior derivatives are related through the following lemma.

Lemma 4.2. For ~ω ∈Ωk∗(M) and ~η ∈Ωl∗(M),

~d(~ω~∧~η) = ~d(~ω)~∧~η+ (−1)k~ω~∧ ~d(~η),

where the addition in this expression is preformed objectwise.

To provide an example of some of the other constructions that can be carried out using cate-

gories of hybrid objects and categories of cohybrid objects, we briefly discuss de Rham cohomology.

4.1.8 Hybrid de Rham cohomology. For a smooth manifold M , the exterior derivative yields a cochain

complex in the category of vector spaces:

0
0- Ω0(M)

d - · · · d- Ωn−1(M)
d- Ωn(M)

d- Ωn+1(M)
d - · · ·

denoted by (Ω•(M), d). Consider the linear subspaces:

Z n(M) := Ker(d : Ωn(M) →Ωn+1(M))

= {ω ∈Ωn(M) : d(ω) = 0},

Bn(M) := Im(d : Ωn−1(M) →Ωn(M)))

= {ω ∈Ωn(M) : ∃ η ∈Ωn−1(M) s.t. d(η) =ω}.

The nth de Rham cohomology group of M is defined to be the cohomology of the cohain complex (Ω•(M), d):

Hn
dR(M) = Hn(Ω•(M)) = Z n(M)

Bn(M)
.

Note that taking the de Rham cohomology of a manifold results in a contravariant functor:

Hn
dR : Man→VectR
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defined for each n ∈N.

For a hybrid manifold (M ,M), the de Rham cohomology functor induces a contravariant func-

tor:

Hy(Hn
dR) : Hy(Man) →CoHy(VectR).

That is, for a hybrid manifold (M ,M),

Hy(Hn
dR)(M ,M) := (M ,Hn

dR∗(M)),

is called the nth hybrid de Rham cohomology group of (M ,M).

Therefore, we are able to do “hybrid de Rham cohomology.” More on the homology of hybrid

systems can be found in [14].

4.2 Hybrid Lie Groups and Algebras

We are interested in studying the relationship between hybrid Lie groups and hybrid Lie algebras

via the relationship between Lie groups and Lie algebras.

4.2.1 Hybrid Lie groups. The category of Lie groups, LieGrp, has as

Objects: Lie groups, i.e., groups that are also (smooth) manifolds such that multiplication
and inversion define smooth maps,

Morphisms: Smooth maps that are also group homomorphisms.

A hybrid Lie group is a hybrid object over the category of Lie groups, LieGrp, i.e., a pair (G ,G) where

G : G → LieGrp .

An element of a hybrid Lie group, ~g ∈ (G ,G), must satisfy the following properties:

¦ ~ga ∈ Ga for all objects a of G ,

¦ ~gb = Gα(~ga) for all α : a → b in G .

In particular, every element of (G ,G) has an inverse, ~g−1, defined objectwise to be the inverse of ~ga , i.e.,

~g−1
a · ~ga = eGa = ~ga · ~g−1

a

where eGa is the identity element of Ga .

4.2.2 Lie algebras. Recall that a Lie algebra g is a vector space together with a binary operation:

[ − , − ] : g×g → g

(X ,Y ) 7→ [X ,Y ],
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called the Lie bracket. This bracket must satisfy, for all X ,Y ,Z ∈ g:

Bilinearity. For all r, w ∈R,

[rX +wY ,Z ] = r [X ,Z ]+w[Y ,Z ]

[Z , rX +wY ] = r [Z ,X ]+w[Z ,Y ]

Antisymmetry.

[X ,Y ] =−[Y ,X ]

Jacobi Identity.

[X , [Y ,Z ]]+ [Y , [Z ,X ]]+ [Z , [X ,Y ]] = 0.

A morphism of Lie algebras is a linear map A : g→ h such that:

A([X ,Y ]) = [A(X ), A(Y )].

We have thus defined the category of Lie algebras, LieAlg.

4.2.3 Hybrid Lie algebras. We could directly define a hybrid Lie algebra as a hybrid object over the

category of Lie algebras. We opt for a more circuitous route in order to demonstrate that hybrid objects

can often be defined using more “fundamental” information and that, in fact, the end result is the same.

A hybrid Lie algebra is a hybrid vector space (G ,g),

g : G →VectR

together with a natural transformation:

−−−−−−→
[ − , − ] : g×g

�→g

where the product is the product of functors given on objects and morphisms by (g×g)a = ga ×ga and

(g×g)α =gα×gα. That is, it is the product in VectGR which we know exists by Proposition A.4. In addition,

we require that for every object a of G , the corresponding binary operation:

−−−−−−→
[ − , − ]a : ga ×ga →ga

satisfies the bilinearity, antisymmetry and Jacobi identities, i.e., it is a Lie bracket.

The following results say that this is in fact the “correct” definition of a hybrid Lie algebra:

Proposition 4.1. A hybrid object (G ,g) over VectR is a hybrid Lie algebra iff it is a hybrid object over LieAlg,

g : G → LieAlg .
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Proof. Beginning with a hybrid Lie algebra (G ,g), it is clear that ga is a Lie algebra. Therefore, we must

only verify that gα is a Lie algebra homomorphism. This follows from the commutativity of the diagram:

ga ×ga

−−−−−−→
[ − , − ]a- ga

gb ×gb

gα×gα

? −−−−−−→
[ − , − ]b- gb

gα

?

The converse direction is equally straightforward.

4.2.4 The Lie functor. The Lie functor is the functor:

Lie : LieGrp→ LieAlg,

given on objects by associating to a Lie group G its Lie algebra:

Lie(G) = TeG G ,

where TeG G is the tangent space at the identity element of G . Note that Lie(G) is isomorphic to (and could

be defined as) the set of all left-invariant vector fields on G . For a morphism f : G → H ,

Lie( f ) := TeG f : Lie(G) → Lie(H).

Note that Lie(G) is often denoted by g.

The Lie functor yields a functor between categories of hybrid objects:

Hy(Lie) : Hy(LieGrp) →Hy(LieAlg).

For a hybrid Lie group (G ,G), we will denote its corresponding hybrid Lie algebra by

Hy(Lie)(G ,G) := (G ,g),

and for a morphism of hybrid Lie groups (~F , ~f ) : (G ,G) → (H ,H) we obtain a morphism of hybrid Lie

algebras:

Hy(Lie)(~F , ~f ) := (~F ,Lie∗(~f )) : (G ,g) → (H ,h).

We know that this is a hybrid vector space, g : G → VectR, and so an element of (G ,g), which we denote

by ~ξ ∈ (G ,g) or just ~ξ ∈ g when the underlying D-category is clear from context, is a hybrid vector (as

introduced in Example 1.21) and so must satisfy:

¦ ~ξa ∈ga for all objects a of G , i.e., ~ξa is a vector,

¦ ~ξb =gα(~ξa) for all α : a → b in G .

In addition, we know from Example 1.21 that the set of elements of (G ,g),

ElemHy(LieAlg)(G ,g)

form a vector space. In fact, it is clear from Proposition 4.1 that the elements of (G ,g) form a Lie algebra.
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4.2.5 The dual to a hybrid Lie algebra. As discussed in Example 1.22, the functor that associates to a

vector space its dual induces a functor between categories of hybrid and cohybrid objects:

Hy(( − )?) : Hy(VectR) →CoHy(VectR).

Through this functor we obtain the dual to a hybrid Lie algebra (G ,g), which is the cohybrid object:

(G ,g?) :=Hy(( − )?)(G ,g).

It follows from Example 1.23 that an element of the cohybrid object (G ,g?), ~µ ∈ (G ,g?) or just ~µ ∈g?, is a

hybrid covector and thus must satisfy:

¦ ~µa ∈g?
a for all objects a of G , i.e., ~µa : ga →R is a covector,

¦ g?
α(~µb) = ~µa , i.e., ~µb ◦gα = ~µa , for all α : a → b in G .

This implies that ~µ corresponds to a natural transformation ~µ : G
�→∆G (R).

Example 4.2. Returning to the bouncing ball, define a hybrid Lie group

Gball : M ball → LieGrp

by

Gball
ab

=R
Gball(M ball) =

Gball
b =R

Gball
sab

= id
?

Gball
tab

= id
?

�
Gball

sas
= id

Gball
as

=R
Gball

tas
= id

- Gball
s =R.

That is, Gball =∆M ball (R). Note that in this case gball = Gball and (gball)? =∆
op
M ball (R).

4.2.6 The hybrid adjoint action. Let G be a Lie group and g ∈ G . The conjunction map is defined to

be a map Ig : G → G with Ig (h) = g hg−1 for h ∈ G . Utilizing the Lie functor, we obtain a Lie algebra

homomorphism:

Adg := Lie(Ig ) : g→ g,

which is termed the adjoint action. The functor that associates to a vector space its dual, ( − )?, yields a

morphism of vector spaces:

Ad?
g : g? → g?

termed the coadjoint action.

The framework of hybrid objects allows adjoint and coadjoint actions to be easily generalized to

a hybrid setting. Given an element ~g ∈ (G ,G), we obtain a natural transformation:

I~g : G
�→ G
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defined objectwise by (I~g )a = I~ga . It is easy to verify that this in fact defines a natural transformation.

Utilizing the functor Hy(Lie) we obtain the hybrid adjoint action, i.e., a natural transformation:

Ad~g := Lie∗(I~g ) : g
�→g,

wherein it follows that (Ad~g )a = Ad~ga . Finally, utilizing the functor that associates to a hybrid vector space

its dual, Hy(( − )?), we obtain the hybrid coadjoint action, i.e., a natural transformation:

Ad?
~g : g? �→g?,

It follows that (Ad?
~g )a = Ad?

~ga
.

4.2.7 The hybrid isotropy subgroups. For a Lie group G , the isotropy subgroup under the coadjoint

action is given by, for µ ∈ g?,

Gµ = {g ∈G : Ad?
g−1 (µ) =µ}.

For ~µ ∈ (G ,g?), define the hybrid isotropy group as the hybrid Lie group

G~µ : G → LieGrp

defined on objects and morphisms of G by:

(G~µ)a = (Ga)~µa , (G~µ)α = (Gα)|(G~µ)a .

We must verify that:

Proposition 4.2. (G ,G~µ) is a hybrid Lie group.

Proof. We need to show that

Ad?
g−1 (~µa) = ~µa ⇒ Ad?

Gα(g−1)(~µb) = ~µb .

Since ~µ ∈ (G ,g?), i.e., g?
α(~µb) = ~µa , this is equivalent to showing that:

g?
α(Ad?

Gα(g−1)(~µb)) = ~µa .

First note that

AdGα(g−1) ◦gα = TeGb
(IGα(g−1))◦TeGa

(Gα)

= TeGa
(IGα(g−1) ◦Gα)

= TeGa
(Gα ◦ Ig−1 )

= TeGa
(Gα)◦TeGa

(Ig−1 )

= gα ◦Adg−1 .
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This implies that

g?
α(Ad?

Gα(g−1)(~µb)) = ~µb ◦AdGα(g−1) ◦gα

= ~µb ◦gα ◦Adg−1

= g?
α(~µb)◦Adg−1

= Ad?
g−1 (g?

α(~µb))

= Ad?
g−1 (~µa)

yielding the desired result.

4.3 Hybrid Momentum Maps

We now switch our focus to hybrid reduction. Utilizing the constructions of the previous section,

we generalize reduction to a hybrid setting. In order to achieve this goal, we begin by introducing hybrid

momentum maps.

Momentum maps make explicit the conserved quantities of a Hamiltonian system. Hybrid mo-

mentum maps serve the same function, except that they define a set of conserved quantities. In order to

introduce hybrid momentum maps, it is first necessary to introduce the notion of hybrid symmetries, i.e.,

a hybrid action of a hybrid Lie group on a hybrid manifold. When such hybrid symmetries exist, along

with a momentum map, we are able to “divide” out by these symmetries to obtain the reduced hybrid

phase space.

We assume a basic knowledge of classical reduction throughout the rest of this chapter. We refer

the reader to the excellent reference [4] for any missing details.

Notation 4.2. We now fix a D-category D. We will assume that all hybrid objects have D as their underlying

discrete component except when discussing trajectories.

4.3.1 Hybrid group actions. For G : D → LieGrp and M : D →Man, define the hybrid manifold G×M :

D →Man as the product of G and M in ManD , i.e., on objects and morphisms:

(G×M)a := Ga ×Ma , (G×M)α := (Gα,Mα).

A hybrid group action or hybrid action is a natural transformation

~Φ : G×M
�→ M, (4.1)

that is objectwise a group action:

¦ For all p ∈ Ma , ~Φa(eGa , p) = p,

¦ For every g , h ∈ Ga , ~Φa(g ,~Φa(h, p)) = ~Φa(g h, p).
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We say that a hybrid group action is free if ~Φ is objectwise free and proper if it is objectwise proper.

For ~g ∈ G, we can associate to this action a hybrid diffeomorphism (a natural isomorphism)

~Φ~g : M
�→ M (4.2)

defined objectwise, for p ∈ Ma , by (~Φ~g )a(p) := ~Φa(~ga , p). Since ~Φ~g is a natural transformation, we have

Mα ◦ ~Φa(~ga , p) = ~Φb(Gα(~ga),Mα(p)), (4.3)

which is a form of equivariance; in the case when Ga = Gb and Gα = id, this condition says that Mα is

equivariant with respect to these actions.

Recall that in Definition 4.2 we introduced the definition of a hybrid symplectic manifold (M,~ω).

Definition 4.3. Let (M,~ω) be a hybrid symplectic manifold. A hybrid action ~Φ : G×M
�→ M is a symplectic

hybrid action if for the hybrid diffeomorphism ~Φ~g : M
�→ M,

Ω2
∗(~Φ~g )(~ω) = ~ω

for each ~g ∈ G.

4.3.2 Hybrid orbit spaces. For a hybrid manifold M with a hybrid group G acting on it, let Ma/Ga be

the orbit space of the action ~Φa of Ga on Ma ; if p ∈ Ma , we denote the elements of this space by [p]. Define

the hybrid topological space

M///G : D →Top, (4.4)

defined on objects and morphisms of D by M///Ga := Ma/Ga and M///Gα([p]) := [Mα(p)], which is well-

defined by (4.3).

Proposition 4.3. If ~Φ : G×M
�→ M is a free and proper hybrid action, then M///G is a hybrid manifold, i.e.,

M///G : D →Man. Moreover, there is a hybrid submersion:

~π : M
�→ M///G.

That is, ~π is a natural transformation that is objectwise a submersion.

Proof. Define a natural transformation ~π : M → M///G by setting ~πa(p) := [p]; this is a natural transforma-

tion since

M///Gα ◦~πa(p) = M///Gα([p]) = [Mα(p)] = ~πb ◦Mα(p).

By the definition of free and proper hybrid actions—they are objectwise free and proper—it follows that

Ma/Ga is a smooth manifold for every object a of D, and ~π is objectwise a submersion.
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Therefore, we need only verify that M///Gα is smooth for all morphisms α of D. This follows,

however, from the naturality of ~π, i.e., we have the following commuting diagram

Ma
Mα - Mb

M///Ga

~πa

? M///Gα- M///Gb

~πb

?

and ~πb ◦Mα is smooth so M///Gα ◦~πa must be smooth, or M///Gα must be smooth.

4.3.3 Hybrid infinitesimal generators of hybrid actions. Suppose there is a hybrid action ~Φ : G×M
�→

M. Then we can use this hybrid action to define a hybrid section of the hybrid tangent bundle of M for

every element ~ξ ∈g.

Define the infinitesimal generator of the hybrid action ~Φ corresponding to ~ξ ∈g by

~ξM : M
�→ T∗(M) (4.5)

which is given objectwise by

(~ξM)a(p) := d

dt
~Φa(exp(t~ξa), p)

∣∣∣∣
t=0

for p ∈ Ma .

Lemma 4.3. ~ξM is a hybrid section of the hybrid tangent bundle of M.

Proof. We need to show that for every diagram α : a → b in D

T∗(M)α ◦ (~ξM)a = (~ξM)b ◦Mα.

First note that since ~ξ ∈g, i.e., gα(~ξa) = ~ξb , we have (by the properties of the exponential map, cf. [79]),

Gα(exp(t~ξa)) = exp(t TeGa
Gα(~ξa))

= exp(tgα(~ξa))

= exp(t~ξb).

Moreover, by (4.3),

Mα ◦ ~Φa(exp(t~ξa), p) = ~Φb(Gα(exp(t~ξa)),Mα(p))

= ~Φb(exp(t~ξb),Mα(p)).

Finally, for every p ∈ Ma , we have

Tp Mα ◦ (~ξM)a(p) = Tp Mα ◦ d

dt
~Φa(exp(t~ξa), p)

∣∣∣∣
t=0

= d

dt

(
Mα ◦ ~Φa(exp(t~ξa), p)

)∣∣∣∣
t=0

= d

dt
~Φb(exp(t~ξb),Mα(p))

∣∣∣∣
t=0

= (~ξM)b(Mα(p)).
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4.3.4 Hybrid regular values. Consider a natural transformation ~J : M
�→ g?; since M is covariant and

g? is contravariant, this implies (see Table 1.2) that the following diagram

Ma
~Ja - g?

a

Mb

Mα

? ~Jb - g?
b

g?
α

6
(4.6)

must commute for all α : a → b in D.

Definition 4.4. We say that ~µ ∈g? is a hybrid regular value of ~J if

1. ~µa ∈g?
a is a regular value of ~Ja : Ma →g?

a for all objects a of D,

2. ~µb = ~Jb ◦Mα(p) for all α : a → b in D and p ∈ Ma such that ~Ja(p) = ~µa .

4.3.5 The hybrid manifold J−−−111(((~µµµ))). Given a hybrid regular value ~µ ∈g?, define a hybrid manifold

J−−−111(((~µµµ))) : D →Man (4.7)

given on objects and morphisms of D by

J−−−111(((~µµµ)))a := ~J−1
a (~µa), J−−−111(((~µµµ)))α := Mα|J−−−111(((~µµµ)))a

.

Note that there is a hybrid inclusion (a natural transformation that is objectwise an inclusion):

~i~µ : J−−−111(((~µµµ)))
�→ M, (4.8)

defined to be objectwise the inclusion: (~i~µ)a : J−−−111(((~µµµ)))a ,→ Ma .

Before continuing, we must verify that:

Lemma 4.4. J−−−111(((~µµµ))) is a hybrid manifold if ~µ ∈g? is a hybrid regular value of ~J.

Proof. Since we are assuming that ~µ is objectwise a regular value, J−−−111(((~µµµ)))a is a manifold. Since, J−−−111(((~µµµ)))α is

just the restriction of a smooth map to a smooth submanifold, it is also smooth. What we must verify is

that the image of this map is contained in J−−−111(((~µµµ)))b , i.e., for all p ∈ J−−−111(((~µµµ)))a , Mα(p) ∈ J−−−111(((~µµµ)))b . That is, we

need to show that for p ∈ Ma ,

~Ja(p) = ~µa ⇒ ~Jb(Mα(p)) = ~µb .

This follows, however, from the second condition in the definition of a hybrid regular value.
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4.3.6 Induced natural transformations. Given a natural transformation ~J : M
�→g?, for all ~ξ ∈g we can

define a natural transformation:

~Jξ : M
�→∆D(R); (4.9)

given objectwise by
~Jξa(p) := 〈~Ja(p),~ξa〉 = ~Ja(p)(~ξa),

for p ∈ Ma .

Lemma 4.5. ~Jξ is a natural transformation.

Proof. Consider a diagram of the form α : a → b in D. For p ∈ Ma , we have

~Jξb(Mα(p)) = 〈~Jb ◦Mα(p),~ξb〉
= 〈~Jb ◦Mα(p),gα(~ξa)〉
= 〈g?

α ◦~Jb ◦Mα(p),~ξa〉
= 〈~Ja(p),~ξa〉
= ~Jξa(p).

Definition 4.5. Let (M,~ω) be a hybrid symplectic manifold and ~Φ : G×M
�→ M a hybrid action. Define a

hybrid momentum map as a natural transformation

~J : M
�→g?, (4.10)

such that for every ~ξ ∈g and object a of D:

d(~Jξa) = ι(~ξM)a
(~ωa), (4.11)

where ι is the interior product on Ma and ~ξM is the hybrid infinitesimal generator of the hybrid action

corresponding to ~ξ.

Definition 4.6. Let ~Φ : G×M
�→ M be a hybrid action of G on M. A hybrid momentum map is said to

be Ad?-equivariant under this action if for every ~g ∈ G the following diagram of natural transformations

commutes:

M
~Φ~g - M

g?

~J

? Ad?
~g−1

- g?

~J

?
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4.3.7 The reduced hybrid phase space. Suppose that G acts on M through the hybrid action ~Φ, and let

~J : M
�→g? be an Ad?-equivariant hybrid momentum map. Assume that ~µ ∈g? is a hybrid regular value of

~J ; therefore, J−−−111(((~µµµ))) : D →Man is a hybrid manifold. The restriction of the hybrid action ~Φ~g to J−−−111(((~µµµ))) and

G~µ (also denoted by ~Φ~g ):

~Φ~g : J−−−111(((~µµµ)))
�→ J−−−111(((~µµµ))), ~g ∈ G~µ, (4.12)

is a hybrid action. In other words, if G acts on M, then G~µ acts on J−−−111(((~µµµ))).

If G~µ acts freely and properly on J−−−111(((~µµµ))), then

M~µ := J−−−111(((~µµµ)))///G~µ : D →Man

is a hybrid manifold, and the canonical hybrid projection

~π~µ : J−−−111(((~µµµ)))
�→ M~µ = J−−−111(((~µµµ)))///G~µ

is a hybrid submersion. M~µ is called the reduced hybrid phase space. In particular, for every α : a → b in

D, there is a commuting diagram

Ma
Mα - Mb

J−−−111(((~µµµ)))a

(~i~µ)a

∪

6

J−−−111(((~µµµ)))α - J−−−111(((~µµµ)))b

(~i~µ)b

∪

6

(M~µ)a = (J−−−111(((~µµµ)))///G~µ)a

(~π~µ)a

? (M~µ)α = (J−−−111(((~µµµ)))///G~µ)α- (M~µ)b = (J−−−111(((~µµµ)))///G~µ)b

(~π~µ)b

?

(4.13)

in Man.

Example 4.3. For our running example of a two-dimensional bouncing ball, we define a hybrid group

action by translating in the x-direction on all domains, i.e., define

~Φball : Gball ×Mball → Gball

by

~Φball
b (a, (x, y, px , py )) =


x +a

y

px

py


~Φball

s (b, (x, px )) =
 x +b

px


~Φball

ab
= ~Φball

b |Mball
ab

~Φball
as

= ~Φball
b |Mball

as
.
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Using the canonical construction of momentum maps on cotangent bundles, the hybrid momentum map

~J ball : Mball → (gball)? =∆
op
M ball (R) is given by:

~J ball
b (x, y, px , py ) = px ~J ball

s (x, px ) = px

~J ball
ab

= ~J ball
b |Mball

ab

~J ball
as

= ~J ball
b |Mball

as
.

It follows that a hybrid regular value for this system is given by

~µ= (~µb =µ,~µab =µ,~µs =µ,~µas =µ),

for some µ ∈R.

Therefore, the reduced hybrid phase space for the bouncing ball is given by Mball
~µ

: M ball →Man,

which is defined by the following diagram:
 y

py

 ∈R2 : y = 0 and py ≤ 0


Mball

~µ (M ball) =

R2

ı

?

∩  y

py

 7→
 y

−epy


?
� ı ⊃ R0 id - R0

(4.14)

with R0 = {0} a point.

4.4 Hybrid Manifold Reduction

We now introduce the main theorem on reducing a hybrid symplectic manifold. We begin by

reviewing the classic non-hybrid version of this theorem, originally proven by Marsden and Weinstien

[88] (also see [4, 86, 87] for a more thorough account of classical reduction), followed by a statement of the

hybrid version of this theorem.

4.4.1 Classical reduction. The starting point for classical reduction is a Hamiltonian G-space,

(M ,ω,Φ, J),

where

¦ (M ,ω) is a symplectic manifold,

¦ Φ : G ×M → M is a symplectic action of a Lie group on M ,

¦ J is an Ad?-equivariant momentum map for this action.

Under these conditions, the classical reduction theorem [88] reads:
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Theorem 4.1. Let (M ,ω,Φ, J) be a Hamiltonian G-space and µ ∈ g? be a regular value of J. If the action of

Gµ on J−1(µ) is free and proper, then Mµ = J−1(µ)/Gµ has a unique symplectic form ωµ with the property:

Ω2(πµ)(ωµ) =Ω2(iµ)(ω),

where πµ : J−1(µ) → Mµ is the canonical projection and iµ : J−1(µ) → M is the inclusion.

The hybrid reduction theorem will nicely mirror and utilize this theorem. There also is an in-

triguing connection between the classical reduction theorem and hybrid symplectic manifolds; this the-

orem implies that the following hybrid manifold

M �
iµ ⊃ J−1(µ)

πµ- Mµ

is a hybrid symplectic manifold.

