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Abstract

A Categorical Theory of Hybrid Systems
by

Aaron David Ames

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Shankar Sastry, Chair

This dissertation uses the formalism of category theory to study hybrid phenomena. One be-
gins with a collection of “non-hybrid” mathematical objects that have been well-studied, together with a
notion of how these objects are related to one another; that is, one begins with a category C of the non-
hybrid objects of interest. The objects being considered can be “hybridized” by considering hybrid objects
over C consisting of pairs (2,A) where 2 is a small category of a specific form, termed a D-category, which

encodes the discrete structure of the hybrid object and
A:9-C

is a functor encoding its continuous structure. The end result is the category of hybrid objects over C,
denoted by Hy(C).

In Part I, the foundations for the theory of hybrid objects are established. After reviewing the
basics of category theory, inasmuch as they will be needed in this dissertation, D-categories are formally
introduced. Hybrid objects over a general category C are then defined along with the corresponding no-
tion of a category of hybrid objects. Elementary properties of categories of this form are discussed. We
then proceed to relate the formalism of hybrid objects to hybrid systems in their classical form, the end re-
sult of which is a categorical formulation of hybrid systems together with a constructive correspondence
between classical hybrid systems and their categorical counterpart. Finally, executions or trajectories of
both classical and categorical hybrid systems are introduced, and they are related to one another—again
in a constructive fashion.

Part II applies the categorical theory of hybrid objects to obtain novel results related to the re-
duction and stability of hybrid systems. The geometric reduction of simple hybrid systems is first con-
sidered, e.g., conditions are given on when robotic systems undergoing impacts can be reduced. As an
application of these results, it is shown that a three-dimensional bipedal robotic walker can be reduced to
a two-dimensional bipedal walker; the result is walking gaits in three-dimensions based on correspond-

ing walking gaits for a two dimensional biped—walking gaits that simultaneously stabilize the walker to



the upright position. Using hybrid objects, the reduction results for simple hybrid systems are general-
ized to general hybrid systems; to do so, many familiar geometric objects—manifolds, differential forms,
et cetera—are first “hybrizied.” The end result is a hybrid reduction theorem much in the spirt of the clas-
sical geometric reduction theorem. This part of the dissertation concludes with a partial characterization
of Zeno behavior in hybrid systems. A new type of equilibria, Zeno equilibria, is introduced and sufficient
conditions for the stability of these equilibria are given. Since the stability of these equilibria correspond
to the existence of Zeno behavior, the end result is sufficient conditions for the existence of Zeno behavior.

The final portion of this dissertation, Part III, lays the groundwork for a categorical theory, not
of hybrid systems, but of networked systems. It is shown that a network of tagged systems correspond to a
network over the category of tagged systems and that taking the composition of such a network is equiva-
lent to taking the limit; this allows us to derive necessary and sufficient conditions for the preservation of

semantics, and thus illustrates the possible descriptive power of categories of hybrid and network objects.

Professor Shankar Sastry
Dissertation Committee Chair
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Introduction

Category theory provides a framework for describing objects with like properties and for com-
paring objects with different properties. The concept of classifying objects based on the category in which
they reside can be traced back to Aristotle and his work Categories, written in 350 BC. In modern mathe-
matics, the concept of a category has been formalized into a common language. It is exactly for this reason
that establishing a bridge between engineering and category theory can provide so many benefits.

Yet there remains skepticism about the true usefulness of category theory, especially in the ar-
eas of computer science and engineering where there is common reference to the nickname “abstract
nonsense.” In fact, to quote Mitchell [92],

“A number of sophisticated people tend to disparage category theory as consistently as others
disparage certain kinds of classical music. When obliged to speak of category theory they do

so in an apologetic tone, similar to the way some say ‘It was a gift—I've never even played it’
when a record of Chopin Nocturnes is discovered in their possession.”

The purpose of this dissertation is to dispel some of these concerns by demonstrating that hybrid sys-
tems, i.e., systems that display both discrete and continuous behavior, are naturally amendable to the
formalisms of category theory.

Hybrid systems have the ability to model a wide range of phenomena, including: robotic sys-
tems undergoing impacts, biological systems, power systems, dynamical systems with non-smooth con-
trol laws, simplifying approximations of complex systems, networks of embedded and robotic systems,
et cetera. Understanding hybrid systems on a deep level, therefore, has important and practical conse-
quences. The yin to this yang is that a deep understanding of these systems is still lacking.

There is currently no unifying mathematical framework of hybrid systems—one that is analo-
gous to the theory of continuous and discrete systems. This is due, in part, to the fact that hybrid systems
represent a great increase in complexity over their discrete and continuous counterparts; this makes it
difficult to analyze even the simplest hybrid models. In addition, this added complexity results in the ex-
istence of new behavior that is unique to hybrid systems, e.g., Zeno behavior, that can have unexpected
and sometimes catastrophic consequences. This indicates that a new and more sophisticated theory is
needed to describe hybrid phenomena.

This dissertation presents a categorical theory of hybrid systems—the theory of hybrid objects—

which we claim provides a unifying mathematical framework for hybrid systems. The results and applica-



tions that will be presented support this thesis in that they demonstrate the following properties of hybrid
objects:
Property I: Provide a common language for hybrid systems, i.e., marry the discrete and con-

tinuous components of a hybrid system in such a way that its underlying structure be-
comes apparent.

Property II: Relate hybrid systems to preexisting theory and constructions in mathematics.
Property III: Elucidate the relationship between hybrid systems.

Property IV: Provide novel and practical results that would not be possible without this math-
ematical framework.

This work, therefore, will be devoted to introducing the theoretical underpinnings of hybrid objects, with
a special focus on their usefulness in understanding hybrid systems and other hybrid phenomena. Appli-
cations also will be presented with the express goal of establishing the practical usefulness of categories
of hybrid objects—this should dispel concerns to the effect that these categories are nothing but “abstract
nonsense.”

Following is an overview of the general structure of this dissertation. The specific chapter de-

pendencies can be seen in Table 0.1.

Part I: Foundations. The first portion of this dissertation is devoted to establishing the foundational prin-
ciples underlying the rest of this work. These formulations support the claim that the categorical theory

of hybrid objects display Properties I, IT and III.

Chapter 1: Hybrid Objects. The first chapter is devoted to the formal introduction of the theory
of hybrid objects, which is necessarily done on an abstract level. We begin by introducing the theory of
categories, which is done in a self-contained, albeit brief, fashion. With these concepts in hand, a special
class of small categories is introduced: D-categories, denoted by &. Categories of this form describe the
“discrete” component of hybrid objects, and are analogous to graphs. D-categories allow for the introduc-

tion of the notion of a hybrid object over a category C, (2,A), where
A:2—C

is a functor. The category of hybrid objects over C, Hy(C), can thus be formed. These are not the only

hybrid objects of interest; cohybrid objects and network objects also will be introduced.

Chapter 2: Hybrid Systems. Having introduced the notion of a hybrid object over a category,
this abstract concept is related to the standard formulation of a hybrid system. This relationship is estab-
lished in a constructive manner, i.e., it is demonstrated how one can transform the components defining
a hybrid system into the categorical framework for hybrid systems. These correspondences are bijective,
indicating that no information is lost in the reformulation of hybrid systems to this setting; it simply serves

the purpose of reframing hybrid systems so that they can be more easily reasoned about, i.e., it unifies,

viii
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but clearly separates, the discrete and continuous components of a hybrid system. The latter half of this
chapter is devoted to the categorical formulation of trajectories of hybrid systems; again, it is demon-
strated that this is in agreement with the standard notion of an execution. Simple examples that clearly

elucidate these concepts and reformulations are discussed throughout.

Part II: Hybrid Systems. The second part of this dissertation is devoted to applications of the theory of
hybrid objects, thus supporting the claim that hybrid objects display Property IV.

Chapter 3: Simple Hybrid Reduction & Bipedal Robotic Walking. This chapter temporar-
ily draws back from the categorical framework for hybrid systems with the goal of better understanding
the relationship between mechanical systems undergoing impacts and hybrid systems. Simple hybrid
systems are studied, with a special focus on Lagrangian hybrid systems and simple hybrid mechanical
systems. We begin by investigating the generalization of Routhian reduction to a hybrid setting, giving
explicit conditions on when this form of Lagrangian reduction can be carried out. The focus then shifts to
Hamiltonian reduction, where conditions are given on when symplectic reduction can be carried out in
the setting of simple hybrid systems. The chapter concludes with the crowning application of this disser-
tation: bipedal robotic walking. The results on the reduction of simple hybrid systems are utilized in order
to reduce a three-dimensional bipedal robot to two-dimensions; we are able to provide walking gaits that

allow the walker to converge to the upright position.

Chapter 4: Hybrid Geometric Mechanics. Drawing intuition from the study of simple hybrid
systems, we use hybrid objects to extend the results presented in Chapter 3 to general hybrid systems. Due
to the categorical and functorial nature of geometric objects, they can be extended to a hybrid setting
through the framework of hybrid objects. Specific examples of this process are discussed, e.g., hybrid
differential forms, hybrid Lie groups and hybrid Lie algebras. In a similar vein, the ingredients necessary to
perform reduction are generalized to a hybrid setting, the end result of which is the hybrid analogue of the
classical symplectic reduction theorem. The implications of this theorem to the geometric reduction of
hybrid dynamics, i.e., hybrid Hamiltonian reduction, is established. This chapter, therefore, demonstrates

the ability of hybrid objects to generalize geometry to a hybrid setting.

Chapter 5: Zeno Behavior & Hybrid Stability Theory. Zeno behavior is unique to hybrid sys-
tems, and thus provides a unique opportunity to better understand not only the similarities between
hybrid and dynamical systems, but also their differences. In order to study Zeno behavior, a type of
equilibria—again unique to hybrid systems—is first introduced: Zeno equilibria. The relationship be-
tween the stability of Zeno equilibria and Zeno behavior is first established for a simple class of hybrid
systems: first quadrant hybrid systems. After revisiting the stability of dynamical systems—specifically,
Lyapunov’s second method—in a categorical light, conditions on the stability of Zeno equilibria for gen-
eral hybrid systems are established, a corollary of which is sufficient conditions on the existence of Zeno

behavior. The similarities between these conditions and the categorical formulation of Lyapunov’s second



method indicate that hybrid objects are fundamental in understanding the general stability properties of

hybrid systems.

Part II: Networked Systems. The final portion of this dissertation investigates the possibility of using
hybrid objects, and the related notion of network objects, to described networked systems. While this
provides only the first tentative steps toward such a theoretical extension, it could lay the groundwork for

a categorical theory of networked systems.

Chapter 6: Universally Composing Embedded Systems. The final chapter of this dissertation
is devoted not to hybrid systems, but to networked systems. This indicates that hybrid objects, and the
related notion of network objects, may be instrumental in the study of such systems. A heterogeneous
network of embedded systems can be modeled mathematically by a network of tagged systems, which
provides a denotational semantics for such systems. We establish, in a constructive fashion, how a net-
work of tagged systems can be formulated as a network over the category of tagged systems. Taking the
composition of this network corresponds to taking the limit of the corresponding functor. Therefore, com-
position is endowed with a universal property. With this important observation in hand, necessary and
sufficient conditions on the preservation of semantics are derived—that is, when behavior is preserved by

composition.
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Chapter 1

Hybrid Objects

This chapter begins by introducing the basics of category theory in order to establish the neces-
sary language in which to formulate the fundamental notion of a hybrid object over a category. After intro-
ducing category theory, and before introducing hybrid objects, it is necessary to introduce D-categories;
these encode the discrete structure of a hybrid object. We then introduce hybrid objects over a cate-
gory; this allows one to “hybridize” objects in a general category, and thus provides the foundation for our
mathematical theory of hybrid systems. The chapter concludes by introducing other “hybrid” objects of
interest: cohybrid objects over a category and networks over a category. Throughout the chapter, simple
examples are introduced in order to highlight the concepts involved.

Before proceeding to our introduction of categories, we summarize in more detail the contents
of this chapter; it is recommended that those not familiar with category theory first read Section 1.1. In
addition, the motivation for the ideas introduced may seem opaque for those not familiar with hybrid
systems; we refer the reader to Chapter 2 for this motivation. This dissertation, like most systems, is

irrevocably nonlinear.

D-categories. Fundamental to our studies of hybrid objects is the notion of a D-category. These cate-
gories define the “discrete” structure of a hybrid object—the “D” stands for discrete—and dictate how the

“continuous components” of a hybrid object interact. To be more specific, every D-category' </ has the

SN\ N

In no way is this structure accidental; the objects in the upper half of this diagram dictate the interaction

general form?

between the objects in the lower half of the diagram.

1 Categories of this form are denoted by calligraphic symbols.
ZWhere « denotes an arbitrary object in «/ together with its identity morphism and — denotes an arbitrary (non-identity)
morphism.



Hybrid Objects

Directionality can be added to D-categories by picking a specific labeling of their morphisms;

this defines an oriented® D-category. For example, the D-category above can be oriented as follows:

a a ai
by by by - b b

where s;, and t,; are morphisms indexed by a;, with “s” standing for source in that b; is the “source” of

i+1

a;, and “t” standing for target in that b;.; is the “target” of a;. Therefore, D-categories are in direct and

formal analogy to graphs, e.g., the above D-category is obtained from or yields a graph of the form:

ay ay a;

by

by by - b

bi+1

and so the reader may prefer to think about D-categories as modified graphs. In fact, this is justified due
to the isomorphism of categories: Dcat = Grph, where Dcat is the category of (oriented) D-categories and
Grph is the category of (oriented) graphs. On the other hand, one should not make the mistake of as-
suming that the formalism of D-categories is unnecessary or extraneous; one could not work with graphs

alone.

Hybrid objects. After introducing D-categories, we begin our exposition of hybrid objects and the cat-
egories thereof. Beginning with a category of “non-hybrid” objects of interest, C, the hybrid objects over
this category are diagrams of a specific form, i.e., a hybrid object is a pair («/,A) where < is a D-category,
and

Ao —C

is a functor. For example, a hybrid vector space is a functor V: 7 — Vectg, where 7 is a D-category and
Vectp is the category of (real) vector spaces.
Morphisms between hybrid objects can be defined; these are functors of a very specific form,

F: of — B, between D-categories together with a natural transformation:
f:A=BoF.

The result of combining this data is the category of hybrid objects over C, Hy(C). This will be our main
object of study. In this light, we devote some energy to establishing some fundamental constructions

relating to categories of this form. For example, given a functor F : C — D, there is an induced functor:
Hy(F) : Hy(C) — Hy (D)

between categories of hybrid objects over C and D, respectively. Equally important will be the notion of

an element of a hybrid object, e.g., an element of a hybrid vector space is a hybrid vector.

Cohybrid and network objects. Our studies do not end with Hy(C). There are many other interesting
“hybrid” categories that naturally arise. One of these is the category of cohybrid objects over C, CoHy(C).

3These are the only type of D-categories that will be considered, so the prefix “oriented” will often be dropped.




Hybrid Objects

The objects of this category are contravariant functors A : o — C. These categories frequently appear
when dealing with contravariant functors between categories; if F: C — D is contravariant, then there is
an induced contravariant functor:

Hy (F) : Hy(C) — CoHy(D).

There is also the notion of an element of a cohybrid objects. Concretely, the dual to a hybrid vector space
is a cohybrid object over the category of vector spaces V* : 7 — Vectg, and an element of such a cohybrid
object is a hybrid covector.

The final category of “hybrid” objects of interest appears not in hybrid systems, but in networked
systems. That is, a network over a category C is a functor N : 91 — C, where 1 is the opposite to a D-
category, or a D°P-category. The end result is the category of networks over C, Net(C). These categories
are important in the study of networked systems—as the name suggests—and so will be instrumental in

Chapter 6.

1.1 Categories

The goal of this section is to introduce the basics of category theory in order to provide the
necessary framework in which to introduce our categorical framework for hybrid systems and the more
general notion of a hybrid object over a category. While this review is self-contained, it is clearly not
possible to briefly introduce all of the elementary category theory in a concise fashion. We refer the reader
to [74] for any missing details, although there are many other good references on category theory; see [5],

[21] and [92].
Definition 1.1. A category C consists of the following data:
o A class of objects A, B,C, ..., denoted by Ob(C),

o For all A,Be Ob(Q), a set of morphisms Hom¢ (A, B); a morphism f € Hom¢ (4, B) is often written as
f :A— Band in such a case the domain of f, dom(f), is Aand the codomain of f, cod(f), is B,

o Forall A, B, C € Ob(C) with morphisms f € Hom¢ (4, B) and g € Hom¢ (B, C), there exists a morphism
go f € Hom¢ (4, C) given by composition,

satisfying the axioms:
Associativity: For morphisms f:A— B,g:B—Cand h:C — D,

ho(gof)=(hog)of,

Existence of identity: For all A€ Ob(C), there exists an identity morphism id4 : A — A which
satisfies, for every f : A— B,
idBOfoZfOidA.




Hybrid Objects

Category Objects Morphisms
Grp Groups Group homomorphisms
Ab Abelian groups Group homomorphisms
Vectg Real vector spaces Linear maps
Top Topological spaces | Continuous functions
Met Metric spaces Nonexpansive functions
Man Smooth manifolds Smooth functions

Table 1.1: Important categories.

A category is called small if its class of objects, Ob(C), is a set.

Remark 1.1. There are variants on the definition of a category. The most important of these is that it is
not always required that the set of morphisms between two objects in a category form a set, but rather a
class. Categories of this form are termed quasi-categories, the most important example of which is CAT,

the category of all categories.

Example 1.1. One of the most fundamental examples of a category is the category of sets, Set, defined
with

Objects: Sets,
Morphisms: Functions between sets.

The composition operation in this category is the usual composition of functions.

The category Set is fundamental because it allows one to endow many familiar collections of
objects with the structure of a category; these are termed concrete categories [5]. Some examples can be
found in Table 1.1; in all of the above examples, composition is given by the standard composition of

functions in Set.

1.1.1 Commuting diagrams. Collections of objects and morphisms in a category are commonly dis-
played in the form of a diagram. That is, for A, B,C € Ob(C) and morphisms f : A— B, g: B — C and
h:A— C,itis often useful to display this data in the form:

\f\ % (1.1)

B

A diagram of this form is said to commuteif h = go f. Another canonical example of a commuting diagram

is a commuting square:
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Requiring this diagram to commute is equivalent to requiring that go f = io h.
To provide an explicit example of the useful visual nature of diagrams, and especially commut-

ing diagrams, the two axioms of a category can be restated as follows:

Associativity: For morphisms f: A— B, g: B— C and h: C — D, the following diagram

a8, ¢

f h
h

B—"8.p

commutes.

Existence of identity: For all A € Ob(C), there exists an identity morphism ids : A — A such
that, for every f : A— B, the following diagram

A I .3
id, F lidg
A f B

commutes.

1.1.2 Opposite categories. To provide an example of a category obtained from another category, let C
be a category. We can then define the opposite category to C, denoted by C°P. The objects are the same as
C, but the morphisms are reversed. That is, if f : A— Bin C, then there is by definition a corresponding
morphism in C°P given by f°P : B— A. Composition in C°P is defined by f°Pog°P := (go f)°P. Commuting
diagrams allow us to visualize the difference between C and C°P. Specifically, a commuting diagram of the

form (1.1) in C becomes a commuting diagram of the form:

op
A" ¢

% g

B
in C°P.
These categories will play an important role when considering categories of cohybrid objects (to

be introduced in Definition 1.12).

1.1.3 Distinguished morphisms. In the category of sets, Set, there is a well-understood notion of in-
jective, surjective and bijective functions. These concepts can be extended to arbitrary categories through
morphisms termed monomorphisms, epimorphisms, and isomorphisms. For a category C, there are the

following classes of morphisms.
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Monomorphisms: A morphism m : A— Bis a monomorphism if for every object D and every
pair of morphisms f;, > : D — A, i.e., for every diagram:

h
pD———=a—" ., p
2

the following condition holds:

mo fi=mofp = h=5.

Epimorphisms: A morphism e: A — B is an epimorphism if for every object C and every pair
of morphisms g1, : B— C, i.e,, for every diagram:

81
A ¢ B—/—/———=C,
82
the following condition holds:
gice=goe = 81 = &-

Isomorphisms: A morphism f : A — B is an isomorphism if there exists a morphism f~! :
B — Asuch that:

fof'=idg,  flof=ida

The morphism f~! is unique.
Two objects Aand B of C are isomorphic, denoted by A = B, if there exists an isomorphism f: A— B.

Example 1.2. In the category of sets, Set, the monomorphisms are injective functions, the epimorphisms

are surjective functions and the isomorphisms are bijective functions.

1.1.4 Distinguished objects. The above definitions dealt with properties of morphisms in a category.
There are also some important properties that objects of a category C can display. Of special interest are
the following distinguished classes of objects:
Terminal Objects: An object * of C is a terminal object if for every object A of C there exists a
unique morphism A — *.
Initial Objects: An object @ of C is an initial object if for every object B of C there exists a

unique morphism ¢ — B.
Zero Objects: An object 0 of C is a zero object if it is both an initial and terminal object.

Example 1.3. In the category of sets, Set, the empty set is the (unique in this case) initial object and every

set consisting of a single point is a terminal object. There are no zero objects.

1.1.5 Functors. It is often important to investigate the relationship between multiple categories; this

relationship is established by functors.
Definition 1.2. A covariant functor F between two categories C and D is given by

o An object function (also denoted by) F which associates to each object A of C an object F(A) in D,
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o A morphism function (also denoted by) F which associates to each morphism f: A— Bin C a

morphism F(f): F(A) — F(B) in D,
satisfying the following two axioms:
o F(ids) = idp(y for every Ae Ob(Q),
o F(gof)=F(g)oF(f)for morphisms f:A—Band g:B— CinC.

The last axiom in the definition of a functor requires that functors “preserve commuting dia-

grams.” For example:

A h c F(A) F(h F(C)
\ / - % %
B F(B)

where the implication is on the commutativity of the diagram.

Example 1.4. Taking the power set of a set yields a functor &2 : Set — Set given on objects of Set, i.e., sets,
by associating to a set X its power set 22(X). To a morphism, i.e., a function, between sets f : X — Y, we

obtain a function £ (f) where 22 (f)(U) = f(U) for U € 2(X).

1.1.6 Contravariant functors. A contravariant functor can be thought of as a functor that “reverses”
arrow. It again consists of an object function and a morphism function, except the condition on the mor-

phism function given in Definition 1.2 becomes:

o A morphism function (as denoted by) F which associates to each morphism f: A— Bin C a mor-

phism F(f): F(B) — F(A) in D.
We also require that the first axiom in Definition 1.2 holds, while the second axiom becomes:
o F(gof)=F(f)oF(g) for morphisms f: A—Band g:B—CinC.

The last of these two conditions can be visualized best by commuting diagrams:

A h C F(A) F(h) F(O)
\ / - % A
B F(B)

where, again, the implication is on the commutativity of the diagram.
Notation 1.1. All functors are assumed to be covariant unless otherwise stated.
Example 1.5. The process of associating to a vector space its dual and to a linear map its dual results in a

contravariant functor

(=)*:Vectg — Vectg

where Vmapsto V* and f: V — W mapsto f*: W* — V*,
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1.1.7 Distinguished functors. Just as there are distinguished morphisms, e.g., monomorphisms and

epimorphisms, there are also distinguished functors. Specifically, a functor:
F:C—D,
is
Full: if for every pair of objects A and B of C and morphism f : F(A) — F(B) in D there exists a
morphism g: A— Bin C such that f = F(g). More compactly:
f:F(A) — F(B) = 1 g:A—B st f=F(g).
If the functor F is full, for any two objects Aand B of C, the morphism function:

F:Homc(AB) —  Homp(F(A),F(B)
g:A—B —  F(g):F(A)—F(®B)

is surjective.
Faithful: if for every pair of objects A and B and morphisms f;, : A— B,

F(fi) =F(f) = fi=fe
If the functor F is faithful, for any two objects A and B of C, the morphism function:
F:Homc (4, B) = Homp (F(A), F(B))

is injective.
Fully Faithful: if it is full and faithful.
Surjective on Objects: if for all objects X of D, there exists an object A of C such that F(A) = X.

Surjective: if it is surjective on objects and full, i.e., surjective on objects and morphisms.
Essentially Surjective: if for any object X of D there exists an object A of C such that F(A4) = X.

Injective on Objects: if for any two objects A, B of C:
F(A)=F(B) = A=B.

Injective: if it is injective on objects and faithful, i.e., injective on objects and morphisms.
Bijective: if it is bijective on objects and fully faithful, i.e., bijective on objects and mor-
phisms.

1.1.8 Forgetful functors. As indicated in Example 1.1, it is often the case that objects of a category C
are sets together with some additional structure. More specifically, suppose that every object Aof C is a
set together with some additional structure, i.e., satisfying some additional axioms, and every morphism
of C is a function together with some additional structure, i.e., satisfying some additional axioms. In this
case, there is a forgetful functor:

U:C — Set,

given by viewing U(A) as only a set, i.e., forgetting about any additional structure it may have, and viewing
U(f) as a function (again forgetting about any additional structure is may have). In this case, we often
write a € Aif a € U(A). Categories of this form are related to concrete categories [5] (if U is faithful, then C

is a concrete category).
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Example 1.6. For the category of vector spaces Vectg, there is a forgetful functor:
U : Vectg — Set,

given by forgetting about the vector space structure of a vector space and the linearity of a morphism

between vector spaces.

1.1.9 Subcategories. Let D be a category. A subcategory of this category is a category C such that
Ob(C) < Ob(D) and Hom¢ (A, B) =€ Homp (A, B) for all A B € Ob(C). It follows that there is an inclusion
functor I : C — D which is the identity on objects and morphisms, i.e., the object function is the iden-
tity and the morphism function is the identity. A special class of subcategories that is of interest are full
subcategories; these are subcategories in which the inclusion functor is a full functor. In particular, this

implies that for any two objects Aand Bin C:
Hom¢ (A, B) = Homp (A, B).
So, when defining a full subcategory of a category D, one need only specify the objects of this category.

Example 1.7. The category of abelian groups, Ab, is a full subcategory of the category of groups, Grp.

1.1.10 The category of categories. Functors can be thought of as “morphisms between categories.” In
fact, we can define the quasi-category of all categories, CAT, with

Objects: All categories,
Morphisms: Functors between categories.

This is technically not a category as defined in Paragraph 1.1 since the collection of functors Homca1(C, D)
does not form a set. Regardless, the category of all categories can still be (at least conceptually) useful. For

example, we can give a notion of when two categories are isomorphic.

Definition 1.3. Two categories C and D are isomorphic, denoted by C = D, if there exists two functors

F:C—DandG:D — Csuchthat FoG =1dp and Go F =1d¢ where Id is the identity functor.

There is a useful characterization of when two categories are isomorphic based upon the proper-
ties of a functor between these categories: two categories C and D are isomorphic iff there exists a bijective

functor F: C — D.

1.1.11 The category of small categories. We can restrict the categories in CAT being considered in

order to get a category in the classical sense. Let Cat be the category of all small categories, with

Objects: All small categories,
Morphisms: Functors between small categories.

In this case, the collection Hom¢,:(C, D) forms a set. This category is very important in the study of hybrid

objects over a category since it can be thought of as the “category of all indexing categories.”

10
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1.1.12 Natural transformations. Natural transformations can be viewed as “morphisms between func-

tors.” As such, they play a vital role in all of category theory, and especially categories of hybrid objects.

Definition 1.4. Let £ G: C — D be functors. A natural transformation 7: F — G from F to G consists of a

collection of morphisms 74: F(A) — G(A) in D such that for every f : A— B in C, the following diagram:
F(A) —4 GA)

F(f) G(f)

F(B) —2+ G(B)

commutes.

1.1.13 Composing natural transformations. Let F,G,H: C — D be functors. Natural transformations
7:F > Gandv: G- H, can be composed “objectwise.” That is, composing 7 and v results in a natural
transformation:

veT:F-> H,

defined objectwise by: (Ve T)4:=v40T4 forall Ae Ob(Q).
A natural transformation 7 : F = G is a natural isomorphism if it is objectwise an isomorphism,
i.e., T74: F(A) — G(A) is an isomorphism for every object A of C. Equivalently, a natural transformation 7 is

a natural isomorphism if there exists a natural transformation 77! : G = F such that:

o7 ! =idg, T_IOTZidF,
where idg and idr are natural transformations that are objectwise the identity.
Two functors F and G are isomorphic, F = G, if there exists a natural isomorphism 7: F = G.
Using the notion of natural isomorphisms, an equivalence of categories can be defined; this
turns out frequently to be a better notion of equivalence between categories than requiring the categories

to be isomorphic.

Definition 1.5. A functor F: C — D is an equivalence of categories if there exists a functor G: D — C and
natural isomorphisms:

FoGZIp, GoFZI.

Two categories C and D are equivalent, written C = D, if there exists an equivalence of categories

F:C— D (or G:D — Q); Fis an equivalence of categories iff F is fully faithful and essentially surjective.

1.1.14 Natural transformations between contravariant functors. If ;G : C — D are contravariant

functors, then a natural transformation 7 : F = D between these functors is again a collection of mor-

11
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F(A) A, G(A) F(A) A, G(A)

F(f) G(f) F(f) G(f)
F(B) —8+ G(B) F(B) —2+ G(B)

F covariant, G covariant F contravariant, G contravariant
F(A) —4 Ga) F(4) —4+ G4

F(f) G() F(f) G()
F(B) —E+ G(B) F(B) —£+ G(B)

F covariant, G contravariant F contravariant, G covariant

Table 1.2: Different variations of natural transformations.

phisms 74 : F(A) — G(A), except we now require that for every f : A— B in C the following diagram:
F(A) —4 GA)

F(f) G(f)

F(B) — 2+ G(B)

commutes. Natural transformations also can be defined when considering mixed covariant/contravariant

functors as illustrated in Table 1.2.

1.1.15 Diagrams. A diagram (or J-diagram) in a category C is a functor F: J — C for some small cate-
gory J (an indexing category). We can form the category of all J-diagrams in the category C, denoted by
CJ, with

Objects: Functors F: J— C,
Morphisms: Natural transformations.

Categories of this form are commonly referred to as functor categories.

1.1.16 The constant functor. A very important, yet simple, functor is the constant functor, A . This is

a functor:
Ay:C—CY,
given on objects A€ Ob(C) by

Aj(A) (@) =i
Aj(Aa)=A Ay Ate) =idy Ay(A (D) =A

fora:a— bin J. On morphisms f: A— Bin C, Aj(f), := f for every object a of J.

12
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1.1.17 Basic diagrams. Diagrams play a central role in the theory of hybrid objects, except we will
restrict our attention to a specific class of small categories termed D-categories. In preparation, we now

enumerate some of the basic diagrams of interest in category theory.

(e): A category consisting of a single object and an identity morphism. A functor F: (¢) — C
can be identified with an object of C, i.e., it is just the object F(e) € Ob(C). Therefore, the
category C”) = Ob(C).

(e — ¢): A category consisting of two objects, the identity morphisms for these objects and a
non-identity morphism. A functor

Fi(e—e)—~C

is just a diagram:
Fle—e¢)=A —f> B
in C. Therefore, the category C*~*) can be identified with the morphisms in C.
(e=3e): A category with two objects and two non-identity morphisms. A functor

F:(eZe)—C
is just a diagram:
F(eZe)=A—I B
b

in C. Diagrams of this form are important when considering equalizers and coequalizers.
(e — o — o): A category with three objects and two non-identity morphisms. A functor

Fi(s—s—e)—C

is just a diagram:

f g

F(o<—o—>o):A< B—— C

in C. Diagrams of this form are important when considering pushouts.
(e — o — o): A category with three objects and two non-identity morphisms. A functor

F:(e—>e—e¢)—C

is just a diagram:

f g

Fle >e<—e¢)=A —— B <«

C

in C. Diagrams of this form are important when considering pullbacks.

1.2 D-categories

In this section, we introduce an important class of small categories: D-categories. These cate-
gories are very simple small categories that essentially can be thought of as graphs. In fact, we will demon-

strate that the category of (oriented) D-categories is isomorphic to the category of (oriented) graphs:

Dcat = Grph.

13
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The proof of this fact is constructive in nature, i.e., it is shown how to obtain a graph from a D-category
and a D-category from a graph.

The motivation for considering D-categories is that they play a fundamental role in defining
hybrid objects over a category. The motivation for the name D-categories is that they define the “discrete”

structure of a hybrid object over a category.

1.2.a Axioms and Orientations

We must define a specific type of small category, termed a D-category, in order to introduce

hybrid objects. This is a small category in which every diagram has the form:

SN\ SN

That is, a D-category has as its basic atomic unit a diagram of the form:

and any other diagram in this category must be obtainable by gluing such atomic units along the codomain
of a morphism (and not the domain). More formally, consider the following:

Definition 1.6. A D-category is a small category 2 satisfying the following two axioms:

AD1 Every object in 2 is either the domain of a non-identity morphism in 2 or the codomain of a non-
identity morphism but never both, i.e., for every diagram

a1 a2 an
ap m an

in 2, all but one morphism must be the identity (the longest chain of composable non-identity

morphisms is of length one).

AD2 If an object in 9 is the domain of a non-identity morphism, then it is the domain of exactly two

non-identity morphisms, i.e., for every diagram in 2 of the form

oS Gﬂ, Q‘% 2
4 \
a Ay Qg-cvveccr an

consisting of all morphisms with domain ay, either all of the morphisms are the identity or two and

only two morphisms are not the identity.

Remark 1.2. We could form the category of D-categories with objects D-categories and morphisms all
functors. This being said, we actually do not consider this category as it does not yet have enough struc-
ture, i.e., we will consider D-categories that are oriented and functors between D-categories that preserve

these orientations.

14
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Example 1.8. An example of a D-category is given in the following diagram:

'\/\/

/
— S

This D-category can be justifiably thought of as a “cycle” D-category.

1.2.1 Important objects in D-categories. Let 2 be a D-category. We use Mor(2) to denote the mor-
phisms of 9, i.e.,

Mor(2) = U Homg (a, b),
(a,)eOb(@)xOb(@)

and Morki (2) to denote the set of non-identity morphisms of 2, i.e.,
Mor}d (D) ={a € Mor(2) : a #id}.

For amorphism a : a — b in 2, recall from Definition 1.1 that its domain is denoted by dom(a) = a and its
codomain is denoted by cod(a) = b.
For D-categories, there are two sets of objects that are of particular interest; these are subsets of

Ob(2). The first of these is termed the edge set of 2, denoted by E(2), and defined to be:
E©@)={acOb(@): a=dom(a), a=dom(p), a,f€ Morkl (D), a# B

That is, for all a € E(2) there are two and only two morphisms (which are not the identity) a, 8 € Mor(2)
such that a = dom(a) and a = dom(f), so we denote these morphisms by s, and t, (the specific choice will
define an orientation). Conversely, given a morphism y € Moryg (2), there exists a unique a € E(2) such
that y =s, or y = t,. Therefore, every object a € E(2) sits in a diagram of the form:

dom(s,) = a =dom(t,)

Sa ta (1.2)

b =cod(s,) cod(ty) =c¢

15
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Note that giving all diagrams of this form (for which there is one for each a € E(2)) gives all the objects in
2, i.e., every object of 2 is the domain or codomain of s, or t, for some a € E(2).
Define the vertex set of 2 by:
V(@) = (E@))°,

where here (E(2))€ is the complement of E(2) in the set Ob(92). It follows by definition that

E@)nV(©2)

?,
Ob(2).

E@)uV(D)

The above choice of morphisms s, and t, can be used to define an orientation on a D-category.

Figure 1.1: The edge and vertex sets for a D-category.

Example 1.9. For the D-category introduced in Example 1.8, the edge and vertex sets can be seen in Figure

“w_»

1.1; in this figure “e” is now just an object, not an object together with its identity morphism.

Definition 1.7. An orientation of a D-category 2 is a pair of functions (s, t) between sets:

S
E@) :t: Moryy (2),

16
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that fit into a diagram

E©@)
dom
E©D) :t: Mor}d (D) (1.3)

cod

V()

in which the top triangle commutes.

Notation 1.2. We will always assume that a given D-category has an orientation. Therefore, we will not

explicitly say “oriented D-category” since all D-categories considered will be oriented.

The notion of a D-category, together with an orientation thereon, can be summarized succinctly

as follows:
Definition 1.8. A D-category is a small category 2 such that:

o There exist two subsets of Ob(2), E(2) and V(2), termed the edge set and vertex set, satisfying:

E@2)nV(2)
E@)uV(2)

?,
Ob(2),

o There exists a pair of functions:
s
E(©2) — Mory (2),
t
such that:

S(E(2)) Nnt(E(9))

o,
Morkl (D).

S(E(2)) Ut(E(9))
and the diagram in (1.3) is well-defined and commutes; the pair (s, t) is termed an orientation of 2.

Remark 1.3. By requiring that the diagram in (1.3) is well-defined we are imposing the condition that
dom(MorN (92)) = E(@) and cod(Mor—rd (2)) =V (2). In addition, for every a € E(2), there is a correspond-
ing diagram (1.2) in which b, c € V(2).

To verify that the (oriented) D-categories, as defined in 1.8, satisfy the axioms of a D-category as

given in Definition 1.6, we demonstrate the following:.

Lemma 1.1. A D-category, as defined in 1.8, satisfies AD1 and AD2.

17
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Proof. Beginning with AD1, we argue by way of contradiction. Suppose that there are two morphisms

a B

a b c

with a # id and B # id. Then, since s(E(2)) Ut(E(2)) = Morki (@), a =s, ort, and B =s;, or t;. Since
b = cod(a), and because (1.3) is well-defined, it follows that b € \V(2). But b = dom(f) and so, again
because of the fact that (1.3) is well-defined, it follows that b € E(2). Since E(2) NV (2) = ¢ we have
established the desired contradiction.

To show that AD2 holds, let a = dom(a) with a # id. Then a € E(2) by the fact that (1.3) is
well-defined; moreover a = dom(s,) and a = dom(t,) by the commutativity of this diagram. Therefore,
a is the domain of two non-identity morphisms. Now, for any other non-identity morphism  such that
a=dom(p), since s(E(2)) Ut(E(2)) = Morq (2), it follows that = s, or f = t,. Therefore, a is the domain

of exactly two non-identity morphisms. O

Example 1.10. We can pick an orientation for the D-category given in Example 1.8. This orientation is

displayed in the following diagram:
a
ag Say ta
%A ‘s%
Sag b by /
b3

2]
t uz

ay as
$‘ by by ‘t/“S
t% be bs &14
< T
. tx / “ Ca
as

This is by no means the only orientation that we could impose; it was chosen because it makes this D-
category into a “directed cycle” D-category or a D-cycle. D-categories of this form will be fundamental in

the study of Zeno behavior in hybrid systems (cf. Chapter 5).

1.2.2 The category of D-categories. Define the category of (oriented) D-categories, Dcat, to have ob-
jects D-categories. A morphism between two D-categories, 2 and 2’ (with orientations (s,t) and (s, t'),

respectively) is a functor F: @ — @' such that

FE@)<E@), FN@)<cV@), (1.4)

18
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and the following diagrams

E@) E@") E@) E@")
s s t t/ (1.5)
ﬁ 12 ﬁ !
Mor}d @) — Morkl @) Morki (2) — Morkl @"H

commute. By requiring these diagrams to commute, it implies that for all diagrams of the form:

a
/ X
b c

in9,i.e,acE(@)and b, c € V(2), there are corresponding diagrams:

F(a)

r — < 5] _ 4/

E(b) F(c)
in @', where F(a) € E(@') and F(b), E(c) e V(D).

Example 1.11. Let 2 and 2’ be the D-categories given by the following diagrams:

a
@ - / \ @/ — S, t/
a' a'
bl bZ

b!
There is a morphism F : 2 — @' of D-categories given by:
F@=d, Fb)=F)=b, Fa=s,, Fltd=t,.

This morphism can be visualized by the following diagram:

a

2 / \
a .:.,.-"

' """‘-.,. S.Jf/ té"j;
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Example 1.12. Let 2" be the D-category given by the following diagram:

a ar
9" - / K % \az\
bl b2 b3

In this case, there is nota morphism from 2" to 2 as any such morphism would not preserve the orienta-

tions of these D-categories.

1.2.3 Flementary properties. At this point, we verify some elementary properties of D-categories.
Lemma 1.2. For any two objects a,b in2, ifa= b thena=b.
Proof. We argue by contradiction. If a = b and a # b, then there exist two non-identity morphisms:

-1
a
a b a.

This violates AD1. O
Using this result, we characterize equivalences between D-categories.

Lemma 1.3. A morphism E:9 — @' is an equivalence of categories iff it is an isomorphism of categories.

1.2.b D-categories and Graphs
We now turn our attention to relating D-categories to graphs.

1.2.4 Oriented graphs. A (directed or oriented) graph is a pair I' = (Q, E), where Q is a set of vertices

and E is a set of edges (assumed to be disjoint), together with a pair of functions:

sor

E Q

tar

called the source and target functions; for e € E, sor(e) is the source of e and tar(e) is the target of e.
A morphism of graphs is a pair F = (Fo,Fg) : T = (Q,E) — I'' = (Q, E'), where Fp : Q — Q' and

Fg: E — E', such that the following diagrams commute:

E—TE . p E—TE . p
sor sor’ tar tar’ (1.6)
Ko Ko
Q Q Q Q

Thus we have defined the category of graphs, Grph.
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Example 1.13. An example of a graph is given by the following directed cycle graph:

€]

] —— 2

es €2
8 / \ 3

A graph of this form is often denoted by Cg.

1.2.5 D-categories from graphs. Given a graph, I' = (Q, E), we can associate to this graph a D-category
2r. Define the objects of Zr by defining

E@r) =E, V(@r) :=Q, Ob(Z2r) =E(@r) uV(2r).

To define the morphisms of 21 we define, for every e € E, morphisms:

sor(e) tar(e)
We complete the description of 2r by defining an identity morphism on each object of Zr. Note that in
the definition of 2r, we gave it a canonical orientation; namely, (s,t) where s, and t, are defined as above
for every e€ E.
Given a morphism F = (Fg, Fg) : I' — I, we can define a functor F:9r — 9p by defining it on

objects and morphisms as follows:

* Fe@ if acE@ * s, if y=s
Fla)= E(a) 1 a€E@r) Fpi={ Fo Y =Se
Fo(a) if aeV(@r) tﬁ(e) if y=te

Of course, F is defined on identity morphisms in the obvious fashion: F (idy) :=id Fla)- It follows by the
commutativity of (1.6) that F is a valid morphism of D-categories.

The method of associating a D-category to a graph defines a functor:
dcat: Grph — Dcat

We will introduce the inverse of this construction, but first consider the following:

Example 1.14. The D-category obtained from the graph Cg is just the D-category given in Example 1.10.
To make explicit the fact that this D-category is obtained from the graph Cg, we could denote it by 2,
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and label its objects and morphisms as follows:

€1
e Se te e
Y , /
8 3

er s
k 7 4 ‘t/e3
t% 6 5 yél
/ ‘t\
v tx / Y
€5

This is in accordance with the construction given in the previous paragraph.

1.2.6 Graphs from D-categories. Given a D-category 2, we can obtain a graph from this D-category,
I'y =(Qg, Eg) := (V(2),E(9)),

with source and target functions:

sor = cod(s(-))

Eg

tar = cod(t(-))

For a morphism between D-categories, F : 2 — @', we obtain a morphism between the graphs 'y and
F@/Z
F:= (ﬁ|Q@rﬁ|E@) = (ﬁlv(@),ﬁlE(@)).

It follows that F is a valid morphism of graphs; (1.6) commutes because (1.5) commutes.

The result of these constructions is a functor:
grph:Dcat —  Grph.

Example 1.15. The graph obtained from the D-category given in Example 1.10 is just the graph Cg. To

make explicit that this graph was obtained from this D-category, we could label the vertices and edges of
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this graph as follows:
a
b ——— b

ag/v \ilz

bg bs
a; as

bs by

N v

baLbs

This is in accordance with the construction given in the previous paragraph.

We now introduce a very important, although fairly obvious, result. Its importance lies in the fact
that many of the properties that the category of graphs displays—which is a fair number—the category of

D-categories will inherit. This will be made explicit, for example, in Appendix A
Theorem 1.1. There is an isomorphism of categories:
Dcat = Grph,
where this isomorphism is given by the functor grph : Dcat — Grph with inverse dcat : Grph — Dcat.

Proof. We first verify that dcat o grph = Idp,¢- On objects, this holds since

Mor;q (dcatogrph(2)) = {Seleer, Ulteleck, = {SelecE@) U {telece@) = Mory (2),

Ob(dcatogrph(2)) = E»UQg=V(Q@)UE(@)=0b(2),

and the identity morphisms of 2 and dcat o grph(2) are the same by definition. Consider a morphism
F:9-9 of D-categories. For all a € Ob(2),

. F if ae€Ey=E@r,)=EQ2
dcatogrph(F)(a) = _»(a) it acky=E(@r,) =E@)
F@ if a€Qy=V@r,) =V@)
= Fla),
and for all y € Mor(2),
. s’ if y=s
dcatogrph(F)(y) = Fla ¥

t. if y=tq4

) {ﬁm i y=sg
F

Ey) if y=tq4

Therefore dcato grph = Idp¢,t-
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Next we verify that grph o dcat = Idgpp. For a graph T = (Q, E), we have
grphodcat(I') =T'g, = (Qg,, Eg.) = (V(2r),E(Zr)) = (Q,E) =T.
For a morphism of graphs F = (Fg, Fg) : T — I,

grphodcat(F)q = ﬁlQ = Fo, grphodcat(F)g = ﬁlE = Fg.

1.3 Hybrid Objects

The starting point for theory of hybrid objects is the observation that systems that display both
continuous and discrete behavior, i.e., hybrid systems, can be represented by a D-category together with
a functor. This relates hybrid systems to the two most fundamental objects in category theory: a functor
and a natural transformation.

In this section, and from this point on, we will denote D-categories by the calligraphic symbols:
o, B, €, et cetera.

Using the notion of a D-category, we have the following definition of a hybrid object over a

category.

Definition 1.9. Let C be a category. A hybrid object over C is a pair («#,A), where </ is a D-category and
Ao/ —C

is a (covariant) functor.

For a hybrid object (<f,A) over C, the category C is called the target category, the functor A is

called the continuous component of the hybrid object, and the category « is called its discrete component.

Notation 1.3. We denote the value of a functor A : &/ — C on objects and morphisms of « by A, and
Ay, ie, A, =A(a) and A, = A(a). This is done to notationally differentiate the “continuous” portion of a

hybrid object from other functors.

Example 1.16. A (real) hybrid vector spaceis a hybrid object (7,V) over Vectg, i.e.,
V: 7 — Vectg.

In particular, V, is a vector space for every object a of 7 and V,, : V, — Visalinear map foreverya:a — b

in7.

Having defined hybrid objects, there is a natural definition of morphisms between hybrid ob-

jects.
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Definition 1.10. Let («,A) and (%, B) be two hybrid objects over the category C. A morphism of hybrid

objects, or just a hybrid morphism, is a pair
(F, f): (s#,A) — (%,B), (1.7)
where F : of — 28 is a morphism in Dcat and f is a natural transformation
fiA=BoF (1.8)
inC¥.

A morphism (F, f ): (,A) — (98,B) of hybrid objects can be visualized in the following diagram:

A
o fl C
BoF

T
=]

B
and has, like a hybrid object, both a discrete and a continuous component, which justifies the term “hy-
brid morphism.” The discrete component is given by the functor F : o — 98, and the continuous compo-
nent is given by the natural transformation f .
As morphisms of hybrid objects play a central role, we devote some energy to discussing their

meaning. First, we introduce some notation and examples.

Notation 1.4. Often, hybrid objects are simply denoted by
Ao —C.

It is clear that the corresponding hybrid object is the pair («/,A). We will often only be interested in a
single hybrid object and its relation to hybrid objects with the same discrete structure, i.e., the same D-
category. In this case, we will denote such a hybrid object by A and a morphism between it and another
hybrid object, B, by f :A = B; that is, A represents the hybrid object («/,A), B represents the hybrid object
(«/,B) and f represents the hybrid morphism (Id,y, f ), where Id,, is the identity functor (or the identity

morphism of «f in Dcat).

Example 1.17. Consider the D-categories « and 28 given by the following diagrams:

b by v’

Let F : of — 2 be the morphism of D-categories given in Example 1.11.

25



Hybrid Objects

ForA: o/ — C and B: % — C, which can be visualized in the following diagrams:
A, B,

As

A(.Qf) — a At

a B#)= By | |By,

a

Ay Ay, By

1

A morphism f :A = F*(B) in C* consists of three morphisms f:l, ﬁl and ﬁz in C such that the following

diagram
A4
A Asa Ata
¥ >
Ap, Ja Ap,
f
Ton oo
- B,/
F* (B) t“,
By By

commutes. The end result is a morphism of hybrid objects: (F, f ): (,A) — (%,B).

Example 1.18. For two hybrid vector spaces (7,V) and (#”,V'), a hybrid morphism between these hybrid
objects consists of a functor F: 7 — 7’ between their discrete components and a hybrid linear map, i.e.,
natural transformation:

fiVSVoF.

That s, for every a: a — b in 7, there is a commuting diagram:

-

Jfa
\' Vﬁ(a)
Vg Vﬁ(a)
f
\Z Viw

where f, and f}, are linear maps.

Morphisms of hybrid objects can be defined in an equivalent and possible more enlightening

way through the use of pullbacks of functors.

1.3.1 Pullbacks. The pullback of a functor F : of — 2 is a functor:

F’*C%_)Cd

26



Hybrid Objects

given on objects, i.e., functors B : 8 — C, and morphisms, i.e., natural transformations g: B = B/, of c%
by:
F*(B)=BoF, F*(@=goF,

where F*(g) is the natural transformation given on objects a of < by

= _ = . o — /
(F*(®)a= 8i(a) -BF(a) Bﬁ(a)'

This implies that for a morphism of hybrid objects (1.7),
f:A=F*B),
which is simply a reformulation of (1.8). This is the notation we will most frequently use.
1.3.2 Composing hybrid morphisms. Given two hybrid morphisms (F, f ): (<4,A) — (%,B) and (G, §) :
(%8,B) — (€¢,C), the composite morphism is given by:
(G, §o(F, f)=(GoE,F (@ f):(4,A) —(€,0).