4.4.2 Hybrid Hamiltonian G-spaces. Utilizing the framework developed thus far, we can prove a hy-

brid version of Theorem 4.1. First, we note that the necessary information in order to generalize this

theorem is a hybrid Hamiltonian G-space, i.e., a tuple

(M,~ω,~Φ,~J),

where

¦ (M,~ω) is a hybrid symplectic manifold,

¦ ~Φ : G×M
�→ M is a symplectic hybrid action of a Lie group on M,

¦ ~J is an Ad?-equivariant hybrid momentum map for this hybrid action.

For such a hybrid Hamiltonian G-space, we can reduce the dimensionality of M through hybrid reduction.

This is done by utilizing the classical reduction theorem through the observation that

(Mb ,~ωb ,~Φb ,~Jb)

is a Hamiltonian Gb-space for every b ∈V(D).

Before stating the theorem, recall that for a morphism of hybrid manifolds ~f : M
�→ N,

Ω2
∗(~f ) : Ω2

∗(N)
�→Ω2

∗(M),

which is the natural transformation obtained from applying the functor Hy(Ω2) (see Paragraph 4.1.4).

Theorem 4.2. Let (M,~ω,~Φ,~J) be a hybrid Hamiltonian G-space. Assume ~µ ∈g? is a hybrid regular value of

~J and that the hybrid action of G~µ on J−−−111(((~µµµ))) is free and proper. Then M~µ has a unique hybrid symplectic

form ~ω~µ with the property:

Ω2
∗(~π~µ)(~ω~µ) =Ω2

∗(~i~µ)(~ω).
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Proof. The goal is to define a hybrid symplectic form ~ω~µ on M~µ. To do so, we first note that it follows from

the definition of (M,~ω,~Φ,~J) that, for all b ∈V(D),

(Mb ,~ωb ,~Φb ,~Jb)

is a Hamiltonian Gb-space, ~µb is a regular value of ~Jb , and the action of (G~µ)b on J−−−111(((~µµµ)))b is free and proper.

Therefore, for b ∈V(D), define (~ω~µ)b to be the unique symplectic form satisfying:

Ω2
∗(~π~µ)b((~ω~µ)b) =Ω2

∗(~i~µ)b(~ωb).

For a ∈E(D) there is a diagram of the form

cod(sa) �sa a
ta- cod(ta) (4.15)

in D. To complete the description of ~ω~µ, define (~ω~µ)a by the requirement that

Ω2
∗(M~µ)sa ((~ω~µ)cod(sa )) = (~ω~µ)a =Ω2

∗(M~µ)ta ((~ω~µ)cod(ta )).

To complete the proof, we must show that ~ω~µ is well-defined and unique. Uniqueness clearly

follows from the uniqueness of (~ω~µ)cod(sa ) and (~ω~µ)cod(ta ) and the definition of a hybrid symplectic form.

Therefore, we must only show that it is well-defined, i.e., that

Ω2
∗(M~µ)sa ((~ω~µ)cod(sa )) =Ω2

∗(M~µ)ta ((~ω~µ)cod(ta ))

for all a ∈E(D).

For the diagram (4.15) in D, because the diagram in (4.13) commutes, we have that the diagram:

Mcod(sa )
� Msa Ma

Mta - Mcod(ta )

J−−−111(((~µµµ)))cod(sa )

(~i~µ)cod(sa )

∪

6

� J−−−111(((~µµµ)))sa J−−−111(((~µµµ)))a

(~i~µ)a

∪

6

J−−−111(((~µµµ)))ta - J−−−111(((~µµµ)))cod(ta )

(~i~µ)cod(ta )

∪

6

(M~µ)cod(sa )

(~π~µ)cod(sa )

?
�

(M~µ)sa
(M~µ)a

(~π~µ)a

? (M~µ)ta - (M~µ)cod(ta )

(~π~µ)cod(ta )

?
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commutes in Man. The commutativity of this diagram implies that the following diagram:

Ω2
∗(M)cod(sa )

Ω2∗(M)sa - Ω2
∗(M)a

� Ω2∗(M)ta
Ω2

∗(M)cod(ta )

Ω2
∗(J−−−111(((~µµµ))))cod(sa )

Ω2∗(~i~µ)cod(sa )

?
Ω2∗(J−−−111(((~µµµ))))sa- Ω2

∗(J−−−111(((~µµµ))))a

Ω2∗(~i~µ)a

?
�Ω

2∗(J−−−111(((~µµµ))))ta
Ω2

∗(J−−−111(((~µµµ))))cod(ta )

Ω2∗(~i~µ)cod(ta )

?

Ω2
∗(M~µ)cod(sa )

Ω2∗(~π~µ)cod(sa )

6

Ω2∗(M~µ)sa - Ω2
∗(M~µ)a

Ω2∗(~π~µ)a

6

�
Ω2∗(M~µ)ta

Ω2
∗(M~µ)cod(ta )

Ω2∗(~π~µ)cod(ta )

6

commutes by the functorality of Ω2. The commutativity of this diagram implies that for the symplectic

form (~ω~µ)cod(sa ),

Ω2
∗(~π~µ)a ◦Ω2

∗(M~µ)sa ((~ω~µ)cod(sa )) = Ω2
∗(J−−−111(((~µµµ))))sa ◦Ω2

∗(~π~µ)cod(sa )((~ω~µ)cod(sa ))

= Ω2
∗(J−−−111(((~µµµ))))sa ◦Ω2

∗(~i~µ)cod(sa )(~ωcod(sa ))

= Ω2
∗(~i~µ)a ◦Ω2

∗(M)sa (~ωcod(sa )).

A similar calculation shows that for the symplectic form (~ω~µ)cod(ta ),

Ω2
∗(~π~µ)a ◦Ω2

∗(M~µ)ta ((~ω~µ)cod(ta )) =Ω2
∗(~i~µ)a ◦Ω2

∗(M)ta (~ωcod(ta )).

Because ~ω is a hybrid symplectic form:

Ω2
∗(M)sa (~ωcod(sa )) =Ω2

∗(M)ta (~ωcod(ta )),

which implies that

Ω2
∗(~π~µ)a ◦Ω2

∗(M~µ)sa ((~ω~µ)cod(sa )) =Ω2
∗(~π~µ)a ◦Ω2

∗(M~µ)ta ((~ω~µ)cod(ta )).

By Proposition 4.3, ~π~µ is a hybrid surjective submersion, i.e., (~π~µ)a is a surjective submersion. Therefore,

the following lemma completes the proof.

Lemma 4.6. If π : M → N is a surjective submersion, then Ωk (π) is injective.

Proof. Let ω,ω′ ∈ Ωk (N), q ∈ N and Y1, · · · ,Yk ∈ Tq N . Because π is surjective, there exists a p ∈ M such

that π(p) = q. Because π is a submersion, there exists X1, · · · ,Xk ∈ TpM such that Tp(Xi ) = Yi . Therefore, if
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Ωk (π)(ω) =Ωk (π)(ω′),

ωq (Y1, · · · ,Yn) = Ωk (π)(ω)p(X1, · · · ,Xk )

= Ωk (π)(ω′)p(X1, · · · ,Xk )

= ω′
q (Y1, · · · ,Yn)

as desired.

4.5 Hybrid Hamiltonian Reduction

The hybrid reduction theorem (Theorem 4.2) only gave conditions on when the phase space of a

hybrid system can be reduced. In practice, we are interested in reducing the dynamics of a hybrid system.

That is, we want to understand how to reduce hybrid Hamiltonians. This yields a method for reducing

hybrid systems.

4.5.1 Classical Hamiltonian reduction. Before discussing how to reduce hybrid Hamiltonians, and

hence hybrid systems obtained from hybrid Hamiltonians, we review the classical Hamiltonian reduc-

tion theorem (cf. [4]). The setup for this theorem is a Hamiltonian G-space (M ,ω,Φ, J) satisfying the

assumptions given in Theorem 4.1.

A Hamiltonian system is a tuple (M ,ω,H), where (M ,ω) is a symplectic manifold and H : M →R

is a Hamiltonian. From the Hamiltonian H , we obtain a vector field XH defined by d(H) = ιXH (ω). That is,

associated to the Hamiltonian system (M ,ω,H) there is a dynamical system (M ,XH ), or an object of Dyn.

Recall (see Definition 2.4) that a trajectory of (M ,XH ) is an object (I ,d/dt) of Interval(Dyn) together with a

morphism of dynamical systems:

c : (I ,d/dt) → (M ,XH ).

In other words ċ(t ) = XH (c(t )). The initial condition of such a trajectory is c(t0).

A Hamiltonian H : M →R is said to be G-invariant if for the action Φ : G ×M → M ,

H ◦Φ(g , − ) = H .

for all g ∈G . From a G-invariant Hamiltonian, we obtain a Hamiltonian Hµ on Mµ defined by the require-

ment that it make the following diagram

J−1(µ)
iµ - M

Mµ

πµ

? Hµ - R

H

?

commute. The end result is reduced Hamiltonian system (Mµ,ωµ,Hµ), for which we have an associated

dynamical system (Mµ,XHµ ). We denote trajectories of this dynamical system by

cµ : (I ,d/dt) → (Mµ,XHµ ).
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The classical Hamiltonian reduction theorem (cf. [4] and [88]) relates trajectories of (M ,XH ) and

trajectories of (Mµ,XHµ ). We state this result in a slightly different formulism, although it is equivalent to

the standard result.

Theorem 4.3. Let (M ,ω,Φ, J) be a Hamiltonian G-space satisfying the assumptions given in Theorem 4.1.

If H is a G-invariant Hamiltonian and c : (I ,d/dt) → (M ,XH ) is a trajectory of (M ,XH ) with c(t0) ∈ J−1(µ),

then

c : (I ,d/dt) → (J−1(µ),XH )

and there exists a trajectory cµ : (I ,d/dt) → (Mµ,XHµ ) of (Mµ,XHµ ) defined by the factorization:

(I ,d/dt)
cµ - (Mµ,XHµ )

(J−1(µ),XH )

πµ

-

c -

Remark 4.2. In Theorem 4.3, it would have been more accurate to write (J−1(µ),XH |J−1(µ)) instead of

(J−1(µ),XH ). We opted for the latter notation as it is clear from context that, in this case, XH must be

restricted to take values in J−1(µ).

We now establish the necessary groundwork needed in order to establish the hybrid analogue

of Theorem 4.3. We begin by defining hybrid Hamiltonians. In doing so, we again make explicit the D-

category associated with hybrid objects, e.g., we will now denote the hybrid manifold M by (M ,M). The

motivation for this is that we are once again interested in trajectories.

Definition 4.7. A hybrid Hamiltonian H on a hybrid manifold (M ,M) is defined to be a set of maps:

H = {Hq : Mq →R}q∈V(M ).

A hybrid Hamiltonian system is a tuple (M ,M,~ω,H), where (M ,M,~ω) is a hybrid symplectic manifold and

H is a hybrid Hamiltonian.

Example 4.4. For the bouncing ball hybrid manifold (M ball,Mball), consider the hybrid Hamiltonian

Hball = {Hball
b ,Hball

s },

where

Hball
b (x, y, px , py ) = 1

2m
(p2

x +p2
y )+mg y,

Hball
s (x, px ) = 1

2m
p2

x .

The bouncing ball hybrid Hamiltonian system is given by

(M ball,Mball,~ωball,Hball),

where ~ωball is the hybrid symplectic form given in Example 4.1.
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4.5.2 G-Invariant hybrid Hamiltonians. Let (M ,G) be a hybrid Lie group acting on the hybrid mani-

fold (M ,M) through the hybrid action:

(~IdM ,~Φ) : (M ,G×M) → (M ,M).

A hybrid Hamiltonian H is said to be G-invariant if

Hq ◦ ~Φq (g ,−) = Hq

for all g ∈ Gq and q ∈V(M ), i.e., Hq is Gq -invariant for all q ∈V(M ).

Under the assumptions of Theorem 4.2, if H is a G-invariant hybrid Hamiltonian on (M ,M),

then there is a hybrid Hamiltonian

H~µ = {(H~µ)q : (M~µ)q →R}q∈V(M )

on M~µ defined by requiring that the following diagram commute:

J−−−111(((~µµµ)))q
(~i~µ)q- Mq

(M~µ)q

(~π~µ)q

? (H~µ)q- R

Hq

?

for all q ∈V(M ). This defines a hybrid Hamiltonian system (M ,M~µ,~ω~µ,H~µ).

4.5.3 Trajectories of hybrid Hamiltonian systems. From a hybrid Hamiltonian system (M ,M,~ω,H)

we obtain a (categorical) hybrid system:

(M ,M,XH),

where XH is the collection of vector fields given by XH = {(XH)q }q∈V(M ), with (XH)q defined by the require-

ment that

d(Hq ) = ι(XH)q (~ωq ).

Similarly, we obtain a hybrid system (M ,M~µ,XH~µ
) from the hybrid Hamiltonian system (M ,M~µ,~ω~µ,H~µ).

Note that (M ,M,XH) and (M ,M~µ,XH~µ
) do not correspond to “classical” hybrid systems unless

we make certain assumptions on the hybrid manifold (M ,M), i.e., that it is of the form (M ,Mııı ) (see Para-

graph 2.1.2, Proposition 2.1 and Proposition 2.2).

Recall from Definition 2.7 that a trajectory of the hybrid system (M ,M,XH) consists of an object

(I ,I,d///dt) of Interval(HySys) together with a morphism of hybrid systems:

(~C ,~c) : (I ,I,d///dt) → (M ,M,XH).

The initial condition of such a trajectory is (~C (0),~c0(τ0)) with ~c0(τ0) ∈ M~C (0).
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Example 4.5. For the bouncing ball, the reduced hybrid Hamiltonian is given by:

Hball
~µ = {(Hball

~µ )b , (Hball
~µ )s },

where

(Hball
~µ )b(y, py ) = 1

2m
p2

y +mg y + 1

2m
µ2,

(Hball
~µ )s (0) = 1

2m
µ2.

From this we obtain the reduced hybrid Hamiltonian system:

(M ball,Mball
~µ ,~ωball

~µ ,Hball
~µ ),

where ~ωball
~µ

is the “canonical” symplectic form on the reduced phase space (M ,Mball
~µ

). From the reduced

hybrid Hamiltonian system, we obtain the reduced hybrid system:

(M ball,Mball
~µ ,Xball

~µ ),

where Mball
~µ

is defined as in (4.14) and

Xball
~µ = {(Xball

~µ )b , (Xball
~µ )s }

with

(Xball
~µ )b(y, py ) = 1

m

 py

−m2g

 ,

(Xball
~µ )s (0) = 0.

Therefore, the reduced hybrid system is exactly the hybrid system modeling a one-dimensional bouncing

ball which stops bouncing once the Zeno point is reached.

We now demonstrate that the “dynamics” of H determine the corresponding “dynamics” of H~µ

in the hybrid analogue to Theorem 4.3.

Theorem 4.4. Let (M,~ω,~Φ,~J) be a hybrid Hamiltonian G-space satisfying the assumptions of Theorem 4.2.

If H is a G-invariant Hamiltonian and (~C ,~c) : (I ,I,d///dt) → (M ,M,XH) is a trajectory of (M ,M,XH) with

~c0(τ0) ∈ J−−−111(((~µµµ)))~C (0), then

(~C ,~c) : (I ,I,d///dt) → (M ,J−−−111(((~µµµ))),XH)

and there exists a trajectory (~C ,~c~µ) : (I ,I,d///dt) → (M ,M~µ,XH~µ
) of (M ,M~µ,XH~µ

) defined by the factoriza-

tion:

(I ,I,d///dt)
(~C ,~c~µ)

- (M ,M~µ,XH~µ
)

(M ,J−−−111(((~µµµ))),XH)

(~IdM ,~π~µ)

-

(~C ,~c) -
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Proof. We must first show that for a trajectory

(~C ,~c) : (I ,I,d///dt) → (M ,M,XH)

of (M ,M,XH),

~c(τ0) ∈ J−−−111(((~µµµ)))~C (0) ⇒ (~C ,~c) : (I ,I,d///dt) → (M ,J−−−111(((~µµµ))),XH).

It is enough to show that

~c0(τ0) ∈ J−−−111(((~µµµ)))~C (0) ⇒ (~C ,~c) : (I ,I) → (M ,J−−−111(((~µµµ)))). (4.16)

This would imply that ~ci (τi ) ∈ J−−−111(((~µµµ)))~C (i ) and by Theorem 4.3 we know that

~ci (τi ) ∈ J−−−111(((~µµµ)))~C (i ) ⇒ ~ci : (Ii ,d/dt) → (J−−−111(((~µµµ)))~C (i ), (XH)~C (i ))

for all i ∈V(I ).

To show (4.16), it is clearly sufficient to show:

~ci−1(τi−1) ∈ J−−−111(((~µµµ)))~C (i−1) ⇒ ~ci (τi ) ∈ J−−−111(((~µµµ)))~C (i ), (4.17)

for i − 1, i ∈ V(I ); (4.16) would then follow from Theorem 4.3. Assuming that ~ci−1(τi−1) ∈ J−−−111(((~µµµ)))~C (i−1)

(hence, assuming that ~ci−1(t ) ∈ J−−−111(((~µµµ)))~C (i−1) for all t ∈ Ii−1), we need to show that for every diagram of the

form

i −1 �
sei ei = (i −1, i )

tei - i

in I ,

~J~C (i−1)(~ci−1(τi )) = ~µ~C (i−1) ⇒ ~J~C (ei )(~cei (τi )) = ~µ~C (ei ) (4.18)

⇒ ~J~C (i )(~ci (τi )) = ~µ~C (i ).

First note that because ~c is a natural transformation, the diagram

Ii−1
�

Isei
= ι

⊃ Iei
⊂

Itei
= ι

- Ii

M~C (i−1)

~ci−1

?
�
M~C (sei )

M~C (ei )

~cei

? M~C (tei )
- M~C (i )

~ci

?

commutes.

Since ~µ ∈ g?, we know that g?
~C (sei )

(~µ~C (i−1)) = ~µ~C (ei ). By the naturality of ~J , i.e., because of the

commuting diagram given in (4.6),

~J~C (ei )(~cei (τi )) = g?
~C (sei )

(J~C (i−1)(M~C (sei )(~cei (τi ))))

= g?
~C (sei )

(J~C (i−1)(~ci−1(τi )))

= g?
~C (sei )

(~µ~C (i−1))

= ~µ~C (ei ).
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Since we are assuming that ~µ is a hybrid regular value of ~J (Definition 4.4), we have that:

~J~C (ei )(~cei (τi )) = ~µ~C (ei ) ⇒ ~µ~C (i ) = ~J~C (i )(M~C (tei )(~cei (τi ))) = ~J~C (i )(~ci (τi )).

Therefore, (4.18) coupled with the naturality of ~c implies (4.17), which in turn implies (4.16).

Now, we need to show that

(~IdM ,~π~µ) : (M ,J−−−111(((~µµµ))),XH) → (M ,M~µ,XH~µ
)

is a morphism of hybrid systems. Theorem 4.2 implies that

(~IdM ,~π~µ) : (M ,J−−−111(((~µµµ)))) → (M ,M~µ)

is a morphism of hybrid manifolds, so we need only show that

(~π~µ)b : (J−−−111(((~µµµ)))b , (XH)b) → ((M~µ)b , (XH~µ
)b)

is a morphism of dynamical systems for all b ∈V(M ), but this follows from Theorem 4.3.

Finally, it follows from Lemma 2.1 that

(~C ,~c~µ) := (~IdM ,~π~µ)◦◦◦ (~C ,~c) : (I ,I,d///dt) → (M ,M~µ,XH~µ
)

is a trajectory of (M ,M~µ,XH~µ
).
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Chapter 5

Zeno Behavior & Hybrid Stability Theory

Zeno behavior is a phenomena that is unique to hybrid systems; it has no counterpart in dis-

crete or continuous systems. It has remained relatively unexplored over the years—before the work of the

author [18] there were no sufficient conditions for the existence of Zeno behavior in general hybrid sys-

tems. This is a byproduct of the fact that to determine whether Zeno behavior exists in a hybrid system,

the vector fields on each domain must be solved for explicitly. Since this generally is not possible, finding

sufficient conditions on the existence of Zeno has remained an open problem in the hybrid systems com-

munity, at least in the case when the vector fields on each domain are nontrivial, i.e., when they are not

constant vector fields.

It is only through a necessary paradigm shift in the study of hybrid stability that we are able to

provide a remedy. It is only through the use of categories of hybrid objects that we are able to provide

sufficient conditions for a general class of hybrid systems.

Zeno behavior can be likened to stability, in that its existence implies a type of convergence; the

convergence is to a set, termed a Zeno equilibria, that is invariant under the discrete dynamics. Super-

ficially, this is where the similarities end, e.g., each element of the Zeno equilbria set cannot be a zero of

its corresponding vector field. Motivated by the peculiarities of Zeno equilibria, we consider a form of

asymptotic stability that is global in the continuous state, but local in the discrete state. We provide suffi-

cient conditions for stability of these equilibria, resulting in sufficient conditions for the existence of Zeno

behavior.

Regardless of, or because of, the unique nature of Zeno equilibria, they can arise in many sys-

tems of interest, e.g., mechanical systems undergoing impacts. The convergent behavior of these systems

is often of interest—even if this convergence is not to “classical” notions of equilibrium points. This mo-

tivates the study of Zeno equilibria because even if the convergence is not classical, it still is important.

For example, simulating trajectories of these systems is an important component in their analysis, yet this

may not be possible due to the relationship between Zeno equilibria and Zeno behavior.

An equally important reason to address the stability of Zeno equilibria is to be able to assess the
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existence of Zeno trajectories. This behavior is infamous in the hybrid system community for its ability to

halt simulations. The only way to prevent this undesirable outcome is to give a priori conditions on the ex-

istence of Zeno behavior. This has motivated a profuse study of Zeno hybrid systems (see [33, 59, 69, 119]

to name a few) but a concrete notion of convergence (in the sense of stability) has not yet been introduced.

As a result, there is a noticeable lack of sufficient conditions for the existence of Zeno behavior.

The main contribution of this chapter is sufficient conditions for the stability of Zeno equilibria.

As a byproduct, we are able to give sufficient conditions for the existence of Zeno behavior. The categori-

cal approach to hybrid systems allows us to decompose the study of stability into two manageable steps.

The first step consists of identifying a sufficiently rich, yet sufficiently simple, class of hybrid systems em-

bodying the desired stability properties: first quadrant hybrid systems. The second step is to understand

the stability of general hybrid systems by understanding the relationships between these systems and first

quadrant hybrid systems described by morphisms (in the category of hybrid systems).

In this vain, we devote some effort to the introduction of first quadrant hybrid systems, demon-

strating in a step-by-step fashion how to transform these systems into categorical hybrid systems. We

then study a special class of first quadrant hybrid systems, diagonal first quadrant hybrid systems, giving

sufficient conditions for the existence of Zeno behavior in systems of this form. The techniques employed,

while not immediately generalizable, indicate a fundamental connection between stability and Zeno. We

then proceed to study general hybrid systems, and Zeno equilibria, through the use of categories of hybrid

objects and thus solidify the connection between stability and Zeno behavior. We conclude the chapter

by indicating how it is possible to “go beyond” Zeno, i.e., carry trajectories past a Zeno point, in a simple

class of hybrid systems: Lagrangian hybrid systems.

Related work. There has been a rather profuse study of Zeno equilibria (see [48, 59, 68, 69, 103, 104, 118,

119], to name a few), yet a concrete notion of convergence (in the sense of stability) has not been formally

introduced (except in [18], on which this chapter is based). The author has explored this relationship in

some limited contexts, namely in [7] where diagonal first quadrant hybrid systems were studied, and [12]

where the geometric “stability preserving” regularization of a class of hybrid systems was considered; in

fact, the latter paper first introduces the notion of a Zeno equilibria, albeit a special case thereof. In addi-

tion, the author has studied the relationship between Zeno behavior and the topology of hybrid systems

in [13] and [14]. Finally, methods for carrying executions past the point(s) at which Zeno behavior occurs

has been studied in [19] and [121].

While the convergent properties of Zeno equilibria have not been well-studied, the stability of

hybrid and switched systems has. We refer the reader to [32, 33, 34, 35, 52, 80, 81, 94, 120] for some of the

approaches taken. While our approach is essentially different, there are analogies that can be drawn. For

example, common to the study of stability of hybrid systems is the idea of multiple Lyapunov functions

[34]. In fact, we arrive at a similar construction in Theorem 5.5, where the morphism between hybrid

systems can be viewed as a “hybrid Lyapunov function” and, as such, consists of a collection of Lyapunov

functions.
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5.1 Zeno Behavior

This section is in many ways unorthodox in that it is more discussional in nature. We begin

by reintroducing the definition of Zeno behavior, distinguishing different ways in which this phenomena

can occur. We then illustrate how this Zeno behavior can occur in practice—with devastating results. The

section is concluded with a discussion on the prospects of obtaining necessary, sufficient and necessary

and sufficient conditions for the existence of this behavior.