Specifically, the composite morphism is just the standard composition of functors and objectwise com-

position of natural transformations, i.e.,
F*@ef:A>(GoF)* (0 = F*(G*(0),

in C is defined objectwise by (F*(g) ¢ f)a = F*(§) a0 fu = 8F ) o fu

1.3.3 Decomposing hybrid morphisms. Every morphism (F, f ): («£,A) — (98,B) has a canonical fac-

torization:

- =

(¢/,A) &N

(%,B)

(Id., ) (F, F*(idg))
(£, F*(B))

into its continuous and discrete component.

1.3.4 Categories of hybrid objects. Utilizing hybrid objects and hybrid morphisms, we have the fol-
lowing:

Definition 1.11. Let C be a category. The category of hybrid objects over the category C, denoted by
Hy(C), has as

Objects: Hybrid objects over C, i.e., pairs («/,A), where A: &/ — C.
Morphisms: Morphisms of hybrid objects, i.e., pairs

(F,f):(,A) — (%,B),

where F : o — 98 is a morphism in Dcat and f: A= F*(B) is a morphism in C¥.
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It is useful to know that the collection of morphisms between any two objects in Hy(C) form a

set. This makes Hy(C) a category in the classical sense.
Lemma 1.4. For any two objects (</,A) and (%8,B) of Hy(C), HomHy(C) ((«7,A), (%,B)) forms a set.

Proof. Since Homc,i (7, 98) is a set and
Hompcat (o, B) < Homc i (of, B),

it follows that Homp 4t (<7, ) is a set. Moreover, Homcd (A, F* (B)) form sets for any Fe Hompcat (o7, B).
So

Hompyc) ((«7,A), (8,B)) € Hompe,t (<, B) x U Hom s (A, F* (B))
FeHompe,t (£,9)

is a set. O

Example 1.19. We already have introduced the notion of a hybrid vector space. The collection of all

hybrid vector spaces forms the category of hybrid vector spaces: Hy(Vectg).

1.3.5 Left comma categories. The notion of a hybrid object over a category has not yet appeared in the
literature as it was originally formulated by the author. There is a notion that is “close” to this one, that ofa
left comma category (as introduced by Saunders Mac Lane [74], where is was referred to as a super comma
category*), and it in fact supports the terminology “hybrid object over a category.” We briefly discuss left
comma categories, comparing and contrasting them to categories of hybrid objects.

Let C be a category. The left comma category (Cat-|-C) is a category with

Objects: Pairs (A, A), where A is a small category and A: A — C is a functor,

Morphisms: Pairs (F, f) : (A, A) — (B, B), where F: A — Bisafunctorand f: BoF = Aisa
natural transformation.

If we consider the left comma category (Dcat-|- C), then this category has as

Objects: Pairs (of,A) where «f is a small category and A: o/ — C is a functor,

Morphisms: Pairs (F, f) : («/,A) — (%8,B) where F: of — Zisafunctorand f:BoF > Aisa
natural transformation.

This is “almost” the category of hybrid objects over C, except the direction of the natural transformations
are reversed, i.e.,

f:BoF A for (Dcat-|- Q) f:ASBoF for Hy(Q).

This is a not-so-subtle difference that has important ramifications. We only note that the motivation for
considering categories of hybrid objects rather than left comma categories can be seen when the notion

of a trajectory is introduced in Section 2.3.

4We avoid the name “super comma category” since there is an entire area of “super” mathematics and we want to prevent the
possibility of confusion.
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1.3.6 Pushforwards. Consider a functor G: C — D. For a D-category «, this induces a functor:

G.:C? - D
given on objects, i.e., functors A: o« — C by
G.(A) =GoA.
This functor can be visualized as follows:
o
A G.(A)
C G D

From a natural transformation f:A = A’ in C*, we obtain a natural transformation:
G(f):G.(A) = G.(A)

defined objectwise by: G. ( f )a:= G( fa) :G(A4) — G(A)). The relationship between pushforwards and pull-

backs is given as follows:

Lemma 1.5. ForG:C — D and F : o« — 9B, the following diagram

G
C% L D%
F* F* (1.9
Gy
c? D

commutes.

Proof. ForB: % — C,
F*(G.«(B)) = F*(GoB) = GoBo F = Go F* (B) = G..(F* (B)).
For g:B = B’ in C%, it is enough to check that the commutativity condition holds objectwise:

F*(Ga(8)a =G+ (54 = G8ra) = GE" (@) = G (F* (§)a.

1.3.7 Functors between categories of hybrid objects. Consider a functor G: C — D between two cate-

gories. Using the pushforward of the functor G, this induces a functor:

Hy(G) : Hy(C) — Hy(D)
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between categories of hybrid objects. On objects («#,A) and morphisms (F, f ): («f,A) — (%,B) of Hy(Q),
the functor Hy(G) is given by:

Hy (G)(sZ,A)
Hy(G)(E, )

(of,Gx (A)),
(F,Gu () : (£,G(A) — (B, G (B)),

where G, ( f ) is well-defined by (1.9).

Example 1.20. Recall from Example 1.6 that there is a forgetful functor U : Vectg — Set. This induces a
“forgetful” functor:
Hy(U) : Hy(Vectg) — Hy(Set)

between hybrid categories.

1.3.8 Elements of hybrid objects. Consider a set S. We can regard the elements of S as morphisms
from the set with one point, *, to S:

S = Homget (%,5),

where the isomorphism is given by sending an element s € S to e : * — S with e;(*) := s, and a morphism
e:* — Sto e(x) € S. This inspires the definition of elements of a hybrid object.

Suppose thatA: of — Cisahybrid object and C is a category such that there is a forgetful functor
U : C — Set. Define the elements of (<f,A) by5

Elemyyy () (/,A) := Homg o (A (%), Us (A)). (1.10)
So the elements of a hybrid object are natural transformations &: A (*) = U, (A), i.e., morphisms:
(Ia,sz{y €): (o, Ay (%)) — (&, Uy (A)) = Hy(U)(«,A),

in Hy(Set). In particular, for & € Elempy, ) («/,A), the following diagram must commute:

-

€a

* UAg)
id. \ UAq)
*

ép

U(Ap)
foralla:a— bin «.

By slight abuse of notation, we will identify €, with &,(x) € A,; with this notation, we write € €

(«f,A). Note that € € («/,A) must satisfy the following properties:
o €, €A, for all objects a of «f,

o é,=Aq(éy) foralla:a— bin <.

51t follows that the elements of a hybrid object form a set, i.e., a hybrid object has a set of elements.
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Note that € inherits the structure of the objects of C objectwise. Therefore, the elements of a hybrid object
can be thought of as “vectors” in an abstract sense of the word; this is one of the motivations for the vector

notation.
Lemmal.6. Iff:A>A’ and &€ (of,A) then f (&) € (of,A') where [ (&) 4 := [4(&4).

Proof. It trivially follows that f (€)4 € AJ,. The second condition follows from the fact that:

AL(f(@a) = AL (f2(8D) = fr(Aa(Ea)) = f1 (&) = (D).

Example 1.21. Let (7,V) be a hybrid vector space. A hybrid vector is an element of this hybrid object:
ve(7,V).
In particular, a hybrid vector must satisfy the following properties:
o U, €V, for all objects a of 7, i.e., U, is a vector,
o Up=Vu(Uy) foralla:a—bin 7 .

In fact, we can justify the use of the term hybrid vector since we have two operations: hybrid

vector addition and hybrid scalar multiplication. These are operations:

Elempy vectg) (7, V) x Elempy vectg) (7, V) —  Elempyvectg) (7, V)
W,w — Uv+w
R x ElemHy(VectR)(V’V) - ElemHy(VectR) v,V

) — 10

defined objectwise by (V+ ) 4 := (U, +1,) and (r V) 4 := 1 U,. It follows from the additivity and homogeneity
of linear maps that 7+ i and rv are again hybrid vectors.

More generally, the set of elements of a hybrid vector space, Elempy vectg) (7, V), is again a vec-
tor space. The vector addition identity element is given by 0 which is defined objectwise 0, = Oy, where
Oy, is the vector addition identity element for V,. Similarly, there is a scalar multiplication identity ele-

ment 1. The axioms of a vector space are easy to verify since they hold objectwise.

1.4 Cohybrid Objects

Thus far, we have only considered covariant functors. Contravariant functors will also arise nat-
urally in a hybrid setting as they naturally arise in category theory. In order to deal with these functors in

a systematic fashion, we introduce categories of cohybrid objects. First, we discuss:
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1.4.1 Covariant functor categories. For a category C, we use “ (C to denote the category of contravari-
ant functors A : o — C, with morphisms natural transformations between contravariant functors (see
Paragraph 1.1.14). Given a morphism F : o« — 8 of D-categories, it induces a morphism of contravariant

functor categories:

-

B Bc
Given a covariant functor G : C — D, there is a corresponding covariant functor:
G :?C—“D
for every D-category «/. Similarly, if G is contravariant, it induces functors:
G:?’C—DY  G.:C?—D.
In all cases F* 0 G, = Gy o F*,

Definition 1.12. Let C be a category. The category of cohybrid objects over the category C, denoted by
CoHy(Q), is given by:
Objects: Cohybrid objects over C, which are pairs («/,A) where </ is a D-category and A is a

contravariant functor A: of — C.
Morphisms: Pairs (F°P, f) : («/,A) — (%8, B) where

o F°P: of — 2 is the morphism in Dcat®P corresponding to the morphism F : 8 — of
in Dcat,

o f:F*(A)>Bin%C.

1.4.2 Relating categories of hybrid and cohybrid objects. The numerous morphisms in the different
categories used to define categories of hybrid objects leave a lot of freedom for dualization. To better
understand this, we relate categories of hybrid and cohybrid objects.

Specifying a contravariant functor A : &/ — C is equivalent to specifying a covariant functor A°P :
of — C°P given by:
AZp = (Aq)°P AP — Ay

a!

AP ( a a’) = A% =A,

Therefore, the objects of CoHy(C) are in bijective correspondence with the objects of Hy(C°P) and hence
the objects of Hy (C°P)°P.
For a morphism (FP, f) : («f,A) — (%, B) of cohybrid objects, f : F*(A) = B in #C. That is, for

every f: b — b’ in %, there is a corresponding commuting diagram:

fo
Afp) By
Aﬁ(ﬁ) By
fy
Af) > By
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in C. Taking opposites yields a commuting diagram:

i
op b Bop
F(b) b
op op
Aﬁ(ﬁ) \ \Bﬁ
Zop
op f i BOP
Fb) b

in C°P. Therefore, fo" :B°P = F*(A°P) in C* and associated to (ﬁo",f) in CoHy(C) is a morphism
(F, f°P) : (,B°P) — (£,A°P)
in Hy(C°P). Since the direction of (F°P, f) and (F, f°P) are opposite to one another, we conclude that:
Proposition 1.1. For every category C,
CoHy(C) = Hy(C°P)°P.

The motivation for considering categories of cohybrid objects is that they arise naturally in the
context of contravariant functors. That is, the functors induced from contravariant functors are functors

between categories of hybrid objects and categories of cohybrid objects.

1.4.3 Contravariant functors and categories of hybrid objects. Let G: C — D be a contravariant func-

tor between two categories. This induces a contravariant functor:
Hy(G) : Hy(C) — CoHy(D).
This functor is given on objects (<#,A) and morphisms (F, f ): («£,A) — (%,B) of Hy(C) by:

Hy(G)(<7,A)
Hy(G)(F, f)

(,Gx(A)),

(F°P,G. () : (8,G.(B)) — (,G.(A),

where FOP : 28 — of is the morphism in Dcat®P corresponding to the morphism F: o — 28 in Dcat.

Similarly, there is a contravariant functor:
CoHy(G) : CoHy(C) — Hy(D),
defined in an analogous manner. Finally, if G is covariant then there is a covariant functor:
CoHy(G) : CoHy(C) — CoHy(D)
defined in a manner analogous to the induced functor given in Paragraph 1.3.7.

Example 1.22. The functor that associates to a vector space its dual:

(—)*: Vectg — Vecty
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induces a contravariant functor:
Hy(( =)*) : Hy(Vectg) — CoHy(Vectp).
In particular, for a hybrid vector space (7,V), the corresponding cohybrid object
Hy((=)*)(¥, V) := (¥,V*)
is the dual hybrid vector space to the hybrid vector space (7,V) and so V* is a contravariant functor:
V*: 7 — Vectg.

This motivates the terminology “cohybrid object.”

1.4.4 Elements of cohybrid objects. Suppose thatA:.«/ — Cis a cohybrid object, i.e., A is a contravari-
ant functor, and C is a category such that there is a forgetful functor U : C — Set. This yields a covariant
functor CoHy(U) : CoHy(C) — CoHy(Set) where CoHy(U)(<f,A) := (of, U (A)).

As with hybrid objects, define the elements of (<, A) by

Elemcony o) (#,A) := Homu g (A% (+), U, (A)), (1.11)

where A;p is the contravariant constant functor defined in the obvious manner. Therefore, elements of
a cohybrid object are natural transformations @ : Az;)(*) = U,(A) in “Set, i.e., we have a commuting
diagram:

—

Wq

UAd)

*
id. ‘ U(Aq)
*

Dp

UAyp)

for every @ : a — b in /. Therefore, again identifying &, with @&,(*) € A, and writing @ € (<, A) in this

case, an element @ € («/,A) must satisfy the following properties:
o 04 €A, for all objects a of o,
o Ag(@dp) =dgforalla:a— bin .

Again, @ inherits the structure of the objects of C objectwise.

Example 1.23. For the dual hybrid vector space (%,V*) to the hybrid vector space (7,V), an element of
this cohybrid object:
@e(V, V),

is a hybrid covector.

In particular, it must satisfy the conditions:
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o @4 €V} forall objects a of 7, i.e., d4:V, — Ris a covector,
o Vi(@p) =dg, i€, dpoVy=dg foralla:a— bin V.

This implies that, for the covariant functor Ay (R) : 7 — Vectg, a hybrid covector corresponds to a natural
transformation:

&:VS Ay (R),

which is the hybrid analogue of the condition that, for a vector space V, a covector is a linear map

w:V-—-R.

1.5 Network Objects

There is one more important “hybrid” object that will be important when considering net-
worked systems, or networks of systems. These can be thought of as the dual to hybrid objects; their
building block is not D-categories but D°P-categories. While these are just the opposite to D-categories,
we devote some time to their development as they, along with the notion of a category of network objects,

will be fundamental to Chapter 6.

1.5.1 DC°P-categories. The opposite of a D-category, or a D°P-category, is given by reversing all of the

arrows in a D-category. Therefore, a D°P-category has the general form:

R

with its basic atomic unit a diagram of the form:

N

and any other diagram in this category must be obtainable by gluing such atomic units along the domain

of a morphism (and not the codomain, as was the case for D-categories).

Notation1.5. In order to differentiate between D-categories and D°P-categories, we denote D°P-categories

by 9, i.e., 9t = A °P for some D-category 4.

1.5.2 Oriented D°P-categories. Just as with D-categories, D°P-categories can be oriented. All of the
formalisms are the same except that the arrows are reversed. In particular, let 91 be a D°P-category such
that 9t = A°P. Then

EON =EW), VY =V(A),
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since the objects in a category and its opposite category are the same. An orientation of a D°P-category
is obtained from the orientation (s,t) of ¥, i.e., it is given by (s°P,t°P). That is, an orientation of a D°P-

category is a pair of maps (s°P,t°P) between sets:

soP
E(D Mor;q (97)
that fit into a diagram
E(D
id cod
soP

E) =25 Morig (3

dom

VO

in which the top triangle commutes. Therefore, for every a € E(), there is a diagram in 91:

b= dom(soP) dom(tap) =c

\%

cod(spP) = a = cod(t)P)

where b, c € V(N).
Morphisms between D°P-categories are defined in a way analogous to morphisms between D-

categories (see 1.2.2). In particular, for F: 9 —m, for every diagram of the form:

b c
a

inM,i.e, ae EN) and b, c € V(N), there are corresponding diagrams:

F(b) F(o)

E(s;P) EtoP)
F(a)
in 9, where F(a) € EON) and F(b), E(c) € VON).

We denote the category of D°P-categories by D°Pcat. Note that D°Pcat = Dcat, where the iso-
morphism is given by sending 91 to .4” with its inverse given by sending .4 to 1.
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1.5.3 Graphs and D°P-categories. Since Dcat = Grph and D°Pcat = Dcat, it follows that:
D°Pcat = Grph.

For example, given a graph T, the corresponding D°P-category, 9r, is given by associating to every e € E a
diagram of the form

sor(e) tar(e)
g e

e
in 9r. The identity morphisms must be added to each object in 91 in order to complete the definition.

Example 1.24. The following diagram shows a directed cycle graph, T = Cy, and the associated D°P-

category M, :
€]
N
op op
S t
e op el el op e
. tgk S/v
e
1] — 2 <OP 1 2 (0P
ek/' \92‘ €k e
k 3 k 3
Ck Ne,
i+2 i—-1 i+2 i—-1
\eH—l ez‘—l/
i+1 <el— i t€z+1 ez 1
op k‘
€i+1 Seisl Op <op el 1
el el

1.5.4 Networks over a category. We now define the notion of a network over a category.

Definition 1.13. Let C be a category. The category of networks over the category C, denoted by Net(C),

has as

Objects: Networks over C, which are pairs (0, N) where 91 is a D°P-category and N is a covari-
antfunctor N: 9t — C.
Morphisms: Pairs (F, f):(OL,N) — O, M) where
o F:9— Misthe morphism in D°Pcat,
o f:N-=SF*)in ™

We refer the reader to Chapter 6 for examples of network objects. Constructions similar to the
cases of categories of hybrid and cohybrid objects also can be introduced, although doing so would be

repetitious.
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Chapter 2

Hybrid Systems

Hybrid systems effectively describe systems with discrete and continuous behavior; as such,
they are able to model a wide range of phenomena. With this expressiveness comes an increase in com-
plexity; current models are difficult to manipulate as they consist of many different mathematical objects—
agraph, domains, guards, reset maps and vector fields. This presents obvious difficulties in understanding
and analyzing hybrid systems, and so indicates the need for a more coherent mathematical description
of hybrid systems. We claim that the theory of hybrid objects can provide such a description.

We begin by introducing the “standard” model of a hybrid system. The first half of this chapter
is devoted to transforming this standard model, in a constructive manner, into the framework of hybrid
objects, i.e., it is demonstrated how hybrid systems can be viewed categorically. The end result is that a

hybrid system can be represented by a triple:
(4, M,X),

were (#,M) is a hybrid manifold, i.e., M: .# — Man, and X is a collection of vector fields (indexed by
V() on this hybrid manifold. Therefore, the categorical formulation of hybrid systems is in direct anal-
ogy with dynamical systems, i.e., pairs (M, X) where M is a manifold and X is a vector field on that mani-
fold. This analogy is further extended by defining the category of hybrid systems utilizing the category of
dynamical systems.

It is important to consider not only hybrid systems, but how hybrid systems execute or evolve.
The latter half of this chapter is devoted to this topic. We again begin by introducing the “standard” notion
of an execution for a hybrid system, and demonstrate in a constructive fashion how to obtain from this
its categorical analogue. That is, we show that specifying an execution of a hybrid system is equivalent to

specifying a morphism of categorical hybrid systems
(£, 1,d/dt) — (4, M,X),

where (£,1,d/dt) is a hybrid system which, roughly speaking, consists of a collection of “intervals” to-

gether with “unit clocks” on these intervals. This again nicely parallels the notion of a trajectory of a
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dynamical system, which is just a morphism of dynamical systems
(I, d/dt) — (M, X),

with I an interval and d/dt a “unit clock.”

The categorical formulation of hybrid systems and trajectories thereof is fundamental in under-
standing these systems in a broad mathematical context. For example, it is through this formulation of
hybrid systems that we are able to generalize reduction to a hybrid setting and give sufficient conditions
for the existence of Zeno behavior. Without these constructions, these results would have been difficult
to derive. Aside from these results, the categorical formulation of hybrid systems is useful simply because
of the manner in which it simplifies the representation of a hybrid system. We hope that the subsequent

chapters of this dissertation will provide support for these claims.

Related work. There is a wealth of literature on hybrid systems. Instead of providing a complete review
of the subject, we only note that the formulation of the “standard tuple” defining a hybrid systems intro-
duced here is drawn from the series of papers [68, 69, 82, 83, 118, 119]; our definition differs slightly, but
we think that it accurately describes a wide range of hybrid phenomena. Hybrid systems have also been
studied in a categorical context, most notably in [56]. The need for a unifying mathematical framework in
which to study hybrid systems was remarked upon in [103] and [104]; although the constructions in that
work are different than ours, there are many philosophical similarities. Finally, concepts from geometry
are used freely throughout this chapter; we refer the reader to [79] for more on the subject.

The categorical formulation of hybrid systems introduced here first appeared in [14], and has

since appeared in [13, 18].

2.1 Hybrid Systems

This section formally introduces hybrid systems and the corresponding notion of a hybrid space.
We characterize the relationship between hybrid spaces and hybrid manifolds. Utilizing hybrid manifolds,
we define “categorical” hybrid systems and characterize the relationship between these systems and “clas-
sical” hybrid systems. We conclude by introducing the category of hybrid systems. All of these concepts

are illustrated through a series of examples.
Definition 2.1. A hybrid system is a tuple:
$H=(T,D,G,RX),
where
o I'=(Q, E) is an oriented graph (possibly infinite).

o D={D;};cq is a set of domains where D; is a smooth manifold.
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Figure 2.1: The bouncing ball.

o G ={Ge}ecr is a set of guards, where G, S Dsor(e) is an embedded submanifold of Dsore).
o R ={R.}ccE is a set of reset maps; these are smooth maps R : Ge — Drar(e)-

o X ={Xj}ieq is a collection of vector fields, i.e., X; is a vector field on the manifold D;.

2.1.1 Hybrid spaces. As with dynamical systems, it is sometimes desirable to consider the underlying
“space" of a hybrid system. This amounts to “forgetting" about the vector field on each domain. More

specifically, we can define a (smooth) hybrid space to be a tuple:
H=T,D,G,R).
It will be seen that hybrid spaces are just hybrid objects over the category of manifolds: hybrid manifolds.

Example 2.1. The quintessential example of a hybrid system is given by the one-dimensional bouncing
ball; see Figure 2.1. While this system has, arguably, been over-studied, we will utilize it in order to illus-
trate non-trivial ideas in a trivial setting.

A ball bouncing in one-dimension is naturally modeled as a hybrid system:

fJball — (Fball,Dball, Gball, Rball’Xball).

That is, we consider a ball dropped from some positive height, say x;, above a surface defined by x; = 0.
Since the velocity of the ball will reset when it impacts the floor, the graph for this hybrid system is given
by:

)
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Figure 2.2: The hybrid model of a bouncing ball.

Since the phase space of the bouncing ball will consist of two variables, the position x; and velocity x;,

the domain for the hybrid system is given by:

X
D}’a”:{( ! )EIRZ:xle},
X

and Dbl = {D'l’a“}. The guard condition encodes the fact that a transition in the velocities of the system

should occur when the position is zero and the velocity is “downward pointing.” Therefore,

X
Gsan:{( ! )ERZ:m:OandxgsO},
X2

and G = {GP¥}, The reset map for the system is given by:

X1
R (x1, %) = ( ) )

—TI'Xp

where 0 < r < 1 is the coefficient of restitution for the ball; this map encodes the fact that when the ball

impacts the ground, its velocity is reversed and scaled down by the amount of energy lost through impact.
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Finally, the vector field for this system is given by:

X2
XM, x) = :
-8
where g is the acceleration due to gravity. A graphical representation of this system can be seen in Figure

2.2.

Example 2.2. The classical example of a system that models a physical system being controlled is the fwo
water tanks hybrid system. This system models two tanks that are draining at rates v; and v, together with
a spout that is inputting water into one of the two tanks at a rate of w. The control objective is to ensure
that there is water in each tank at all times.

The hybrid system modeling the two water tanks is given by:

tank tank pytank ~tank ptank y-tank
f)an :(Fan,Dan,Gan,Ran,Xan)'

The graph for the hybrid system, I'?"¥, is given by:

11— 2.

e
To define the remaining portion of the hybrid system, we consider two state variables, x; and x,, where
x1 is the level of water in tank 1 and x is the level of water in tank 2. Since the goal is to keep the water
in both tanks at all time, we are interested in domains for the hybrid system that capture the fact that the
level of water in each tank must be greater than or equal to zero. Specifically, define ptank — {D{ank, D;ank}
where

X1

plank = plank — eR*:x;20and x>0

X2
The guard sets for this system should capture the fact that the water spout will switch from one
tank to the other tank if it detects that the other tank is empty. That is, if water is inflowing into tank 1 and
the level of water in tank 2 decreases to 0, i.e., x, = 0, then the spout should start inflowing water into tank
2. This yields the first guard expression:

X1

Gg‘nkz €ER?:x;=0and x, =0

X2
Conversely, if water is inflowing into tank 2 and the system detects that x; = 0, the spout should switch
from tank 2 to tank 1. This yields the second guard expression:

X1

Gg;‘nkz ER?:x;=0and x, =0 },

X2

and Gtank — {G{ank’ G;ank}'
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Figure 2.3: The hybrid model of a two water tank system.

It is assumed that the transition from one tank to the other is made in zero time, so the reset

maps for the system are the identity:

x1
tank tank

R&™(x1,%2) = R™ (x1, X2) =

x

Finally, if water is inflowing into the first tank at a rate w, and since water is flowing out of each
tank at a rate of v; and 1v,, the ODE governing the system is given by:
w-—n

tank
X7 (x1, x0) =

Similarly, if water is inflowing into the second tank, the resulting dynamics are given by:

-
tank

X5 (X, xp) =

w—11
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Setting X0k = {xfank xtanky completes the description of the hybrid system $'X. This hybrid model can
be seen in Figure 2.3

To make the behavior of the model interesting, we will assume that
max{v;, w} < w< v+ .

That is, we assume that the inflow is greater than the outflow of each tank, and that the total outflow of
the system is greater than the inflow to the system. This assumption results in Zeno behavior—this type
of behavior will be discussed in detail in Chapter 5, where we will prove that the two water tanks hybrid

system is Zeno (see Example 5.4).

2.1.2 Hybrid manifolds. A (smooth) hybrid manifoldis given by a pair (.#/,M), where ./ is a D-category

and M is a functor to the category of smooth manifolds, Man,
M: 4 — Man. 2.1)

That is, a hybrid manifold is a hybrid object over the category of (smooth) manifolds.

In physical systems, it often is the case that for every a € E(.#), and hence every diagram

a
/ \
cod(sy) cod(ty)

in ./, the corresponding diagram in Man is given by:

M,
MV k 2.2)

Mcod(sa) Mcod(ta)

where M, € Mcqq(s,) is an embedded submanifold and Ms,, = 1 is the natural inclusion. We denote hybrid
manifolds of this form by M*.
Although we do not explicitly assume that Mg, is an inclusion, this often is the case, as the fol-

lowing proposition indicates.
Proposition 2.1. There is a bijective correspondence:
{Hybrid Spaces, H = (T, D, G, R)} < {Hybrid Manifolds, (.#,M")}.

Proof. Given a hybrid space H = (I', D, G, R), we define the corresponding hybrid manifold by M(?¢-R
Mt — Man, where ./t = dcat(I') is the D-category obtained from the graph I and M?"%:®) is defined for
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every e € E(4r) = E by

e
MD.GR / \ —
»
sor(e) tar(e)
MPGR .= G,
D,G.R D.GR) ._
MR MR = R,
(D.GR) ._ (DGR ._
Morie) -= Dsor(e) Mi\o = Drare)

It is clear that MPG® is a hybrid manifold.
Conversely, consider a hybrid manifold M* : .4 — Man. Let T 4 = grph(#) = (Q 4, E.4) be the
graph obtained from the D-category .#. We define

IH](‘/%,M') = (r./ﬁ[rDM'rGM')RM')r

where
Dy = {Mp}peviwr=Qu
Gw: = MJ}acEn)=E,»
Rvr = M{ }acEwu)=E,-

Example 2.3. The hybrid space for the bouncing ball is given by:

Hball — (Fball’Dball, Gball’ Rball).

We will construct the associated hybrid object (., MPal!), The D-category associated with the graph

rbal js given by:

MOV = s | |t

b
together with the identity morphisms id, : a — a and idj, : b — b. The functor

MPal.gball _ Man

takes the following values:

4 Mball = gbal
Moalfs, | |t [=  mbal= | | wabal = gal
ball _ ryball
b mball = pt
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ball __ (vball
My =GP

ball _ ball __ pball
M = Mp* = R

T2

x1 M{l))all — Dll)all

Figure 2.4: The hybrid manifold for the bouncing ball.

A graphical representation of this hybrid manifold can be seen in Figure 2.4
We now see the original motivation for considering D-categories; the edge sets of these cate-
gories serve the purpose of “pulling out the guard.” The claim is that small categories of any other shape

would not allow for the representation of hybrid systems as functors in such a clear fashion.

Example 2.4. The hybrid space for the water tank system is given by:

tank tank pytank ~tank ptank
[H]an :(ran’Dan,Gan,Ran).

We will construct the associated hybrid object (., M®@X), The D-category associated with Tk js
given by

ay

ﬂtank - bl b2

ta, Say

a
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Mtank Gtank

Mtank Rtank

tagy

Mtank =1

Sao

tank tank tank tank
Mtank — pt Mtank — pt

tank tank
Miark — Rt

ta;

Mtank Gtank

Figure 2.5: The hybrid manifold for the water tank system.

together with the identity morphisms on each object. The functor
Mtank . J%tank — Man

takes the following values:

tank tank
Miank = Gla

tank _ tank _ ptank
Ms o 1/ % R

Mtank( Mtank) — Mtank — Dtank Mtank tank

tank _ ptank tank _
Mta2 A A 1

Mtank — Gtank

which completes the description of (.# "X, MX)_ This hybrid manifold can be seen in Figure 2.5
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2.1.3 Morphisms of hybrid manifolds. Morphisms between hybrid manifolds are just the standard
morphisms in the category of hybrid objects over Man. That is, for two hybrid manifolds (.#,N) and
(«#,M), a morphism is just a pair (ﬁ,f) : (N, N) — (,M) where F : &/ — 4 and f: N - F*(M). This
defines the category of hybrid manifolds Hy(Man).

When considering hybrid manifolds of the form N* : & — Man and M* : .# — Man, the require-

ment that f :N* = F* (M?) implies that, for every a € E(/), there must be a commuting diagram:
p y g diag

1
Na
1
l Nta
1 1
Ncod(su) Ncod(tu)
fa
fcod(sa) fcod(ta)
1
Mﬁ(a)
M:
L F(ta)
1 13
F(cod(sa)) Mﬁ(cod(ta))

Using this, one could define the category of hybrid spaces utilizing the “classical” notation.

Example 2.5. To provide a non-trivial example of a morphism of hybrid manifolds, let us consider a hybrid
path for the bouncing ball hybrid manifold (.# ball pbally ‘Ope begins with a hybrid interval (#,1) where
I:.¢ — Interval(Man); the notion of a hybrid interval will be formally introduced in Section 2.3. For the

time being, it suffices to let .# be the D-category defined by the following (infinite) diagram

a az aji1
4 R 7 7 4 S
%/ & %/ . s 6/ Yjﬂ
» »
by b b bj b1
and I be a functor such that
Aj+1 Iaj+1 ={7j+1}
4 4 I, =1
I s“ﬁ/ &l\jﬂ = %241
y
b; bji1 Iy, =1[7j,7j41] Ipi,, = [7j+1, 712l

forall jeNand some 7;,7;11,Tj+2 € Rsuchthat7; <741 <7j0.

Now a hybrid path is a morphism of hybrid manifolds:

G, 8): (£,1) — (P pbally
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where C: .# — 4" and &:1-> C* P, To better understand such a morphism, note that the condi-
tions on morphisms of D-categories imply that C must take the following values on objects: C(a i) = aand
C(b i) = b, where in this case {a} = E(# bally and {b} = V(4P™), and the symbol = denotes “identically
equal to.” In addition, it must be orientation preserving, i.e., if s and t are the orientation functions for
(°¥ the morphism C must take the following values on morphisms: G(S‘fj) =s,and C (tfj) =ty. The

morphism € can be visualized as follows:

aj+1
54 t]
g aj+ Aj+1
bj bj1

c

P

a
./%ball

The natural transformation ¢ can be thought of as a collection of paths (in the “non-hybrid” sense of the
word) on Mll’f‘“ such that they satisfy certain “discrete” consistency conditions. Specifically, the natural

transformation can be visualized in the following diagram

Ly, ={Tj1}

Iy, =[7},7j41] Iy, = [7j41, 72l

where the condition that this diagram commutes is equivalent to requiring that transitions occur when

the guard is reached.
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2.1.4 The category of dynamical systems. Let M be amanifold andlet X: M — T M be a smooth vector
field, i.e., a section of the tangent bundle. Objects of this form are termed dynamical systems. The category

of dynamical systems, Dyn, has as

Objects: Dynamical systems, i.e., pairs (M, X), where M is a manifold and X is a vector field

on that manifold.
Morphisms: Smooth maps of manifolds f : N — M such that the following diagram
T
TN —]: T™
Y [ [ X (2.3)
N —f> M

commutes; here T f is the pushforward of f.

Remark2.1. One might be tempted to define a (categorical) hybrid dynamical system as an object over the
category of dynamical systems, i.e., a functor: D : 2 — Dyn. While this is a hybrid system (in the classical

sense), it is not an especially interesting one.
Definition 2.2. A (categorical) hybrid system is a tuple!
$H = (HU,MX),
where
o (4 ,M) is a hybrid manifold,

o X = {Xplpevu is a collection of vector fields with X}, : M, — TM}, a smooth vector field on My, i.e.,
(Mp,X}) is an object of Dyn for all b € V/(4).

Remark 2.2. The categorical definition of a hybrid system nicely parallels the classical definition of a
dynamical system. A dynamical system consists of a pair (M, X), where M is a manifold and X is a vector
field on that manifold. Similarly, a hybrid system is a tuple (.#,M,X), where (.#,M) is a hybrid manifold

and X is a collection of vector fields “on” that hybrid manifold.
Proposition 2.2. There is a bijective correspondence:

{Classical Hybrid Systems, (I, D,G, R, X)}

!
{Categorical Hybrid Systems, (.#4,M* X)}.

Proof. Beginning with a classical hybrid system (T, D, G, R, X), from the hybrid space associated to this
hybrid system, H = (T', D, G, R), we obtain a hybrid manifold (., MP.GR) Define the collection of vector
fields on this hybrid manifold by:

XX = {Xitieo=vup)-

1We denote both “classical” and “categorical” hybrid systems by the symbol §; the reason for this will soon become transparent.

50



Hybrid Systems

The tuple (4, MPGB XX) is clearly a categorical hybrid system.
Conversely, for a categorical hybrid system (.#,M*,X), from (.#,M") we obtain a hybrid space:

Hewmy = T = Quu, Eat), Dvir, Gm, Ru).
Defining
Xx = XplbeQ 4=vu)

the end result is a classical hybrid system (I' 4, Dy, Gy, Rve, Xx)- O

Example 2.6. From the bouncing ball hybrid system gball — (pball pball cball pball ybally jnoduced in

Example 2.1, we obtain a categorical hybrid system:
(J%ball’Mball’xball)’

where (P!, MP2) is the hybrid manifold associated to the hybrid space of the bouncing ball as intro-

duced in Example 2.3 and XPa!! = {X}””}. This categorical hybrid system can be visualized graphically using

57)ba11

the original data defining the system as follows?

GEaH

(ﬂball’ Mball , Xball) — 1 REall

(D%)all, X})all)

Example 2.7. For the water tank hybrid system $'@k = (rtank ptank Gtank ptank ytank) jntroduced in Ex-

ample 2.2 we obtain a categorical hybrid system:
( J%tank, Mtank’ Xtank),

where (/@ M'@X) is the hybrid manifold associated to the hybrid space of the bouncing ball as intro-

duced in Example 2.4, and X'k = {Xzank} bev/ (atank) = Quank = {X{ank,XEank}. This categorical hybrid system

can be visualized graphically using the original data defining the system $@°X as follows
Gtank
/ N!Ek
( Mtank Mtank Xtank) — ( Dtank Xtank ( tank Xtank
}% /
Gtank

ZNote that this is not a diagram in a category, but rather a convenient way for representing the data defining a categorical hybrid
system.
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2.1.5 Thecategoryof hybrid systems. With the categorical formulation of hybrid systems, we can form
the category of hybrid systems, HySys, with
Objects: Hybrid systems, (.#,M,X),

Morphisms: Pairs (F, f) : (#,N,Y) — (4, M,X), where (F, f) : (#,N) — (%, M) is a mor-
phism in Hy(Man) such that there is a commuting diagram:

Tf
TNy —— TMF(b)
Yy X
f
Ny Mgy,

for all b € V(). That s, for all b € V(A), ﬁ, : (Np, Yp) = (Mg, X)) is @ morphism in

Dyn.
Remark 2.3. The definition of the category of hybrid systems again nicely parallels the definition of the
category of dynamical systems. In the latter case, morphisms are morphisms of manifolds such that the
vector fields on each manifold are f-related. Similarly, a morphism of hybrid systems is a morphism of

hybrid manifolds such that the collections of vector fields are “hybrid (F, f )-related.”

2.2 Hybrid Intervals

This section begins with the introduction of the “standard” hybrid interval (much in the spirit
of [68, 69, 82, 83, 118, 119]). We then associate to a hybrid interval its categorical counterpart, i.e., a
categorical hybrid interval. In order to do so, we introduce interval subcategories of some categories of

interest:
Grph, Dcat, Man, Hy(Man). (2.4)

These interval subcategories can be thought of as a generalization of the standard interval (for example,
in R) and, as such, will be instrumental in defining trajectories of hybrid systems. For example, a trajec-
tory of an object in any of the categories given in (2.4) is just a morphism from an object of the interval

subcategory to this object.
2.2.1 Hybrid intervals. Hybrid intervals can be thought of as the “time domain” for trajectories of hy-
brid systems. A hybrid intervalis a pair (A, I), where

o A=1{0,1,2,...} =Nis a finite or infinite indexing set,

o I={I;};jcp where for each i € A, I; is defined as follows:

I =[14,7Ti41] if i,i+leA

In-1= [tn-1,TN] or [Ty-1,TN) OF [Tn-1,00) if [|A]=N, N finite.
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Here, forall i,i+1€e A, 17; <74y With7;,7;41 € R, and Ty_1 < Ty With Ty_1, TN ER.

Remark 2.4. Itis sometimes notationally convenient to utilize a set of switching times instead of intervals.
Specifically, we can specify a hybrid interval equivalently as a pair (A, {t;};ea) such that 7; < 7;41. From
this we obtain intervals I; = [7;,7;+1] when i,i+1 € A. If |A| = N is finite, we can specify a final interval

In_; as above.

Example 2.8. To provide a simple example, let A = {0,1,2}. Associated to this indexing set there are three
intervals, e.g.,

Iy = [70,71], L =[11,72], L =[12,00).

Example 2.9. To provide a much more interesting example, let {ar"},n be a geometric sequence. Then
to this geometric sequence, we have an associated hybrid interval (N, I(*"), termed the geometric hybrid

interval, where
(a,1) _
L5 =

(a,1) (u,r)]

[r;" T

with T(()“'r) =0and

i
(a,r) _ _(a,1) i_ n
1,0, =T, +ar —Zoar .
n=

Hybrid intervals of this form, as we will see, naturally arise in Zeno hybrid systems.

We would like to understand hybrid intervals categorically. In order to do so, we will introduce
the notion of an interval subcategory of a category. We first introduce intervals in the category of graphs,
which define intervals in the category of D-categories. Finally, we use intervals in the category of mani-

folds to define hybrid intervals categorically.

2.2.2 Intervals in Grph. For a finite or infinite indexing set A = {0, 1,2,...} N we have an associated a
graph I'y = (Qa, Ep), where Qp = A and E, is the set of pairs 41 = (j, j + 1) such that j, j + 1 € A. Define
Interval(Grph) as the full subcategory of Grph with objects graphs of this form, i.e., graphs obtained from

indexing sets. That is, Interval(Grph) consists of graphs of the form:

Nj+1

Ui} 2 . s (2.5)

2

Example 2.10. For the simple indexing set A ={0,1,2}, I'y is the graph:

m 12

For an indexing set A =N, the graph is of the form given in (2.5).

2.2.3 Intervalsin Dcat. Intervalsin D-categories are obtained from the intervals in Grph, i.e., using the

isomorphism of categories given in Theorem 1.1, we define:

Interval(Dcat) := dcat(Interval(Grph)).
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To be slightly more explicit, from a graph I'y obtained from a finite or infinite indexing set A we obtain a
D-category:

Zp =dcatT'p),
which implies that V(%)) = Qx = A and E(#)) = Ej. Therefore, every diagram e < ¢ — e in this D-

category must have the form:

Sn;j t; (2.6)

That is, the D-categories in Interval(Dcat) have the form:

m 2 Nj+1
0 1 2 j j+1
This particular D-category is the one obtained from the graph given in (2.5).

The category Interval(Dcat) is, therefore, the full subcategory of Dcat consisting of all D-categories

obtained from graphs of this form.

Example 2.11. For the simple indexing set A = {0,1,2}, .#j is the D-category:

0,1) 1,2)

S(O/ &1) S(l/ K” »
0 1 2

For an indexing set A = N, the associated D-category is of the form given in (2.7).

2.2.4 Intervals in Man. To study trajectories (of both dynamical and hybrid systems), we must first
understand intervals in the category Man. For ¢,t' € RU {oo}, t < ¢/, an interval in Man is given by any of

the following sets:
I=[t,1], 4,1, [t,1), (t,), {1}. (2.9)

where [t, t'] is a manifold with boundary (and so is (¢, t'] and [¢, t')) and {¢} is a zero-dimensional manifold
consisting of the single point ¢ (which is trivially a smooth manifold).

We can form the full subcategory of Man, Interval(Man), with objects intervals, i.e., manifolds
of the form (2.9), and morphisms smooth maps (note that any smooth map from a zero-dimensional

manifold is automatically smooth).

54



Hybrid Systems

Definition 2.3. An interval in Hy(Man) is a pair (.#,I), where
I:.¢ — Interval(Man),
which must satisfy:
o . is an object of Interval(Dcat).

¢ ForallieV(¥),

I =747+l if i,i+1leV(¥)

In-1 = [Tn-1,7N] or [Tn-1,TN) OF [Ty-1,00) if [V(F)| =N, N finite.

o For every n € E(.¥), there is the associated diagram in .#:

Iy =Icod(s,) Nlcodit,)

Icod(sn) Icod(t,,)-

2.2.,5 Intervals in Hy(Man). Foreveryn e E(¥), n= (i,i+1) for i,i + 1 € V(#), Definition 2.3 implies
that for every such edge there exist 7,7’,7” € R, with T < 7/ < 7", such that
I v =11}

I l

(Li+]) —

I =[1,7] L=, 7" or [7/,7") or [7,00).
If .# is the D-category in (2.7), an example of an interval in Man is given by I: .# — Interval(Man) where

{r1} {r2} {rj+1}

N AVANV AN

[to, 711 (11, 72] [t2,73] -+ [7j,Tj41] (Tj+1,Tj+2l -+
with 71,72,...,7j+1,... the set of switching times.
Let Interval(Hy(Man)) be the full subcategory of Hy(Man) with objects all intervals in Hy(Man).
The importance of intervals in Hy(Man) is that to every hybrid interval (as introduced in Paragraph 2.2.1),

we can associate an object of Interval(Hy(Man)), and vice versa.

Remark 2.5. One can now define paths as in Example 2.5. A hybrid path of a hybrid manifold (.#,M) is an
object (£,]) of Interval(Hy(Man)) together with a morphism of hybrid manifolds: (G, 0): (£, — (M,M).

Paths can also be considered in Hy(Top) and other related categories of hybrid objects.

Proposition 2.3. There is a bijective correspondence:

{Hybrid Intervals, (A, )} < {Intervals in Hy(Man), I:.# — Interval(Man)}.
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Proof. Consider a hybrid interval (A, I) with I = {I;};e5. We have the following associations:
A — I's € Ob(Interval(Grph)) — %5 € Ob(Interval(Dcat)).
Therefore, to the pair (A, I) we have the associated functor and D-category:

II:JA — Interval(Man)

e
11 / \ -
»

sor(e) tar(e)

where

1
I, := Lsor(e) N Ltar(e)

l !

I I
Lor(e) *= Lsor(e) Liare) := tar(e),

for every e € E(.#)) = Ep.

Conversely, given an object (.#,1) of Interval(Hy(Man)), we have an associated hybrid interval:
W), I' = Tidieys)-
The definition of intervals in Hy(Man) imply that this is a hybrid interval. O

Notation 2.1. As a result of Proposition 2.3, we will refer to objects of Interval(Hy(Man)) as categorical

hybrid intervals or just hybrid intervals.

Example 2.12. For the simple hybrid interval (A, I) introduced in Example 2.8, the associated categorical
interval is given by:
I £ — Interval(Man),

where .#, is the D-category given in (2.8) and I is defined by:

0,1) (1,2)
| Sou W Sﬂ/ \2) _
»
0 1 2
I = {71} I 5 = {72}
1§ = [70,71] I, = [11,72] I, = [12,00)
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Example 2.13. For the geometric hybrid interval (N, I'®") introduced in Example 2.9, the associated cat-
egorical interval is given by:
17 . 4, — Interval(Man),

where 1“7 takes the values indicated in the following diagram:

m 2 Nj+1
I(u’r) sn/ & Sn/ y sr]/ y-'-l _
0 1 2 j j+1
1" = {a} 127 = {a(1 + )}
K/j///Q Q\\\\i\\\ ‘///i////? Q\\\\\\l\\\\\‘
(a,r) _ (a,r) _ (a,r) _ 2
I,"" =10,4] " =la,al+71)] L =[a(l+71),a(l+r+71%)]
(a,1) / n
Mj+1 — ZO(ZT
n=

i1 J j+l
(a,r) _ n n (a,r) n n
I]. = Ear,g ar Ijﬂ— Ear,g ar

n=0 n=0 =0 n=0

2.3 Hybrid Trajectories

This goal of this section is to introduce trajectories of hybrid systems in the context of our cate-
gorical formulation of hybrid system. Utilizing (categorical) hybrid intervals it is a simple matter to define
trajectories of hybrid systems. We define the interval subcategory of Dyn, which is used to construct the
interval subcategory of HySys. A trajectory of a hybrid system is just a morphism from an object in the
interval subcategory of HySys to the hybrid system. We conclude by demonstrating that this formulation
is equivalent to the “standard” notion of an execution.

The constructions presented in this section are motivated by similar ideas that appeared in the

study of bisimulation relations; see [56] and the references therein.

2.3.1 Intervalsin Dyn. Trajectories of dynamical systems are morphisms in Dyn whose domain is an
interval in Man together with a vector field that is a “clock”. Specifically, let I be an interval in Man, M a
smooth manifold, and X a vector field on that manifold. Consider a smooth map c¢: I — M. This map is

said to be a trajectory (or flow or integral curve) of X on M if

¢(t) = X(c(1) (2.11)
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for t € I. This is equivalent to requiring that the following diagram

1 —LC T

% X (2.12)
I—S M
commute. That is, for t' € I,
d
c(th=Tpc|l —| |e TymM
() t (dt ﬂ) c(t)

So the commutativity of (2.12) enforces condition 2.11, or just ¢ = X(c), which is the usual requirement on
a trajectory.

Therefore, we define the category Interval(Dyn) to be the full subcategory of Dyn consisting of all
objects of the form (I, d/dt) where I is an object in Interval(Man); here, the vector field d/dt can be thought

of as a unit clock, i.e., the vector field x = 1.

Definition 2.4. A trajectory of a dynamical system (M, X) is a morphism in Dyn:
c:(I,d/dt) = (M, X),

where (I,d/dt) is an object of Interval(Dyn).

Some further explanation of trajectories of dynamical systems is needed because of the specific
domains for these curves that we are considering; that is, I may be a closed interval or a point.
In the case when I = [#, ] with #; > #, we view I as a manifold with boundary 01 = {#, ,}. We

define ¢ at these endpoints by:
¢(tp) := lim ¢(1), ¢(f) = lim ¢(1).
t;.tg' l“’l‘l

Similar definitions hold when I = [#, ) and I = (£, f1]. In either of these cases, we again consider the
dynamical system (I,d/dt), and say that ¢ : I — M is an integral curve of X if ¢ : (I,d/dt) — (M, X) is a
morphism in Dyn, i.e., if (2.12) commutes.

When I = {ty} every map c: I = {fp} — M is an integral curve of X, and we define ¢(f) := X(c(%)).
There are ways to justify this by (for example, when dim M > 0 and c(#) is not on the boundary of M)
considering an open interval containing #. By slight abuse of notation, we still write ({#},d/dt) in this
case; although, it should be understood that what is meant by this is (2.12) trivially commutes, since the

diagram commuting amounts to evaluating X at c(f).

Example 2.14. For the “dynamical system” portion of the bouncing ball hybrid system as introduced in
Example 2.1, (D}’a“, X}’a”), for an interval [fy, f;] and an initial condition x = (x;, ;)T we obtain a trajectory

for this dynamical system c: ([fy, #,],d/dt) — (D{’au,X}’aH) given by:

PRV
——g(tzt[)) +x2(F =) +x1
c(r) =

-gt—t)+x

Clearly, ¢ = X}’au(c).
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Cl<7'2)

CO(Tl)

co(to) ci(m1)  ca(m2)

Re

Figure 2.6: A graphical illustration of an execution.