5.1.1 Zeno trajectories. However one chooses to represent a hybrid system, either as a tuple

H= (Q,E ,D,G ,R,X ),

or categorically,

H= (M ,M,X),

Zeno behavior is necessarily a factor. Since it is a property of the trajectories (or executions) of a hybrid

system, pick a representation of these trajectories, i.e., either:

ε= (Λ, I ,ρ,C ),

or:

(~C ,~c) : (I ,I,d///dt) → (M ,M,X).

In either case, suppose that

Ii = [τi ,τi+1] if i ∈Λ

Ii = [τi ,τi+1] if i ∈V(I ).

Since V(I ) =Λ, recall that Zeno behavior is defined as follows:

Definition 5.1. A trajectory of a hybrid system H is Zeno if V(I ) =N and

∞∑
i=0

(τi+1 −τi ) = τ∞

for some finite constant τ∞, termed the Zeno time.

A hybrid system is Zeno if it admits a Zeno trajectory, i.e., if there exists an trajectory ε that is

Zeno.

5.1.2 Zeno Behavior in practice. Zeno behavior is sometimes referred to as pathological. While this

is justified in that it does not seem to appear in nature, it certainly appears often enough in practice to

warrant fervent study. We believe that it is justified to argue this point, hopefully addressing the concerns

of any naysayers.

A strong motivation for studying hybrid systems is that they can greatly simplify models of com-

plex dynamical systems; Zeno behavior can often arise out of such simplifications. It is often argued that
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Figure 5.1: Zeno behavior that effectively makes a program (Matlab) halt.

if Zeno arises is such a case, the model is wrong—maybe a hybrid model is not the right one. Rather than

“throwing the baby out with the bath water,” the author believes that it is better to understand the role of

Zeno behavior in hybrid systems in order to more effectively deal with the phenomena. To those who are

not in agreement, a simpler rebuttal is: in order to modify Zeno models so that they are no longer Zeno,

one must first detect that they are Zeno. Hence we are back to our initial claim: Zeno behavior needs to be

properly understood.

One may now argue that Zeno behavior does not appear often enough to be an interesting phe-

nomena. Yet, as was seen in Chapter 3, mechanical systems undergoing impacts are naturally modeled

as hybrid systems; if systems of this form loose energy at each impact, they will tend to display Zeno

behavior. If the category of all mechanical systems undergoing impacts does not provide a large enough

example of systems that can display Zeno behavior, one can rest assured that there are more. For example,

hybrid models of communication networks display Zeno behavior (cf. Figure 5.2), as illustrated in [2].

After hopefully convincing the reader as to the necessity of studying Zeno behavior, it is impor-

tant to remark on how it manifests itself. To provide a quintessential example, if one runs the bouncing

ball example in Matlab’s Simulink for 25 seconds (rather then the default 20 seconds) the simulation will

never finish; see Figure 5.1. Zeno behavior makes a simulator effectively halt. This implies that the ex-

istence of such behavior can have catastrophic effects on the simulation—hence verification—of hybrid

systems. If it were possible to detect the existence or non-existence of this behavior a priori, it could have

far-reaching effects.

5.1.3 Types of Zeno. The definition of a Zeno trajectory results in two qualitatively different types of

Zeno behavior (as first introduced in [13]); they are defined as follows: a Zeno trajectory is

Chattering Zeno: If there exists a finite C such that

τi+1 −τi = 0

for all i ≥C .
Genuinely Zeno: If

τi+1 −τi > 0

for all i ∈N.
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Figure 5.2: An example of Genuine Zeno behavior (left). An example of Chattering Zeno behavior (right).

There are obviously more characterizations of Zeno behavior—ones that could go beyond simple condi-

tions on the differences between successive switching times. This will be discussed in more detail after

we illustrate the differences between chattering and genuine Zeno behavior, which is especially prevalent

in there detection and elimination.

Chattering Zeno trajectories (cf. Figure 5.2) result from the existence of a switching surface on

which the vector fields “oppose” each other; for this reason they are easy to detect (simply look at the

orientation of the vector fields along the guards). In addition, they can be eliminated in a fairly simple

manner. Filippov solutions can be defined on these surfaces in order to force the flow to “slide” along the

switching surface [50]. Later in this chapter we will generalize this technique to extend genuinely Zeno

executions past the Zeno point.

Genuinely Zeno trajectories (cf. Figure 5.2) are much more complicated in their behavior. The

only methods currently available to detect the existence of trajectories of this form can be found within

this chapter. Very little has been done in the area of eliminating these executions, although there have

been some results [12] and [69], again for a special class of hybrid systems.

To better understand why this is the case, recall that the bouncing ball is, in fact, globally (minus

the origin) genuinely Zeno (if 0 < r < 1), i.e., every trajectory is Zeno. Recall from Example 2.17 that the

the Zeno time for the bouncing ball is given by:

τball
∞ =

∞∑
i=0

(τball
i+1 −τball

i ) =
x2 + (1−2g )

√
2g x1 +x2

2

g
+

∞∑
i=0

2

√
2g x1 +x2

2

g
r i .

For a geometric sequences {ar i }i∈N, recall that picking initial conditions x1 = a2g /8 and x2 = 0 for a tra-

jectory of the bouncing ball yields:

τball
∞ =±

(
1

2
a(1−2g )+

∞∑
i=0

ar i

)
,

where the expression on the right is positive if a is positive and negative if a is negative. This implies

that even for one of the simplest examples of a hybrid system—the bouncing ball—the switching times
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effectively yield any geometric series.1

Therefore, to completely characterize the switching times of Zeno trajectories, it is reasonable to

suspect that one would need to effectively characterize all series and the convergence properties thereof.

This is assuming that one were able to solve for the switching times—something that is not even possible

for linear hybrid systems since it involves solving transcendental equations. All of this hints at the com-

plexity of Zeno behavior—determining conditions on the existence or non-existence of Zeno behavior is

a formidable task that will take serious and concerted effort.

5.2 First Quadrant Hybrid Systems

This section is devoted to the study of first quadrant hybrid systems, categorical hybrid systems,

and their interplay. We begin by defining first quadrant hybrid systems; these systems are easy to under-

stand and analyze, but lack generality. Yet, they are very useful for understanding Zeno behavior in general

hybrid systems. The connection between these two types of systems—first quadrant hybrid systems and

general hybrid systems—is achieved through the use of morphisms of hybrid systems. Therefore, we be-

gin by introducing first quadrant hybrid systems using the classical notation for hybrid systems. We then

proceed to demonstrate, in a step-by-step fashion, how to obtain a categorical representation of these

systems.

5.2.1 First quadrant hybrid systems. First quadrant hybrid systems are hybrid systems which can be

viewed as the “simplest” hybrid systems that display Zeno behavior.

A first quadrant hybrid system, or just FQ hybrid system, is a tuple:

HFQ = (Γ,D,G ,R,X ),

where

¦ Γ= (Q,E) is a directed cycle, with

Q = {1, . . . , k}, E = {e1 = (1,2), e2 = (2,3), . . . , ek = (k,1)}.

¦ D = {Di }i∈Q , where for all i ∈Q,

Di = (R+
0 )2 =


 x1

x2

 ∈R2 : x1 ≥ 0 and x2 ≥ 0

 ,

hence the name “first quadrant.”

¦ G = {Ge }e∈E , where for all e ∈ E

Ge =


 x1

x2

 ∈R2 : x1 = 0 and x2 ≥ 0

 .

1As a side note, our proof later in this chapter that the bouncing ball is Zeno does not rely on the convergence of geometric series,
and so we prove, independently, that geometric series converge (when 0 ≤ r < 1).
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D1Re1Re2
Ge1 Ge2

Dball
2Dball

1

Gballe1 Gballe2

Rballe1

Rballe2

Figure 5.3: The hybrid system Hball
FQ .

¦ R = {Re }e∈E , where Re : Ge → (R+
0 )2 and for all e ∈ E there exists a function re :R+

0 →R+
0 with

Re (x1, x2) =
 re (x2)

x1

 .

¦ X = {Xi }i∈Q , where Xi is a Lipshitz vector field on (R+
0 )2.

Remark 5.1. We could consider higher dimensional FQ hybrid systems, but this would add complication

without generality.

Example 5.1. We will transform the bouncing ball hybrid system introduced in Example 2.1 into a first

quadrant hybrid system:

Hball
FQ = (Γball,Dball,Gball,Rball,X ball)

by dividing the original domain into two components, and changing the vector fields accordingly.

We first define Γball to be the directed cycle:

1
e1 -�
e2

2

Since Hball
FQ will be a first quadrant hybrid system, the domains and guards must satisfy the conditions

given in Paragraph 5.2.1. In the case of the bouncing ball, the domain Dball
1 is obtained from the top half

of the original domain for the bouncing ball by reflecting it around the line x1 = x2. The domain Dball
2 is

obtained from the bottom half of the original domain by reflecting it around the line x2 = 0. This implies

153



Zeno Behavior & Hybrid Stability Theory

that the reset maps are given by2

Rball
e1

(x1, x2) =
 x2

x1

 , Rball
e2

(x1, x2) =
 ex2

x1

 .

Finally, the transformed vector fields are given by

X ball
1 (x1, x2) =

 −g

x1

 , X ball
2 (x1, x2) =

 −x2

g

 .

A graphical representation of this system can be seen in Figure 5.3.

5.2.2 Categorical FQ hybrid systems. We now proceed to show, in a step-by-step fashion, how to ob-

tain a categorical FQ hybrid system (M FQ,MFQ,XFQ) from a first quadrant hybrid system HFQ.

The graph for a FQ hybrid system is given by a directed k-cycle graph:

1
e1- 2

k

ek-
3

e2-

...
...

i +2 i −1

i +1 �ei

ei+1�

i

ei−1
�

Therefore, the associated D-category, M FQ, is given by:

M FQ =

e1

ek e2

1

se1

�

tek

-
2

te1

- se2

�

k

sek -

3

te2

�

...
...

i +2 i −1

i +1 i

ei+1

tei+1

-

sei+1

-

ei−1

sei−1

�

tei−1

�

ei

sei

-

tei

�

The hybrid space of HFQ is the tuple (Γ,D,G ,R). Therefore, as outlined in Proposition 2.1, the

hybrid manifold associated to HFQ is given by the pair (M FQ,MFQ) where MFQ is the functor defined on

2Note that we do not denote the coefficient of restitution for this system by “e” and not “r” due to the notation used to define FQ
hybrid systems.
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M FQ by

MFQ(M FQ) =

Ge1

Gek Ge2

D1

ı

�

⊃

Rek
-

D2

Re1

- ı
�

⊃

Dk

ı

⊂
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Re2
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-
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⊃

Rei−1
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Gei

ı

⊂

-

Rei

�

Finally, the categorical hybrid system associated to HFQ is given by

(M FQ,MFQ,XFQ),

where XFQ = {Xi }i∈V(M FQ)=Q . This categorical hybrid system can be visualized graphically as follows:

(M FQ,MFQ,XFQ) =

Ge1

Gek Ge2

(X1,D1)

ı

�

⊃

Rek
-

(X2,D2)

Re1

- ı
�

⊃

(Xk ,Dk )

ı

⊂

-

(X2,D3)

Re2

�

...
...

(Xi+1,Di+2) (Xi−1,Di−1)

(Xi+1,Di+1) (Xi ,Di )

Gei+1

Rei+1

-

ı⊂

-

Gei−1

ı

�

⊃

Rei−1

�

Gei

ı

⊂

-

Rei

�

Example 5.2. Returning to the first quadrant bouncing ball hybrid system, Hball
FQ , we will transform this

hybrid system into a categorical hybrid system

(M ball,Mball,Xball).
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The D-category associated with Γball is given by

M ball =

e1

1

se1

�
2

te1

-

e2

se2

-

te2

�

together with the identity morphisms on each object. The functor

Mball : M ball →Man

takes the following values:

Mball(M ball) =

Mball
e1

=Gball
e1

Mball
1 = Dball

1

Mball
se1

= ı

�
Mball

2 = Dball
2

Mball
te1

= Rball
e1

-

Mball
e2

=Gball
e2

Mball
se2

= ı

-

Mball
te2

= Rball
e2

�

Finally, the collection of vector fields Xball is given by:

Xball = {X ball
i }i∈V(M ball)=Qball = {X ball

1 ,X ball
2 }.

5.3 Zeno Behavior in DFQ Hybrid Systems

Diagonal first quadrant (DFQ) hybrid systems are a special class of first quadrant hybrid systems

that have diagonal affine vector fields on each domain. It is this restrictive class of hybrid systems that we

will now consider. The main impetus for this is that these hybrid systems have sufficiently interesting

dynamics, in that they are not trivial, while remaining amenable to analysis. Studying these systems will

yield important intuition about Zeno behavior.

The main result of this section is sufficient conditions for the existence of Zeno behavior in DFQ

hybrid systems. Given certain assumptions on a diagonal first quadrant hybrid system, we construct an

infinite execution for this system. To this execution, we associate a single discrete time dynamical system

that describes its continuous evolution. Therefore, we reduce the study of executions of diagonal first

quadrant hybrid systems to the study of a single discrete time dynamical system. We obtain sufficient

conditions for the existence of Zeno behavior by determining when this discrete time dynamical system

is exponentially stable.
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Definition 5.2. A diagonal first quadrant hybrid system (DFQ hybrid system) is a FQ hybrid system

HDFQ = (Γ= (Q,E),D,G ,R,X )

such that

¦ re = id for all e ∈ E .

¦ X = {Xq = Λq x + aq }q∈Q is a set of diagonal affine linear systems, i.e., aq ∈ R2 and Λq ∈ R2×2 is a

diagonal matrix for every q ∈Q.

Notation 5.1. To avoid the proliferation of subscripts, we denote the i th entry of aq by a i
q . Similarly, the

(i , i )th entry of Λq is denoted by λi
q ; this is just the i th eigenvalue of Λq .

5.3.1 Trajectories. Because of the special form of the vector fields for a DFQ hybrid system, we can

explicitly solve for trajectories. A trajectory of the dynamical systems (R2,Xq ) with initial condition c(t0),

c : (I ,d/dt) → (R2,Xq ),

with t0 the left endpoint of I , is given by:

c(t ) = (exp(Λq (t − t0))−1)Λ−1
q aq +exp(Λq (t − t0))c(t0),

which is well defined even if Λq has zero eigenvalues; in the case when Λq = 0, this expression becomes

c(t ) = (t − t0)aq + c(t0), or this is the flow of the constant system Xq = aq .

5.3.a Event Detection

Discrete transitions in a hybrid system occur when there is an event—that is when the flow hits

the guard. In this section we determine when an event exists for some domain and initial condition of a

DFQ hybrid system, and we explicitly solve for the time in which this event occurs. These conditions are

important because when they are satisfied, it is possible to construct an execution.

5.3.2 Existence of events. For some x ∈ Dq , we say that there exists an event if for a trajectory

c : (I ,d/dt) → (R2,Xq )

of (R2,Xq ) with initial condition c(t0) = x, there exists a finite ∆t (x) ≥ 0 such that

(i) c1(t0 +∆t (x)) = 0

(ii) c2(t ) ≥ 0 ∀ t ∈ [t0, t0 +∆t (x)].

The first condition says, in the context of DFQ hybrid systems, that the trajectory c(t ) reaches the guard

of Dq at time t0 +∆t (x). The second condition says that

c : ([t0, t0 +∆t (x)],d/dt) → (Dq ,Xq ) = ((R+
0 )2,Xq ),
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is a morphism of dynamical systems, i.e., c is a trajectory of (Dq ,Xq ).

In the case of DFQ hybrid systems, we can give conditions on when events exist. The first two

components of a trajectory of (R2,Xq ), with initial condition c(t0) = (x1, x2)T , is given by

c1(t ) =
(exp(λ1

q (t − t0))−1)

λ1
q

a1
q +exp(λ1

q (t − t0))x1,

c2(t ) =
(exp(λ2

q (t − t0))−1)

λ2
q

a2
q +exp(λ2

q (t − t0))x2.

There exists an event if

∆tq (x1) =:
1

λ1
q

log

(
a1

q

a1
q +λ1

q x1

)
(5.1)

is finite and positive (possibly zero) and

(exp(λ2
q (t − t0))−1)

λ2
q

a2
q +exp(λ2

q (t − t0))x2 ≥ 0 ∀ t ∈ [t0, t0 +∆tq (x1)].

We can make these conditions more explicit by considering initial conditions in a ball of radius δ > 0

around the origin:

Bδ(0) = {x ∈Rn : ‖x‖ < δ}.

We have the following Proposition.

Proposition 5.1. For some δ> 0, there exists an event for x ∈ Bδ(0)∩Dq if

a1
q < 0 and a2

q ≥ 0.

Proof. Proving this proposition amounts to first considering the inequality

1

λ1
q

log

(
a1

q

a1
q +λ1

q x1

)
≥ 0

and deriving conditions on a1
q andλ1

q such that it holds for 0 ≤ x1 < δ for some δ> 0. It turns out that these

conditions are independent of λ1
q , i.e., we only require that a1

q < 0. Note that λ1
q does affect δ. Specifically,

if λ1
q ≤ 0, then δ=∞, while if λ1

q > 0,

δ=−
a1

q

λ1
q

.

The second step in showing this proposition is to understand what the conditions are on a2
q and

λ2
q such that

(exp(λ2
q (t − t0))−1)

λ2
q

a2
q +exp(λ2

q (t − t0))x2 ≥ 0

for t ∈ [t0, t0 +∆tq (x1)]. It easily can be seen that this holds as long as a2
q ≥ 0, regardless of the values of x2

and λ2
q .
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Figure 5.4: The phase space of the diagonal system given in Example 5.3 for c = 1 (left) and c =−1 (right).

Corollary 5.1. There exists an event for all x ∈ Dq if

λ1
q ≤ 0 and a1

q < 0 and a2
q ≥ 0.

Example 5.3. Consider the diagonal system given by

ẋ =
 c 0

0 −c

x +
 −4

4

 .

In the case when c = 1, an event exists if x1 < 4, and otherwise one does not exist. If c =−1 then an event

always exists.

5.3.b Discrete Nonlinear Systems from DFQ Hybrid Systems

Using the conditions obtained in the previous section, we are able to construct an infinite exe-

cution for a DFQ hybrid system satisfying these conditions. From this execution, we can define a set of

discrete time maps—analogous to Poincaré maps—defining the evolution of the sequence of initial con-

ditions of this execution. Thus, studying a discrete evolution in space is equivalent to studying a set of dis-

crete time dynamical systems. Later, we will study one of these discrete time dynamical systems, termed

the discrete time dynamical system associated to a DFQ hybrid system, and show that its behavior in some

way dictates the behavior of the other discrete time dynamical systems. Thus, we will demonstrate that

studying the behavior of a hybrid system is equivalent to studying a discrete time dynamical system.

Assumption 5.1. For a DFQ hybrid system HDFQ, assume that for every q ∈Q, Λq x +aq satisfies the con-

ditions:

λ1
q ≤ 0 and a1

q < 0 < a2
q .
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5.3.3 Constructing an infinite execution. If the above assumption holds, we can construct an infinite

execution (see Definition 2.5)

ε= (N, I ,ρ,C ),

of HDFQ. Before doing so, we introduce the set-up under consideration.

We will take the initial time for the execution to be 0, i.e., 0 will be the left endpoint of I0. In

addition, we will take the initial condition of ε to be (ξ0,0) for some ξ0 ∈ R. This implies that all of the

initial conditions for the trajectories C = {ci }i∈N will be of the form ci (τi ) = (ξi ,0) for τi the left endpoint

of Ii and some ξi ∈ R. We know that there will exist an infinite number of such trajectories because of

Assumption 5.1. That is, for every (ξi ,0) there will exist a switching time given by ∆tρ(i )(ξi ), as defined in

(5.1). The end result is a sequence:

ξ= {ξi }i∈N,

which we can view as a sequence of initial conditions.

With these formulations, we define ε as follows:

¦ I = {Ii }i∈N where Ii = [τi ,τi+1] with the switching times τi defined recursively by:

τ0 = 0

τi+1 = ∆tρ(i )(ξi )+τi

for i ≥ 0.

¦ ρ :N→Q is defined to be

ρ(i ) := i mod k +1.

¦ C = {ci }i∈N, where

ci (t ) =


(exp(λ1

ρ(i )(t−τi ))−1)

λ1
ρ(i )

a1
ρ(i ) +exp(λ1

ρ(i )(t −τi ))ξi

(exp(λ2
ρ(i )(t−τi ))−1)

λ2
ρ(i )

a2
ρ(i )

 .

For this to be a valid execution, we require that the sequence ξ= {ξi }i∈N satisfy:

ξi+1 = (ci (τi+1))2

=
(exp(λ2

ρ(i )∆tρ(i )(ξi ))−1)

λ2
ρ(i )

a2
ρ(i ).

This, together with the results on the existence of events, implies that ε is a well-defined execution.

5.3.4 Overview of construction. From the execution given in the previous paragraph, we would like to

construct a single nonlinear discrete map; this map will be used to derive sufficient conditions on the exis-

tence of Zeno behavior. This is done by first defining a map that computes this sequence ξ independently

of the sequence of switching times. The next step is to define a map that computes this sequence inde-

pendently of both {τi }i∈N and ρ. The end result is a single map that iteratively computes ξ, i.e., a discrete

160



Zeno Behavior & Hybrid Stability Theory

time dynamical system, so we can study the behavior of the sequence of initial conditions by studying the

behavior of this map.

5.3.5 Step 1: Removing dependence on time. For q ∈Q, i.e., for q ∈ {1, . . . , k}, let Φq :R+
0 →R+

0 be given

by

Φq (x) = 1

λ2
q

(
exp

(
λ2

q

λ1
q

log

(
a1

q

a1
q +λ1

q x

))
−1

)
a2

q .

Note that this function is well-defined because of Assumption 5.1. This function also has some important

properties. It is a diffeomorphism and both Φq and its inverse satisfy the properties:

Φq (0) = 0 Φ−1
q (0) = 0

Φ′
q (0) =−

a2
q

a1
q

(Φ−1
q )′(0) =−

a1
q

a2
q

This function gives the elements in the sequence ξ= {ξi }i∈N inductively, i.e.,

ξi+1 =Φρ(i )(ξi ).

So we have eliminated the dependence of ξ on {τi }i∈N (or the switching times).

5.3.6 Step 2: Removing dependence on the discrete evolution. The next step in defining a single non-

linear discrete map from this execution is to eliminate ρ from a subsequence of the sequence ξ that has

the same limiting behavior as the original sequence. To do this, define the map Ψ :R+
0 →R+

0 by

Ψ=Φk ◦Φk−1 ◦ · · · ◦Φ1. (5.2)

Note that this map has the following important properties:

Ψ(0) = 0, Ψ′(0) =
(

k∏
q=1

−
a2

q

a1
q

)
.

It also can be verified that

ξki+k = Φρ(ki+k−1)(ξki+k−1)

= Φρ(ki+k−1) ◦Φρ(ki+k−2) ◦ · · · ◦Φρ(ki )(ξki )

= Φk ◦Φk−1 ◦ · · · ◦Φ1(ξki )

= Ψ(ξki )

since ρ(i ) = i mod k +1. Therefore, define the following subsequence

z = {zi }i∈N := {ξki }i∈N

of this sequence ξ. This subsequence is important because, as we have just shown, it is defined by a

discrete time dynamical system:

zi+1 =Ψ(zi ).
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It is also important because when it converges to the origin, so does the sequence ξ; this will be demon-

strated in Lemma 5.1.

5.3.7 Step 3: Removing Dependence on initial conditions. The final step in deriving a single map that

describes the sequence ξ is to show that every element of ξ can be expressed in terms of the map Ψ

(composed with other maps); this fact will be essential in establishing the main result of this section.

Define the following subsequences of the sequence ξ,

η(J) = {η(J)i }i∈N := {ξki+J−1}i∈N,

for J ∈ {1, . . . , k}. Note that in particular z = η(1), and it is clear that

ξ=
k⋃

J=1
η(J).

Now we can relate each sequence η(J) to the sequence z by defining the maps ΥJ : R+
0 → R+

0 , for J ∈
{1, . . . , k}, given by

ΥJ = ΦJ−1 ◦ · · · ◦Φ1 ◦Φk ◦Φk−1 ◦ · · · ◦ΦJ

= ΦJ−1 ◦ · · · ◦Φ1 ◦Ψ◦Φ−1
1 ◦ · · · ◦Φ−1

J−1.

In other words, they are related to each other and Ψ by conjugation:

Υ1 =Ψ, ΥJ+1 =ΦJ ◦ΥJ ◦Φ−1
J .

These maps are important because they describe the sequences η(J), i.e., it easily can be verified that

η(J)i+1 =ΥJ (η(J)i ).

The maps ΥJ also have the following important properties:

ΥJ (0) = Ψ(0) = 0

Υ′
J (0) = Ψ′(0) =

(
k∏

q=1

a2
q

a1
q

)
.

All of the aforementioned properties can be summarized by noting that we have the following lemma.

Lemma 5.1. If

lim
i→∞

zi = 0 ⇒ lim
i→∞

η(J)i = 0,

for all J ∈ {1, . . . , k}.

Proof. We will reason by induction on J . For the case when J = 1, by assumption:

lim
i→∞

η(1)i = lim
i→∞

zi = 0.
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Now assume that limi→∞η(J −1)i = 0, and note that

η(J)i = ξki+J−1

= Φρ(ki+J−2)(ξki+J−2)

= ΦJ−1(ξki+J−2)

= ΦJ−1(η(J −1)i ).

Therefore,

lim
i→∞

η(J)i = lim
i→∞

ΦJ−1(η(J −1)i ) =ΦJ−1(0) = 0.

This lemma indicates that in studying the behavior of the hybrid system HDFQ, one can study

the behavior of the sequence z = {zi }i∈N. Moreover, analyzing the behavior of this sequence is more man-

ageable since it is determined by a discrete time system. We thus can apply the theory of discrete time

systems to hybrid systems. This motivates the following definition.

Definition 5.3. The discrete time dynamical system associated to the hybrid system HDFQ is given by

zi+1 =Ψ(zi ),

where Ψ :R+
0 →R+

0 is as defined in (5.2).

Note that the discrete time system given by zi+1 =Ψ(zi ) has an isolated equilibrium point at the

origin: Ψ(0) = 0. It also is interesting to note that this system is linear in the case when λ1
q =λ2

q = 0. To see

this, note that in this case we have the discrete time linear system

zi+1 =Ψ(zi ) =
(

k∏
q=1

a2
q

a1
q

)
zi .

The startling fact is that the stability of the map Ψ in the general case will be directly related to the stability

of this linear system. We will derive results relating the properties of this function, specifically its stability,

to Zeno behavior.

5.3.c Sufficient Conditions for Zeno Behavior

Studying the discrete time dynamical system associated to a dynamical system, we are able to

obtain easily verifiable conditions on the existence of Zeno behavior in DFQ hybrid systems.

5.3.8 Discrete time exponential stability. Recall that a discrete dynamical system, zi+1 =Ψ(zi ), is ex-

ponentially stable at the origin if there exist constants c > 0 and 0 ≤α< 1 such that

|zi | ≤ cαi |z0|.

We can derive conditions on when the discrete dynamical system associated to a DFQ hybrid system is

stable—at least when it satisfies Assumption 5.1.
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Theorem 5.1. Let HDFQ be a DFQ hybrid system and Γ be a cycle of the underlying graph Γ of this hybrid

system satisfying Assumption 5.1. Then the discrete dynamical system

zi+1 =Ψ(zi )

associated to HDFQ and Γ is exponentially stable at the origin if∣∣∣∣∣ k∏
q=1

a2
q

a1
q

∣∣∣∣∣< 1.

Proof. The result follows from the Hartman-Grobman theorem (cf. [101]) after suitably extending the

map Ψ to the entire real numbers.

Theorem 5.2. Let HDFQ be a DFQ hybrid system satisfying Assumption 5.1. Then if Λq x+aq , q ∈Q, satisfies

the conditions:

λ1
q ≤ 0

a1
q < 0 < a2

q

∣∣∣∣∏k
q=1

a2
q

a1
q

∣∣∣∣< 1


⇒ HDFQ is Zeno.

Proof. Let χ = (N, I ,ρ,C ) be the execution constructed in Paragraph 5.3.3. The goal is to show that the

series ∞∑
i=0

(τi+1 −τi )

converges. To do this, we will consider subsequences of the sequence {τi+1 −τi }i∈N. Namely, recall from

the definition of the execution and the sequences η(J) that

∞∑
i=0

(τi+1 −τi ) =
∞∑

i=0
∆tρ(i )(ξi )

=
∞∑

i=0

k∑
J=1

∆tρ(ki+J−1)(ξki+J−1)

=
k∑

J=1

∞∑
i=0

∆tJ (η(J)i ).

Therefore, we need show only that
∑∞

i=0∆tJ (η(J)i ) converges for each J . First, it can be seen that

∆tJ (0) = 0, ∆t ′J (0) = −1

a1
J

.

Now our assumptions imply that the sequence z = {zi }i∈N is exponentially stable to the origin, i.e., for all

J ∈ {1, . . . , k},

lim
i→∞

zi = 0 ⇒ lim
i→∞

η(J)i = 0,
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Figure 5.5: A simulated trajectory of the two tank system given in Example 5.4.

by Lemma 5.1. Applying the ratio test for each J , we have

lim
i→∞

∣∣∣∣∆tJ (η(J)i+1)

∆tJ (η(J)i )

∣∣∣∣ = lim
i→∞

∣∣∣∣∆tJ (ΥJ (η(J)i ))

∆tJ (η(J)i )

∣∣∣∣
= lim

x→0

∣∣∣∣∆tJ (ΥJ (x))

∆tJ (x)

∣∣∣∣
= lim

x→0

∣∣∣∣∣∆t ′J (x)Υ′
J (x)

∆t ′J (x)

∣∣∣∣∣
=

∣∣∣∣∣∆t ′J (0)

∆t ′J (0)
Υ′

J (0)

∣∣∣∣∣
=

∣∣∣∣∣ k∏
q=1

−
a2

q

a1
q

∣∣∣∣∣< 1.

Or ∞∑
i=0

∆tJ (η(J)i )

converges for each J and hence
∑∞

i=0(τi+1 −τi ), so HDFQ is Zeno.

Example 5.4. The two water tanks hybrid system as introduced in Example 2.2 is a classic example of a

hybrid system that displays Zeno behavior; see Figure 5.5 for a simulated trajectory of this system. We will

demonstrate how the conditions above allow us to verify that this hybrid system is Zeno without explicitly

solving for the vector fields. First, we transform the hybrid system into a DFQ hybrid system by “flipping"

the dynamics on one of the domains. The graph and domains are the same as the ones introduced in
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Example 2.2. In accordance with the fact that it should be a DFQ hybrid system, the guards are now the

upper half of the x2-axis. Therefore, to complete the description of this system, we need only specify the

vector fields on each domain. These are given by:

X1(x) =
 −v2

w − v1

 , X2(x) =
 −v1

w − v2

 .

Here, again, w > 0 is the inflow of water into the system, and v1 > 0 and v2 > 0 are the outflows of water

from each tank. Recall that we made the assumption that

max{v1, v2} < w < v1 + v2.

Under these conditions, we would like to verify that this hybrid system is Zeno.

Applying Theorem 5.2 to this system we conclude that the system is Zeno because:

λ1
1 =λ2

1 = 0, −v2,−v1 < 0, w − v1, w − v2 > 0,

and
(w − v1)(w − v2)

v1v2
< ((v1 + v2)− v1)((v1 + v2)− v2)

v1v2
= 1

because w < v1 + v2.

5.4 Stability of Zeno Equilibria

The purpose of this section is to study the stability of a type of equilibria that is unique to hybrid

systems: Zeno equilibria. The uniqueness of these equilibria necessitates a paradigm shift in the current

notions of stability, i.e., we must introduce a type of stability that is both local and global in nature and,

therefore, has no direct analogue in continuous and discrete systems. The main result of this section is

sufficient conditions for the stability of Zeno equilibria in general hybrid systems.

5.4.a Classical Stability: A Categorical Approach

In this section we revisit classical stability theory under a categorical light. The new perspec-

tive afforded by category theory is more than a simple exercise in abstract nonsense—it motivates the

development of an analogous stability theory for hybrid systems and hybrid equilibria.

Remarkably, stability also can be described through the existence of certain morphisms. Let us

first recall the definition of globally asymptotically stable equilibria; for more on the stability of dynamical

systems see [70] and [101].

Notation 5.2. For all dynamical systems (M ,X ) considered in this section, we assume that M is a subset of

Rn . Thus we can write expressions like “‖x − y‖” without ambiguity. Alternatively, we could assume that

M is a Riemannian manifold.
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Definition 5.4. Let (M ,X ) be an object of Dyn. An equilibrium point x∗ ∈ M of X is said to be globally

asymptotically stable when for any morphism c : ([t ,∞),d/dt) → (M ,X ), for any t1 ≥ t and for any ε > 0

there exists a δ> 0 satisfying:

1. ‖c(t1)−x∗‖ < δ ⇒ ‖c(t2)−x∗‖ < ε ∀t2 ≥ t1 ≥ t ,

2. limτ→∞ c(τ) = x∗.

Consider now the full subcategory of Dyn, denoted by GasDyn, with objects (R+
0 ,−α) where α is

a class K∞ function, i.e., α is strictly increasing satisfying α(0) = 0 and α(x) →∞ as x →∞. Lyapunov’s

second method (see [70], Theorem 3.8, page 138) can then be described as follows:

Theorem 5.3. Let (M ,X ) be an object of Dyn. An equilibrium point x∗ ∈ M of X is globally asymptotically

stable if there exists a morphism:

(M ,X )
v- (R+

0 ,−α) ∈GasDyn

in Dyn satisfying:

1. v(x) = 0 implies x = x∗,

2. v : M →R+
0 is a proper (radially unbounded) function.

The previous result suggests that the study of stability properties can be carried out in two steps.

In the first step we identify a suitable subcategory having the desired stability properties. In the case of

global asymptotic stability, this subcategory is GasDyn; for local stability we could consider the full sub-

category defined by objects of the form (R+
0 ,−α) with α a non-negative definite function. The chosen

category corresponds in some sense to the simplest possible objects having the desired stability proper-

ties. In the second step we show that existence of a morphism from a general object (M ,X ) to an object in

the chosen subcategory implies that the desired stability properties also hold in (M ,X ). This is precisely

the approach we will develop for the study of Zeno equilibria.

5.4.b Zeno Equilibria

We now proceed to study Zeno equilibria. It is important to note that we do not claim that Zeno

equilibria are the most general form of equilibria corresponding to Zeno behavior. We do claim that the

type of Zeno equilibria considered are general enough to cover a wide range of interesting (and somewhat

peculiar) behavior, while being specific enough to allow for analysis.

Definition 5.5. Let (M ,M,X) be a hybrid system. A Zeno equilibria is a pair (Z ,~z), where

¦ Z is a D-subcategory of M such that grph(Z ) is a directed cycle,

¦ ~z = {~za}a∈Ob(Z ) such that

– ~za ∈ Ma for all a ∈Ob(Z ),
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D1 D2

Re1

Re2

Ge1 Ge2

~z1 ~z2

Figure 5.6: Zeno equilibria for a FQ hybrid system.

– ~zb = Mα(~za) for all α : a → b in Z ,

– Xa(~za) 6= 0 for all a ∈Ob(Z ).

5.4.1 Another interpretation of Zeno equilibria. There is a more categorical definition of a Zeno equi-

libria. Starting with the one point set ∗, we obtain a hybrid manifold (Z ,∆Z (∗)). Denoting by ~In : Z →M

the inclusion functor, a Zeno equilibria is a morphism of hybrid manifolds:

(~In,~z) : (Z ,∆Z (∗)) → (M ,M)

such that Xa(~za) 6= 0.

To see that these definitions are equivalent, by slight abuse of notation denote ~za(∗) := ~za . Now,

the first condition, ~za ∈ Ma for all a ∈ Ob(Z ), follows trivially. The second condition is implied by the

following diagram, which must commute

Ma

∗

~za -

Mb

Mα

?~zb
-

for every α : a → b in Z .

Example 5.5. For the hybrid system HFQ, and since we are assuming that the underlying graph is a cycle,

the conditions expressed in Definition 5.5 imply that a set ~z = {~z1, . . . ,~zk } is a Zeno equilibria if for all

i = 1, . . . , k, ~zi ∈Gei , Xi (~zi ) 6= 0 and

Rei−1 ◦ · · · ◦Re1 ◦Rek ◦ · · · ◦Rei (~zi ) = ~zi . (5.3)
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Because of the special structure of HFQ, (5.3) holds iff ~zi = 0 for all i . That is, the only Zeno equilibria of

HFQ is the singleton set ~z = {0}. A Zeno equilibria for a FQ hybrid system is pictured in Figure 5.6. Note that

the formulation of Zeno equilibria for FQ hybrid systems implies that for ~z = {0} to be a Zeno equilibria, it

must follow that re (0) = 0 for all e ∈ E (otherwise (5.3) is not well-defined).

5.4.2 Induced hybrid subsystems. Let (M ,M,X) be a hybrid system, Z be a D-subcategory of M , and

~In : Z → M be the inclusion functor. In this case, there is a hybrid subsystem (Z ,MZ ,XZ ) of (M ,M,X)

corresponding to this inclusion, i.e.,

MZ = ~In
∗

(M), XZ = {Xa}a∈V(Z ),

and there is an inclusion in HySys:

(~In, ~id) : (Z ,MZ ,XZ ) ,→ (M ,M,X)

where ~id is the identity natural transformation.

Definition 5.6. A D-subcategory Z of a D-category M is said to be a locally attracting D-cycle if grph(Z )

is a directed cycle and

cod(sa1 ) = ~In(b) = cod(sa2 ) ⇒ a1 = a2,

for all b ∈V(Z ).

Definition 5.7. Let (M ,M,X) be a hybrid system. A Zeno equilibria (Z ,~z) of (M ,M,X) is globally asymp-

totically stable relative to (Z ,MZ ,XZ ) if Z is a locally attracting D-cycle and for every trajectory:

(~C ,~c) : (I ,I,d///dt) → (Z ,MZ ,XZ ),

with Λ=N, and for any ε~C ( j ) > 0, there exists δ~C (i ) > 0 such that:

1. If ‖~ci (τi )−~z~C (i )‖ < δ~C (i ) for i = 1, . . . , k ∈Q then

‖~c j (t )−~z~C ( j )‖ < ε~C ( j )

with j ∈Λ and t ∈ I j = [τ j ,τ j+1].

2. For all a ∈V(Z )

lim
j→∞

~C ( j )=a

~c j (τ j ) = ~za , lim
j→∞

~C ( j )=a

~c j (τ j+1) = ~za .

We say that a Zeno equilibria (Z ,~z) of (M ,M,X) is globally asymptotically stable if it is globally asymp-

totically stable relative to (Z ,MZ ,XZ ) and (M ,M,X) = (Z ,MZ ,XZ ).
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Region of Stability

,,,,

Figure 5.7: A graphical representation of the “local” nature of relatively globally asymptotically stable Zeno
equilibria.

5.4.3 The global-local nature of Zeno equilibria. The definition of relative global asymptotic stability

implicitly makes some very subtle points. The first is that this type of stability is both local and global in

nature—hence the use of the words “global” and “relative” in the definition. While for traditional dynam-

ical systems this would seem contradictory, the complexity of hybrid systems requires us to view stability

in a much different light, i.e., we must expand the paradigm for stability.

To better explain the mixed global and local nature of relatively globally asymptotically stable

Zeno equilibria, we note that the term “global” is used because the hybrid subsystem (Z ,MZ ,XZ ) is glob-

ally stable to the Zeno equilibria; this also motivates the use of the word “relative” as (M ,M,X) is stable

relative to a hybrid subsystem. Finally, the local nature of this form of stability is in the discrete portion of

the hybrid system, rather than the continuous one. That is, the D-subcategory Z can be thought of as a

neighborhood inside the D-category M (see Figure 5.7, where the D-categories Z and M are represented

by graphs in order to make their orientations explicit). The condition on the inclusion functor given in the

definition is a condition that all edges (or morphisms) are pointing into the neighborhood.

5.4.4 Zeno equilibria and FQ hybrid systems. Zeno equilibria are intimately related to Zeno behavior

for first quadrant hybrid systems. While this relationship is established, it is useful to have a graphical

representation of the convergence to a Zeno equilibria in a FQ hybrid system; this can be found in Figure

5.8.

Proposition 5.2. If a first quadrant hybrid system HFQ is globally asymptotically stable at the Zeno equi-

libria ~z = {0}, then every trajectory with Λ=N is Zeno.

Proof (sketch). For simplicity, we will assume that Γ consists of a single vertex and a single edge; consider-

ing larger cycles would amount to repeating the same argument on each vertex with subsequences of the

switching times. Because of asymptotic convergence of the sequence of initial conditions, ~ci (τi ), there
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Ge1 Ge2

Re2
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~c0(τ1)

~c2(τ3)

~c2(τ2)~z1 ~c0(τ0)

~c1(τ2)

~c3(τ4)

~z2 ~c3(τ3) ~c1(τ1)

Figure 5.8: Convergence to a Zeno equilibria.

exists a neighborhood U in Dq , of the Zeno equilibria {0}, and K ∈N such that ~ci (t ) ∈U for all i ≥ K and

t ∈ Ii . By the assumption that Xq (0) 6= 0, we can apply the straightening out theorem (cf. [95]), wherein

the new coordinates Xq becomes:

X̂q (x) =
 0

1

 .

We now pick two rays, r1 and r2, emanating from the origin and such that their convex hull, C = conv(r1, r2),

contains the transformed U ; if U is sufficiently small, the angle between the two rays is less than π. The

time difference τi+1 − τi , i ≥ K , is less than the height of a vertical line, l , intersecting C and passing

through the transformed ~ci (τi ). Consider the triangle:

T = conv(0, r1 ∩ l , r2 ∩ l),

and note that:

Area(T ) ≥
∞∑

i=K
τi+1 −τi

since the set of all switching time differences {τi+1 −τi }i∈N is not dense while the set of all vertical slices

of T is (after all, they have different cardinalities).

By Cauchy’s condition on the convergence of series, for any ε > 0, we can always make U suffi-

ciently small so that Area(T ) < ε. This implies that
∞∑

i=K
τi+1 −τi < ε.

Since the sum
∑K−1

i=0 τi+1 −τi is finite, we conclude that

∞∑
i=0

τi+1 −τi <∞.
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5.4.c Conditions on Stability

We now give conditions on the stability of Zeno equilibria for first quadrant hybrid systems.

These will be instrumental in providing conditions on the stability of Zeno equilibria for general hybrid

systems.

5.4.5 Conditions for the stability of HFQ. In order to give conditions on the stability of Zeno equilib-

ria, it is necessary to give conditions on both the continuous and discrete portions of the hybrid system.

That is, the conditions on stability will relate to three aspects of the behavior of the hybrid system: the

continuous portion, the existence of events and the discrete portion.

Continuous conditions: For all i ∈Q,

(I) Xi (x) 6= 0 for all x ∈ (R+
0 )2.

(II) There exists a function vi : (R+
0 )2 → R+

0 of class K∞ along each ray emanating from
the origin in Di and d(vi )x Xi (x) ≤ 0 for all x ∈ (R+

0 )2.

Event conditions: For all i ∈Q,

(III) (Xi (x1,0))2 ≥ 0.

Now consider the map ψi defined by requiring that:

ψi (x) = y if (0, y) = v−1
i (vi (x,0))∩ {x1 = 0 and x2 ≥ 0}

which is well-defined by condition (II). Using ψi we introduce the function Pi :R+
0 →R+

0 given by:

Pi (x) = rei−1 ◦ψi−1 ◦ · · · ◦ re1 ◦ψe1 ◦ rek ◦ψek ◦ · · · ◦ re1 ◦ψ1(x).

The map Pi can be thought of as both a Poincaré map or a discrete Lyapunov function depending on the

perspective taken. The final conditions are given by:

Discrete conditions: For all i ∈Q and e ∈ E ,

(IV) re is order preserving.

(V) There exists a class K∞ function α such that Pi (x)−x ≤−α(x).

Theorem 5.4. A first quadrant hybrid system HFQ is globally asymptotically stable at the Zeno equilibria

~z = {0} if conditions (I)− (V) hold.

Proof. Proving this result requires us to show three things: the existence of events, the boundedness of

trajectories and asymptotic convergence of the sequence of initial conditions.

We begin by demonstrating the existence of events; if c(0) is an initial condition of a solution

c(t ) of ċ = Xq (c) on Dq = (R+
0 )2, then there exists an event if c(τ) ∈Geq for some finite τ, i.e., if (c(τ))1 = 0

and (c(t ))2 ≥ 0 for all t ∈ [0,τ]. To show that there exists an event, we must rule out two other possible

scenarios:
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1. The trajectory c(t ) exits Dq in finite time without intersecting the guard. In particular, since Dq =
(R+

0 )2, this implies that there must exist a τ such that (c(τ))2 < 0 and (c(t ))1 > 0 for t ∈ [0,τ].

2. The trajectory never exits Dq , i.e., c(t ) ∈ Dq \Geq for all t .

We will show that conditions (I)− (III) exclude these scenarios.

Beginning with scenario 1, if (c(τ))2 < 0, since (c(0))2 ≥ 0, it follows by continuity that there exists

a t ∈ [0,τ] such that (c(t ))2 = 0 and (Xq (c(t )))2 < 0 for (c(t ))1 > 0. But these inequalities are ruled out by

condition (III).

For scenario 2, we first note that condition (II) implies that

|v−1
q (vq (y))∩ {x1 = 0 and x2 ≥ 0}| = 1 (5.4)

|v−1
q (vq (y))∩ {x2 = 0 and x1 ≥ 0}| = 1 (5.5)

for all y ∈ Di . Now define the set

Vq = {x ∈ Dq : vq (x) ≤ vq (c(0))}.

Note that the boundary of this set consists of three smooth components, i.e., a piece of the vertical axis

(the guard), a piece of the horizontal axis and a piece of the level set v−1
q (vq (c(0))). We have already shown

that the solution cannot exit through the horizontal axis, and it cannot exit through the piece of the level

set (intersection Dq ) since we are supposing that d(vq )x Xq (x) ≤ 0 by condition (II). In view of this, if the

trajectory exits the set Vq , then it must exit through the guard, i.e., there must exist an event. Therefore,

we must show that the trajectory exits this set, i.e., that Vq is not an invariant set.

We are assuming that Vq is proper. Suppose, by way of contradiction, that Vq is an invari-

ant set. By the Poincaré-Bendixson theorem, because we are assuming that Vq contains no equilib-

rium points (condition (I)), it must contain a limit cycle: γ(t ) with γ(t ) = γ(t +T ). First suppose that

vq (γ(t )) ≡ c, then by condition (II) (and more specifically (5.4)), γ(t ) must intersect the vertical and hor-

izontal axis and because this is a one-dimensional limit cycle in two dimensional space it has an ori-

entation. Therefore, the assumption that γ(t ) is contained in Vq is violated. Alternatively, suppose that

vq (γ(t )) = c and vq (γ(t ′)) = c ′ for c > c ′ and some t < t ′ < T . By the periodicity of the γ(t ), this implies that

vq (γ(t ′)) < vq (γ(t +T )) = vq (γ(t )) = c, where t +T > t ′, which implies that d(vq )γ(t )Xq (γ(t )) ≥ 0 for some

t ∈ [t ′, t +T ], which violates condition (II).

We conclude that events must always exist.

Let us now address the issue of asymptotic convergence of the sequence of initial conditions.

Recalling the construction of (M FQ,MFQ,XFQ) from HFQ, for a trajectory

(I ,I,d///dt)
(~C ,~c)- (M FQ,MFQ,XFQ),

we need to show that for all a ∈V(M FQ)

lim
j→∞

~C ( j )=a

~c j (τ j ) = 0. (5.6)
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Define Ψi (x,0) = (0,ψi (x))T . Starting from i > 1, ~ci (τi ) ∈ {x1 ≥ 0 and x2 = 0} so

v~C (i )(~ci (τi+1)) ≤ v~C (i )(~ci (τi )) = v~C (i )(Ψ~C (i )(~ci (τi )))

from condition (II). Also by this condition, we can take the inverse of v~C (i ) because it is class K∞ along

every ray emanating from the origin (which intersects Dq ) and hence along the vertical axis, which implies

that

(~ci (τi+1))2 ≤ψ~C (i )((~ci (τi ))1).

Applying re to this inequality, which by condition (IV) is order preserving, yields

rei ((~ci (τi+1))2) ≤ rei (ψ~C (i )((~ci (τi ))1)).

By iterating this process k times, and noting that ~C (i +k) = ~C (i ), we have

(~ci+k (τi+k ))1 ≤ P~C (i )((~ci (τi ))1).

Therefore, the sequence (~ci+k (τi+k ))1 is bounded by the sequence P~C (i )((~ci (τi ))1) which converges to za in

view of (V). Convergence of ~ci (τi+1) now follows from convergence of ~ci (τi ) and the fact that ψi (~ci (τi )) =
~ci (τi+1) is an order preserving function as vi is of class K∞ when restricted to the guard of domain Di .

Finally, boundedness of the continuous trajectories in each mode (and hence boundedness of

the sequence of initial conditions) follows from the existence of the Lyapunov function v~C (i ), i.e., by the

conditions given in (II), and by the fact that the map P~C (i ) satisfies condition (V).

Corollary 5.2. If HFQ is a first quadrant hybrid system satisfying conditions (I)−(V), then there exist trajec-

tories with Λ=N and every such trajectory is Zeno.