Definition 2.5. An execution of a hybrid system $ = (', D, G, R, X) is a tuple:
e=W,Lp,C)
where
o (A, D is a hybrid interval.

o p:A— Qisamapsuchthatforalli,i+1€A, e :=(p(i),p(i +1)) € E. This is the discrete evolution

of the execution.

o C={ci}ien is a set of continuous trajectories such that c; : (I;,d/dt) — (Dp(;), Xp(i)) for all i € A, i.e,,

ci : I; = Dyqj) is a trajectory of Xj(;) and thus satisfies ¢; () = Xp(;)(c;(2)) for £ € I;.
We require that forall i,i +1 € A,

1 Ci(Ti41) € G

) Re, (¢i(Ti+1)) = ci41(Ti41).

The continuous initial condition of an execution ¢ is, when Iy = [7, 1], given by ¢y (7o) € Dp(q).
The discrete initial condition is given by p(0). Note that given an initial condition, it is by no means
assumed that there is a unique execution with this initial condition. We never concern ourselves with

uniqueness because the results presented never need to make this assumption in order to be valid.

Remark2.6. In the definition of an execution we did not specify when the switching should occur once the
guard is reached, i.e., we did not specify whether we are considering as-is (forced) or enabling semantics
(see [109] for more on the semantics of hybrid systems). Again, the theorems introduced do not depend
on this choice, so we opted for simplicity by not making a specific choice regarding transition semantics.

In all of the examples, as-is semantics are used.

59



Hybrid Systems

Example 2.15. An graphical illustration of an execution with the same hybrid interval as the one given in
Example 2.8 can be seen in Figure 2.6. In this case, the hybrid system consists of a single domain, guard
and reset map; therefore, the discrete evolution p(i) = 1 for i = 1,2,3. Hybrid systems of this form are

termed simple hybrid systems and will be discussed in detail in Chapter 3.

Example 2.16. The bouncing ball hybrid system allows for the unique luxury of explicitly solving for its
executions. That is, given an initial condition, we can explicitly produce a corresponding execution.

Starting at the initial condition x = (x1,x,)T € D! at time 7, the system evolves according to
the dynamics X}’a”,

f—70)2
—% + X (t—T10) + X1

c(t) =
—-8(t—T10) +x2

until the guard Gga” is reached, which occurs in time and space at:

X2 +1/28%1 + x5
g
0

—\/28x1 +x3

Applying the reset map R%! to ¢y(r;) yields the initial condition to subsequent trajectory c; (£) on D}’au

2
i {Unti b 2”) +r(t—11)\/28x + X2
¢ (1) = 5
—g(t—11)+1\/28% +X;

wherein we can again determine the subsequent time and point in which the guard is reached:
/o 2
gx1tXx5
§

0

—r\/2gx +x2

Repeating this process iteratively yields an execution:

7T, = To+

¢o(71)

which starts at time 73, i.e.,

T1+2r

T2

¢ (T1)

e=(A1p,C).

Here A =N, I = {I;};eny Where I; = [T;,T;+1] with

X2 +/28x1 + X3

T, = T0+T,
2gx + x2
i gxX1 2 .
Tiv1 = T;+2r T, i=1.

Since there is only one domain, p(i) = 1. Finally, C = {¢;};en With

T
o 8T -1 283 + X2
c;i(t) = . .

—gt—1)+r'\/2gx +x2
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T T T T T T T T T T T
x
x_dot ®
5t
ofF
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-10L
1 1 1 1 1 1 1 1 1 1 1

Figure 2.7: Positions and velocities over time of an execution of the bouncing ball hybrid system.

An execution of the bouncing ball can be seen in Figure 2.7.

2.3.2 Zeno executions. A particular class of executions of hybrid systems that will be of particular in-

terest are Zeno executions.

Definition 2.6. An execution € = (A, I, p,C) of §) is Zeno if A =N and

o0
Y @ir1—T)=lim 1 =7c
i=0 1—oo

for some finite constant 7., termed the Zeno time.

Example 2.17. Using the constructed executions for the bouncing ball hybrid system, we can verify that

- X2+ (1-28)\/28x1+x5 oo \/28x1+X5
Y @i —Ti) = p +22—g rt
i=0 i=0

where the series on the right is a geometric series, and converges if 0 < r < 1. What this says physically is

it is Zeno. That is,

if the ball looses energy on each bounce, then it will eventually stop bouncing; moreover, it will do so in
finite time. We give conditions (in Chapter 5) on the Zenoness of the bouncing ball without solving for the
vector fields.

Consider again the geometric hybrid interval, (N, I(¢"). It is easy to see that
- (a,r) (a,r) - j
3 y — 4
2@y~ =) art.
i=0 i=0
Now, picking initial conditions x; = a®g/8 and x, = 0 for an execution of the bouncing ball yields

o] 1 o] .
Y @i —t)=%|-a(l-2g)+) ar'|,
i=0 2 i=0

where the expression on the right is positive if a is positive and negative if a is negative. Therefore, the

hybrid interval for the bouncing ball is an example of a geometric hybrid interval.

61



Hybrid Systems

2.3.3 Intervalsin HySys. The interval category of HySys, denoted by Interval(HySys), is the full subcat-
egory of HySys with objects consisting of hybrid systems of the form:

(#,1,d/dt),
where
o (£,]) is a hybrid interval, i.e., an object of Interval(Hy(Man)),
o d/dt; = d/dtfor all j € Ob(.#).

For example, if (.#,1) is the hybrid interval given in (2.10), the corresponding object (.#,1,d/dt)

of Interval(HySys) can be visualized graphically as follows:

{r1} {12} {Tja}

/N N\

([To,71],d/dD) ([r1,72],d/dt) ([t2,73],d/dt) -+ ([}, 7Tj41],d/dD) ([Tj+1,Tj+2],d/dt) -

One of the many benefits of defining intervals in HySys is the way in which they allow us to

parallel the definition of trajectories of dynamical systems as given in Definition 2.4.

Definition 2.7. A trajectory of a hybrid system (.#,M,X) is a morphism in HySys:
(C,0:(#,Ld/dt) — (M, M,X),

where (.#,1,d/dt) is an object of Interval(HySys).

Note that the functor C corresponds to the “discrete” portion of the trajectory, while the natural

transformation ¢ corresponds to the “continuous” portion. In particular, it follows that
Gj(1) =X (& (D)

for every object j € V(.#).
The discrete initial condition is given by C(0) and the continuous initial condition is given by

&(1o) € Mg o, with 7g the right endpoint of I, i.e., the initial condition to the trajectory is (C(0), & (10)).
Proposition 2.4. There is a bijective correspondence:
{Executions of H} — {Trajectories of (.«,M*,X)}.

Proof. Ife = (A, 1,p,C) is an execution of ) = (I, D, G, R, X), to the pair (A, I) we have an associated object
of Interval(Hy(Man)):
I':.#), — Interval(Man).

From this, we obtain an object of Interval(HySys):

(a1, d/db).
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The remaining data defining the execution € = (A, I, p, C), i.e., the discrete evolution p and the continuous

evolution C, allows us to define a morphism:
(Cp, &) : (a1, dlde) — (ttr, MPER XY,

where (., MPGB XX) is the categorical hybrid system obtained from the classical hybrid system ) via

Proposition 2.2. The morphism of D-categories ép : P\ — At is defined on objects of .#, by

- ej=(p(),p(j+1) if a=(j,j+1)€E(I)
Cpla) = . . .
e(j) if a=jeV(F)
and on morphisms in the obvious way:

2 I Mt 2 IA My
Cy(s =s% C =t%
plsa’) Col@ plta’) @

with (s, tA) the orientation for .#, and (4, tT) the orientation for 4. It follows that this is a valid

morphism of D-categories. Finally, define the natural transformation
& : 1= CMPeR)
on objects of .#j as follows:

- ¢iliar,, i a=(j,j+1) €E(F)
(ccla= . .
Cj if a=jeV(H).

To verify that this is a natural transformation, we need only verify that the following diagram

T _ 7. < - =J:A]:sq < U
I]-—I] I(j,j+1)_I]nI]+1 Ij+l_ J+l

Cc)j+1 = Cj
DGR (Co)j+1 = Cj+1

- VO’A
Cols(i e

(Cc)j= Cj\ (€ ,j+1 = €jlint
' ) = Ne;

DGR _py

Co(j+1)  PUFD

MPGR _ p ) DL MPGR

o) U CoGj+n €

commutes for every (j, j +1) € E(#). But this happens exactly when, for I; = [7,7 1],
Cj(Tj+1) €Ge;,  Cj41(Tj41) = Re; (¢j(Tj41)),

which are just requirements (1) and (2) given in Definition 2.5.

The converse direction proceeds in much the same manner, so we will be brief. Let (.4, M? X)
be a categorical hybrid system for which we have an associated hybrid system (I' 4, Dmt, Gmt, Rmt, Xx)
as given in Proposition 2.2. For a trajectory G, : (£,1,d/dt) — (4, M X), we define a corresponding
execution as

VA, I Clyis, 1} jevin),

where (V (%), ) is the hybrid interval obtained from I: .¢ — Interval(Man) via Proposition 2.3 and C lv(o)
is the object function of the functor C restricted to the elements of V(.#). It is easy to verify that this is a

valid execution. O
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Example 2.18. Consider the categorical bouncing ball hybrid system (.« 22!, MP2!l xbally and a trajectory
(6’ (::) . (y,l,d/dt) s ('/%ball’Mball’xball)y

which, for example, can be obtained from the executions of Hball introduced in Example 2.16. The con-
dition that this is a trajectory implies that G, 0 : (#,1) — (P mbally in Hy(Man) is a hybrid path as
discussed in Example 2.5. The additional condition, and the one that makes (C, €) a trajectory, is that the

. . . . . . . ball
collection of paths defined by ¢ satisfy the ordinary differential equation X;*".

Another of the many benefits obtained from defining trajectories of hybrid systems categorically
is that morphisms of hybrid systems carry trajectories of one hybrid system to trajectories of another

hybrid system.

Lemma 2.1. If(ﬁ, f) :(ANNY) — (A4,M,X) is a morphism of hybrid systems, and G, : (#,1,d/dt) —
(A,N,Y) is a trajectory of (/,N,Y), then

(F,)o(C,d:(,1,d/dt) — (4, M,X)
is a trajectory of (M ,M,X).

The proof of this statement is immediately obvious using the categorical framework for hybrid

systems, while it is not immediately clear if one were to consider the standard notion of an execution.
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Chapter 3

Simple Hybrid Reduction & Bipedal
Robotic Walking

Hybrid systems introduce a level of complexity not found in their continuous and discrete coun-
terparts, e.g., simulating hybrid systems is orders of magnitude more difficult than simulating their con-
tinuous counterparts due to the presence of state dependent events. This added complexity makes the
dimensionality of hybrid systems a critical factor in understanding, analyzing, verifying and control-
ling these systems and motivates the importance of understanding geometric reduction in a hybrid set-
ting. Since it is not possible to directly apply classical (continuous) reduction to hybrid systems—the
nonsmooth nature of these systems inherently violates the assumptions needed to perform this type of
reduction—we would like to answer the question:

If it is possible to reduce the continuous components of a hybrid system, when is it possible to
reduce the entire hybrid system?

This chapter addresses this question in the context of mechanical systems undergoing impacts;
we will address this question for general hybrid system in Chapter 4. The simple structure of mechan-
ical systems undergoing impacts allows us to derive explicit conditions on when continuous reduction
can be applied to the continuous component of these systems so as to be consistent with the discrete

component, i.e., when hybrid reduction can be performed.

History. Lagrangians and Hamiltonians provide the basic elements for describing the behavior of physical
systems. For mechanical systems, one begins with a configuration space Q and a Lagrangian L: TQ — R

or a Hamiltonian H: T*Q — R given in coordinates by"

1 1
L(q,§) = quM(q)c‘r— Vi@, Hg,p)= EpTM(q)*lm V(g).

1We slightly abuse notation here by using “matrix” notation; this is done only in the introduction because of its (presumed)
familiarity.
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It is possible to reduce the dimensionality of systems of this form when they have symmetries through
reduction; this process plays a fundamental role in understanding the many important and interesting
properties of these systems.

The first form of reduction was discovered by Routh in 1860 [100] (see [87] for a more mod-
ern account)—now understood to be an abelian form of Lagrangian reduction—which is concerned with
cyclic Lagrangians, i.e., Lagrangians that are independent of certain “cyclic” variables. The symmetries
of these systems are generated by these cyclic variables. Given a cyclic Lagrangian, the phase space of
the system (the tangent bundle of the configuration space) can be reduced, flows of the original system
can be projected down to flows of the reduced system, and flows of the reduced system can be used to
reconstruct flows of the full-order system.

Lagrangian reduction provides the first step toward a more general type of reduction: Hamil-
tonian (or symplectic) reduction. This form of reduction begins with a Lie group together with an action
of this Lie group on the phase space (a symplectic manifold); this makes explicit the symmetries of the
system. One then looks for a momentum map from the phase space to the dual of the Lie algebra of
the Lie group; this makes explicit the conserved quantities of the system. The combination of this data
defines a Hamiltonian G-space, which provides the ingredients necessary for classical Hamiltonian reduc-
tion. The classical reduction theorem, first established by Marsden and Weinstein [88], says that when the
Hamiltonian G-space satisfies certain conditions, the phase space can be reduced to a new space which is
also a symplectic manifold, with a symplectic structure induced from the one on the phase space. More-
over, given a G-invariant Hamiltonian on the phase space, the corresponding trajectories of the associated

Hamiltonian vector field reduce to trajectories on the reduced phase space.

Simple hybrid reduction. In this chapter, we begin by considering a class of mechanical systems with
unilateral constraints (usually physical in nature) on the configuration space, i.e., there is a function h :
Q — R describing the admissible configurations of the system: Q|4 =0;. When considering Lagrangians,
a unilateral constraint function defines a hybrid Lagrangian, which is a tuple L = (Q, L, h). In the case
of Hamiltonians, simple hybrid mechanical systems (HMS’s), H = (Q, H, h), are considered. In both cases,
the term “hybrid” is used because the constraints on the configuration space result in discontinuities in
the vector field describing the evolution of the mechanical system. Therefore, we can explicitly associate
hybrid systems, 91, and $y, to hybrid Lagrangians and HMS’s, respectively. We provide conditions on
when it is possible to reduce hybrid systems of this form, along with more general simple hybrid systems
(hybrid systems consisting of one domain and one edge) whose dynamics are dictated by a Hamiltonian
system.

A cyclic hybrid Lagrangian is a hybrid Lagrangian in which Lis cyclic (coupled with the cyclicity
of the unilateral constraint function /); we demonstrate explicitly how a Lagrangian hybrid system, $1,
can be obtained from a hybrid Lagrangian, L, with dynamics dictated by the Euler-Lagrange equations
of a Lagrangian. From a cyclic hybrid Lagrangian we obtain a hybrid Routhian L, = (Qy, L, k), which

is also a hybrid Lagrangian, and so has an associated hybrid system, $r,,, with dynamics dictated by the
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Routhian. We prove that hybrid flows (or executions) of $)y, project to hybrid flows of $),,, and that hybrid
flows of $1, can be reconstructed from hybrid flows of fJL”. These results motivate the consideration of a
more general form of hybrid reduction: hybrid Hamiltonian (or symplectic) reduction.

In order to perform Hamiltonian reduction, we begin by considering a Hamiltonian G-space
and give conditions on the elements of this G-space so that it defines a hybrid Hamiltonian G-space.
Explicitly, this involves defining the notion of a hybrid group action and a hybrid momentum map, which
is first done in the general setting of simple hybrid systems, followed by the special case of HMS’s. Using
these general notions, conditions are obtained on when a simple hybrid system, 3, can be reduced; the

result is a simple hybrid system £),,.

Bipedal Walking. A very interesting and promising application of hybrid reduction is bipedal robotic
walking since bipedal walkers are naturally modeled by hybrid systems—the continuous component con-
sists of the dynamics dictated by the Lagrangian modeling this system, and the discrete component con-
sists of the impact equations which instantaneously change the velocity of the system when the foot con-
tacts the ground. In order to apply reduction to systems of this form in a useful manner, we introduce
a variation of classical Routhian reduction, functional Routhian reduction, which can be extended to a
hybrid setting in a manner analogous to the extension of classical Routhian reduction.

In classical geometric reduction the conserved quantities used to reduce and reconstruct sys-
tems are constants; this indicates that the “cyclic” variables eliminated when passing to the reduced phase
space are typically uncontrolled. Yet it is often the case that these variables are the ones of interest—it may
be desirable to control the cyclic variables while not affecting the reduced order system. This motivates
an extension of Routhian reduction to the case when the conserved quantities are functions of the cyclic
variables instead of constants.

These concepts motivate our main goal:

Develop a feedback control law that results in walking gaits on flat ground for a three-dimensional
bipedal robotic walker given walking gaits for a two-dimensional bipedal robotic walker.

In order to achieve this goal, we begin by considering Lagrangians that are cyclic except for an
additional non-cyclic term in the potential energy, i.e., almost-cyclic Lagrangians. When Routhian reduc-
tion is performed with a function (of the cyclic variables) the result is a Lagrangian on the reduced phase-
space: the functional Routhian. We are able to show that the dynamics of an almost-cyclic Lagrangian
satisfying certain initial conditions project to dynamics of the corresponding functional Routhian, and
dynamics of the functional Routhian can be used to reconstruct dynamics of the full-order system. In
order to use this result to develop control strategies for bipedal walkers, it first must be generalized to a
hybrid setting. That is, after discussing how to explicitly obtain a hybrid system model of a bipedal walker,
we generalize functional Routhian reduction to a hybrid setting, demonstrating that hybrid flows of the
reduced and full order system are related in a way analogous to the continuous result.

We then proceed to consider two-dimensional (2D) bipedal walkers. It is well-known that 2D

bipedal walkers can walk down shallow slopes without actuation (cf. [90], [54]). [107] used this observa-

68



Simple Hybrid Reduction & Bipedal Robotic Walking

tion to develop a positional feedback control strategy that allows for walking on flat ground. We use these
results to obtain a hybrid system, $33,,, modeling a 2D bipedal robot that walks on flat ground.

We conclude by considering three-dimensional (3D) bipedal walkers. Our main result is a po-
sitional feedback control law that produces walking gaits in three-dimensions. To obtain this controller
we shape the potential energy of the Lagrangian describing the dynamics of the 3D bipedal walker so that
it becomes an almost-cyclic Lagrangian, where the cyclic variable is the roll (the unstable component) of
the walker. We are able to control the roll through our choice of a non-cyclic term in the potential energy.
Since the functional Routhian hybrid system obtained by reducing this system is )3, by picking the “cor-
rect” function of the roll, we can force the roll to go to zero for certain initial conditions. That is, we obtain

a non-trivial set of initial conditions that provably result in three-dimensional walking.

Related work. The simple hybrid mechanical systems considered have been well-studied in the literature
under many names and incarnations (cf. [36] and the more than 1000 references therein). Amazingly, the
authors are unaware of any results regarding the reduction of systems of this form. General hybrid systems
have been studied extensively; especially relevant are [38] which studies hybrid mechanical systems of
a more general form than considered here, and [66] which considers hybrid systems with symmetries.
Again, the authors are unaware of any results regarding the reduction of these systems; although, the
“non-geometric” reduction of these systems in the context of abstraction and bisimulation relations [96]
has been well-studied and proven useful for verification techniques such as reachability analysis [57].

Classical reduction has developed into a mature area of study over the last forty years (see [89]
for a nice overview of the history of the subject). We will assume that the reader is at least tentatively
familiar with classical reduction, although we briefly review crucial prerequisite material. We refer the
reader to [4, 79, 86, 87, 88] for any necessary background material not covered. Although never explicitly
mentioned, the literature on classical reduction has touched upon issues relating to hybrid reduction.
In [86] a form of discrete reduction is discussed where the assumptions needed to perform this form of
reduction are very similar to conditions enumerated later. Similarly, the reduction of continuous systems
with constraints has been studied in [85] and related references therein. Therefore, the results proven
can be viewed as the next logical step in understanding how to reduce the dimensionality of systems with
symmetry.

The results presented in this chapter have appeared, or will appear, in the following papers:
(8, 15, 17].

3.1 Simple Hybrid Lagrangians & Simple Hybrid Mechanical Systems

In this section, we introduce the notion of simple hybrid Lagrangians and simple hybrid me-
chanical systems. While introducing these definitions, we simultaneously review their continuous “non-
hybrid” counterparts. This is done both to introduce the reader to the notation and simultaneously to

make explicit the natural way that these “hybrid objects” relate to fundamental objects in classical me-
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chanics. This relationship is further explored by introducing examples.

3.1.a Simple Hybrid Lagrangians

We begin by considering simple hybrid Lagrangians.

3.1.1 Lagrangians. Let Q be the configuration space, assumed to be a smooth manifold, and 7Q the
tangent bundle of Q (the velocity phase space). Suppose L: TQ — R is a hyperregular Lagrangian (cf.
[4, 87]). In this case, there is a Lagrangian vector field X; on TQ, X; : TQ — T(TQ), associated to L; that
is, there is a dynamical system (T'Q, X;) associated to the Lagrangian. For t € [, 1], we say that c(¢) =

(q(1), (1)) is an integral curve of X; with initial condition c(%) = xy if

is a morphism in Dyn, i.e., if

¢(t) = X (c(2).

This is equivalent to the curve g(¢) satisfying the classical Euler-Lagrange equations:

d oL

. oL .
m aq(q(t).q(t))—@(q(t),q(t))—O- 3.1

We will consider primarily Lagrangians describing mechanical, or robotic, systems; that is, La-

grangians given in coordinates by
I .
La,) = 54" M@= V(a), 3.2)

where M(q) is the inertial matrix, %c’]TM (9) g is the kinetic energy and V(q) is the potential energy. In this

case, the Euler-Lagrange equations yield the equations of motion for the system:
M(@)G+C(q,9)g+N(q) =0, (3.3)

where C(g, ) is the Coriolis matrix (cf. [93]) and N(q) = ‘3—‘;(01). Setting x = (q, ), the Lagrangian vector

field, X;, associated to L takes the familiar form.
% =Xp(x) = (¢, M@ (-C(q,§)G - N(q))). (3.4)

This process of associating a dynamical system to a Lagrangian will be mirrored in the setting of hybrid
systems. First, we introduce the notion of a hybrid Lagrangian.

Remark 3.1. It is common for other authors to write x as a single vector, i.e., x = (g7, §")7, rather than a
pair of vectors; we opt for the latter notation in order to avoid the proliferation of transposes. Also, our
notation is supported by the fact that an element of TQ is typically denoted by a pair (g, §) with g € Q and

ge T,Q.
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Figure 3.1: Ball bouncing on a sinusoidal surface.

Definition 3.1. A simple hybrid Lagrangian is defined to be a tuple
L=(Q,Lh),
where
o Qs the configuration space,
o L:TQ — Ris a hyperregular Lagrangian,
o h:Q — Ris a smooth function providing unilateral constraints on the configuration space; we as-

sume that £~1(0) is a manifold.

Example 3.1. Our first running example of this chapter is a ball bouncing on a sinusoidal surface (cf.

Figure 3.1). In this case
B= (QB;LB; hB)r

where Qg = R3, and for x = (x1, X2, x3)7,
U S
Lp(x, %) = ZmllX]|” - mgxs.
Finally, we make the problem interesting by considering the sinusoidal constraint function
hg (x1, %2, X3) = X3 —sin(xz).

For this example there are trivial dynamics and a nontrivial constraint function. Note that this system

certainly is more complex then the simple one-dimensional bouncing ball introduced in Example 2.1
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0 <

Figure 3.2: Pendulum on a cart.

Example 3.2. Our second running example is a constrained pendulum on a cart (cf. Figure 3.2); thisis a
variation on the classical pendulum on a cart, where the pendulum is not allowed to “pass through” the

cart, i.e., the cart gives physical constraints on the configuration space. In this case

C=(Qc Lc, ho),

where Qc =S' xR, g=(0,x)7, and

A . mR? mRcos(6) 0
LC(G,Q,X,X)Z ( 0 x ) —ngCOS(Q).

N | =

mRcos(0) M+m X

Finally, the constraint that the pendulum in not allowed to pass through the cart is manifested in the
constraint function

hc(6, x) = cos(0).

3.1.b Simple Hybrid Mechanical Systems

We now turn our attention toward Hamiltonians and their hybrid analogues.

3.1.2 Hamiltonians. The starting point for simple mechanical systems is a configuration space Q. Let
T*Q be the cotangent bundle of Q (the momentum phase space). We denote the pairing between the
vector spaces’ T; Qand T,Q by

(','>1T;QX T,Q—-R,

which for (p,v) € T;Q x T4Q1is given in coordinates by (p,v) := L1 | p; vi, with n = dim(Q).

2We later will use the same notation to denote the pairing between a Lie algebra and its dual.
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Let M(q) be the inertial matrix for a mechanical system and K(g) = M(q)~'. For each g € Q, we

consider the K(g)-inner product on the vector space T, ; Q given in coordinates by®

n
«p,pMg=p"K@p = Y pipiKij(a)
ij=1

forp,p' € T; Q; weuse|| - ||4 to denote the corresponding norm on T; Q. This induces (or is obtained from,

depending on the perspective taken) an inner product on T;Q (the M(qg)-inner product, which defines a

Riemannian metric on Q) via the Legendre transformation: FL: TQ — T*Q, where FL(q, §) = (g, M(q) ).
A Hamiltonian is a map H: T*Q — R. We suppose that the Hamiltonian H describes a mechan-

ical system, i.e., that it has the following form
1 2

where % [Ipl If7 is the kinetic energy and V(g) is the potential energy. Note that this Hamiltonian is obtained
from a Lagrangian of the form given in (3.2) via the Legendre transformation.

The cotangent bundle, T*Q, is a symplectic manifold with its symplectic structure obtained
from the canonical symplectic form given in coordinates by:

n .
Wcanonical = Z dq' ndp;.
i=1

With this symplectic form, we obtain a vector field on T*Q from a Hamiltonian, Xy : T*Q — T(T*Q), by
requiring that it satisfies:

d(H) = tx,Wcanonical-
In coordinates, this yields the classical Hamiltonian equations
(4,p) =Xu(q,p) = (E(q, p),—aﬂ(q, p|. (3.6)
ap dq
We refer the reader to [4, 27] and [87] for more details.

Definition 3.2. A simple hybrid mechanical system (HMS) is defined to be a tuple:
H=(QH,h),

where H is defined as in (3.5), and & : Q — R is a smooth function that defines constraints on the configu-

ration of the system; again, h~1(0) is assumed to be a manifold.

Utilizing the Legendre transformation, to a hybrid Lagrangian we obtain an associated hybrid
mechanical system. That is, the classical relationship between Lagrangians and Hamiltonians can be
extended to the hybrid setting considered here. This relationship implies that in considering hybrid La-
grangians, one automatically is considering hybrid mechanical systems and vice versa (since we are as-

suming that Lis a hyperregular Lagrangian). Therefore, our later results on hybrid Hamiltonian reduction
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Figure 3.3: Spherical pendulum mounted on the floor.

(which are more general then the earlier results on hybrid Lagrangian reduction) are automatically ap-

plicable to hybrid Lagrangians.

Example 3.3. The running example of a HMS will be a spherical pendulum mounted on the floor (Figure
3.3). Here Qp = S? and, using the standard spherical coordinates, we denote an element g € S? by g =
(0,<p)T and we denote an element p € T; 2 by p = (pe, p(,,)T. For this example, the Hamiltonian Hp is
given by

Py

sin?(0)

1 2
Hp(q,p) = ST (pg + ) —mgRcos(0).

Finally, hp is the height function hp (6, ¢) = cos(0), i.e., we have a simple hybrid mechanical system given
by P = (Qp, Hp, hp).

3.2 Simple Hybrid Systems

In this section, we introduce simple hybrid systems, and show explicitly how to associate to hy-
brid Lagrangians and HMS’s simple hybrid systems. This association is achieved through the use of New-
tonian impact equations, which provide a method for describing the behavior of a mechanical system
undergoing impacts. It is important to note that this construction has support in the literature (cf. [36],

[38], [49]), and hybrid systems of this form have the ability to model a large class of physical systems.

Definition 3.3. A simple hybrid system* is a tuple:

H=(D,SRX),

3We use the notation “p” K(q)p'” so as to relate “matrix” notation (which is more common when discussing Lagrangians) with
summation notation (which is more common when discussing Hamiltonians and reduction in general). Typically, We will only use
“matrix notation” when discussing Lagrangians.

4So named because of its connection with simple HMS's, coupled with its “simple” structure.
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where
o Dis a smooth manifold called the domain,
o Sis an embedded submanifold of D called the switching surface or guard,
o R:S— Disasmooth map called the reset map,
o Xisavector field on D.

In this case, the hybrid manifold associated to this hybrid system is a tuple DY = (D, S, R) with elements as

defined above. That is, since the graph I' for a simple hybrid system consists of a single edge and vertex,

(J

i.e., it is of the form:

the associated D-category 9r is given by:

Sa ta

and D9 is a functor D? : 2r — Man defined by:
a S

DY |s,| |tal= 1| R

where 1 is the natural inclusion.

Remark 3.2. Note that simple hybrid systems are clearly just a special case of the notion of a hybrid system
introduced in Definition 2.1, although we have opted to shift notation slightly. The first noticeable differ-
ence is that there is no reference to an indexing graph I'. This is because simple hybrid systems always
have as an indexing graph a graph with a single edge and vertex. This also explains why we do not index
the domains, guards, reset maps and vector fields—there is only one of each. Finally, for simple hybrid
systems, we denote the guard by “S” instead of “G”. The motivation for this is that we will use the symbol

“G” to denote groups in this chapter.

Executions for simple hybrid systems are of a somewhat simpler form than the executions for
general hybrid systems as introduced in Definition 2.5. That s, since there is only one domain, the discrete
evolution p: A — Q must take a single value, and so need not be mentioned. To make this explicit, we
restate the definition of an execution in the context of simple hybrid systems. Moreover, to highlight the
difference between executions of hybrid systems and executions of simple hybrid systems, we refer to the

later as hybrid flows.
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3.2.1 Hybrid flows. A hybrid flowis a tuple:
€= (M 1,0),
where
o A=1{0,1,2,...} =Nis a finite or infinite indexing set.

o I = {I;};ep is a collection of intervals where I; = [t;,7;41] if i,i+1 € A and Iy_1 = [Tn-1,TN] OF
[Tn_1,TN) OF [Ty_1,00) if [A| = N, N finite; here 7;,7;41, Ty €Rand 7; < 741,
o C ={ci}ien is a collection of integral curves of X, i.e., ¢; () = X(c;(¢)) forall i € A.
In addition, we require that the following conditions hold for every i,i + 1 € A,
@ ci(Tiv1) €S,
(i) R(ci(Ti+1)) = civ1(Tis1).

The initial condition for the execution is xy = ¢ (79). When we wish to make explicit the initial condition

of €9 we write eﬁ(xo).

Example 3.4. A graphical illustration of a hybrid flow can be seen Figure 2.6. The reader should make the

appropriate changes of notion in this figure as discussed in Remark 3.2.

3.2.a Lagrangian Hybrid Systems

We now discuss how to obtain simple hybrid systems from simple hybrid Lagrangians.

3.2.2 Domains from constraints. Given a smooth (constraint) function 4 : Q — R on a configuration
space Q such that h~1(0) is a smooth manifold, i.e., 0 is a regular value of h, we can construct a domain
and a guard explicitly. To this constraint function we have an associated domain, Dy, defined to be the
manifold (with boundary):

Dy =1{(q,9) € TQ: h(q) =0}.
Similarly, we have an associated guard, Sy, defined as the following submanifold of Dy,:
Sn=1(9,4) € TQ: h(q) = 0 and dhyq <0},
where in coordinates
dhg=( Lig) - g ).
These constructions will be utilized throughout this chapter.

Definition 3.4. A hybrid system is said to be a Lagrangian hybrid system with respect to a hybrid La-
grangian L = (Q, L, h) if it is of the form:
~6 = (Dh,Sh,R,XL),

where Dy, and Sy, are the domain and guard associated to h and X; is the vector field associated to L.
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3.2.3 Special Lagrangian hybrid systems. There is a class of Lagrangian hybrid systems that are of
special interest; these model unilaterally constrained systems undergoing impacts [36], and so have reset
maps obtained from Newtonian impact equations.

Given a hybrid Lagrangian L = (Q, L, h), the Lagrangian hybrid system associated to L is the hy-
brid system

Hr = Dy, Si, R, X1),
where Dy, = Dy, S = G, X1, = Xz and
Ru(q,9) = (q,PL(q,9)),

with Py, given in coordinates by:

dhqq

i dhad
)= = e T anT

M(q)"'dhy, (3.7)

where 0 < e < 1 is the coefficient of restitution, e.g., for a perfectly elastic impact e = 1, and for a perfectly
plastic impact e = 0.

Of course, the Lagrangian hybrid system associated to a hybrid Lagrangian is a Lagrangian hy-
brid system w.r.t. this hybrid Lagrangian. The converse statement is not true. General Lagrangian hybrid
systems, as introduced in Definition 3.4, describe a much larger class of systems, e.g., it is not assumed
that the reset map is continuous in the configuration variables. An important class of systems that gen-
eral Lagrangian hybrid systems describe are bipedal robotic walkers (cf. [55, 107, 116]). In fact, general
Lagrangian hybrid systems and the hybrid reduction thereof are used in Section 3.5 to reduce the dimen-
sionality of bipedal walkers. It is then possible to use results relating to two-dimensional bipedal walkers

to allow three-dimensional bipedal walkers to walk while stabilizing to the upright position.
Example 3.5. The Lagrangian hybrid system for the bouncing ball on a sinusoidal surface is given by
$B = (DB, S, R, XB).
First, we define
Dp = {(x,%)eR®xR®:x3—sin(x) =0},
Sg = {(x, %) eR®xR:x; =sin(xp) and i3 — cos(xp) %, < 0},

and Rg(x, x) = (x, Pg(x, X)), where

X
| (—ecos(x2)?) i +(1+e) cos(x) 13
Pg(x, %) = 1+cos(x2)?
(1+e) cos(xp) o +(—e+cos(xp)?) k3
1+cos(x2)?
with 0 < e < 1 the coefficient of restitution. Finally,
0

Xg(x, X) =%, 0

-&

7



Simple Hybrid Reduction & Bipedal Robotic Walking

Example 3.6. For the pendulum on a cart example:
$c = (Dc, Sc, Re, Xc),
where =0, x)7, g=06,%)7,

Dc

{(q,q) € (S' xR) x R? : cos(0) = 0},

Sc (g, q) € (S! xR) x R?: cos(6) = 0 and sin(6)0 = 0},

_ —ef
Pclq,q9) = ( ) )
X

with 0 < e < 1 the coefficient of restitution. Finally,

sin(6) (—g(m+M)+mRcos(0)6?)
. . ~ ¢
Xclg, 9 =14, (m+M)R+mRcos(0)

and Rc(q, ) = (g, Pc(q, §)), where

__ msin(6)(g cos(6)—R6%)
m+M-mcos(0)?

3.2.b Hamiltonian Hybrid Systems
We now discuss how to obtain simple hybrid systems from simple hybrid mechanical systems.

Definition 3.5. We say that $ = (D, S, R, X) is a Hamiltonian hybrid system with respect to a Hamiltonian
H if there exists a symplectic form w on D such that (D, w, X) is a Hamiltonian system with respect to the

Hamiltonian H, i.e., d(H) = txw.

3.2.4 Hybrid manifolds from HMS’s. In order to construct a hybrid system from a HMS, we begin by
constructing the hybrid manfold DI“? = (Dy, Su, Ru) from a HMS H = (Q, H, h). First, Dy and Sy are given

as follows:

{(@.p eT*Q: hig) 20},
{(g,p) € T*Q: h(g) =0 and ((p,dhg)) 4 < 0}.

Dy
Su

This is exactly the set up in mechanical systems with unilateral constraints. With this in mind, we can

define a reset map Ry by

where Py : T7Q — T Qs given by

Up, dhq>>q dh

q (3.9)
ldhgll?

Pyg(p) = p-(0+e)

with 0 < e < 1 is the coefficient of restitution.
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3.2.5 Hybrid systems from HMS’s. We already have constructed a hybrid manifold DI‘? = (Dy, Su, Ru)
from the hybrid mechanical system H, so it only remains to define the vector field Xg. Using the canonical
symplectic form, wcanonical, We define Xg = Xpy as given in (3.6). Finally, $Hy = (Dy, Su, Ru, Xn). Therefore,

for H = (Q, H, h), the hybrid system $y is a Hamiltonian hybrid system w.r.t. the Hamiltonian H.
Example 3.7. The hybrid manifold for the spherical pendulum (Example 3.3),

Dy” = (Dp, Sp, Rp),
is given by

{(g,p) € S2 x R?: cos(6) = 0},

%

{(g.p) € S? x R?: cos() = 0 and po = 0},

—€po
RP(q) p) = C/» .
by
Finally, the vector field is given by

po_ Py _ -
Xp(q,l))=(( IZI;Z ),( mR? cos(6) sin? (0) mgRsin(0) ))

mR2 sin® (0) 0

Sp

and

and $Hp = (Dp, Sp, Rp, Xp).

3.3 Hybrid Routhian Reduction

In this section, we begin by reviewing classical (or “non-hybrid”) Routhian reduction (cf. [87]
and the references to the subject therein). The motivation for this is that the hybrid version of Routhian
reduction nicely mirrors the classical version, and the construction and definitions needed for classical
Routhian reduction are also needed for hybrid Routhian reduction.

We then proceed to generalize Routhian reduction to a hybrid setting, first for Lagrangian hybrid
systems associated to hybrid Lagrangians, and then for general Lagrangian hybrid systems. In both cases
we derive conditions on when “hybrid” Routhian reduction can be carried out. In the first case, these
conditions are concrete and easily verifiable, and in the later case, they are more general but also more
abstract. Finally, Routhian hybrid systems are related to Lagrangian hybrid systems obtained from hybrid

Routhians.

3.3.a A Review of Routhian Reduction

Consider the Lie group

G=(S'xS'x---xS!) xRV (3.10)

~~

m—times
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with k = m + p = dim(G); here S! is the circle. The starting point for classical Routhian reduction is a
configuration space of the form®

Q=QuxG,
where Qy, is called the shape space; we denote an element g € Q by g = (6, ¢) where 6 € Q,, and ¢ € G. Note
that G is an abelian Lie group, with Lie algebra g = R¥; this observation relates Routhian reduction to more

general “non-abelian” forms of reduction (cf. [4, 86, 87]) that will be discussed in Chapter 4.

3.3.1 Cyclic Lagrangians. If L: TQ — R is a Lagrangian—as given in (3.2)—then in order to carry out
Routhian reduction, we must assume that L is cyclic, that is, independent of ¢:

o,

op

This implies that we can write L in coordinates as®

T
] Mp® Myp@7 ]
1 9( ) (p,H( ) —V(Q) 3.11)
2\ ¢ Myp©)  M,(©6) @

(6" Mp(©)0 + ¢ My (0)9) + ¢ M, 0(0)0 - V(0).

L6,0,9,9)

1
T2
Here My (0) € R"*" and M,,(0) € R**k are both symmetric positive definite matrices and My 0(0) € Rk
with 7 = dim(Q,) and k = dim(G).

3.3.2 Routhians. Fundamental to reduction is the notion of a momentum map J : TQ — g* = Rk,
which makes explicit the conserved quantities in the system. In the framework we are considering here,
J6,0,¢,¢) = g—; 6,0,9,¢) = My g(0)0 + M, (0)p. (3.12)
The Routhian L, : TQ, — R is given by, for u € R,
L,0,0) = [L©O,0,9,9) — " §]| -1, - (3.13)
Because
JO,0,0,0)=p = @¢=My0) " (u—M,000), (3.14)
by direct calculation, the Routhian is given by
L,0,0) = %QT (Mp(©) — My p(0)" My(0) "' My 9(0)) 0 + " My (0) ™ M, 0(0)0 — V. (6)
= %QTMM(6)9+MTA(9)9— V,(0), (3.15)

where
1
V,(0) = V(©O) + E,uTzqu,(e)*l,u

is the amended potential.

5The shape space Qu is often denoted by “S” is the literature. We use the former notation rather than the later because we are
reserving the symbol S for the switching surface of a hybrid system.
6Throughout the rest of this section, we will work in coordinates.
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3.3.3 Reduction. From the vector field X; on TQ, we obtain a vector field XLp on TQy, from the Routhian
via the Euler-Lagrange equations (3.1); see [87] for more details.

Note that we have a projection map

7:TQ — TQu
(gyér(p)(p) — (9,9).

The main result of Routhian reduction is that flows of X; project to flows of Xj,, i.e., there is the following

well-known proposition (see [87]).

Proposition 3.1. Let L be a cyclic Lagrangian, L,, the associated Routhian, with X; and Xi,, the associated
Lagrangian vector fields. If c(t) is a flow of the X; such that c(ty) € ]~ (1), then m(c(t)) is a flow of X1, with

initial condition m(c(ty)).

3.3.b Hybrid Routhians

We now proceed to generalize Routhian reduction to a hybrid setting by considering cyclic hy-
brid Lagrangians. The intuition gained from considering these systems will be vital; for example, the

similarity between the diagram in (3.17) and the diagram in (3.27) is not coincidental.

Definition 3.6. A cyclic hybrid Lagrangian is a hybrid Lagrangian, L = (Q, L, h), such that Q = Q, x G, Lis
a cyclic Lagrangian and £ is cyclic, i.e.,

or _.. (3.16)

9¢
3.3.4 Hybrid Routhians. For a cyclic hybrid Lagrangian, L = (Q = Qy x G, L, h), we obtain a reduced
constraint function h, : Q, — R, where h,, is the function h viewed as a function on S; this makes sense be-
cause h is assumed to be cyclic. From the cyclic Lagrangian L, define the corresponding hybrid Routhian
by:

Ly = (Qu Ly, iy,

which is again a hybrid Lagranigan. From this hybrid Routhian, we obtain a Routhian hybrid system

associated to the hybrid Routhian L:
9, = Dy, Sy, Ry Xuy,),
with Dy, = Dhﬂ, Sy, = Shu’ Xy, = X1, and
Ry, (6,0) = (6, Pu(6,6)),

where
d(hy)e0
d(hy)gM,©)~1d(hy),

P,0,0)=0-(1+e) M, @ d(hy)].

Here M, (0) is defined as in (3.15).
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Theorem 3.1. LetL be a cyclic hybrid Lagrangian, L, the associated hybrid Routhian, with i, and )1, the
associated Lagrangian hybrid systems. Ife™ (x) = (A, 1,C) is a hybrid flow of $, with xo € ]~ (1), then

e (7 (x0)) = (A, L, m(C)

is a hybrid flow ofﬁLp, where n(C) = {n(c;) : c; € C}.

Before proving this theorem, we establish the following proposition which says that the con-
served quantities are preserved by the reset map when they are obtained from cyclic hybrid Lagrangians.
Proposition 3.2. IfL is cyclic, then the following diagram

Rk
»

SL R Dy
(3.17)
s, 22
b4 In b4
S, R Dy,

commutes for all p € g* =R,

Proof. To show the commutativity of (3.17), we need to show that (I) and (II) commute. Before doing this,
some set-up is required, i.e., we will first find an explicit formulation for Py, as defined in (3.7), based on
the assumption that L is cyclic.

By (3.11) and block diagonal matrix inversion,

M, (6)! -M, )1 AO)T

M@©,p) " =
—AOMLO)" MyO)~' +AO)M,©6) ' AO)T

By (3.16),
dh(ﬂ,(p)z( d(hye 0 ) (3.18)

Combining these two equations implies that in the case when L is cyclic

PLO,,0,¢) = (3.19)
0\ 1+ d(hy)e0 Mu(0)'d(hy)]
@ d(h)eMu@) T d(h) ] | —AGMLO) T d(h] |

Using this, we demonstrate the commutativity of (I) and (II) in turn.
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Commutativity of (I): Because of (3.12), to show the commutativity of (I) we need to show that

( Mpo©®) M6 )( z )=( Myo©)  My(©) ) PL,,0,6).

By (3.19), this is equivalent to showing that

My ©)td(hy))

Myp©) M, (6 -
( 0.0 ¢ )( —AOM,60) ' d(h)]

which follows from the fact that

My p@)Mu(0) ' d(hy)} My () My(0) ™" My 9(0) M, (60) " d(hy)

My (0)AO)YM(0) " d(hy)g -

Commutativity of (II): First note that this diagram is well-defined (the codomain of 7 is SLu)

because
h@,p)=0 = h,(0) =0,

0 .
dhgg|  |<0 = d(hyed <0,
¢
by (3.18). Now, to show the commutativity of (II), we need only show that
74 (PL(O, 9,6, My (0) ™ (11— My, 0(0)0))) = Py, 6,6),

where 7, is the projection onto the 6-component of Py and

d(hy)e0
d(hy)oMy©) 1 d(hy) ]

PL,(0,0)=6-(1+e) M@ d(hy)].

But, this can be seen by directly inspecting (3.19). O

Proof of Theorem 3.1. Let c{f‘ () = m(c; (1)). We need only show that

(i Cf(‘fi+1) € S,
(i) Ry, (i (iv1)) = cb, | (Tis1),
(i) i) =Xy, (cF () = Xg, (el (1))

First, consider the case when i = 0. Since by assumption xy = ¢(to) € J~' (1), we know that
co(t) € J-H(w) for all £ € [19,71]; since ¢y(t1) € S, this implies that co(71) € J~ (W)l -
Condition (iy): Follows from the fact that

oryel T wls, = wla@))=c @) eSy,
Condition (iiy) : Follows from the commutativity of (I) in (3.17) since it implies that

R, (c) (@) = Ry, (@(o@))=nRulc@) =alc () = cf (@1).

83



Simple Hybrid Reduction & Bipedal Robotic Walking

Condition (iiip): Follows from Proposition 3.1.
Finally, the commutativity of (I) in (3.17) implies that ¢, (71) € J~! (). Therefore, the result fol-
lows by induction on i, i.e., the same argument that was utilized for i = 0 can be applied to any i such that

i,1+1 € A together with the assumption that c;(z;) € J1 (W). O

3.3.c Routhian Hybrid Systems
Definition 3.7. A Lagrangian hybrid system $ = (Dy, Sy, R, X;) w.r.t. a hybrid Lagrangian L = (Q, L, h) is a
cyclic Lagrangian hybrid system if L is a cyclic hybrid Lagrangian and the following diagram

Rk

Jls, JIp, (3.20)

Sh
commutes.
3.3.5 Routhian hybrid systems. From a cyclic Lagrangian hybrid system, $), we can construct a Routhian

hybrid system, ), which is a Lagrangian hybrid system with respect to the hybrid Routhian L,,. We define

this hybrid system as follows:
f)p = (Dp, S'u) Ru)Xp) = (Dhu) Shuy Rp)XLM)’

where Ry, : Sy, — Dp, (possibly dependent on p) is the induced map defined by the requirement that it

make the following diagram

Rlj1 )
T wls, M wip,
T T (3.21)
R
Shp K th

commute for all y € R¥,

Theorem 3.2. Let §) be a cyclic Lagrangian hybrid system, and $),, the associated Routhian hybrid system.
Ife9(xo) = (A, 1,C) is a hybrid flow of ) with xo € J~ (1), then

e (m(x)) = (A, I,w(C)
is a hybrid flow of $,, where n(C) = {n(c;) : ¢; € C}.
Proof. The proof of this theorem is analogous to the proof of Theorem 3.1. O

It follows from Proposition 3.2, and specifically from the fact that the commutativity of (3.17)

implies the commutativity (3.20) and (3.21), that the operation of “reduction” commutes.
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Proposition 3.3. Let 1, be the Lagrangian hybrid system associated to a cyclic hybrid Lagrangian L, then

9 is a cyclic Lagrangian hybrid system and
ALy =N,

where $)1,, is the Routhian hybrid system associated to the hybrid Routhian Ly,.

3.3.6 Commutativity of reduction. In the case when L is cyclic, $t, is cyclic and we can carry out
Routhian reduction on this hybrid system to obtain a Routhian hybrid system ($)1),,. This process is de-

scribed graphically by the following diagram:

association reduction

L L L)y

Alternately, a cyclic hybrid Lagrangian can be reduced to obtain a hybrid Routhian Ly, and to this hybrid

Routhian we can associate a Lagrangian hybrid system $,; this again is described graphically by

reduction association
L L, N,

Proposition 3.3 implies that the processes of “association” and “reduction” commute, i.e., the order in

which they are taken is irrelevant. This can be visualized in a commuting diagram of the form:

association

HL

reduction reduction

association
Ly, —— = ~6LH

This result yields an explicit method for computing Routhian hybrid systems from cyclic hybrid Lagrangians.

3.3.7 Hybrid reconstruction. Suppose that e (C(’; (10)) = (A,1,Cy) is a hybrid flow of 35L,, Then we
can construct a hybrid flow €% (¢y(79)) = (A, 1,C) of i, by reconstructing the flow recursively. Writing
ci' (1) = (0(1),0,(1)), we define

ci(1) = 0:(1),0:(0), (1), i (1)

recursively to be:

@i(0) = My0;(0) " (u—M,yp0;()0;(1),
—7;
@i(f) = my(R(ci-1(1))) +f pi(s)ds,

Ti

where ¢ € [1,7;+1] and 7y (R(c;-1(7;))) is the ¢-component of R(c¢;—1 (1;)).

Example 3.8. For the ball bouncing on a sinusoidal surface (Example 3.1 and Example 3.5), the La-

grangian Lg has two cyclic variables: x; and x,. Since kg is only independent of one of these variables, the
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Figure 3.4: Positions y; vs. y» and velocities over time of §g,.

only “hybrid” cyclic variable is x;. That is, through continuous reduction we could reduce the dimension-
ality of the phase space by four, while through hybrid reduction we can only reduce the dimensionality of
the phase space by two. Therefore, we will carry out hybrid Routhian reduction on the system with G = R.