Note that the condition that Λ = N in Proposition 5.2 and Corollary 5.2 is due to the fact that

there always are trajectories with finite indexing setΛ, e.g., any trajectory withΛ=Nhas “sub-trajectories”

with finite indexing sets. These trajectories are trivially non-Zeno, so we necessarily rule them out.

Example 5.6. To verify that Hball
FQ is globally asymptotically stable at the Zeno point ~z = {0}, and hence

Zeno by Proposition 5.2, we need only show that conditions (I)− (V) are satisfied. It is easy to see that

conditions (I) and (III) are satisfied (see Figure 5.9). Since re1 (x) = x and re2 (x) = ex, condition (IV) holds.

We use the original Hamiltonian

H(x1, x2) = 1

2
x2

2 +mg x1,

suitably transformed, for the Lyapunov type functions given in (II), i.e., we pick:

v1(x1, x2) = 1

2
x2

1 + g x2, v2(x1, x2) = 1

2
x2

2 + g x1.

It is easy to see that these functions meet the specifications given in (II); some of the level sets of these

functions can be seen in Figure 5.9. Note that the level sets on one domain increase, but this is compen-

sated for by the decreasing level sets on the other domain. Finally, condition (V) is satisfied when e < 1

since

P1(x) = P2(x) = ex.
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Figure 5.9: Graphical verification of the properties (I)− (III) for the bouncing ball hybrid system for the
first domain (left) and the second domain (right).

A graphical representation of the maps P1 and P2 can be seen in Figure 5.10.

5.4.d Hybrid Stability Theory

Building upon the results of the previous section, we are able to derive sufficient conditions for

the stability of general hybrid systems. Mirroring the continuous case, we simply find a morphism to the

“simplest stable object,” i.e., a first quadrant hybrid system. Formally:

Definition 5.8. Define GasZeno be the full subcategory of HySys consisting of first quadrant hybrid sys-

tems (M SFQ,MSFQ,XSFQ) that are globally asymptotically stable at the Zeno equilibria ~z = {0}.
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Dball
2Dball

1Gballe1 Gballe2

re2(x) = ex

ψ1(x)

ψ2(y)

re1(x) = x

x
y

x

P1(x) = ex

x

P2(x) = ex

Figure 5.10: A graphical illustration of the construction of the functions P1 and P2 for the bouncing ball.

Theorem 5.5. A Zeno equilibria (Z ,~z) of (M ,M,X) is globally asymptotically stable relative to (Z ,MZ ,XZ )

if there exists a morphism of hybrid systems:

(Z ,MZ ,XZ )
(~V ,~v)- (M SFQ,MSFQ,XSFQ) ∈GasZeno

in HySys satisfying, for all a ∈Ob(Z ),

1. ~va(x) = 0 implies x = ~za ,

2. ~va is a proper (radially unbounded) function.

An immediate, and very important, corollary of this theorem is that it yields sufficient conditions

for the existence of Zeno behavior.

Corollary 5.3. Under the assumptions of Theorem 5.5, there exist trajectories

(I ,I,d///dt)
(~C ,~c)- (Z ,MZ ,XZ )

with Λ=V(I ) =N and every such trajectory is Zeno.
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Of course, a trajectory of (Z ,MZ ,XZ ) immediately yields a trajectory of (M ,M,X) through com-

position. That is,

(I ,I,d///dt)
(~C ,~c)- (Z ,MZ ,XZ )

(~In,~id)- (M ,M,X)

is a trajectory of (M ,M,X). Therefore, we have given conditions for the existence of Zeno trajectories for

(M ,M,X).

Proof of Theorem 5.5. Let

(I ,I,d///dt)
(~C ,~c)- (Z ,MZ ,XZ )

be a morphism where (I ,I,d///dt) ∈ Interval(HySys) and Λ=V(I ) =N. Assume that

‖~ci (τi )−~z~C (i )‖ ≤ δ~C (i )

for i = 1,2, . . . , k. This implies that ~ci (τi ) is contained in a compact set containing ~zC (i ). If we denote such

set by S ~C (i ), it follows by continuity of ~v~C (i ) that ~v~C (i )(S ~C (i )) is compact and that ~v~C (i )(~ci (τi )) ∈ ~v~C (i )(S ~C (i ))

and ~v~C (i )(~z~C (i )) ∈ ~v~C (i )(S ~C (i )). Taking into account that ~v~C (i )(~z~C (i )) = 0 we obtain:

‖~v~C (i ) ◦~ci (τi )−0‖ ≤ δ′~V◦~C (i )
.

It now follows from global asymptotic stability of the Zeno equilibria (M SFQ,~z = {0}) of (M SFQ,MSFQ,XSFQ)

that:

‖~v~C ( j ) ◦~c j (t )−0‖ ≤ ε′~V◦~C ( j )
, t ∈ I j , j ∈Λ.

This inequality implies that ~v~C ( j ) ◦~c j (t ) belongs to a compact set for all t ∈ I j . Because ~v j is assumed to be

proper, there exists a ε~C ( j ) such that:

‖~c j (t )−~z~C ( j )‖ ≤ ε~C ( j ), t ∈ I j , j ∈Λ.

A similar argument yields, by the continuity of ~v~C ( j ), for all a ∈V(Z ) with ~C ( j ) = a,

lim
j→∞

~C ( j )=a

~c j (τ j ) = ~v −1
~C ( j )

 lim
j→∞

~V◦~C ( j )=~V (a)

~v~C ( j ) ◦~c j (τ j )

= ~v −1
~C ( j )

(0) = ~za .

Theorem 5.5 is an important result in many respects.

¦ It would have been very difficult to obtain without our categorical framework for hybrid systems.

This indicates that categorical hybrid systems theory can yield results that are important, interesting

and novel.

¦ It yields a general method for studying the stability of hybrid systems. That is, any other type of

more “classical” stability that might be of interest—asymptotic stability, exponential stability, etc.—

can be studied using the same methodology. In fact, these types of stability are easier to study; this

is why we opted to study Zeno equilibria. For other types of stability, the “simplest” stable objects

will be one-dimensional hybrid systems with the desired stability property. These extensions follow

in a trivial manner from the framework established here.
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5.5 Going Beyond Zeno

Motivated by the fact that for a Zeno trajectory time never progresses past a certain time (the

Zeno time) and “point” (the Zeno point(s)), a natural—and intriguing—question to ask is:

What happens after a Zeno point?

Inspired by the construction of [50], we propose a method for extending Zeno executions past a Zeno

point for Lagrangian hybrid systems as were introduced in Chapter 3; for the sake of simplicity and con-

sistency, we revert to the notation utilized in that chapter.

Using the special structure of Lagrangian hybrid systems obtained from hybrid Lagrangians, we

are able to demonstrate that the Zeno point must satisfy constraints imposed by the unilateral constraint

function. These constraints are holonomic in nature, and this implies that after the Zeno point the hybrid

system should switch to a holonomically constrained dynamical system. The resulting system obtained

by “composing” the hybrid system with this dynamical system defines a completed hybrid system, which

inherently allows an execution to continue past the Zeno point. Although we do not prove that this is

the correct way to carry executions beyond Zeno points, we argue that our method correctly represents

the physical, post-Zeno, behavior of the system being modeled. In order to substantiate this argument,

we discuss how to practically implement a completed hybrid system and illustrate these concepts with a

series of examples.

5.5.1 Lagrangian hybrid systems and their executions. Here we quickly recall the notation from Chap-

ter 3, which will be in force throughout this section. First, recall from Definition 3.1 that a simple hybrid

Lagrangian is given by a tuple:

L = (Q,L, h).

Associated to a hybrid Lagrangian is a simple hybrid system,

HL = (DL,SL,RL,XL),

as constructed in Subsection 3.2.a; see Figure 5.11 for a graphical representation of a Lagrangian hybrid

system.

An execution of a Lagrangian hybrid system, which we referred to as a hybrid flow in order to

avoid confusion, is a tuple

εL = (Λ, I ,C )

as introduced in Paragraph 3.2.1. We will revert to the terminology “hybrid flow” to again differentiate

executions of this form from the ones considered in the rest of this chapter. In addition, we utilize the su-

perscript “L” to indicate that the hybrid flow is the hybrid flow of the Lagrangian hybrid system associated

to a hybrid Lagrangian.

We now introduce the notion of a Zeno point, which can be thought of as a form of Zeno equi-

libria for Lagrangian hybrid systems.
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RL(x)

DL

ẋ = XL(x)

x ∈ SL

Figure 5.11: A Lagrangian hybrid system: HL.

Definition 5.9. The Zeno point of a Zeno hybrid flow εL is defined to be

x∞ = (q∞, q̇∞) = lim
i→∞

ci (τi ) = lim
i→∞

(qi (τi ), q̇i (τi )).

Here ci = (qi , q̇i ) ∈ C , and the Zeno point is necessarily a single point because of the specific problem

formulation considered in this section.

5.5.2 Zeno points. Lagrangian hybrid systems display both chattering and genuinely Zeno behavior;

roughly speaking, the coefficient of restitution can be used to differentiate between these systems. More-

over, Zeno points must satisfy certain constraints based on the unilateral constraint function. In order to

do so, let

A(q) =
(

∂h
∂q1

(q) · · · ∂h
∂qn

(q)
)

.

Now, recalling the distinction between types of Zeno behavior made in Paragraph 5.1.3, we make the

following observations:

CZ: If HL has a chattering Zeno hybrid flow, εL, then τ∞ = τ1−τ0 and x∞ = (q1(τ1), q̇1(τ1)) with
h(q1(τ1)) = 0 and A(q1(τ1))q̇1(τ1) = 0.

GZ: If HL has a genuinely Zeno hybrid flow, then 0 < e < 1. Moreover, if εL is a genuinely Zeno
hybrid flow, then x∞ = (q∞, q̇∞) is a point with h(q∞) = 0, and A(q∞)q̇∞ = 0.

Summarizing, our main observation is:

Main Observation. If εL is a Zeno hybrid flow of a Lagrangian hybrid system HL, then the Zeno
point x∞ = (q∞, q̇∞) is a point satisfying h(q∞) = 0 and A(q∞)q̇∞ = 0.

This observation indicates how the system should behave after the Zeno point, i.e., it should sat-

isfy a holonomic constraint. This holonomic constraint forces the system to slide along surface h−1(0) =
{q ∈ Q : h(q) = 0}. From this we argue that after the Zeno point, the hybrid system should switch to a

holonomically constrained dynamical system.
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5.5.3 Holonomically constrained systems. Recall that for a holonomically constrained system described

by a Lagrangian, L, of the form given in (3.2), the equations of motion for the holonomically constrained

system are obtained from the equations of motion for the unconstrained system (3.3); they are given by

(cf. [93])

M(q)q̈ +C (q, q̇)q̇ +N(q)+ A(q)Tλ= 0,

where λ is the Lagrange multiplier, which in this case is given by

λ= (A(q)M(q)−1 A(q)T )−1 (
˙A(q)q̇ − A(q)M(q)−1(C (q, q̇)q̇ +N(q))

)
.

From the constrained equations of motion, for x = (q, q̇), we get the vector field

ẋ = X∞
L (x)

= (
q̇,M(q)−1(−C (q, q̇)q̇ −N(q)− A(q)Tλ)

)
.

Note that the X∞
L defines a vector field on the manifold TQ|h−1(0), from which we obtain the dynamical

system

D∞
L = (TQ|h−1(0),X∞

L ).

This, when coupled with the Main Observation, will be essential to understanding how to carry hybrid

flows beyond Zeno points.

5.5.4 Completing hybrid systems. We begin by considering the case when HL is a chattering Zeno

hybrid system; in this case, the idea of carrying hybrid flows past the Zeno point has been well-studied. In

[50], it is argued that once the solution hits the “switching surface” (or in our case, the guard), the solution

should slide along the switching surface. In terms of Zeno points, this implies that before the Zeno point

the dynamics should be dictated by XL, while after the Zeno point the dynamics should be dictated by

X∞
L . We can generalize this construction to include genuinely Zeno Lagrangian hybrid systems.

Definition 5.10. If HL is a Lagrangian hybrid system, we define the corresponding completed hybrid

system3 (or the completion of HL) as

HL :=
 D∞

L if h(q) = 0 and A(q)q̇ = 0

HL otherwise.

5.5.5 Completing trajectories. A completed hybrid system, as obtained from a Lagrangian hybrid sys-

tem HL, can be seen in Figure 5.12. To make the definition of the completed system somewhat more

transparent, some comments are in order. The Main Observation indicates that the only way for the tran-

sition to be made from the hybrid system HL to the dynamical system D∞
L is if a specific Zeno hybrid

flow reaches its Zeno point. Therefore, before the Zeno point, the Zeno system simply will be the hybrid

3This terminology (and notation) is borrowed from topology, where a metric space can be completed to ensure that “limits exist.”
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RL(x)

DL

h(q) = 0

h(q) = 0 and A(q)q̇ = 0

ẋ = X∞L (x)
ẋ = XL(x)

x ∈ SL

Figure 5.12: A completed hybrid system: HL.

system HL, while after the Zeno point, the completed system will be the dynamical system D∞
L . Since the

dynamical system forces the system dynamics to be constrained to the manifold defined by h−1(0), this

implies that the completed system will slide along the guard (switching surface) after the Zeno point.

This can be understood further on the level of hybrid flows. We can define a hybrid flow of the

completed hybrid system HL by concatenating a Zeno hybrid flow of HL with an integral curve of the

dynamical system D∞
L .

Specifically, let εL = (N, I ,C ) be a Zeno hybrid flow of HL. We obtain a hybrid flow of the com-

pleted hybrid system HL by defining it to be

εHL = (N∪ {∞}, I ,C ),

where

I = I ∪ {I∞ = [τ∞,∞)}, C =C ∪ {c∞},

with c∞(t ) an integral curve of X∞
L with initial condition the Zeno point:

c∞(τ∞) = x∞ = (q∞, q̇∞).

We now discuss some practical issues related to simulating integral curves of completed systems.

5.5.6 Practical issues. We discuss two practical issues when modeling and simulating completed hy-

brid systems (see Figure 5.12). These issues are related to the transition from the left state HL to the right

state D∞
L , and the corresponding initial conditions of D∞

L . The theoretical framework established in this

section allows us to justifiably surmount the practical problems introduced in simulation.

The first simulation issue is derived from the unavoidable numerical errors that result from the

finite representation of values in a computer and truncation errors introduced by practical ODE solvers,

i.e., a simulator produces an approximate hybrid flow ε̂L to the hybrid flow εL. Therefore, we cannot guar-

antee or expect an integral curve of reach the exact Zeno point x∞ = (q∞, q̇∞). Moreover, in order to reach
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the Zeno point, an infinite number of computation steps have to be performed (in a finite amount of

time). Therefore, instead of resolving a solution that passes through the Zeno point exactly, we will com-

pute an approximation of the Zeno solution; the approximated solution will pass through a neighborhood

of the Zeno point, so we must modify the transition to the system D∞
L accordingly. Before discussing the

details of the construction of the approximate solution, we first address the second modeling issue.

The other concern is the reinitialization of the new constrained system D∞
L . In other words, after

the transition to this system, we must give initial conditions for the constrained system. Theoretically, the

initial condition is the Zeno point, but because in simulation we do not actually reach the Zeno point, an

initial condition must be estimated—one that satisfies the same conditions as a Zeno point: h(q∞) = 0

and A(q∞)q̇∞ = 0.

5.5.7 Approximating completed systems. The approximation to the completed hybrid system HL, de-

noted by H
δ

L , is given by

H
δ

L :=
 D∞

L if abs(h(q)) ≤ δ and abs(A(q)q̇) ≤ δ

HL otherwise

for some δ > 0. When switching from HL to D∞
L via the approximated guard condition, we use a map

which resets the variables so that they satisfy the conditions of a Zeno point: h(q∞) = 0 and A(q∞)q̇∞ = 0.

Specifically, for a point (q, q̇) satisfying the approximate guard condition

abs(h(q)) ≤ δ and abs(A(q)q̇) ≤ δ,

we define a reset map R∞ which sends (q, q̇) to an approximate Zeno point, (q̂∞, ̂̇q∞) = R∞(q, q̇), satisfying

h(q̂∞) = 0 and A(q̂∞) ̂̇q∞ = 0.

We now briefly discuss how to construct the map R∞ for the running examples in this section. In all of

these examples, the vector fields for the constrained dynamical systems are easy to calculate.

Example 5.7. Again consider the hybrid system modeling a bouncing ball on a sinusoidal surface, HB, as

first introduced in Example 3.5. In this example, the vector field for the holonomically constrained system

D∞
B is given by

X∞
B (q, q̇) =

q̇,


0

2cos(x2)(−g+sin(x2)ẋ2
2)

3+cos(2x2)

− 2(g cos(x2)2+sin(x2)ẋ2
2)

3+cos(2x2)


 .

Note that

hB(x) = 0 ⇒ x3 = sin(x2),

AB(x)ẋ = 0 ⇒ ẋ3 −cos(x2)ẋ2 = 0.

182



Zeno Behavior & Hybrid Stability Theory

x1_dot
x2_dot
x3_dot

-6

-4

-2

0

2

4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Velocities

time

ve
lo

ci
tie

s

x1
x2
x3

-3

-2

-1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Displacements

time

di
sp

la
ce

m
en

ts

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Displacement:  x3 vs. x2

displacement x2

di
sp

la
ce

m
en

t x
3

Figure 5.13: Simulation gets stuck at the Zeno point. Velocities over the time (top), displacements over the
time (middle) and displacement on the x3 direction vs. the displacement on the x2 direction (bottom).
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Figure 5.14: Simulation goes beyond the Zeno point. Velocities over the time (top), displacements over
the time (middle) and displacement on the x3 direction vs. the displacement on the x2 direction (bottom).
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And so we define the approximate reset map as:

R∞
B (x1, x2, x3, ẋ1, ẋ2, ẋ3) =




x1

x2

sin(x2)

 ,


ẋ1

ẋ2

cos(x2)ẋ2


 .

We begin by simulating the "non-completed" hybrid system HB, the results of which are shown

in Figure 5.13 (to which the rest of the paragraph refers). The simulation time is set to 6.0, but the sim-

ulation gets stuck at around 2.04; the bottom figure indicates that the ball tries, but is unable, to climb

upwards along the surface (a sinusoidal waveform). Its velocities decrease during this process due to the

energy loss through impact as can be seen in the top figure. As a consequence, more and more collisions

are triggered and the time interval between two consecutive collisions keeps shrinking. The dense points

near time 2.04 in the middle figure indicate that more and more computation steps are taken, which

makes the simulation halt. This behavior is indicative of genuinely Zeno behavior.

Figure 5.14 shows a simulation of the completed hybrid system H
δ

B with the same initial condi-

tions. Note that the simulation closely approaches the Zeno point before the behavior of the ball auto-

matically switches to what X∞
B specifies, i.e., the ball oscillates along the surface (a sinusoidal waveform).

Therefore, the simulation does not halt, freely moving beyond the Zeno point in a manner consistent with

physical reality.

Example 5.8. Now consider the hybrid system modeling a pendulum on a cart, HC, as introduced in

Example 3.6. The vector field for the holonomically constrained system D∞
C is given by

X∞
C (q, q̇) =

q̇,

 −cot(θ)θ̇2

mR csc(θ)θ̇2

M+m

 .

Note that

hC(q) = 0 ⇒ cos(θ) = 0

AC(q)q̇ = 0 ⇒ sin(θ)θ̇= 0.

From the above two equations, we can compute precisely that θ = sign(θ)π/2 and θ̇ = 0. The rest of the

variables x and ẋ have no extra constraints. Therefore, the complete reset map is:

R∞
C (θ, x, θ̇, ẋ) =

 sign(θ)π/2

x

 ,

 0

ẋ

 .

Simulation verifies that the completed version of this hybrid system has the correct post-Zeno behavior;

see Figure 5.15.

Example 5.9. As a final example, consider the hybrid system modeling a pendulum mounted on the floor,

HP, as introduced in Example 3.7. Although this system was introduced as a Hamiltonian hybrid system, it

can be converted without difficulty to a Lagrangian hybrid system through the Legendre transformation.
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Figure 5.15: Simulation of the Cart that goes beyond the Zeno point. Velocities over the time (top) and
displacements over the time (bottom).

In this example, the vector field for the holonomically constrained system D∞
P is given by

X∞
P (q, q̇) =

q̇,

 −cot(θ)θ̇2

−2cot(θ)θ̇ϕ̇

 .

Note that

hP(q∞) = 0 ⇒ cos(θ) = 0

AP(q∞)q̇∞ = 0 ⇒ sin(θ)θ̇= 0.

From the above two equations, we can calculate precisely that θ=π/2 and θ̇= 0. Therefore, the complete

reset map is:

R∞
P (θ,ϕ, θ̇,ϕ̇) =

 π/2

ϕ

 ,

 0

ϕ̇

 .

Simulation verifies that the completed version of this hybrid system has the correct post-Zeno behavior;

See Figure 5.16.
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Figure 5.16: Simulation of the Pendulum goes beyond the Zeno point. Angular velocities over the time
(top) and angles over the time (bottom).
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Chapter 6

Universally Composing Embedded

Systems

In an embedded system, different components of the system evolve according to processes lo-

cal to the specific components. Across the entire system, these typically heterogeneous processes may

not be compatible, i.e., answering questions regarding the concurrency, timing and causality of the en-

tire system—all of which are vital in the actual physical implementation of the system—can be challeng-

ing even if these questions can be answered for specific components. Denotational semantics provide

a mathematical framework in which to study the behavior (signals, flows, executions, traces) of embed-

ded systems or networks thereof. This framework is naturally applicable to the study of heterogeneous

networks of embedded systems since signals always can be compared, regardless of the specific model of

computation from which they were produced.

Tagged systems provide a denotational semantics for heterogeneous models of computation;

they consist of a set of tags (a tag structure), variables and maps (behaviors) from the set of variables to

the set of tags—hence, tagged systems are a specific case of the tagged signal model (cf. [76]). A heteroge-

neous network of embedded systems, e.g., a network consisting of both synchronous and asynchronous

systems, can be modeled by a network of tagged systems with heterogeneous tag structures communi-

cating through mediator tagged systems. Benveniste et al. [22], [23] and [24], introduced the notion of

tagged systems and dealt with the issues we set forth in this chapter; this work extends and generalizes

the ideas introduced in these papers. Of course, there is a wealth of literature on semantics preservation

in heterogeneous networks, cf. [25], [40], [77], [97], and [117], the last of which approaches the problem

from a categorical prospective.

A network of tagged systems can be implemented, or deployed, through heterogeneous par-

allel composition—obtained by taking the conjunction (intersection) of the behaviors that agree on the

mediator tagged systems—which results in a single, homogeneous, tagged system. Thus, heterogeneous

networks of tagged systems can be homogenized through the operation of composition. This chapter
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addresses the question:

When is semantics preserved by composition?

That is, when is the homogeneous tagged system obtained by composing a heterogeneous network of

tagged systems semantically identical to the original network? Understanding this question is essential to

understanding when networks of (possibly synchronous) embedded systems can be implemented asyn-

chronously while preserving the semantics of the original system. Since implementing asynchronous

systems is often more efficient (less overhead) when compared to the implementation of synchronous

systems, deriving conditions on when this can be done while simultaneously preserving semantics would

have many important implications.

In this chapter, taking a similar approach to Benveniste et al., we address the issue of seman-

tics preservation. However, we use the formalism of network objects as introduced in Chapter 1, i.e., we

introduce the category of tagged systems, TagSys, and demonstrate that a network of tagged systems cor-

responds to a network over the category TagSys. The result is necessary and sufficient conditions for

semantics preservation.

Simple networks We begin by considering a network of two tagged systems P1 and P2 communicating

through a mediator tagged system M as described by the diagram: P1 →M ←P2. The first contribution

of this chapter is that we are able to show that the (classical notion of) heterogeneous composition of P1

and P2 over M , P1‖M P2, is given by the pullback of this diagram:

P1‖M P2 =P1 ×M P2.

The importance of this result is that it implies that composition is endowed with a universal property;

this universal property is fundamental in understanding when semantics is preserved. Consider the case

when P1 and P2 have the same semantics, i.e., the same tag structure. Therefore, they always can com-

municate through the identity mediator tagged system, I , and the homogeneous composition of P1 and

P2, P1‖P2, is given by the pullback P1 ×I P2 of the diagram: P1 → I ← P2. It is possible through

this framework to give a precise statement of what it means to preserve semantics by composition over

the mediator tagged system M :

Semantics is preserved by composition if P1‖P2 ≡P1‖M P2.

Through the universality of the pullback, we are able to give verifiable necessary and sufficient conditions

on semantics preservation. A corollary of our result is the sufficient conditions on semantics preservation

established by Benveniste et al..