Specifically, our hybrid Routhian is given by
B/l = (QB;L’ LB#r hBﬂ)’

where Qp, =R?, and for y = (y1, )7,

2

Le,(,3) = ~ml 12— mgys — =&
8, (1)) =5 mly gp=5

Finally, hg, (y1,2) = y2 —sin(y1).
The Routhian hybrid system for the bouncing ball on a sinusoidal surface, as obtained from By,
is given by
9B, = (DB, SB,» RB,» XB,)-
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First, we define

Dg, {(7, ) €R®* xR?: yp = sin(y1) = 0},

S, {(3,7) €eR* x R?: y, = sin(y1) and J» — cos(y1)y1 < 0},

and Rg, (y,y) = (3, P, (3, 7)), where

(1+e) cos(y1) 31 +(—e+cos(y1)?) 72
1+cos(y)?

(l—ecos(yl)z)y1+(1+e) cos(x1) )2
Pg,(y,3) = rcos(y)”
m ’

with 0 < e < 1 the coefficient of restitution. Finally,

0
XBu(y,y) i (y,( _g )).

A simulation of the reduced system f)p, can be seen in Figure 3.4. Note that this system is Zeno
(both the reduced and full-order system display Zeno behavior). This type of behavior will be discussed in
detail in Chapter 5; in fact, Section 5.5 of this chapter discusses how to extend the hybrid flows of hybrid

Lagrangians—a process which is illustrated on this example.

Example 3.9. For the pendulum on a cart (Example 3.2 and Example 3.6), the x variable is a cyclic variable
for both the Lagrangian L¢ and the hybrid Lagrangian C. Therefore, we can carry out Routhian reduction
with G =R. In this case
Cu = (Qc,» Le, he,)s
where Qc, = S', and
J(0,0,x,%) = mRcos(©)0 + (M + m)x.

So
1 , m?R%*cos(0)?) ., mRcos() ) ;
L ,0)=—-|mR* - —8— 7 e-W ,
cu @0 =5 {m M+m )9 ¥ ( M+m )9 6 (©)
with
2
\7 = R —_—
c,(0)=mg cos(0)+2(M+m)

the amended potential. Finally, hCu 0,) =cos(0).

The Routhian hybrid system for the pendulum on a cart example is given by:
$¢, = (De,,» Sc,r Reyr Xcy),
where

(6,0) € S' xR: cos(6) = 0},

g
Il

{0,0) €S' xR: cos(@) =0 and sin(6) =0},

wn
o
Il

and RCu ,0) =@, PCu (0,0)), where
Pc,0,0)=( —ef |
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Figure 3.5: Positions and velocities over time, as reconstructed from the reduced system ﬁcu-

with 0 < e < 1 the coefficient of restitution. Finally,

sin(0) (—g(m + M) + mRcos(6)6?)
R(—=(m+ M) + mcos(0)?)

X, 6,0) =6,

The positions and velocities of the full-order system, as reconstructed from the reduced systems,
can be see in Figure 3.5; in this simulation m =5, M =50,R = 10, e = 0.9 and u = 0.1. In this example, both
the reduced and full order model are Zeno; again, Section 5.5 of Chapter 5 discusses how to extend the

hybrid flow of this system past the Zeno point.

3.4 Simple Hybrid Reduction

We now turn our attention toward hybrid Hamiltonian reduction. Doing so necessarily requires
the basic ingredients needed for classical reduction to be understood in a hybrid setting. As Hamiltonian
reduction is more general than Routhian reduction, the ingredients necessary to perform this type of
reduction are necessarily more sophisticated. We refer the reader to [4, 27, 79]-[88] for the prerequisite

background material.
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The main result of this section is the generalization of the classical reduction theorem [88] (as

stated in Theorem 4.1) to simple hybrid Hamiltonian systems.

Remark 3.3. The hybrid objects studied in this section are studied in their more general form in Chapter 4.
For example, here we consider hybrid Hamiltonian G-spaces which are a special case of the more general
notion of a hybrid Hamiltonian G-space. The motivation for considering these “simple” hybrid objects
is that they motivate the concepts introduced in Chapter 4, while simultaneously allowing us to better

understand simple hybrid mechanical systems.

3.4.a Hybrid Hamiltonian G-spaces.

We begin by introducing the notion of a hybrid Hamiltonian G-space, the starting point for
which is a Hamiltonian G-space (see Paragraph 4.4.1) with respect to the continuous portion of £. We
discuss hybrid Hamiltonian G-spaces in the context of both simple hybrid systems and HMS’s; in the later

case, explicit constructions are carried out.

3.4.1 Hybrid group actions. Let $ = (D, S, R, X) be a hybrid system. Consider an action ®: G x D — D
of a Lie group G on D. We say that this is a hybrid action if ®|g is an action of Gon Sand forall ge G

Ro®g|s=PgoR.

That is, for all g € G we have a commuting diagram:

R

S D
s o, (3.22)
s— R .p

Or in other words, R is equivariant with respect to the actions ® and ®|s. We say that @ is a free and proper
hybrid action, if ® is a free and proper action that is hybrid. Similarly, ® is a symplectic hybrid action if it
is both symplectic and hybrid.

3.4.2 Hybrid orbit spaces. For the hybrid manifold D = (D, S, R), a Lie group G, and a hybrid action
®, we define the hybrid orbit space as a tuple:

DY/G=(D/G,SIG,R),

where D/G and S/G are the orbit spaces of ® and ®|g, respectively, and R : D/G — S/G is the induced
map. Specifically, the map n: D — D/G, n(x) = [x], is given by sending x to the ®-orbit containing x:
X ~ ®g(x) for all g € G. The map Ris defined by requiring that R([x]) = [R(x)]; it is well-defined because of
the commutativity of the diagram (3.22).
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We would like to give conditions on the hybrid action ® so that D?/G is a hybrid manifold, i.e.,

such that we have a diagram

~

DIG ——s16 —2 pic

in which D/G is a smooth manifold, S/G is an embedded submanifold and R is a smooth map. In fact,

conditions for when these occur are well-known (cf. [4]).

Proposition 3.4. If®: G x D — D is a free and proper hybrid action, then D®/G is a hybrid manifold.
Moreover, there is a submersion it : D — D/ G such that the following diagram

p—+ s R . p

b4 TTls /4

~

DIG - si6 —2, pig

commutes and 1|g is a submersion.

Definition 3.8. An Ad*-equivariant momentum map J: D — g* is said to be a hybrid Ad*-equivariant
momentum map if the following diagram

*

g

1/ s J (3.23)

p—t s R "p

commutes.
Definition 3.9. A hybrid Hamiltonian G-space is defined to be a tuple
D2,0,0,))
such that (D, w) is a symplectic manifold, ® is a symplectic hybrid action, and Jis a hybrid Ad* -equivariant

momentum map.

3.4.3 Lifted group actions. For a hybrid mechanical system, H = (Q, H, h),

Dy = T*Ql{n(g)=0;-

Therefore, it is natural to consider actions on T*Q that are obtained by lifting an action on Q. Specifically,
for an action ¥ : G x Q — Q, we obtain an action of G on T*Q by cotangent lifts, i.e., we obtain an action

w7 ;G x T*Q — T*Q by defining
¥ (g, (G, p) = T* W g1 (4, p) = (Yg(@), W51 (p).

It is possible to give conditions on when this action is a hybrid action by considering the constraint func-

tion A, the potential energy V, and H.
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Definition 3.10. A simple hybrid mechanical system H = (Q, H, h) is said to be G-invariant if there is an

action ¥ of G on Q such that h, the potential energy V, and H are G-invariant:
h(Wg(q) = h(qg), V(Vq(q)=Vig), H(‘I’g*(q,p)) =H(q,p),

for all g € G and g € Q; note that the last assumption says that H is G-invariant under the lifted action,
which holds iff

Q1 (Y M wgiq = (0 D (3.24)
when coupled with the assumption on the G-invariance of the potential energy.
Proposition 3.5. IfH = (Q, H, h) is G-invariant, then the lifted action pr* of G on Dy is a hybrid action.

Proof. We need to show that for all g € G we have a commuting diagram
Su _Ru | Dy
g lsn ¥y

R
SH—H>DH

where Ry is given in (3.9). Because of the special form of Ry, this is equivalent to showing that the follow-

ing diagram commutes

Pq

Tq* Q Tq* Q

v v

Py (
* @ %
Ty pQ — Ty, (»Q

for all g € G and g € h™1(0). First, note that by the G-invariance of h, ‘{’;‘_1 (dhg) = dhy,(g. This, coupled

with our assumption on the invariance of the inner-product under the lifted action (3.24), implies that

«p,dhg)q

* _ * *
YeoPy(p) = Yo (p+¥ (-(1+e) dhy dhyg)
<<p;dhq>>q
_ * _ *
= Y. (1+e)—”dhq”% P31 (dhg)
«p, dhg)g
= v —(1+e)——————dh
gl(P) (1+e) IIdth%, Yela)
(P (p), Yo (dhg)))w, ()
= ¥ (p-(1+e)—= £ hw,(g)-
g % (dhg)ly () ‘
v (p) (1+e)<<qj§_l(p)'dhwg(q)»wg(q) dh
= _ - v ( )
g lldhw )|y, q) 64
= Pygo¥(p)
as desired. O
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3.4.4 Momentum maps for HMS’s. For simple mechanical systems, there is an explicit definition of an

Ad*-equivariant momentum map Jg. Let W be the action of G on Q, and define a vector field on Q by

d
Solq) = d—‘I’(eXP(lf),q) € T4Q, (3.25)
t =0

for ¢ € T,G = g. Using this, we can define Jg, and prove that it is a hybrid Ad*-equivariant momentum

map under easily verifiable conditions.

Proposition 3.6. ForH = (Q, H, h), if h is G-invariant, then Jg : Dy — g* defined by

Ju(q,p), &) =(p,So(q),
is a hybrid Ad* -equivariant momentum map.

Proof. We are assuming that h~!(0) is a manifold. For q € h™!(0), the first step is to show that &(g) €
th’l (0), but this follows from the assumption that h is G-invariant, i.e., (¥ (exp(£¢), q)) = h(g) = 0 for
all ¢. Therefore, for g € h=1(0),

(dhg,q(q) =0.

Now for (g, p) € Su, (wherein it follows that h(g) = 0),

{p, dhg))
nRa(q,p),&) = (p—(1+e 22 qp o)
||dhq||q
{p,dhg))
= péo@n - +o-P 2 g o)y
lldhgll?
= (Julg,p),.
This, coupled with the fact that Jy is Ad* -equivariant (cf. [4]), yields the desired result. O

Combining the results from Propositions 3.5 and 3.6, we have the following theorem that pro-
vides easily verifiable conditions on when a specific Hamiltonian G-space associated to a HMS is a hybrid

Hamiltonian G-space.

Theorem 3.3. IfH = (Q, H, h) is G-invariant, then
D70, %" )
is a hybrid Hamiltonian G-space.

Example 3.10. For the spherical pendulum mounted on the ground (Example 3.3 and Example 3.7), Gp =

S!, which acts by rotations about the vertical axis, i.e., ¥p : S! x Qp — Qp is given by

0
Yp(y,(0,9) = )
p+y

92



Simple Hybrid Reduction & Bipedal Robotic Walking

and the lifted action on Dp is given by

. 0
\PI’I; (u/) (Hr(p, p@; p(p)) = ’ pe ’
Pty Py

which is clearly a hybrid action by Proposition 3.5. Now for { € gp =R,

0
Eop(0,0) = ( : ) € Tig,p)Qp

so the momentum map is given by
]P (ey (py pﬂ) p(p) = p(p,

which is a hybrid momentum map by Proposition 3.6. Finally, it follows from Theorem 3.3 that
(D?p » Wcanonical» \Pg »Jp)

is a hybrid Hamiltonian G-space.

3.4.b Simple Hybrid System Reduction

We use the classical reduction theorem (see Theorem 4.1) to prove the existence of a reduced
Hamiltonian hybrid system given a Hamiltonian hybrid system together with a hybrid Hamiltonian G-
space. Moreover, we are able to prove a relationship between the hybrid flows of these two systems—a

result that is very similar to the classical trajectory reduction theorem.

3.4.5 The reduced phase space. Let (D,w,®,]) be a Hamiltonian G-space, and assume that u € g* is a
regular value of J. If
Gu={geG:Ady, (W) =}

is the isotropy subgroup of G (see Paragraph 4.2.6 and Paragraph 4.2.7), then the action ® of G on D

restricts to an action of G, on J™! (),
O:GuxJ ' (w =T (W

because of the Ad*-equivariance of J. Moreover, if the action of Gy on ]’1(,u) is free and proper, then
D, = ]‘l(p)/ Gy is a manifold, referred to as the reduced phase space, and there is a submersion 7, :
T ' — D,,. Finally, the main theorem of [88] (see Theorem 4.1 for a formal statement of this theorem)

says that D, has a unique symplectic form w,, with the property
Q% () (wp) = Q2 (1) ()

where 1, : J -1 (1) — D is the inclusion and 0?2 is the 2-form functor (see Paragraph 4.1.3).
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3.4.6 Hybrid regular values. Let §) = (D, S, R, X) be a hybrid system. Suppose that y is a regular value
of J: D — g*. We say that this is a hybrid regular valueif it is also a regular value of J|s. This implies, when

coupled with the commuting diagram (3.23), that the following diagram

Ry
T < it ——5 7w

(3.26)

D—t 55 R D

commutes, where ]’l(u) and J| Igl(p) are embedded submanifolds.

Theorem 3.4. Let (D?,w,®, J) be a hybrid Hamiltonian G-space. Assume jL€ g* is a hybrid regular value of
a hybrid Ad* -equivariant momentum map ] and that the action of G, on J ~Y(w) is free, proper and hybrid.
Then

Df) = (D/Jr S/,u R,u)

U
= (7 /G 15 W 1Gu BTy
is a hybrid manifold.

Proof. We need to show that a hybrid action ® of G on D restricts to a hybrid action of G, on J ~1(w), and
then the result follows from Proposition 3.4.
Because p is a hybrid regular value, J |§1 (p) is a manifold that is clearly a submanifold of J -1 (W.
We are assuming that @ is a hybrid action, so by the Ad*-equivariance of J, ®|s restricts to an action of G
on JIg' (w):
Dls: Gy x JI" (W — JI5" (.

To see this, note that for x € ]Igl(u), i.e., x € S such that J(x) = y, and for g € G, P4 (x) € Sand
J(@g(x)) =Ady (1) = 1,

s0 Dg(x) € JIH ().
Therefore, to complete the proof we must show that R| ) is equivariant with respect to the

action of G, on J |§1 (p) and the action of G, on J -1 (W), i.e., we must show that the following diagram

Rljsi
_ 5

JIstw T w

Dgls D,

Rl

JIs' T w

commutes for g € G,. This follows from the equivariance of R. O
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3.4.7 The reduced hybrid phase space. The hybrid manifold introduced in the above theorem is re-
ferred to as the reduced hybrid phase space. To better understand this hybrid manifold, note that the

submersion 7, together with (3.23) and (3.26) yields the following commuting diagram

*

g
] Jls J
D L S R D
3.27)
y Y Rljorw y
T () Tt (w s T
g Tl it ) Ty
Rﬂ

Dy=J " (W/Gy ~——= S, =JI5'(W/G,

D= WwIG,
where 7| T3 @ is also a submersion; this implies that R, is defined by requiring that the bottom right
square in this diagram commute. Note the similarity between this diagram and the one given in Proposi-

tion 3.2.

3.4.8 Reduced Hamiltonians. We refer the reader to Section 4.5 for the definition of G-invariant Hamil-
tonians and Hamiltonian systems. If H is a G-invariant Hamiltonian on D, then the reduced Hamiltonian

Hy, on Dy, is defined uniquely by requiring that
Hyomy=Houy,. (3.28)

If (D, w, Xp) is a Hamiltonian system for the Hamiltonian H, then the classical reduction theorem of [88]
says that there is an associated reduced Hamiltonian system (D, w, Xp,) for the Hamiltonian Hy,. More-
over, these two Hamiltonian Systems are related to each other in a way analogous to the relationship given
in Proposition 3.1. If c(¢) is the flow of Xy with initial condition c(f) € J1 (u), then 7, (c(1)) is a flow of
Xp, with initial condition 7, (c(%)). This fact will be used to prove a result similar to Theorem 3.1, but first

we give conditions on when a reduced Hamiltonian hybrid system can be obtained.

Theorem 3.5. Given a Hamiltonian hybrid system $) = (D, S,R,X) w.rt. a G-invariant Hamiltonian H,
and an associated hybrid Hamiltonian G-space satisfying the assumptions of Theorem 3.4, then there is a

reduced Hamiltonian hybrid system w.r.t. Hy,
yjy = (Dyy S;u R/Jer))

where D;‘? = (Dy, Sy, Ry) is defined as in Theorem 3.4, and X,, is defined by d(Hy) = tx,wy.
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Proof. Follows from Theorem 3.4, coupled with the classical reduction results. O

Theorem 3.6. With §) and ), as in Theorem 3.5, ife (xo) is a hybrid flow of $ with xo € ]~ (), then there
is a corresponding hybrid flow e+ of $ u defined by

e (1, (x0)) = (A, I, 1, (),
wherem,(C) :={my(c;i): c; € Ch.

Proof. We need only show that

(i) cf (Tin) €Sy,
(iig) Ry(c (Tiv)) = cb, | (Tiv),
(iiip) AGED ACAD)!

where clH (1) = m,(c;i(1)). Using arguments completely analogous to those given in the proof of Theorem
3.1, the commutativity of (3.27) and the classical trajectory reduction theorem, it is easy to see that condi-

tions (iy)-(iiiy) are satisfied. O

The hybrid reduction result given in Theorem 3.5 only provides, to quote [102], “soft” infor-
mation about the reduced Hamiltonian hybrid system in that it does not yield a method for explicitly
constructing this system. There are more concrete methods for computing the reduced system by using
methods from classical mechanics which allow for the explicit reduction of Hamiltonians (see [4, 86, 102]).
The end result is two methods for reducing a hybrid system associated to a HMS, described graphically
by:

association reduction

H fJH (YJH);;

reduction association
H H, S’)H”

It is possible to show that the processes of “association” and “reduction” commute, i.e., the order in which
they are taken is irrelevant as was the case with Routhian reduction (see Proposition 3.3). This can be

visualized in a commuting diagram of the form:

association
H Hu

reduction reduction

association
Hy —— 9w =9n,

This result yields a method for computing reduced hybrid systems obtained from HMS’s.
Example 3.11. Returning to the spherical pendulum mounted on the ground, we can explicitly calcu-

late the reduced hybrid system for this example. We first compute the associated reduced HMS P, =

(Qp,, Hp,, hp,) and then associate to the system a simple hybrid system using the techniques outlined in
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Position
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Figure 3.6: Reconstruction of the reduced spherical pendulum: position of the mass and angular velocities

over time.

Section 3.2. The continuous portion of the reduction follows from [86]. In this example, T* (Qp/Gp) is
identified with T*(8'/Z5), i.e., Qp, = S'/Z;. The reduced Hamiltonian Hp, : T*(Qp,) = T*(S'/Z2) — Ris

given by

1 1
Hp, (0, po) = > RE + mgRcos(@) + =

Finally, we have hp,, (6) = cos(6).

2
Py 1

mR 2 mR2sin?(6)

The hybrid manifold for the reduced spherical pendulum Di?:“ =(Dp,, Spu, Rp,) is given by

Dp,
Sp

W

and

Finally, the vector field is given by

Xp, (0, po) = %, mgRsin(6) +

{6, po) € T*(Qp,) : cos(6) = 0},
{6, pp) € T*(Qp,) : cos(6) = 0and pp = 0},

Rp, (0, pg) = (0, —epy).

u? cos(6)
mR2sin>(6)

97



Simple Hybrid Reduction & Bipedal Robotic Walking

and 5731)“ = (Dpu,Spu,Rpu,Xpu). It can be verified by direct inspection that in fact this hybrid system is
the reduced hybrid system associated to $p as given in Theorem 3.5 as it makes the diagram in (3.27)
commute.

Note that in this example it is easy to reconstruct the trajectories of the full-order pendulum
from the reduced pendulum through integration. A trajectory of the full-order pendulum mounted on
the ground, as reconstructed from the reduced system, can be found in Figure 3.6; here e = .95, R=1 and
m = 1. As in the previous examples, both the full-order pendulum and the reduced pendulum are Zeno
with these parameters. Section 5.5 of Chapter 5 discusses how to extend the hybrid flow of this system

past the Zeno point.

3.5 Bipedal Robotic Walking

The purpose of this section is to apply methods from geometric mechanics to the analysis and
control of bipedal robotic walkers. We begin by introducing a generalization of Routhian reduction, func-
tional Routhian Reduction, which allows for the conserved quantities to be functions of the cyclic vari-
ables rather than constants. Since bipedal robotic walkers are naturally modeled as hybrid systems, which
are inherently nonsmooth, in order to apply this framework to these systems it is necessary to first extend
functional Routhian reduction to a hybrid setting. We apply this extension, along with potential shaping
and controlled symmetries, to derive a feedback control law that provably results in walking gaits on flat

ground for a three-dimensional bipedal walker given walking gaits in two-dimensions.

3.5.a Controlled Lagrangians

In order to discuss how to control bipedal walkers, we must discuss how to model them as con-
trol systems. So far, we have only introduced “passive” Lagrangian models; we now introduce their “con-

trolled” analogues.

3.5.1 Controlled Lagrangians. Controlled Lagrangians will now be of interest. As in Paragraph 3.1.1,

we begin with a Lagrangian L: TQ — R given in coordinates’ by
L(q,q) = %é/TM(q)c'/— V(). (3.29)
The controlled Euler-Lagrange equations yield the equations of motion:
M(q)g+C(qg,9)g+ N(q) = Bu,
where we assume that B is an invertible matrix. The result is a control system of the form:

(C.], CI) = XL(q) 51, u)
(¢, M)~ (=C(q,@)G— N(g) + Bw)).

7In this section, we will again only work in coordinates.
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In the future, it will be clear from context whether, for a Lagrangian L, we are dealing with a corresponding
vector field (¢, §) = X1.(q, ) (as given in (3.4)) or a control system (g, §) = X1.(q, g, u).
If $§ = (D, Sp, R, X1) is a hybrid system w.r.t. a hybrid Lagrangian L = (Q, L, h) in which X is a

control system we call ) a controlled hybrid system or a hybrid control system.

3.5.2 Impact equations. In Paragraph 3.2.2 it was shown how to associate to a unilateral constraint
function a domain and guard. This motivated the definition of a Lagrangian hybrid system w.r.t. a hybrid
lagrangian (Definition 3.4). For such a hybrid system, §) = (Dy, Sy, R, X1), we have still yet to specify the
reset map. In order to determine this map in the context of bipedal robots, we will utilize an additional
constraint function.

A kinematic constraint function is a smooth function Y : Q — RY (v = 1); this function usually
describes the position of the end-effector of a kinematic chain, e.g., in the case of bipedal robots, this is
the position of the swing foot.

For a unilateral constraint function 4 : Q — R and a kinematic constraint function Y : Q — RY,
we define a corresponding map:

Ry :S, — Dy,

where Ry (q, §) = (q, Py(q)), with
Py(§) = §—M(q)"'dY[(dY M(q) ' dY]) ' dY 4. (3.30)

This reset map models a perfectly plastic impact without slipping and was derived using the set-up in [55]
together with block-diagonal matrix inversion.

Note that for a bipedal walker, to compute such a map one must use a coordinate system in-
cluding the position of the stance foot. In reality, after computing the reset map using this full-order
coordinate system, one can assume that the foot is located at origin. This allows for the construction of
areduced coordinate system. In the reduced system, the reset map is obtained from the one determined
in the full-order coordinate system, although it will no longer be constant for the configuration variables.

For further details, we refer the reader to [55].

3.5.b Functional Routhian Reduction

We now introduce a variation of classical Routhian reduction termed functional Routhian reduc-
tion. The main differences between these two types of reduction are that we allow the original Lagrangian
to have a non-cyclic term in the potential energy, and we allow the conserved quantities to be functions

(of the cyclic variable) rather than constants. The author is unaware of similar procedures in the literature.

Notation 3.1. In the rest of this section, the notation utilized in Section 3.3 is in force.
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3.5.3 Almost-cyclic Lagrangians. We will be interested (in the context of bipedal walking) in Lagrangians

of a very special form. We say that a Lagrangian Ly : TQy x TG — R is almost-cyclicif it has the form:

. \T .
Y My@® 0 6
2\ ¢ 0 M,®) )

~ 1
VA(0,0) = V(0) - 5M<p)TM<,,(9)‘1M<p)

where

for some function A : G — R¥ such that

(OA)T_OA (3.32)
op) g’ '

Here G is the abelian Lie group given in (3.10), Mp(0) € R"*"* and M,,(0) € R*** are both symmetric positive
definite matrices. The most important difference between a cyclic Lagrangian (as introduced in Paragraph

3.3.1) and an almost-cyclic Lagrangian is the presence of a non-cyclic term in the potential energy.

3.5.4 Functional momentum maps. In the framework we are considering here, the momentum map

J:TQ— g* =RF, takes the form
. oL .

As we have seen in (3.13), one typically sets the momentum map equal to a constant u € R¥; this defines
the conserved quantities of the system. In our framework, we will breach this convention and set J equal

to a function: this motivates the name functional Routhian reduction.