General networks. A network of tagged systems is given by an oriented graph Γ= (Q,E) together with a set

of tagged systems P = {Pq }q∈Q communicating through a set of mediator tagged systems M = {Me }e∈E ;

that is, for every e ∈ E , there is a diagram in TagSys of the form:

Psource(e)
αe- Me

�α′
e Ptarget(e).
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Equivalently, a network of tagged systems is given by a network over the category TagSys,

N(P ,M ,α) : NΓ →TagSys,

where NΓ is a Dop-category obtained from Γ (see Section 1.5). As in the case of a network of two tagged

systems, the heterogeneous composition of a network of tagged systems is given by the limit of this dia-

gram,

‖M P = LimNΓ
(N(P ,M ,α)),

and so composition again is defined by a universal property.

If all of the P ′
i s have the same semantics, then we can again consider the identity mediator I

(which in this case is a set) for which there are associated diagrams in TagSys of the form:

Psource(e)
Rese- Me

�Res′e Ptarget(e)

with Rese and Res′e restriction maps. To this network of tagged systems there is a corresponding network

object, N(P ,I ,Res) : NΓ →TagSys, and the homogeneous composition of this network is given by

‖P = LimNΓ
(N(P ,I ,Res)).

The categorical formulation of networks of tagged systems allows us to give a precise statement

of when semantics is preserved:

Semantics is preserved by composition if ‖M P ≡ ‖P .

The universality of composition allows us to derive concrete necessary and sufficient conditions on when

semantics is preserved, indicating that this framework can produce results on semantics preservation that

are both practical and verifiable.

Extensions. Although this work is centered around the formalism of tagged system, the results are easily

extendable to arbitrary networks over categories and the composition thereof. That is, this work is the

first step toward addressing the general question of how to compose systems in a general and systematic

fashion in order to ensure that the composite system has the proper behavior.

Notation 6.1. In this section, we use calligraphic symbols to denote tag structures and tag systems; do not

confuse these with D-categories (which will not be utilized in this section, although Dop-categories will

be). The reason for this notation is historical precedence. Note that this is why we denote a Dop-category

by the symbol N (not to be confused with a hybrid system).

6.1 Universal Heterogeneous Composition

In this section, we begin by defining the category of tag structures. This definition is used to

understand how to associate a common tag structure to a pair of tag structures which can communicate
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through a mediator tag structure. We then introduce the category of tagged systems, which will be instru-

mental in understanding how to form the heterogeneous composition of a network of tagged systems.

Finally, we discuss how to take the composition of a “simple” network of embedded systems.

Given two tagged systems, P1 and P2, we would like to form their composition, i.e., a single

tagged system obtainable from these two tagged systems. We begin by reviewing the “standard” definition

of composition, followed by a categorical reformulation of composition. We demonstrate that the com-

position of two tagged systems corresponds to the pullback of a specific diagram in the category of tagged

systems. This will allow us later to generalize the notion of composition.

6.1.1 Tag structures and the corresponding category. Fundamental to the notion of tagged systems is

the notion of timing. This timing is encoded in a set of tags; these “tag" the occurrences of events, i.e., they

index the events such that they are (partially) ordered. Hence, a set of tags or a tag structure is a partially

ordered set T , with the partial order denoted by ≤. The category of tags, Tag, can be defined as follows:

Objects: Partially ordered sets, i.e., tag structures.
Morphisms: Nondecreasing maps between sets ρ : T → T ′, i.e., if t ≤ t ′ ∈ T then ρ(t ) ≤

ρ(t ′) ∈T ′.
Composition: The standard composition of maps between sets.

Clearly, two objects in the category Tag are isomorphic if ρ : T → T ′ is a bijection: there exists a ρ′ :

T ′ → T such that ρ ◦ρ′ = idT ′ and ρ′ ◦ρ = idT . Note also that the terminal objects in the category Tag

are just one point sets Ttriv := {∗} (called asynchronous tag structures), i.e., for all tag structures T there

exists a unique morphism ρ : T → Ttriv defined by ρ(t ) ≡ ∗ which desynchronizes the tag structure. The

synchronous tag structure is given by Tsync =N.

6.1.2 Common tag structures. Tags are fundamental in understanding tagged systems in that mor-

phisms of tag structures will induce morphisms of tagged systems. To better understand this, we will dis-

cuss an important operation on tag structures: the pullback (the pullback of elements in a category will be

used extensively in the chapter—see Appendix A for a formal definition). Consider two tag structures T1

and T2. We would like to find a tag structure that is more general than T1 and T2 and has morphisms to

both of these tag structures, i.e., we would like to find a common tag structure for these two tag structures.

To do this, first consider the diagram in Tag:

T1
ρ1 - T � ρ2

T2, (6.1)

where T is the mediator tag structure. We know that such a tag structure always exists since it always can

be taken to be Ttriv (although this rarely is the wisest choice). We define the common tag structure to be

the pullback (see Paragraph A.2.3) of this diagram:

T1 ×T T2 = {(t1, t2) ∈T1 ×T2 : ρ1(t1) = ρ(t2)}. (6.2)
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Figure 6.1: A graphical representation of a behavior of a tagged system.

The pullback is the desired common tag structure since it sits in a commutative diagram of the form:

T1 ×T T2
π2 - T2

T1

π1

? ρ1 - T

ρ2

?

(6.3)

Moreover, that fact that the common tag structure is the pullback implies that for any other tag structure

that displays the properties of a common tag structure, there exists a unique morphism from this tag

structure to the common tag structure. More precisely, for any tag structure T̃ such that the following

diagram commutes:

T̃

T1 ×T T2 π2

-

∃!
-

T2

q2

-

T1

π1

? ρ1 -

q1

-

T

ρ2

?

(6.4)

there exists a unique morphism from T̃ to T1 ×T T2 also making the diagram commute. This construc-

tion on tag structures both motivates and mirrors constructions that will be performed throughout this

chapter on tagged systems. To demonstrate this we must, as with tag structures, define tagged systems

and the associated category.

6.1.3 Tagged systems. Following from [22], [23] and [24] (although our notation slightly deviates from

theirs), we define a tagged system. We then proceed to introduce the category of tagged systems.
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Let V be an underlying set of variables and D be the set of values that these variables can take,

i.e., the domain of the variables. A tagged system is a tuple

P = (V,T ,Σ),

where V is a finite subset of the underlying set of variables V , T is a tag structure, i.e., an object of Tag,

and Σ is a set of maps:

σ :N×V →T ×D.

Each of the elements of Σ, i.e., each of the maps σ, are referred to as V -behaviors (or just behaviors when

the variable set is understood). It is required that for each v ∈ V , the map δv (n) :=π1(σ(n, v)) :N→T is a

morphism in Tag, that is, nondecreasing (and called a clock in [24]).

Remark 6.1. In defining the set of behaviors of a tagged system, we made an explicit choice for the domain

of the behaviors: N×V . This choice is motivated by the fact that the behaviors of a tagged system are

signals generated by a computer, and hence discrete in nature. It is possible to consider other domains

for the behaviors, e.g., R×V , without any significant change to the theory introduced here. This indicates

an interesting extension of this work to behavioral dynamical system theory (cf. [98, 111, 112]).

6.1.4 The category of tagged systems. We can use the formulation of tagged systems above in order to

define the category of tagged systems, TagSys, as follows:

Objects: Tagged systems P = (V,T ,Σ).
Morphisms: A morphism of tagged systems α : P = (V,T ,Σ) → P ′ = (V ′,T ′,Σ′) is a mor-

phism (in the category of sets) of behaviors α : Σ→Σ′.
Composition: The standard composition of maps between sets. In other words, for α : P →

P ′ and α′ : P ′ →P ′′ the composition of α : Σ→Σ′ and α′ : Σ′ →Σ′′ is given by α′ ◦α : Σ→
Σ′′.

From the definition of morphisms in the category TagSys, it follows that two tagged systems, P and P ′,

are isomorphic, P ∼=P ′, if and only if, to use the terminology from the literature, the two tagged systems

are in bijective correspondence.

6.1.5 A “forgetful” functor. By the definition of the category TagSys, there is a fully faithful functor:

B : TagSys→ Set,

where Set is the category of sets. This functor is defined on objects and morphisms in TagSys as follows:

for every diagram in TagSys of the form:

P = (V,T ,Σ)
α→P ′ = (V ′,T ′,Σ′),

the functor B is given by:

B
(
P = (V,T ,Σ)

α→P ′ = (V ′,T ′,Σ′)
)
=Σ

α→Σ′.
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When discussing composition, we often will blur the distinction between the categories TagSys and Set,

i.e., we often will define the composition of a diagram of tagged systems by the behaviors of the composite

system, and hence implicitly view it as an object of Set. In this case, we always will construct an object in

TagSys with behaviors isomorphic to the corresponding object in Set.

6.1.6 Induced morphisms of tagged systems. Suppose that there is a morphism of tag structures ρ :

T → T ′. Then there exists a tagged system Pρ together with an induced morphism of tagged systems

( · )ρ : P →Pρ. First, if P = (V,T ,Σ) we define Pρ = (V,T ′,Σρ) where

Σρ := {σρ :N×V →T ′×D :σρ(n, v) = (ρ(t ), d) iff (t , d) =σ(n, v)

for some σ ∈Σ}.

That is, Σρ is defined by replacing t with ρ(t ) in the codomain of σ. With this definition of Pρ, we obtain

a morphism ( · )ρ : P →Pρ, called the desynchronization morphism and defined by, for each σ ∈Σ,

σρ(n, v) = (ρ(t ), d)
def⇔ σ(n, v) = (t , d).

Note that ( · )ρ is always surjective.

Example 6.1. Consider the following synchronous tagged systems, P1 and P2, defined as follows:

P1 := (V1 = {x},Tsync =N,Σ1 = {σ1}),

P2 := (V2 = {x, y},Tsync =N,Σ2 = {σ2, σ̃2}),

where

σ1(n, x) := (m(n),?),

σ2(n, v) :=
 (m(n),?) if v = x ∈ V2

(k(n),?) if v = y ∈ V2

,

σ̃2(n, v) :=
 (m(n),?) if v = x ∈ V2

(l(n),?) if v = y ∈ V2

.

Here m(n), k(n) and l(n) are any strictly increasing functions with k(n) 6= l(n), and ? is a (single) arbitrary

value in D.

For ρ : Tsync →Ttriv the desyncronization morphism, P1
∼=P

ρ
1 because P1 consists of a single

behavior. Since Σ2 = {σ2, σ̃2}, Σρ2 = {σρ2 = σ̃
ρ
2 }, i.e., Σρ2 consists of a single behavior. Therefore, P2 is not in

bijective correspondence with P
ρ
2

6.1.7 Heterogeneous composition. Let P1 = (V1,T1,Σ1) and P2 = (V2,T2,Σ2) be two tagged systems.

Consider a mediator tag structure T between the tag structures T1 and T2, i.e., there exists a diagram in

Tag:

T1
ρ1 - T � ρ2

T2.
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Recall that the common tag structure to T1 and T2 (relative to T ) is given by the pullback of the above

diagram in Tag (the fibered product as defined in (6.2)): T1 ×T T2.

We define the parallel composition of P1 and P2 over the mediator tag structure T by

P1 ∥T P2 := (V1 ∪V2,T1 ×T T2,Σ1 ∧T Σ2).

This notation for parallel composition is taken from [22]; the morphisms ρ1 and ρ2 are implicit in this

notation. In the above definition, Σ1 ∧T Σ2 is given by the set of behaviors

σ :N× (V1 ∪V2) → (T1 ×T T2)×D

such that the following condition holds: for all (n, v) ∈N×(V1∪V2), there exist unique σ1 ∈Σ1 and σ2 ∈Σ2

such that1

σ(n, v) = ((t1, t2), d) ⇔

(i) σ1(n, v) = (t1, d) if v ∈ V1

and

(ii) σ2(n, v) = (t2, d) if v ∈ V2

and

(iii) σ
ρ1
1 (n, v) =σ

ρ2
2 (n, v) if v ∈ V1 ∩V2.

(6.5)

Sinceσ is uniquely determined byσ1 andσ2, and vise-versa, we writeσ=σ1tT σ2. We pick this notation

so as to be consistent with the literature, cf. [22], where a pair (σ1,σ2) ∈ Σ1 ×Σ2 is called unifiable when

it satisfies condition (iii), and σ1 tT σ2 is called the unification of σ1 and σ2. We will always assume that

such a pair exists; in this case composition is well-defined (Σ1 ∧T Σ2 is not the empty set).

6.1.8 Universal heterogeneous composition. The common tag structure for the composition of two

tagged systems is given by the pullback of a certain diagram. The natural question to ask is: can the

composition of two tagged systems be realized as the pullback of a diagram of tagged systems of the form

P1
α1- M �α2 P2?

The importance of this question is that if the answer is yes, then the composition between two hetero-

geneous tagged systems is universal, i.e., defined by a universal property. We then can ask when the

composition of two tagged systems is the same as the composition of these tagged systems with different

tag structures, i.e., when semantics is preserved. It is possible to show that composition is in fact given by

a universal property.

In order to define composition universally, we must define the tagged system M in the above

diagram. In this vein, and using the same notation as the above paragraph, define

IT := (V1 ∩V2,T ,Σ1 ∨T Σ2), (6.6)

1Note that conditions (i) and (ii) imply condition (iii); this follows from the fact that (t1, t2) ∈ T1 ×T T2, so ρ1(t1) = ρ2(t2) in
condition (i) and (ii). Condition (iii) is stated for the sake of clarity.
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where T is a mediator tag structure (between T1 and T2) and

Σ1 ∨T Σ2 := {σ :N× (V1 ∩V2) →T ×D :

σ=σ
ρi
i |V1∩V2 , for σi ∈Σi , i = 1 or 2}. (6.7)

Now for the tagged systems P1 and P2 there exist morphisms

P1
Resρ1

1- IT
�
Resρ2

2 P2 (6.8)

defined as follows:

Resρi
i (σi ) =σ

ρi
i |V1∩V2 :N× (V1 ∩V2) →T ×D

for σi ∈Σi , i = 1,2. Clearly, such a morphism always exists.

Note that IT is a mediator tagged system or channel between the tagged systems P1 and P2;

IT “communicates" between P1 and P2. In the case when T =T1 =T2, I :=IT is exactly the identity

mediator tagged system or identity channel introduced in [22].

Theorem 6.1. Consider two tagged systems P1 = (V1,T1,Σ1) and P2 = (V2,T2,Σ2) with mediator tag

structure T , i.e., suppose that there is a diagram in Tag:

T1
ρ1 - T � ρ2

T2.

The parallel composition of P1 and P2 over this tag structure, P1 ∥T P2, is the pullback of the diagram:

P1
Resρ1

1- IT
�
Resρ2

2 P2

in the category of tagged systems, TagSys.

6.1.9 Implications of Theorem 6.1. Before proving Theorem 6.1, we discuss some of the implications

of this theorem.

If we consider the following diagram in the category of sets, Set:

Σ1
Resρ1

1- Σ1 ∨T Σ2
�
Resρ2

2
Σ2 = B

(
P1

Resρ1
1- IT

�
Resρ2

2 P2

)
,

the pullback of this diagram is given by:

Σ1 ×Σ1∨T Σ2 Σ2 = {(σ1,σ2) ∈Σ1 ×Σ2 : Resρ1
1 (σ1) = Resρ2

2 (σ2)}.

It is important to note that the pullback of the above diagram (which is an object in Set) is related to—

in fact, isomorphic to—the behavior of the tagged system P1 ∥T P2. More precisely, for the functor

B : TagSys→ Set, we have:

Σ1 ×Σ1∨T Σ2 Σ2
∼= B(P1 ∥T P2) =Σ1 ∨T Σ2. (6.9)
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This observation will allow us later to, justifiably, blur the distinction between pullbacks (and limits) in

the categories TagSys and Set.

In order to produce the bijection given in (6.9), first note that there are projections defined by:

πi : Σ1 ∧T Σ2 →Σi (6.10)

where for each σ1 tT σ2 ∈ Σ1 ∧T Σ2, πi (σ1 tT σ2) := σi for i = 1,2. Because of (6.5), it follows that any

element σ ∈Σ1 ∧T Σ2 can be written as σ=π1(σ)tT π2(σ).

Theorem 6.1 implies—by the universality of the pullback—that there is a bijection:

(π1,π2) : Σ1 ∧T Σ2
∼−→ Σ1 ×Σ1∨T Σ2 Σ2 (6.11)

σ=σ1 tT σ2 7→ (σ1 =π1(σ),σ2 =π2(σ))

where the inverse of this map is the unification operator:

( · )tT ( · ) : Σ1 ×Σ1∨T Σ2 Σ2
∼−→ Σ1 ∧T Σ2 (6.12)

(σ1,σ2) 7→ σ1 tT σ2.

This completes the description of the bijection given in (6.9).

Proof. (of Theorem 6.1) From the definition of Σ1∧T Σ2 and Σ1∨T Σ2, it follows that the following diagram

in Set:

Σ1 ∧T Σ2
π1 - Σ1

Σ2

π2

? Resρ2
2- Σ1 ∨T Σ2

Resρ1
1

?

commutes, which implies, by the definition of morphisms of tagged systems, that the following diagram

in TagSys:

P1 ∥T P2
π1 - P1

P2

π2

? Resρ2
2- IT

Resρ1
1

?

commutes. Consider a tagged system Q such that the following diagram commutes:

Q
q1 - P1

P2

q2

? Resρ2
2- IT

Resρ1
1

?

We can define a morphism γ : Q →P1 ∥T P2 by, for σ ∈ΣQ ,

γ(σ) = q1(σ)tT q1(σ).
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It follows that there is a commuting diagram:

Q

P1 ∥T P2 π1

-

γ
-

P1

q1

-

P2

π2
? Resρ2

2 -

q2

-

IT

Resρ1
1

?

Moreover, by replacing γ with any other morphism making the diagram commute, say γ̃, it follows that

for σ ∈ΣQ

γ̃(σ) =π1(γ̃(σ))tT π2(γ̃(σ)) = q1(σ)tT q2(σ) = γ(σ).

So γ= γ̃, i.e., γ is unique.

6.2 Equivalent Deployments of Tagged Systems

Standard composition is just the pullback of a specific diagram in TagSys; this observation nat-

urally allows us to generalize composition. To perform this generalization, we introduce the notion of a

general mediator tagged system, M , and define composition to be the pullback of a diagram of the form:

P1
α1- M �α2 P2 (6.13)

in TagSys. This process will be instrumental later in understanding how to take the composition of more

general networks of embedded systems.

We conclude this section by reviewing the definition of semantics preservation and giving nec-

essary and sufficient conditions on when semantics is preserved. We apply these results to the special

case of semantics preservation through desyncronization.

6.2.1 Composition through mediation. Given the results of Theorem 6.1, we can develop a more intu-

itive notation for composition. Specifically, if T is the mediator tag structure, then we write P1 ∥T P2 =
P1‖IT

P2 (in the case when T1 = T2 = T and ρ1 = ρ2 = id in (6.1), we just write P1‖P2 := P1‖I P2).

The mathematical reason for this is that P1‖IT
P2 is (isomorphic to) P1 ×IT

P2, i.e., the pullback of

the diagram given in (6.8). The philosophical motivation for this notation is that the composition of P1

and P2 can be taken over general mediator tagged systems. In other words, the parallel composition of

P1 and P2 over a general mediator tagged system M , denoted by P1‖M P2, is defined to be the pullback

of the diagram given in (6.13):

P1‖M P2 :=P1 ×M P2.

This implies that if ΣM is the set of behaviors of M , then the set of behaviors for P1‖M P2 is isomorphic

to:

Σ1 ×ΣM Σ2 = {(σ1,σ2) ∈Σ1 ×Σ2 :α1(σ1) =α2(σ2)}. (6.14)
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The explicit construction of P1‖M P2 as a tagged system is not especially relevant, as we are interested

only in its set of behaviors which must be isomorphic to the set of behaviors given in (6.14). That being

said, this construction is a special case of a more general construction (given in Section 6.4) for which the

construction of the tagged system is carried out. We only note that there are bijections

( · )tM ( · ) : Σ1 ×ΣM Σ2
∼−→ ΣP1‖MP2

(6.15)

(π1,π2) : ΣP1‖MP2

∼−→ Σ1 ×ΣM Σ2 (6.16)

which are generalizations of the unification and projection maps given in (6.12) and (6.11), respectively.

6.2.2 Specification vs. deployment. Consider two tagged systems P1 and P2 with a mediator tag

structure T . As in [23] (although with some generalization, since P1 and P2 are not assumed to have

the same tag structure), we define the following semantics:

Specification Semantics: P1‖IT
P2

Deployment Semantics: P1‖M P2

for some mediator tagged system M . The natural question to ask is when are the specification semantics

and the deployment semantics “equivalent.” Formally, and following from [23], we define a mediator M

to be semantics preserving with respect to IT , denoted by

P1‖M P2 ≡P1‖IT
P2 (6.17)

if for all (σ1,σ2) ∈Σ1 ×Σ2,

∃ σ′ ∈ΣP1‖MP2
s.t. π1(σ′) =σ1 and π2(σ′) =σ2

m
∃ σ ∈ΣP1‖IT

P2
s.t. π1(σ) =σ1 and π2(σ) =σ2.

(6.18)

Utilizing Theorem 6.1, we have the following necessary and sufficient conditions on semantics preserva-

tion.

Theorem 6.2. For two tagged systems P1 and P2,

P1‖M P2 ≡P1‖IT
P2,

if and only if for all (σ1,σ2) ∈Σ1 ×Σ2:

α1(σ1) =α2(σ2) ⇔ Resρ1
1 (σ1) = Resρ2

2 (σ2).
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Proof. (Sufficiency:) If

(σ1,σ2) ∈Σ1 ×Σ2 s.t. α1(σ1) =α2(σ2)

by (6.14)⇒ (σ1,σ2) ∈Σ1 ×ΣM Σ2
by (6.15)⇒ σ1 tM σ2 ∈ΣP1‖MP2

where

π1(σ1 tM σ2) =σ1 and π2(σ1 tM σ2) =σ2
by (6.18)⇒ ∃ σ ∈ΣP1‖IT

P2
s.t. π1(σ) =σ1 and π2(σ) =σ2

by (6.16)⇒ (σ1,σ2) ∈Σ1 ×ΣIT
Σ2

by (6.14)⇒ Resρ1
1 (σ1) = Resρ2

2 (σ2).

The converse direction proceeds in the same manner: if

(σ1,σ2) ∈Σ1 ×Σ2 s.t. Resρ1
1 (σ1) = Resρ2

2 (σ2) ⇒ α1(σ1) =α2(σ2),

by (6.14), (6.15), (6.16), and (6.18).

(Necessity:) We have the following implications:

∃ σ′ ∈ΣP1‖MP2
s.t. π1(σ′) =σ1 and π2(σ′) =σ2

by (6.16)⇒ (σ1,σ2) ∈Σ1 ×ΣM Σ2
by (6.14)⇒ α1(σ1) =α2(σ2)

⇒ Resρ1
1 (σ1) = Resρ2

2 (σ2)
by (6.14)⇒ (σ1,σ2) ∈Σ1 ×ΣIT

Σ2
by (6.15)⇒ σ1 tIT

σ2 ∈ΣP1‖IT
P2

and

π1(σ1 tIT
σ2) =σ1 and π2(σ1 tIT

σ2) =σ2.

Therefore σ1 tIT
σ2 is the element of ΣP1‖IT

P2
such that π1(σ1 tIT

σ2) =σ1 and π2(σ1 tIT
σ2) =σ2,

as desired.

The other direction follows in the same way:

∃ σ ∈ΣP1‖IT
P2

s.t. π1(σ) =σ1 and π2(σ) =σ2

⇒ σ1 tM σ2 ∈ΣP1‖MP2
and

π1(σ1 tM σ2) =σ1 and π2(σ1 tM σ2) =σ2,

by (6.14), (6.15) and (6.16).

To demonstrate the power of Theorem 6.2, we prove the following theorem, which is a general-

ization of one of the two main theorems of [22]. Moveover, we show that the theorem in [22] is a corollary

of this theorem; thus, our results are more general. First, we review the general set-up for this theorem.
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6.2.3 Desynchronization. Consider the case when P1 and P2 have the same tag structure, i.e., T1 =
T2 =T . Consider a mediator tag structure T ′ of T , i.e., suppose there exists a diagram in Tag:

T
ρ - T ′ � ρ

T .

In this case, we ask when the mediator tagged system IT ′ is semantics preserving, i.e., when

P1‖P2 ≡P1‖IT ′P2. (6.19)

A very important example of when this framework is useful is in the desynchronization of tagged systems;

in this case T ′ =Ttriv = {∗}, and P1‖IT ′P2 is the desynchronization of P1 and P2.

Using the notation of this paragraph, we have the following theorem and its corollary.

Theorem 6.3. IT ′ is semantics preserving w.r.t. I , P1‖IT ′P2 ≡P1‖P2, if and only if for all (σ1,σ2) ∈
Σ1 ×Σ2:

σ
ρ
1 |V1∩V2 =σ

ρ
2 |V1∩V2 ⇒ σ1|V1∩V2 =σ2|V1∩V2 .

Proof. Note that by the definition of the desynchronization morphism ( · )ρ (and the fact that it is always

surjective), it follows that

σ1|V1∩V2 =σ2|V1∩V2 ⇒ σ
ρ
1 |V1∩V2 =σ

ρ
2 |V1∩V2 .

Therefore, this result is a corollary of Theorem 6.2.

Corollary 6.1. If P
ρ

i is in bijection with Pi for i = 1,2 and (P1‖P2)ρ = P
ρ
1 ‖P

ρ
2 , then P1‖IT ′P2 ≡

P1‖P2 (IT ′ is semantics preserving w.r.t. I ).

Proof. We need only show that the suppositions of the theorem imply for all (σ1,σ2) ∈Σ1 ×Σ2

σ
ρ
1 |V1∩V2 =σ

ρ
2 |V1∩V2 ⇒ σ1|V1∩V2 =σ2|V1∩V2 .

The result then follows from Theorem 6.3.

To see that the desired implication holds, note that we have the following chain of implications:

σ
ρ
1 |V1∩V2 =σ

ρ
2 |V1∩V2

⇒ (σ1,σ2) ∈ Σ1 ×ΣIT ′ Σ2
∼=ΣP1‖IT ′ P2

⇒ (σρ1 ,σρ2 ) ∈ Σ
ρ
1 ×ΣIT ′ Σ

ρ
2
∼=ΣPρ

1 ‖P
ρ
2

⇒ σ
ρ
1 tIT ′ σ

ρ
2 ∈ Σ

ρ

P1‖P2
(since (P1‖P2)ρ =P

ρ
1 ‖P

ρ
2 )

⇒ ∃ σ̃ ∈ ΣP1‖P2
s.t. σ̃ρ =σ

ρ
1 tIT ′ σ

ρ
2 .

Setting σ̃i = πi (σ̃), the last of these implications implies that (σ̃ρ1 , σ̃ρ2 ) = (σρ1 ,σρ2 ) ∈ Σ
ρ
1 ×ΣIT ′ Σ

ρ
2 . Now, the

fact that P
ρ

i is in bijection with Pi for i = 1,2 implies that σ̃i =σi , or:

(σ1,σ2) = (σ̃1, σ̃2) ∈Σ1 ×ΣIT
Σ2 ⇒ σ1|V1∩V2 =σ2|V1∩V2 .
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Example 6.2. We would like to know semantics is preserved by desynchronization for the tagged systems

given in Example 6.1, i.e., for ρ : Tsync →Ttriv the desyncronization morphism, is P1‖P2 ≡P1‖ITtriv
P2?

First we apply the necessary and sufficient conditions given in Theorem 6.3. Since V1 ∩V2 = {x},

σ
ρ
1 (n, x) =σ

ρ
2 (n, x) ⇒ σ1(n, x) =σ2(n, x)

σ
ρ
1 (n, x) = σ̃

ρ
2 (n, x) ⇒ σ1(n, x) = σ̃2(n, x)

because σ1(n, x) =σ2(n, x) and σ1(n, x) = σ̃2(n, x). Therefore, semantics is preserved.

Note that Corollary 6.1 would not tell us whether semantics is preserved, because P2 is not in

bijective correspondence with P
ρ
2 , and so the conditions of the corollary do not hold. This demonstrates

that Theorem 6.3 is a stronger result than Corollary 6.1.

6.3 Networks of Tagged Systems

In this section, we introduce the notion of a network of tag structures, tagged systems and be-

haviors. Moreover, we are able to show that these objects correspond to networks over the categories Tag,

TagSys and Set, respectively (see Section 1.5). This observation will be fundamental in defining compo-

sition for these networks.

6.3.1 Networks of tag structures. We begin by defining a network of tag structures as in [23] (although

we state the definition in a slightly different manner). A network of tag structures is defined to be a tuple

(Γ,T ,S ,ρ),

where

¦ Γ= (Q,E) is a graph.

¦ T = {Tq }q∈Q is a set of tag structures.

¦ S = {Se }e∈E is a set of mediator tag structures, mediating between Tsor(e) and Ttar(e).

¦ ρ= {(ρe ,ρ′e )}e∈E is a set of pairs of morphisms in Tag, such that for every e ∈ E , there is the following

diagram in Tag:

Tsor(e)
ρe - Se

� ρ′e
Ttar(e).

Networks of tagged systems are defined in an analogous manner.

6.3.2 Networks of tagged systems. A network of tagged systems is defined to be a tuple

(Γ,P ,M ,α),

where
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¦ Γ= (Q,E) is a graph.

¦ P = {Pq }q∈Q is a set of tag structures.

¦ M = {Me }e∈E is a set of mediator tagged systems, mediating between Psor(e) and Ptar(e).

¦ α = {(αe ,α′
e )}e∈E is a set of pairs of morphisms in TagSys, such that for every e ∈ E , there is the

following diagram in TagSys:

Psor(e)
αe- Me

�α′
e Ptar(e).

Suppose we have a network of tag structures (Γ,T ,S ,ρ) and a collection of tagged systems P = {Pq }q∈Q

such that Pq has tag structure Tq . Then we can associate to this set of tagged systems a network of tagged

systems, (Γ,P ,IS ,Resρ) with:

IS = {ISe }e∈E , Resρ = {(Resρe
sor(e),Res

ρ′e
tar(e))}e∈E

where ISe is defined as in (6.6), and Resρe
sor(e) and Res

ρ′e
tar(e) are defined as in (6.8), i.e., there is a diagram in

TagSys of the form:

Psor(e)

Resρe
sor(e)- ISe

�
Res

ρ′e
tar(e)

Ptar(e)

for every e ∈ E .

6.3.3 Networks of behaviors. We can define a network of behaviors from the network of tagged sys-

tems, (Γ,P ,M ,α), as a tuple:

(Γ,ΣP ,ΣM ,α),

where

¦ Γ= (Q,E) is a graph.

¦ ΣP = {ΣPq
}q∈Q , where ΣPq

is the set of behaviors for Pq .

¦ ΣM = {ΣMe
}e∈E , where ΣMe

is the set of behaviors for Me .

¦ α= {(αe ,α′
e )}e∈E is a set of pairs of morphisms in Set, such that for every e ∈ E , there is the following

diagram in Set:

ΣPsor(e)

αe- ΣMe
�α′

e
ΣPtar(e)

.

The association of a network of behaviors from a network of tagged systems can be viewed categorically.

For the network of tagged systems (Γ,P ,M ,α), the functor B : TagSys → Set yields the corresponding

network of behaviors (Γ,ΣP ,ΣM ,α) because

ΣP = {ΣPq
}q∈Q = {B(Pq )}q∈Q

ΣM = {ΣMe
}e∈E = {B(Me )}e∈E .
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More generally,

ΣPsor(e)

αe- ΣMe
�α′

e
ΣPtar(e)

= B

(
Psor(e)

αe- Me
�α′

e Ptar(e)

)
for every e ∈ E .

6.3.4 Networks as networks over a category. We define a network of tag structures and a network of

tagged systems to be networks over the categories Tag and TagSys:

T : N→Tag, N : N→TagSys,

where N is an Dop-category. For example, if N is given by the diagram: • −→ •←− •, then the network of

tag structures given in (6.1) and the network of tagged systems given in (6.13) are defined, respectively, by

the functors:

T(• −→•←−•) =
(
T1

ρ1 - T � ρ2
T2

)
, (6.20)

N(• −→•←−•) =
(
P1

α1- M �α2 P2

)
. (6.21)

More generally, we can associate to a network of tag structures (Γ,T ,S ,ρ) and a network of tagged sys-

tems (Γ,P ,M ,α) functors:

T(T ,S ,ρ) : NΓ →Tag, N(P ,M ,α) : NΓ →TagSys,

where NΓ is the Dop-category associated with Γ, and T(T ,S ,ρ) and N(P ,M ,α) are defined by:

T(T ,S ,ρ) (sor(e) - e � tar(e)) := (6.22)(
Tsor(e)

ρe - Se
� ρ′e

Ttar(e)

)
,

N(P ,M ,α) (sor(e) - e � tar(e)) := (6.23)(
Psor(e)

αe- Me
�α′

e Ptar(e)

)
,

for every e ∈ E .

If (Γ,P ,M ,α) is a network of tagged systems, and (Γ,ΣP ,ΣM ,α) is the associated network of

behaviors, then there is a functor

S(ΣP ,ΣM ,α) : NΓ → Set,

where NΓ is the Dop-category associated with Γ, and S(ΣP ,ΣM ,α) is defined to be the composite:

NΓ

N(P ,M ,α)- TagSys
B- Set .

In other words, S(ΣP ,ΣM ,α) is defined by:

S(ΣP ,ΣM ,α) (sor(e) - e � tar(e)) :=
(
ΣPsor(e)

αe- ΣMe
�α′

e
ΣPtar(e)

)
,

= B

(
Psor(e)

αe- Me
�α′

e Ptar(e)

)
for every e ∈ E .
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Example 6.3. An example of a network of tagged systems associated to the Dop-category NCk (as intro-

duced in Example 1.24) is given in the following diagram:

Me1

Mek Me2

P1

α
e 1

-

�
α ′

ek

P2

�
α ′e

1

αe2

-

Pk

�
α

e
k

P3

α
′ e 2

-

N(NCk ) = ...
...

Pi+2 Pi−1

Pi+1 Pi

Mei+1

�
α

′ e i+
1

� αe i+1

Mei−1

α
e

i−
1 -α ′

ei−1
-

Mei

�
α

e i

α ′e
i -

6.4 Universally Composing Networks of Tagged Systems

In this section, we give a categorical formulation for composition. Since a network is just a dia-

gram, the composition of a network is the limit of this diagram. To illustrate this concept, we first consider

a network of tag structures and demonstrate how taking the composition of this network is consistent with

the notion of a common tag structure as first introduced in Section 6.1. We then discuss how these ideas

can be generalized to networks of tagged systems. Finally, we explicitly relate the composite of a network

of tagged systems with the composite of a network of behaviors. This relationship will be important when

attempting to prove results relating to semantics preservation.

6.4.1 Composing networks of tag structures. Recall that for two tag structures, T1 and T2, communi-

cating through a mediator tag structure, T , we obtained a single, common, tag structure that was unique

up to isomorphism; the common tag structure, T1 ×T T2, was the pullback of the diagram given in (6.1).

But the pullback is just a special case of the limit of a functor (see Appendix A), i.e.,

T1 ×T T2 = Lim(•−→•←−•)(T) = Lim(•−→•←−•)

(
T1

ρ1 - T � ρ2
T2

)
,

where T : (• −→•←−•) →Tag is defined as in (6.20).

Therefore, we can define a tag structure common to an entire network of tag structures by tak-

ing the limit (defined in Appendix A) of the corresponding diagram in Tag describing this network. If

(Γ,T ,S ,ρ) is a network of tag structures and

T(T ,S ,ρ) : NΓ →Tag
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is the corresponding functor and Dop-category, we define the common tag structure to be LimNΓ
(T(T ,S ,ρ)),

which because of the special structure of a Dop-category is given by:

LimNΓ
(T(T ,S ,ρ)) =

{
(tq )q∈Q ∈ ∏

q∈Q
Tq : ρe (tsor(e)) = ρ′e (ttar(e)), ∀ e ∈ E

}
,

which corresponds to the common tag structure defined in [23]. By the properties of the limit, we know

that this is in fact the desired common tag structure since for every e ∈ E , we have a diagram of the form

LimNΓ
(T(T ,S ,ρ))

πtar(e)- Ttar(e)

Tsor(e)

πsor(e)

? ρe - Se

ρ′e
?

which is a direct generalization of (6.3). Moreover, the limit is universal in the same sense as (6.4) (see

Appendix A for a complete discussion).

6.4.2 Composing networks of tagged systems. As with networks of tag structures, we can consider the

limit of a network of tagged systems (when viewed as a diagram)—this is the heterogeneous composition

of the network. This is justified by the discussion in Section 6.2, where the composition of a network of

two tagged systems, P1 and P2, was defined to be the pullback of these systems over the mediator tagged

system, M :

P1‖M P2 = Lim(•−→•←−•)(N) = Lim(•−→•←−•)

(
P1

α1- M �α2 P2

)
,

where N : (• −→•←−•) →Tag is defined as in (6.20).

This indicates a general, and universal, way of taking the composition of a network of tagged

systems: through the limit. Consider a network of tagged systems (Γ,P ,M ,α), with the tagged systems

Pq and Me given by

Pq = (Vq ,Tq ,Σq ), q ∈Q,

Me = (Ve ,Se ,Σe ), e ∈ E .

For the corresponding functor and Dop-category:

N(P ,M ,α) : NΓ →TagSys

denote the heterogeneous composition of (Γ,P ,M ,α) by ‖M P (to be consistent with the notation of

[23]) and define it by (unlike [23])

‖M P := LimNΓ
(N(P ,M ,α)) =

( ⋃
q∈Q

Vq ,
∏

q∈Q
Tq ,Σ‖MP

)
, (6.24)
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where Σ‖MP is the set of behaviors

σ :N× ⋃
q∈Q

Vq → ∏
q∈Q

Tq ×D

σ(n, v) 7→ (
(tq )q∈Q , d

)
such that the following conditions hold: for all (n, v) ∈N×⋃

q∈Q Vq , there exists unique (σq )q∈Q ∈∏
q∈Q Σq

such that2 for all e ∈ E

σ(n, v) = (
(tq )q∈Q , d

) ⇔

(i′) σsor(e)(n, v) = (tsor(e), d) if v ∈ Vsor(e)

and

(ii′) σtar(e)(n, v) = (ttar(e), d) if v ∈ Vtar(e)

and

(iii′) αe (σsor(e))(n, w) =α′
e (σtar(e))(n, w)

∀ w ∈ Ve .

(6.25)

Because σ ∈ Σ‖MP is uniquely determined by (σq )q∈Q ∈ ∏
q∈Q Σq satisfying the right-hand side of (6.25),

we write

σ=⊔
M

(σq )q∈Q ∈Σ‖MP

for the corresponding element on the left-hand side of (6.25), and call it the unification of (σq )q∈Q ∈∏
q∈Q Σq . Conversely, every element of Σ‖MP can be written as the unification of an element of

∏
q∈Q Σq ,

so there are projection maps πq , q ∈Q, given by

πq : Σ‖MP → Σq

σ=⊔
M

(σq )q∈Q 7→ σq =πq (σ).

We can obtain a better understanding of the behaviors of the tagged system ‖M P by consider-

ing the associated network of behaviors.

6.4.3 Composing networks of behaviors. Let (Γ,P ,M ,α) be a network of tagged systems, (Γ,ΣP ,ΣM ,α)

the associated network of behaviors, and

S(ΣP ,ΣM ,α) = B ◦N(P ,M ,α) : NΓ → Set,

the associated functor and Dop-category. Because of the special structure of an Dop-category, we can

explicitly compute the limit of the functor S(ΣP ,ΣM ,α); it is given by

LimNΓ
(S(ΣP ,ΣM ,α)) = (6.26){

(σq )q∈Q ∈ ∏
q∈Q

Σq :αe (σsor(e)) =α′
e (σtar(e)), ∀ e ∈ E

}
.

2Unlike (6.5), the third condition stated here is no longer redundant.
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Now, there is a bijection:

Σ‖MP
∼= LimNΓ

(S(ΣP ,ΣM ,α)). (6.27)

The map from Σ‖MP to LimNΓ
(S(ΣP ,ΣM ,α)) is given by

(πq )q∈Q : Σ‖MP
∼−→ LimNΓ

(S(ΣP ,ΣM ,α)) (6.28)

σ 7→ (πq (σ))q∈Q .

The inverse of this map is given by the unification operator generalized to the network case. That is⊔
M

( · ) : LimNΓ
(S(ΣP ,ΣM ,α))

∼−→ Σ‖MP (6.29)

(σq )q∈Q 7→ σ=⊔
M

(σq )q∈Q ,

where σ is given as in the left-hand side of equation (6.25), which is well defined because of the definition

of LimNΓ
(S(ΣP ,ΣM ,α)), i.e., because an element (σq )q∈Q ∈ LimNΓ

(S(ΣP ,ΣM ,α)) automatically satisfies the

right-hand side of (6.25) by (6.26).

6.4.4 Composition over identity mediator tagged systems. An especially interesting case is when the

network of tagged systems is obtained from a network of tag structures (Γ,T ,S ,ρ), i.e., the network of

tagged systems is given by (Γ,P ,IS ,Resρ). Here we explicitly carry out the construction of ‖IS
P , and

demonstrate how this yields the correct definition of ‖IS
P so as to be consistent with [23].

If Pq = (Vq ,Tq ,Σq ) for all q ∈Q, then

‖IS
P = LimNΓ

(N(P ,IS ,Resρ)) =
( ⋃

q∈Q
Vq ,LimNΓ

(T(T ,S ,ρ)),Σ‖IS
P

)
,

where Σ‖IS
P is defined in the same way as Σ‖MP with the appropriate modifications, i.e., Σ‖IS

P is the

set of behaviors

σ :N× ⋃
q∈Q

Vq → LimNΓ
(T(T ,S ,ρ))×D ⊂ ∏

q∈Q
Tq ×D

σ(n, v) 7→ (
(tq )q∈Q , d

)
,

such that the following conditions hold: for all (n, v) ∈N×⋃
q∈Q Vq , there exists unique (σq )q∈Q ∈∏

q∈Q Σq

such that3 for all e ∈ E

σ(n, v) = (
(tq )q∈Q , d

) ⇔

(i′′) σsor(e)(n, v) = (tsor(e), d) if v ∈ Vsor(e)

and

(ii′′) σtar(e)(n, v) = (ttar(e), d) if v ∈ Vtar(e)

and

(iii′′) σ
ρe
sor(e)|Vsor(e)∩Vtar(e) =σ

ρ′e
tar(e)|Vsor(e)∩Vtar(e) .

(6.30)

3Like (6.5) and unlike (6.25), the third condition stated here is again redundant because we are taking LimNΓ
(T(T ,S ,ρ)) as our

tag structure.
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Note that the fact thatσ ∈Σ‖IS
P takes values in LimNΓ

(T(T ,S ,ρ)), rather than
∏

q∈Q Tq , is exactly because

of condition (iii′′).

The conditions given in (6.30) demonstrate that our definition of Σ‖IS
P is consistent with the

one given in [23] (although our definition of Σ‖MP is more general that anything defined in that chapter).

Moreover, (6.26), (6.27) and (6.30) imply that we have the following bijection

Σ‖IS
P

∼= LimNΓ
(S(ΣP ,ΣIS

,Resρ)) (6.31)

=
{

(σq )q∈Q ∈ ∏
q∈Q

Σq :σρe
sor(e)|Vsor(e)∩Vtar(e) =σ

ρ′e
tar(e)|Vsor(e)∩Vtar(e) , ∀ e ∈ E

}

as defined in (6.28) and (6.29). Here

S(ΣP ,ΣIS
,Resρ) = B ◦N(P ,IS ,Resρ) : NΓ → Set

is the functor corresponding to the network of behaviors (Γ,ΣP ,ΣIS
,Resρ) obtained from the network of

tagged systems (Γ,P , IS ,Resρ).

6.5 Semantics Preserving Deployments of Networks

Using the framework established in this chapter, we are able to introduce a general notion of

semantics preservation. After this concept is introduced, we state the main result of this work: necessary

and sufficient conditions for semantics preservation. We conclude this section by applying this result to

the specific case of network desyncronization.

6.5.1 Network specification vs. network deployment. Generalizing the notion of specification vs. de-

ployment given in Section 6.2, we define the following semantics (using the notation of the previous para-

graph):

Network Specification Semantics: ‖IS
P

Network Deployment Semantics: ‖M P

The set of mediator tagged systems M is said to be semantics preserving with respect to IS , denoted by

‖M P ≡ ‖IS
P

if for all (σq )q∈Q ∈∏
q∈Q Σq

∃ σ′ ∈Σ‖MP s.t. πq (σ′) =σq ∀ q ∈Q

m
∃ σ ∈Σ‖IS

P s.t. πq (σ) =σq ∀ q ∈Q.

(6.32)

We now are able to generalize the results given in Theorem 6.2 on semantics preservation to the networks

of tagged systems case.
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Theorem 6.4. For the networks, (Γ,P ,M ,α) and (Γ,P ,IS ,Resρ),

‖M P ≡ ‖IS
P

if and only if for all (σq )q∈Q ∈∏
q∈Q Σq and all e ∈ E:

αe (σsor(e)) =α′
e (σtar(e)) ⇔ Resρe

sor(e)(σsor(e)) = Res
ρ′e
tar(e)(σtar(e)).

Proof. (Sufficiency:) If

(σq )q∈Q ∈ ∏
q∈Q

Σq s.t. αe (σsor(e)) =α′
e (σtar(e)) ∀ e ∈ E

by (6.26)⇒ (σq )q∈Q ∈ LimNΓ
(S(ΣP ,ΣM ,α))

by (6.29)⇒ ⊔
M (σq )q∈Q ∈Σ‖MP where

πq
(⊔

M (σq )q∈Q
)=σq ∀ q ∈Q

by (6.32)⇒ ∃ σ ∈Σ‖IS
P s.t. πq (σ) =σq ∀ q ∈Q

by (6.28)⇒ (σq )q∈Q ∈ LimNΓ
(S(ΣP ,ΣIS

,Resρ))
by (6.31)⇒ Resρe

sor(e)(σsor(e)) = Res
ρ′e
tar(e)(σtar(e)) ∀ e ∈ E .

The converse direction proceeds in the same manner: if

(σq )q∈Q ∈ ∏
q∈Q

Σq s.t. Resρe
sor(e)(σsor(e)) = Res

ρ′e
tar(e)(σtar(e)) ∀ e ∈ E

by (6.29)⇒ ⊔
IS

(σq )q∈Q ∈Σ‖IS
P where

πq
(⊔

IS
(σq )q∈Q

)=σq ∀ q ∈Q
by (6.32)⇒ ∃ σ′ ∈Σ‖MP s.t. πq (σ′) =σq ∀ q ∈Q
by (6.28)⇒ (σq )q∈Q ∈ LimNΓ

(S(ΣP ,ΣM ,α))
by (6.26)⇒ αe (σsor(e)) =α′

e (σtar(e)) ∀ e ∈ E .

(Necessity:) We have the following implications:

∃ σ′ ∈Σ‖MP s.t. πq (σ′) =σq ∀ q ∈Q

by (6.28)⇒ (σq )q∈Q ∈ LimNΓ
(S(ΣP ,ΣM ,α))

by (6.26)⇒ αe (σsor(e)) =α′
e (σtar(e)) ∀ e ∈ E

⇒ Resρe
sor(e)(σsor(e)) = Res

ρ′e
tar(e)(σtar(e)) ∀ e ∈ E

by (6.29)⇒ ⊔
IS

(σq )q∈Q ∈Σ‖IS
P and

πq
(⊔

IS
(σq )q∈Q

)=σq ∀ q ∈Q.

Therefore
⊔

IS
(σq )q∈Q is the element of Σ‖IS

P such that πq
(⊔

IS
(σq )q∈Q

)=σq for all q ∈Q.
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The other direction follows in the same way:

∃ σ ∈Σ‖IS
P s.t. πq (σ) =σq ∀ q ∈Q

⇒ ⊔
M (σq )q∈Q ∈Σ‖MP and

πq
(⊔

M (σq )q∈Q
)=σq ∀ q ∈Q,

by (6.26), (6.28) and (6.29), so
⊔

M (σq )q∈Q is the element of Σ‖MP such that

πq

(⊔
M

(σq )q∈Q

)
=σq

for all q ∈Q.

6.5.2 Network desyncronization. Let T and T ′ be two tag structures and ρ : T →T ′ be a morphism

between these tag structures. By slight abuse of notation, let (Γ,T ,T ′,ρ) denote the network of tag struc-

tures such that Tq = T for all q ∈ Q and T ′
e = T ′, ρe = ρ′e = ρ for all e ∈ E ; denote the corresponding

network of tagged systems by (Γ,P ,IT ′ ,Resρ). Similarly, let (Γ,T ,T , id) denote the network of tag struc-

tures with Tsor(e) = Ttar(e) = Te = T for all e ∈ E , and with all morphisms of tag structures being the

identity; denote the corresponding network of tagged systems by (Γ,P ,I ,Resid). Therefore, this network

consists of a set of tagged systems, all with the same tag structure, communicating through the identity

tagged system. A special case in which this framework in interesting is when T ′ =Ttriv = {∗}; in this case

(Γ,P ,IT ′ ,Resρ) is the desynchronization of (Γ,P ,I ,Resid).

Utilizing the notation of Section 6.4, and generalizing the discussion on desynchronization given

in this Section 6.2, we are interested in when

‖P := LimNΓ
(N(T ,T ,id)) ≡ LimNΓ

(N(T ,T ′,ρ)) =: ‖IT ′P .

In other words, we would like to know when IT ′ is semantics preserving. The following corollary (of

Theorem 6.4) says that this happens exactly when every element of IT ′ is semantics preserving.

Corollary 6.2. IT ′ is semantics preserving, ‖P ≡ ‖IT ′P , if and only if for all (σq )q∈Q ∈ ∏
q∈Q Σq and all

e ∈ E:

σ
ρ

sor(e)|Vsor(e)∩Vtar(e) =σ
ρ

tar(e)|Vsor(e)∩Vtar(e) ⇒ σsor(e)|Vsor(e)∩Vtar(e) =σtar(e)|Vsor(e)∩Vtar(e) .
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Limits

Central to category theory, and hence to all of mathematics, is the notion of a universal prop-

erty, which characterizes objects that share a certain property, i.e., objects displaying such a property are

unique up to isomorphism. Examples abound in category theory (e.g., products and limits) but also ap-

pear in engineering, although almost never recognized (e.g., stability is a universal property).

This appendix reviews some of the most fundamental universal constructions in a category:

products, equalizers, pullbacks and limits. This is done in order to provide the necessary preliminaries for

Chapter 6.

A.1 Products

A.1.1 Binary products. Let C be a category and A and B two objects in C. The product of these objects,

if it exists, is an object C = A×B of C together with a pair of morphisms pA : A×B → A and pB : A×B → B

(called projections). It must satisfy the universal property that for any other object D of C together with

a pair of morphisms f : D → A and g : D → B, there exists a unique morphism h : D → A×B making the

following diagram:

D

A � pA

f

�
A×B

h

? pB - B

g

-

commute. The morphism h is typically denoted by ( f , g ).

Example A.1. For two sets A and B, the binary product of these sets is the usual cartesian product:

A×B = {(a, b) : a ∈ A and b ∈ B}.
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A.1.2 Products. Let C be a category, I be a set and {Ai }i∈I a set of objects of C. The product of these ob-

jects is an object
∏

i∈I Ai of C together with projections pAi :
∏

i∈I Ai → Ai satisfying the universal property

that for any other object C of C with morphisms fi : C → Ai , there exists a unique morphism

( fi )i∈I : C →∏
i∈I

Ai

making the following diagram

C

Ai
�pAi

fi

� ∏
i∈I

Ai

( fi )i∈I

?

commute for all i ∈ I .

Given two sets of objects {Ai }i∈I and {Bi }i∈I together with morphisms fi : Ai → Bi , there is a

unique induced morphism ∏
i∈I

fi = ( fi ◦pAi )i∈I :
∏
i∈I

Ai →
∏
i∈I

Bi

making the following diagram

Ai
�pAi

∏
i∈I

Ai

Bi

fi

?
�pBi

∏
i∈I

Bi

∏
i∈I fi = ( fi ◦pAi )i∈I

?

commute.

Definition A.1. A category C is said to have products, or products exist in C, if for any set of objects {Ai }i∈I

in C, the product
∏

i∈I Ai exists.

Remark A.1. Products of the form given in Definition A.1 are often referred to as small products. Some-

times finite products—I is a finite set—are often of interest.

Example A.2. The category of sets, Set, has products. For a set of sets {Xi }i∈I , the product is the usual

cartesian product: ∏
i∈I

Xi = {(xi )i∈I : xi ∈ Xi }.

The projections are defined as

pi :
∏
i∈I

Xi → Xi

(xi )i∈I 7→ xi .

To verify the universal property of the product, consider a set D and functions fi : D → Xi . From these we

obtain a function f : D →∏
i∈I Xi given by:

f (y) = ( fi (y))i∈I
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for all y ∈ D.

A.1.3 Products of graphs. The category of graphs, Grph, has products. For a set of graphs {Γi = (Qi ,Ei )}i∈I ,

the product is induced from the product on sets as follows:

∏
i∈I

Γi = (
∏
i∈I

Qi ,
∏
i∈I

Ei ).

The source and target maps for the product graph
∏

i∈I Γi are defined to be the unique maps making the

following diagrams commute:

Ei
� pEi

∏
i∈I

Ei

Qi

sori

?
�pQi

∏
i∈I

Qi

∏
i∈I sori

?

Ei
� pEi

∏
i∈I

Ei

Qi

tari

?
�pQi

∏
i∈I

Qi

∏
i∈I tari

?

Specifically, for (ei )i∈I ∈∏
i∈I Ei ,

∏
i∈I

sori ((ei )i∈I ) = (sori (ei ))i∈I ,
∏
i∈I

tari ((ei )i∈I ) = (tari (ei ))i∈I .

Note that the projections are defined by:

pΓi := (pEi , pQi ) :
∐
i∈I

Γi → Γi .

Finally, we must verify the universal property of the product. Consider a graph Γ = (Q,E) together with

a collection of morphisms Fi = ((FQ)i , (FE )i ) : Γ→ Γi . It follows from the universality of products in the

category of sets that the diagrams given in Table A.1 are commutative. So F = (FQ ,FE ) : Γ→ ∏
i∈I Γi is the

desired unique morphism.

A.1.4 Products in categories of hybrid objects. The existence of products in C relates to the existence

of products in Hy(C). In order to establish this relationship, we need to show that products exist in Dcat

and that if products exist for C then they exist for CJ for any small category J. These two results are then

“glued” together to yield products in Hy(C).

Proposition A.1. Products exist in Dcat. Specifically, for {Ai }i∈I a set of D-categories, the product
∏

i∈I Ai

exists and is given by: ∏
i∈I

Ai = dcat(
∏
i∈I

grph(Ai )),

where
∏

i∈I grph(Ai ) is the product of graphs.

Proof. This follows from the fact that dcat and grph are isomorphisms between categories (Theorem 1.1).

Specifically, the projections:

Pi :
∏
i∈I

grph(Ai ) → grph(Ai )
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E

Q

sor

-

∏
i∈I

Ei

FQ

?

Ei

�

(F
E

) i

�

pE i

∏
i∈I

Qi

FE

?

∏
i∈I sori

-

Qi
�

(F
Q

) i

sori
-

�
pQ i

E

Q

tar

-

∏
i∈I

Ei

FQ

?

Ei

�

(F
E

) i

�

pE i

∏
i∈I

Qi

FE

?

∏
i∈I tari

-

Qi

�
(F

Q
) i

tari
-

�
pQ i

Table A.1: Commuting diagrams verifying the universality of the product in Grph.

yield projections of D-categories:

~Pi := dcat(Pi ) :
∏
i∈I

Ai = dcat(
∏
i∈I

grph(Ai )) →Ai = dcat(grph(Ai )).

Now, to verify universality, for any other D-category D with morphisms ~Fi : D → Ai there is a graph

grph(D) and morphisms grph(~Fi ) : grph(D) → grph(Ai ). By the universality of the product in Grph, there

exists a unique morphism F making the following diagram

grph(D)

grph(Ai ) �Pi

grph(~Fi )

� ∏
i∈I

grph(Ai )

F

?
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commute. Applying the functor dcat yields a commuting diagram

D

Ai
�

~Pi

~Fi

� ∏
i∈I

Ai

dcat(F )

?

where dcat(F ) must be unique; if there were another morphisms making the diagram commute, it would

also make the corresponding diagram of graphs commute, thus violating the uniqueness of F .

Lemma A.1. If products exist in C, then products exists in CJ for any small category J. Specifically, for a set

of functors Fi : J→C, i ∈ I, the product is given on objects and morphisms by:

(
∏
i∈I

Fi )(a) =∏
i∈I

Fi (a), (
∏
i∈I

Fi )(α) =∏
i∈I

Fi (α).

Proof. See [74], Theorem 1, page 115.

Proposition A.2. If products exist in C, then products exist in Hy(C). Specifically, for a set of hybrid objects

{(Ai ,Ai )}i∈I , the product is given by:

∏
i∈I

(Ai ,Ai ) = (
∏
i∈I

Ai ,
∏
i∈I

~P∗
i (Ai ))

where
∏

i∈I Ai is the product of D-categories,
∏

i∈I ~P
∗
i (Ai ) is the product in C

∏
i∈I Ai with ~Pi :

∏
i∈I Ai → Ai

the projection morphisms in Dcat.

Proof. The projection morphisms are given by:

(~Pi , ~pi ) :
∏
i∈I

(Ai ,Ai ) → (Ai ,Ai ),

where ~Pi :
∏

i∈I Ai →Ai and

~pi :
∏
i∈I

~P∗
i (Ai )

�→ ~P∗
i (Ai )

is objectwise the projection in C. We must verify the universality of the product. Consider a hybrid object

(D,D) together with morphisms (~Fi , ~fi ) : (D,D) → (Ai ,Ai ). By the universality of the product in Dcat, there

exists a unique morphism ~F : D →∏
i∈I Ai yielding a commuting diagram

D

Ai
�

~Pi

~Fi

� ∏
i∈I

Ai

~F

?
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Therefore, we need only find a unique natural transformation ~f : D
�→ ~F∗(

∏
i∈I ~P

∗
i (Ai )) in CD . Since ~fi :

D
�→ ~F∗

i (Ai ) there is a commuting diagram

D

~F∗
i (Ai ) �

~F∗(~pi )

~fi

�
~F∗(

∏
i∈I

~P∗
i (Ai ))

~f

?

in CD where the existence and uniqueness of ~f follows from the universal property of the product in

CD .

A.2 Equalizers and Pullbacks

A.2.1 Equalizers For a category C and a pair of morphisms:

A
f -

g
- B

between two object A and B of C, the equalizer of this pair is an object eq( f , g ) of C together with a mor-

phism u : eq( f , g ) → B making diagram

eq( f , g )
u - A

f -

g
- B

commute, i.e., f ◦u = g ◦u. In addition, it must satisfying the universal property that for any other object

C with a morphism v : C → A such that f ◦ v = g ◦ v, there exists a unique morphism h : C → eq( f , g ) such

that the following diagram commutes:

C

eq( f , g )

h

? u - A
f -

g
-

v

-

B

Definition A.2. A category C is said to have equalizers if for any pair of morphism f , g : A → B between

any pair of objects in C, the equalizer exists.

Example A.3. In the category of sets, Set, equalizers exist. For two sets X and Y and two functions f , g :

X → Y , the equalizer is given by:

eq( f , g ) = {x ∈ X : f (x) = g (x)},

with u : eq( f , g ) → X the inclusion. For a set Z and a morphism h : Z → X such that f ◦h = g ◦h, then

h : Z → eq( f , g ) by the definition of eq( f , g ), and hence is unique.
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A.2.2 Equalizers in Grph. For a diagram in Grph of the form:

Γ= (Q,E)
F = (FQ ,FE )-

G = (GQ ,GE )
- Γ′ = (Q′,E ′),

the equalizer of this pair of morphisms exists. It is given by:

eq(F,Q) = (eq(FQ ,GQ),eq(FE ,GE )),

where the equalizers on the right are in the category of sets. The source and target functions for eq(F,G)

are given uniquely by requiring that the following diagrams commute:

eq(FE ,GE )
uE - E

FE -

GE

- E ′

eq(FQ ,GQ)

soreq(F,G)

? uQ - E

sor

? FQ -

GQ

- Q′

sor′

?

eq(FE ,GE )
uE - E

FE -

GE

- E ′

eq(FQ ,GQ)

tareq(F,G)

? uQ - E

tar

? FQ -

GQ

- Q′

tar′

?

Note that the uniqueness of the source and target functions are due to the universality of equalizers in

Set. It also follows from the definition of equalizers in Set that

soreq(F,G) = sor |eq(FE ,GE ), tareq(F,G) = tar |eq(FE ,GE ),

since uE and uQ are inclusions.

The universality of the equalizer in Grph is easy to verify (it is a simple exercise in diagram chas-

ing).

A.2.3 Pullbacks. Consider a category C and a diagram of the form:

B

C
g

- A

f

?

The pullback of this diagram is an object B ×A C of C together with two morphisms p and q such that the

following diagram

B ×A C
p - B

C

q

?

g
- A

f

?
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commutes. It is universal in the following sense: for any other object D of C with morphisms u and v

making the following diagram commute

D
u - B

C

v

?

g
- A

f

?

there exists a unique morphism h : D → B ×A C such that the following diagram commutes:

D

B ×A C
p

-

h

-

B

u

-

C

q

?

g
-

v

-

A

f

?

Pullbacks are very useful when dealing with networks over a category since the canonical Dop-category is

of the form:

b

c
ta

- a

sa

?

Example A.4. In the category of sets, pullbacks exists. Specifically, for a diagram of sets of the form:

X

Y
g

- Z

f

?

The pullback is given by:

X ×Z Y = {(x, y) ∈ X ×Y : f (x) = g (y)}.

A.3 Limits

A.3.1 Limits For a category C and a functor D : J→C the limit, if it exists, is an object of C, denoted by

LimJ(D), together with morphisms:

νa : LimJ(D) → D(a), a ∈Ob(J),
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such that for every α : a → b in J, the following diagram

LimJ(D)

D(a)
D(α) -

νa

�
D(b)

νb

-

commutes. In addition it is required to satisfy the universal property that for any object C of C with mor-

phisms ca : C → D(a), a ∈Ob(J), such that there is a commuting diagram:

C

D(a)
D(α) -

ca

�
D(b)

cb

-

there exists a unique morphism u : C → LimJ(D) making the following diagram

C

LimJ(D)

u

?

D(a)
D(α) -

ca

�

νa

�
D(b)

cb

-νb -

commute.

The notion of a limit perhaps can be better understood utilizing the language of natural trans-

formations. For the constant functor ∆J : C→CJ, the limit of D is an object LimJ(D) of C together with a

universal natural transformation:

ν : ∆J(LimJ(D))
�→ D.

It must be universal in the following sense: for any other object C of C and natural transformation c :

∆J(C )
�→ D, there exists a unique morphism u : C → LimJ(D) such that the following diagram commutes

∆J(C )

∆J(LimJ(D))

∆J(u)

?
ν - D

c

-

in CJ.

Definition A.3. A category C is complete if for every small category J and every functor D : J → C, the

limit exists.

Example A.5. The category of sets, Set, is the canonical example of a complete category.
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The category of small categories Cat is complete; this completeness is directly a result of the

completeness of Set. In fact, one might be tempted to say that the category of D-categories is complete

since the category of small categories is complete. The problem with this logic is that there is no guarantee

that the limit of diagram in Dcat is again in Dcat.

Another example of a complete category is the category of graphs, Grph, which is again complete

because the category of sets is complete. It turns out that the completeness of this category does imply

the completeness of Dcat, which is not surprising in light of the isomorphism Dcat∼=Grph.

A.3.2 Special cases of the limit. The limit includes as a special case all of the previous universal con-

structions we have introduced. Specifically,

Products. The limit of a functor
D : I→C,

where I is the discrete category obtained from an indexing set I .
Equalizers. The limit of a functor

D : (•→→•) →C .

Pullback. The limit of a functor
D : (•→•←•) →C .

Interestingly enough, the existence of limits in a category is related to the existence of equalizers and

products.

Proposition A.3. A category C is complete iff it has equalizers and products.

Proof. See Corollary 2, page 113, [74].

Corollary A.1. The category of graphs, Grph, is complete.

A corollary of this is that the category of D-categories is complete. Before stating this result, we

introduce some notation.

Notation A.1. To differentiate, when necessary, between limits in different categories, we sometimes write

LimC
J

for the limit of a functor D : J→C. Similarly, we sometimes write ∆C
J

.

Theorem A.1. The category of D-categories, Dcat, is complete. Specifically, for a functor D : J → Dcat, J

small, the limit is given by:

LimDcat
J (D) = dcat

(
LimGrph

J
(grph∗(D))

)
.

Proof. Follows from the fact that dcat and grph are isomorphisms of categories; the proof is analogous to

the proof of Proposition A.1.
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A.3.3 The limit as a functor. If C is a complete category, then the limit exists for every diagram over a

small category J, i.e., for every functor D : J→C. In fact, the universality of the limit implies that it defines

a functor

LimJ : CJ →C .

Specifically, consider two functors D,D′ : J → C together with the corresponding universal natural trans-

formations:

ν : ∆J(LimJ(D))
�→ D,

ν′ : ∆J(LimJ(D′))
�→ D′.

The object function of the limit (as a functor) associates to these functors their limit. For a morphism

f : D
�→ D′, the limit of this morphism is the unique morphism LimJ( f ) : LimJ(D) → LimJ(D′) making the

following diagram:

∆J(LimJ(D))
ν - D

∆J(LimJ(D′))

∆J(LimJ( f ))

?
ν′ - D′

f

?

commute.

An especially useful result is outlined in the following proposition (see [74], Theorem 1, page

115).

Proposition A.4. If C is complete, then CK is complete for every small category K. Specifically, for D : J →
CK, the limit is given on objects and morphisms of K by:

LimCK

J
(D)(a) = LimC

K
(D(a)), LimCK

J
(D)(α) = LimC

K
(D(α)).

A.4 Limits in Categories of Hybrid Objects

As an application of these ideas, we will prove that if C is complete, then Hy(C) is complete.

This result was established in [6]; in addition, it was proven that if C is cocomplete (the dual notion to

completeness) then Hy(C) is complete.

A.4.1 Diagrams in categories of hybrid objects. By slight abuse of notation, we denote a diagram in

Hy(C) by

(DJ,DJ) : J→Hy(C).

That is, for every α : a → b in J, there are corresponding hybrid objects and morphisms:

(DJ(a),DJ(a))
(DJ(α),DJ(α))- (DJ(b),DJ(b)).

223



Limits

In particular, DJ(α) : DJ(a) →DJ(b) is a morphism of D-categories and

DJ(α) : DJ(a)
�→ (DJ(α))∗(DJ(b))

is a morphism in CDJ(a).

Note that by the definition of a hybrid object, we can without ambiguity write DJ : J → Dcat;

note that DJ is not a D-category, but a diagram of such categories. Since the category of D-categories is

complete, there exists a D-category LimDcat
J

(DJ) together with a universal natural transformation:

~V : ∆Dcat
J (LimDcat

J (DJ))
�→DJ.

The motivation for denoting this natural transformation by ~V is that for every diagram of the form α : a →
b in J, there is a diagram of D-categories:

LimDcat
J (DJ)

DJ(a)
DJ(α) -

~Va

�
DJ(b)

~Vb

-
(A.1)

For the diagram (DJ,DJ) : J→Hy(C) in Hy(C), the limit of DJ : J→Dcat yields a functor:

~V ∗(DJ) : J→CLimDcat
J (DJ)

defined on objects and morphisms of J by:

~V ∗(DJ)(a) := ~V ∗
a (DJ(a)), ~V ∗(DJ)(α) := ~V ∗

dom(α)(DJ(α)).

Note that ~V ∗(DJ) is well-defined because of the commutativity of (A.1).

Using this notation, we can now prove that categories of hybrid objects are complete and give

an explicit formula for the limit of a diagram.

Theorem A.2. If C is complete, then Hy(C) is complete. Specifically, for (DJ,DJ) : J → Hy(C), the limit is

given by:

LimHy(C)
J

(DJ,DJ) =
(
LimDcat

J (DJ),LimC
LimDcat

J
(DJ)

J
(~V ∗(DJ))

)
.

Proof. The first step is to find the universal natural transformation in Hy(C)J

ν : ∆Hy(C)
J

(
LimHy(C)

J
(DJ,DJ)

)
�→ (DJ,DJ).

There are universal natural transformations

~V : ∆Dcat
J

(
LimDcat

J (DJ)
)

�→ DJ

~ν : ∆C
LimDcat

J
(DJ)

J

(
LimC

LimDcat
J

(DJ)

J
(~V ∗(DJ))

)
�→ ~V ∗(DJ)

in DcatJ and (CLimDcat
J (DJ))J.
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The claim is that the universal transformation ν is given by ν = (~V ,~ν). To verify this, first note

that for an object a of J,

νa = (~Va ,~νa) : LimHy(C)
J

(DJ,DJ) =
(
LimDcat

J (DJ),LimC
LimDcat

J
(DJ)

J
(~V ∗(DJ))

)
�→ (DJ(a),DJ(a))

since ~V ∗
a (DJ(a)) = ~V ∗(DJ)(a). Now, we need to verify that defining ν= (~V ,~ν) in fact yields a natural trans-

formation. That is, for α : a → b in J, we need to show that there is a commuting diagram:(
LimDcat

J (DJ),LimC
LimDcat

J
(DJ)

J
(~V ∗(DJ))

)

(DJ(a),DJ(a))
(DJ(α),DJ(α)) -

(~Va ,~νa)

�
(DJ(b),DJ(b))

(~Vb ,~νb)

-

By the commutativity of (A.1), this follows from the fact that

~V ∗
a (DJ(α))•~νa = ~V ∗(DJ)(α)•~νa =~νb ,

which is implied by the naturality of ~ν and the definition of ~V ∗(DJ).

To conclude, we need only show the universality of ν = (~V ,~ν). Suppose that there is a hybrid

object (C ,C) together with a collection of morphisms (~Ca ,~ca) : (C ,C) → (DJ(a),DJ(a)) of hybrid objects

making the following following diagram

(C ,C)

(DJ(a),DJ(a))
(DJ(α),DJ(α))-

(~Ca ,~ca)

�
(DJ(b),DJ(b))

(~Cb ,~cb)

-

commute. This yields commuting diagrams and unique morphisms:

C

LimDcat
J (DJ)

~U
?

DJ(a)
DJ(α) -

~Ca

�

~Va
�

DJ(b)

~Cb

-~Vb -
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C

~U∗(LimC
LimDcat

J
(DJ)

J
(~V ∗(DJ)))

~u

?

~U∗(~V ∗
a (DJ(a)))

~U∗(~V ∗
a (DJ(α))) -

~ca
�

~U∗(~νa)

�
~U∗(~V ∗

b (DJ(b)))

~cb

-

~U∗(~νb)

-

That is, we obtain a unique morphism of hybrid objects:

(~U , ~u) : (C ,C) → LimHy(C)
J

(DJ,DJ)

that makes the following diagram

(C ,C)

LimHy(C)
J

(DJ,DJ)

(~U , ~u)

?

(DJ(a),DJ(a))
(DJ(α),DJ(α)) -

(~Ca ,~ca)

�

(~Va ,~νa)

�
(DJ(b),DJ(b))

(~Cb ,~cb)

-

(~Vb ,~νb)

-

commute as desired.
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This dissertation developed a unifying mathematical theory of hybrid systems, i.e., a theory sat-

isfying Properties I-IV discussed in the introduction. Yet there is still much to be done. We, therefore,

briefly discuss some future research directions.

Mathematical Foundations. The connections between modern mathematics and our categor-

ical framework for hybrid systems have only begun to be established. The theory of hybrid objects makes

the possibility of further connections not only likely, but certain. For example, hybrid objects allow us to

utilize the theory of model categories, which provides a method for “doing homotopy theory” on general

categories satisfying certain axioms. Understanding hybrid systems in the context of model categories

allows one to understand the homotopy-theoretic properties of these systems, laying the ground work

for hybrid homotopy theory. This promises to play a fundamental role in understanding the topological

properties of hybrid systems. We refer the reader to the author’s master’s thesis [6] for more details.

Hybrid Systems. This dissertation discussed applications of the theory of hybrid objects to hy-

brid systems, but there is still much to be done. Understanding the implications of the results presented

on a practical level provide important research directions. For example, we gave “Lyapunov-like” condi-

tions on the existence of Zeno behavior. Can explicit “hybrid Lyapunov” functions be constructed in the

case of linear hybrid systems? Can the conditions on the stability of Zeno equilibria be used to give analo-

gous conditions on the stability of other types of “hybrid” equilibria? Applications of hybrid reduction to

bipedal robotic walking also were discussed, although we restricted our attention to walkers without hips.

Can these ideas be extended to the hipped walker case? Answers to these questions promises to further

the general understanding of hybrid systems.

In addition to extensions of the ideas presented in this dissertation, categories of hybrid objects

can provide a framework in which to address questions related to the relationship between different hy-

brid systems—this is one of the general strengths of category theory. For example, bisimulation relations

have been well-studied in the hybrid systems community. Because there is a categorical formulation of

bisimulation relations, it seems likely that it is possible to completely characterize bisimulation relations

for hybrid objects, given a characterization for their non-hybrid counterparts.
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Networked Systems. The first steps toward understanding how to compose networked systems

in a “behavior preserving manner” were taken in the final chapter of this dissertation. Yet these first steps

are tentative. We considered a very specific behavioral representation of embedded systems: the tagged

system model. Can these ideas be extended to general behavioral representations of systems? We briefly

discuss what such an extension may entail.

In networked systems, one typically considers a collection of simple systems whose behavior

is understood. These systems are then interconnected. In general, there is no guarantee that properties

of the simple systems constituting the network are preserved through interconnection. That is, one of

the fundamental questions in networked systems is: how does one compose a network while preserving

the behavior of the components of the network? A theory of behavior preserving composition, or deep

compositionality, is needed. This is related to the notion of “semantics preservation” discussed in this

dissertation, but semantics preservation does not appear to address this issue in its full generality. Is

there a more general concept capturing the notion of property preserving composition? To answer this

question, the notion of a property needs to be formulated mathematically and conditions need to be given

on when taking the composition of a network (the limit) preserves a given property. The ability to do so

could greatly increase the general understanding of networked systems.
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