3.5.5 Functional Routhians. For an almost-cyclic Lagrangian L) as given in (3.31), define the corre-

sponding functional Routhian L: TQu — Rby
L0,0)= [L20,0,0,0) = 1@ 9] |9,,9,50-1¢0)
Because J (0,6, ¢, p) = A(g) implies that
¢ =My(0)"' o), (3.33)
and so by direct calculation the functional Routhian is given by
L1(6,0) = %QTMH(B)Q - V.

That is, any Lagrangian of the form given in (3.29) is the functional Routhian of an almost-cyclic La-
grangian.

The goal is to relate the flows of the Lagrangian vector field X to the flows of the Lagrangian vec-
tor field X;, and vice versa in a way analogous to the classical Routhian reduction result given in Proposi-

tion 3.1. This relationship is made clear in the following proposition.
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Proposition 3.7. Let Ly be an almost-cyclic Lagrangian, and L the corresponding functional Routhian.

Then (0(1),0(2), (1), (1) is a flow of the vector field Xy, on 1y, tr] with
@(to) = My (0(16)) " A (1)),
ifand only if (0(1),0(1)) is a flow of the vector field X; on 1y, tr] and (¢(1), (1)) satisfies:
@(1) = My 0(0) " Alp(1)).
Proof. We begin by noting that

L1(0,0,0,9)

1, .1
EGTM6(0)6)+ E(/')TMw(B)(p —V3(6,9)
1, .1 - 1
= S0TMp©0+ 9" My©)p = V(O) + SA(0) My(©) ' Alep)
I | 1
= 16,0+ EquM(,,(enp + Eﬂt(w)TM(p(H)‘l/l(w).

Let
. Ll.r L7 -1
Rem(8, ¢, ) := Z(p M, 0)p + 2/1((p) My (0)" M),

in which case
L1(6,6,¢,9) = L(6,0) + Rem(6, ¢, ).

With this notation, the Euler-Lagrange equations for Lj become:

doL, oLy _ doL 0L ORem
dt 906 00  dtog 00 00
doLy 0L, _ dOJdRem ORem
dtog dp — dt 9p g

By direct calculation, we have that

ORem r 0 1 1
0~ = 5% 35 Me@) 9+ A" - 2 My ") A1)
1 ;0 1 0
= 59 35 Mo @) ¢ =S A@) MO 55 Mo ©) M, O 'A)
d 0Rem d .
& o T aM®9)
d
= d—(M ©) @+ My(0)§
ORem 0 T 1
50 = 9 Mqo) M, (6)"' M)
10 -1 10
= Ea—(l(tp)) M, 'A@)" + = /1((p)M ©®) (p(/l((p))

0
= % (M) My (O~ Al).

Therefore,

d ORem ORem d 0 1
A op dt(M(p<9>)<p+M<p(9)<p——(p(ﬂt(cp))Mae) M)

(3.34)

(3.35)
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Now, in the case when ¢ = M, (0)~' A(¢p), we have that:
- d -1 o d
¢ = (My @) Alg) + My (@' — ()l((p))
1 d 0
= -M, ) (M(p ) M, (0)_1/1((,0) + M, (9)_ (/1((/)))
_ 6 d -1
= M,(©) ( (/1(90)) (Mw (9))) My (0)" Alp)
d
= My6)” ( (A@) - (M(p (9))) M, O ' Alg), (3.36)

where the last equality follows from (3.32), i.e., we assumed that A was a function such that:
0

o

From (3.34), (3.35) and (3.36) we conclude that:

(1) = 52 (20

oR
ﬂ(e,(p,M(p(eru(w))

I
o

(3.37)

d ORem
dt 0P

I
o

—— (0,9, Mp(0) " M)) — 6—(9 @, M,(0)"" L)) (3.38)
Using this, we establish necessity and sufficiency.

(=) Let (0(),0(0), @(1),¢(1)) is a flow of the vector field Xz, on [#, tr] with
@(to) = My (0(16)) " A (1)),

and let (5(1?),5(1‘)) be a flow of the vector field X7 on [f, tr] with E(to) =0(tp) and 5(t0) = 9(1‘0). In addition,

let ¢(¢) be a curve satisfying
P(t)=9to),  P(t)=MyO(1) ' A@@(1)).

By (3.37) and (3.38) it follows that:

d oL

a—%am 0(t),9(0), (p(t))——(@(t) 80,50,5(1) = 0
d oL 0L,

d—a—‘(em (0, p(0), w(t))——(e(t) 00, 9(0,5(1) = O.

Therefore, (5(t),5(r),¢(t),$(r)) is a flow of the vector field X, on [f, tr]. Moreover, since
@(10),0(10), B10), P 10)) = (O(t0), B 10), 9 (1), (1))

and by the uniqueness of solutions of Xj, (to flows with the same initial condition must be the same), it
follows that
O(1),0(0),9(), p(1)) = (O(1),0(1), @ (1), @(1)

or (0(1),0(1)) is a flow of the vector field X7 and (¢(1), ¢(1)) satisfies:

@(1) = My 0(0) " Alp(1)).
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(<) Let (8(1),0(1)) be a flow of the vector field X; on [fy, tr] and (¢(1), @(1)) a pair satisfying

@(1) = My 0(0) ' Ae(1)).

We need only show that
dt = LA o), 0080, (1), w(tn——(em 00, p(0,p(1) = 0
d oL
d—a—‘(e(t) 00, (1), w(m——(em 0(),p(1),p(t) = O.

This follows from (3.37) and (3.38) together with the fact that, since (0(¢),8(t)) is a flow of X,

deL . = 0L .

Note that Proposition 3.7 has some interesting implications.

o Itimplies that flows of X;, can be determined solving 2n+k ordinary differential equations rather
than 2(n+k) ordinary differential equations; this has important ramifications in the context of nu-

merical integration (and errors thereof).

o Itimplies that the (0(1), (1) component of flows of X;, with certain initial conditions can be effec-
tively decoupled from the (¢(t), @(#)) component of the solution; this will have important ramifica-

tions in the context of bipedal walking.

We now have the necessary background material needed to introduce our framework for hy-
brid functional Routhian reduction. We will first define the notion of an almost-cyclic Lagrangian hybrid
system and then introduce the hybrid functional Routhian reduction theorem which is analogous to The-
orem 3.1. It is important to note that this definition is not the most general one, but provides sufficient

generality for the systems under consideration, i.e., bipedal walkers.

Definition 3.11. If $, = (D, Sy, R, X1,) is a Lagrangian hybrid system with respect to the hybrid La-
grangian Ly = (Q, Ly, h), then ), is almost-cyclic if the following conditions hold:

6 Q=Qux6

o h:QuxG—Ris cyclic,
oh
ap
and so can be viewed as a function h;, : Q, — R.

)

o Ly: TQu x TG — Ris almost-cyclic,

o Ty (R®,6,¢,9)) = ¢, where Ty (R(®,6,¢,9)) is the p-component of R(8,0, ¢, ),

103



Simple Hybrid Reduction & Bipedal Robotic Walking

¢ The following diagram commutes:

[Rk
]y (th
R

S Dy, (3.39)

nJ In JTL’
R

Sp, ———— Dy,

for some map R: Shﬂ — Dhu‘

3.5.6 Hybrid functional Routhian. If $, = (D, Sy, R, Xy,) is an almost-cyclic Lagrangian hybrid sys-
tem, we can associate to this hybrid system a reduced hybrid system, termed a functional Routhian hybrid
system, denoted by $ and defined by:

9:=(Dp,, Sp, R, Xp).

The following theorem quantifies the relationship between ), and 9.

Theorem 3.7. Let ) be an almost-cyclic Lagrangian hybrid system, and ) the associated functional Routhian
hybrid system. Then
e = (A L1401, 91,1} ien)

is a hybrid flow of $, with
@0 (To) = My (00 (10) " Ao (T0)),

ifand only if
€”=(A,1,10:,0} ien)

is a hybrid flow ofﬁ and {(p;, @)}icn satisfies:
@i()=Mp0;(1) ' Ai(1), i1 (Tis1) = @i(Tiv).

Proof. (=) By Proposition 3.7, we need only show that the following conditions hold:

M 0i(7i+1),0i(Ti11) € Sp,,
(ii) R0;(Ti41),0;(Ti41) = 0i+1(Ti11),0i41(Tix1)),
(iii) 0(10) = Myp(0o(10)) 'Apo(T0) = @i(T) = Myp(0;(T)) ' Ae; (7).

Condition (i) follows from the cyclicity of & which implies that the codomain of 7 is Sy, (see the proof of

Proposition 3.2). For

0;(Ti+1),0i(Ti+1),9i(Ti41), @i (Ti+1)) € Sp
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it follows by the commutativity of (3.39), and specifically (II), that

ROi(1i41),0i(1i+1)) = R@EOi(Ti11),0i(Ti1),9i(Tis1),@i(Tis1))
= 7RO:Ti+1),0i(Ti+1),9i(Ti11), 9i(Ti+1))
= 101 Ti41),0i01 Tix1), Qiv1 Tix1), Pie1 (Tiz1))
= (0i+1Ti+1),0i41Ti41).

Therefore, condition (ii) holds. Finally, we show condition (iii) through induction. It holds by assumption

for i = 0, therefore, assume that
@i(T1) =Mp0;: (1) Algi(T).
Then, Proposition 3.7 implies that
@i(1) = My(0; (1) Ag;(1).

for all £ € I;. Specifically,
Pi(Tiv) = Mp(0;(T141)) ' Agi(Ti41)),

or

JO:(T141),0:(Tix1), @i (Tix1), @i (T141) = Api (Ti41)-

By the commutativity of (3.39), and specifically (I), it follows that
J0:1:1(T141), 011 (T141), 9141 (Ti41), @41 (T41) = A (Ti41)).-
To complete the induction step, we note that:

Tp(RO;(Ti41),0i(Tix1),0i(T141), 9i(Ti+1)) = 7p0ir1(Ti+1),0i01(Tis1), Qi1 (Tis1), @1 (Tix1)

= @i (Tiv1).

Therefore, by the assumption that 7, (R(0, 0,0,9) =,

APis1(Tir1)) = AR (Ti4+1),0i (Ti+1), @i (Ti+1), @i (T1+1))) = A (Ti+1)),

and so
](9i+1(Ti+1)y9i+1(Ti+1),(Pi+1(Ti+1)y(pi+1(Ti+1)) =Mei+1(Ti+1),
or
i1 (Tis1) = Mp 0341 (T141)) M@ i1 (Tix1)),
as desired.
(<) By Proposition 3.7, we need only show that the following conditions hold:
@ 0;(Ti+1),0;(Ti+1),9i(Ti41), i (Ti1)) € Sp,
(i) RO;(Ti41),0i(T1+1),90i (7141, @i (Ti41)) = 0141 (T 141,011 Ti41),9is1 (Tix1), Pir1 (Tir1)),
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where ¢; and ¢; satisfy:
@i(1) = My (0;(£) " Mgi (1)).

for all £ € I;. Condition (i) follows from the cyclicity of h. Since by assumption
mo(R©O,0,0,¢) =@,
and by the commutativity of (3.39), it follows that
M, (0) = My, (9 (R(6,0))) 7 (R(0,0, 0, )

for all (0,0, ¢, @) € Sj,. By the commutativity of the same diagram we have that:

Piv1(Tis1) My (0i+1(Ti+1) " M@ (Tix1))

= Myme(RO;(Ti1),0; (1)) ' A@is1(T741))

= My(mg(R0;(Ti+1),0i(1:+1) ' Aei (Ti41))

= My(me(RO;(Ti41),0i(Ti51)) " Myp(0; (T141)) @i (T741)

= (RO (T1+1),0i(Ti1), @i (Ti+1),Pi(Tis1).

Thus we have shown that condition (ii) holds. O

3.5.c 2D Bipedal Walkers

We now turn our attention toward the standard model of a two-dimensional bipedal robotic
walker walking down a slope; walkers of this form have been well-studied by [106], [90] and [54], to name
a few. We then use controlled symmetries to shape the potential energy of the Lagrangian describing this
model so that it can walk stably on flat ground. The result is two important hybrid systems; they will be

used to construct a control law for a three-dimensional walker that results in a walking gait on flat ground.

3.5.7 2D biped model. We begin by introducing a model describing a controlled bipedal robot walking
in two-dimensions, walking down a slope of y degrees; see Figure 3.7. That is, we explicitly construct the
controlled hybrid system
9y = (D), Sho, Rop, Xop)

which describes this robotic system.

The configuration space for the 2D biped is Qop = T?, the 2-torus, and the Lagrangian describing
this system is given by:

L5p(6,0) = %QTMZD )6 - Van (6),

where 0 = (fys,05) T with Mop (0) and Vop (0) given in Table 3.1.

Using the controlled Euler-Lagrange equations, the dynamics for the walker are given by

Mop (0)0 + Cop(0,0)0 + Nap (6) = Bop u.
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l=a+0b

//

~
y 4

Figure 3.7: Two-dimensional bipedal robot.

These equations yield the control system:
6,0) = Xon (6,0, u) := X1, (6,6, w).
We construct D;/D and SgD by using the unilateral constraint function
h) 1, (6) = cos(8s) — cos(Ons) + (sin(Bs) — sin(Bys)) tan(y),

which gives the height of the foot of the walker above the slope with normalized unit leg length.

Finally, the reset map Ryp is given by
Rop(0,0) = (T2p6, Pap (0)6),

where Top and Pop (0) are given in Table 3.1. Note that this reset map was computed using (3.30) coupled
with the condition that the stance foot is fixed (see [55] for more details).

Setting the control u = 0 yields the standard model of a 2D passive bipedal robot walking down
a slope. For such a model, it has been well-established (for example, in [54]) that for certain v, 5672/[) has a

walking gait. For the rest of the paper we pick, once and for all, such ay.

3.5.8 Controlled symmetries. Controlled symmetries were introduced in [106] and later in [107] in

order to shape the potential energy of bipedal robotic walkers to allow for stable walking on flat ground
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Additional equations for $,p:

Mp(©) = ~LmeosO0=0n) - Ly (2 4 )
1
Vp©®) = glEm+2M)cos(O) - mcos(ds)

-1 0
Bp =

1 1

0 1
p =

1 0

Pp@) =

—3m—4M +2mcos(2(0s — b))
2mcos(Bns —0s) m—4(m+ M) cos(2(0ns — 6s))
m —2(m+2M)cos(Ops — 0s)

Additional equations for $3p:

map@) = %(12(6m+4M) + I2(mcos(26,s)
—8mcos(Ons) cos(Bs) + (5m +4M) cos(26,))
Vap(8,9) = Vap(B)cos(e)
—mcos(20ys) + 8(m + M) cos(Ops) cos(Bs) — m(2 + cos(26))
pp @) =

6m+4M+ (5m+4M) cos(20ys) — 8m cos(Bys) cos(fs) + m cos(20s)
Table 3.1: Additional equations for $,p and $Hsp.

based on stable walking down a slope. We will briefly apply the results of this work to derive a feedback
control law that yields a hybrid system, £3,,, with stable walking gaits on flat ground.
The main idea of [107] is that inherent symmetries in 5372/13 can be used to “rotate the world” (via

a group action) to allow for walking on flat ground. Specifically, we have a group action ® : S' x Qop — Qap

9 _
om,0:=| =77,
Os—v

for y € S'. Using this, define the following feedback control law:

denoted by:

0
u= Ky, (0) = Byp = (Van (6) = Van (@(1,60)..
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Applying this control law to the control system (¢, §) = Xop (8,6, u) yields the dynamical system:
6,6) = X1,0,0) := Xop (6,6, KJ, (6))
which is just the vector field associated to the Lagrangian
Ly6,0) = %GTMZD 0)0 -V}, 0),

where V;1,(0) := Vap (@(y,0)). Thatis, X, = X .
Now define, for some y that results in stable passive walking for 57)72/]3,

‘s/j;D = (DgD) SgD)RZDngD)y

which is a Lagrangian hybrid system. In particular, it is related to 5572/1) via the main result of [107] as

follows:

Theorem 3.8. Let
Y .
€™ = (A, L{B1,01)}icn)

be a hybrid flow ofﬁ;’D (with u=0), then
™0 = (A, L1@(y,0,),01)}ien)
is a hybrid flow of 5.

Theorem 3.8 implies that if ﬁgD walks (stably) on a slope, then $)3, walks (stably) on flat ground.

3.5.d Functional Routhian Reduction Applied to 3D Bipedal Walkers

In this section we construct a control law that results in stable walking for a simple model of
a three-dimensional bipedal robotic walker. In order to achieve this goal, we shape the potential energy
of this model via feedback control so that when hybrid functional Routhian reduction is carried out, the
result is the stable 2D walker introduced in the previous section. We utilize Theorem 3.7 to demonstrate

that this implies that the 3D walker has a walking gait on flat ground (in three dimensions).

3.5.9 3D biped model. We now introduce the model describing a controlled bipedal robot walking in
three-dimensions on flat ground, i.e., we will explicitly construct the controlled hybrid system describing
this system:

$3p = (Dsp, S3p, R3p, X3D).

The configuration space for the 3D biped is Qsp = T? x S and the Lagrangian describing this

system is given by:

. \T .

. 1 6 Mp® 0 0
Ln©,6,0,9)= = | 2 " |- v ©,9), (3.40)

2| ¢ 0 mp@® || ¢
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l=a+b

Figure 3.8: Three-dimensional bipedal robot.

where m3p(0) and Vap (6, ) are given in the Table 3.1. Note that, referring to the notation introduced in
(3.31), Mp(0) = Mop(0) and M, (0) = mp(0). Also note that Lzp is nearly cyclic; it is only the potential
energy that prevents its cyclicity. This will motivate the use of a control law that shapes this potential
energy.

Using the controlled Euler-Lagrange equations, the dynamics for the walker are given by

Msp(q)G+Csp(g, §) g+ Nap(q) = Bspu

Bp O
Bsp = .
0 1

These equations yield the control system:

with g = (0, ¢) and

(57; éi) = X3D(qr q.y u) = XL3D (qy é]; u)-
We construct D3p and Ssp by utilizing the unilateral constraint function
h3p (0, @) = h9p, (0) = cos(0s) — cos(Ons).

This function gives the normalized height of the foot of the walker above the ground with the implicit
assumption that ¢ € (-x/2,7/2) (which allows us to disregard the scaling factor cos(¢) that would have

been present). The result is that hp is cyclic.
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Finally, the reset map Rsp is given by

R3p(0,0,¢,¢) = (Topb, Pap(0)0, ¢, psp(0))

where psp(0) is given in Table 3.1. Note that this map was again computed using (3.30) coupled with the

condition that the stance foot is fixed.

3.5.10 Control law construction. We now proceed to construct a feedback control law for $3p that
makes this hybrid system an almost-cyclic Lagrangian hybrid system, £3;,. We will then demonstrate,
using Theorem 3.7, that )5}, has a walking gait by relating it to 5.

Define the feedback control law parameterized by « € R:

o 1 a?¢?
u=K3aD(q):B3S£ VSD(q)_VZYD(H)+5m3D(9) '

Applying this control law to the control system (g, §) = X3p(q, g, u) yields the dynamical system:
(q'r 6]) = XgD(q! 07) = X3D(q) 67, KgD(CI)),

which is just the vector field associated to the almost-cyclic Lagrangian

. \T .
. 1 6 M>p(0) 0 0
L5 (6,0,9,¢) = = - V&0, 9), (3.41)
o0 2\ ¢ 0 m3p (0) ¢ o0
where
1 a?¢?

VE(0,9) = V) (O) - = .
@@ =VopO)=3 map (0)
That is, X3, = X, 18,
We now define
95p = (D3p, S3p, R3p, X3p),

which is a Lagrangian hybrid system.

3.5.11 Applying hybrid functional Routhian reduction. Using the methods outlined in Subsection

3.5.b, there is a momentum map J3p : TQ3p — R given by

JBD(Q;Q,(P»(I)) = ng(g)(pr

and so setting J3p (6,0, ¢, ¢) = A(gp) = —ag implies that

__o9
msp(0)

The importance of $g, is illustrated by the following theorem.
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Theorem 3.9. 93, is an almost-cyclic Lagrangian hybrid system. Moreover, the following diagram com-

mutes:
RE
W
J3pl y{ % |Dspy
R
S3p 3D Dsp
n\ Jn
Ryp

Dsp

Therefore, 35, is the functional Routhian hybrid system associated with ).

S2p

Proof. By the construction of 5, one need only show that:

a
3D’
m3p (0) = m3p(Topb) p3p (0),

which follows by direct calculation. O

This result allows us to prove—using Theorem 3.7—that the control law used to construct $5,

in fact results in walking in three-dimensions when a > 0.

Theorem 3.10.
gf)gD = (A, I,{(@i,éi,(piy@i)}ieA)

is a hybrid flow of 5, with

. a@o(7o)
@)=, (3.42)
oo mgp (0o (To))
if and only if
"0 = (A, L,10;,0;}jen)
is a hybrid flow of H5, and {(p;, Pi)}ien satisfies:
, ap;(1)
i()=—-———7"7"—, i+1(Tiv1) = @i(Tiv1). (3.43)
Qi map (0: (1) Pi+1Ti+1) = QilTi+1
Proof. Follows from Theorem 3.7 and Theorem 3.9. O

3.5.12 Simulation results. We conclude this Chapter by discussing the implications of Theorem 3.10.
Moreover, we demonstrate the usefulness of this result by showing through simulation that it does result
in walking the three-dimensions. To better visualize the following discussion, refer to Figure 3.11 for an
initial configuration of the robot and Figure 3.12 for a walking sequence of the robot.

Suppose that e = (A, (0:,0;,9i,¢)}ica) is a hybrid flow of 94y If this hybrid flow has an
initial condition satisfying (3.42) with a > 0 and the corresponding hybrid flow, e = (A, L,{6;,01ien), of

$5p is a walking gait in 2D:

A=N, l_lim T; =00, 0;(;)=0i11(Tis1),
—00
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Figure 3.9: 6y, 65 and ¢ over time for a stable walking gait and different initial values of ¢.

then the result is walking in three-dimensions. This follows from the fact that 8 and § will have the same
behavior over time for the full-order system—the bipedal robot will walk. Moreover, since Theorem 3.10
implies that (3.43) holds, the walker stabilizes to the “upright” position. This follows from the fact that
the roll, ¢, will tend to zero as time goes to infinity since (3.43) essentially defines a stable linear system
¢ = —ag (because mzp(@;(t)) > 0 and a > 0), which controls the behavior of ¢ when (3.42) is satisfied.
This convergence can be seen in Figure 3.9.

Theorem 3.10 only implies that the 3D biped has walking gaits for hybrid flows with initial con-
ditions that satisfy (3.42); the set of all such initial conditions defines a region that is stable to the origin
(¢, ) = (0,0), which corresponds to “upright” walking (see Figure 3.10). This illustrates that our control
law for the 3D biped is not a locally stabilizing controller (as would be the case if we were to linearize, see
[73]) but rather stabilizes a nonlinear subset of the initial conditions. It is possible to extend this region of
convergence by stabilizing to the manifold defined by

ap
msp(@)

This indicates that hybrid reduction can be used to stabilize a three-dimensional walker from a large set

of initial conditions.
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Chapter 4

Hybrid Geometric Mechanics

Mechanics, and the geometry thereof, plays a fundamental role in engineering. This chapter
gives a general outline on how to extend classical ideas from geometry and mechanics to a hybrid setting
through the use of hybrid objects.

The objects of study in geometry display the fundamental property of being categorical, i.e., they
reside in certain categories. Collections of geometric objects in a category relate to one another naturally,
i.e., morphisms between geometric objects in two diagrams extend naturally to morphisms between dia-
grams. The relationship between different classes of geometric objects is functorial, i.e. one can translate
from one class of geometric objects to another through the use of functors. Therefore, using the categori-
cal, natural and functorial nature of geometric objects, one can hybridize these objects. Specifically, given
a category C consisting of the geometric objects of interest, e.g., manifolds, Lie groups, Lie algebras, etc.,

one can form the “hybrid version” of these objects:
Ao —C,

with A either covariant or contravariant, i.e., (</,A) is a hybrid or cohybrid object. We thus form the
category of hybrid or cohybrid objects, Hy(C) or CoHy(C), depending on the contravariance or covariance
of A. Using the functorial relationship between different categories of geometric objects, e.g., the functor
that associated to a Lie group its Lie algebra, we obtain functors between the categories of hybrid objects
of interest. Some of the hybrid objects, hybrid morphisms and functors between categories of hybrid
objects that will be introduced in this chapter can be seen in Table 4.1.

Recall from Chapter 3 that we were interested in answering the following question:

If it is possible to reduce the continuous components of a hybrid system, when is it possible to
reduce the entire hybrid system?

In that chapter, we were only able to answer this question for simple hybrid systems. Using the framework
established by hybrid geometry, we will be able to answer this question for general hybrid systems. First,

we recall the classical reduction theorem.
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Important hybrid objects :

Hybrid vector space: V:7 Vectr
Hybrid manifold : M: .« Man
Hybrid tanget bundle : T.(M) : A VectBundr
Hybrid differential k — forms : ok :u Vectr
Hybrid de Rham cohomology: H gR* M) : 4 Vectr
Hybrid Lie group: G:¥ LieGrp
Hybrid Lie algebra: g9:9 LieAlg
Dual hybrid Lie algebra : g :¥ Vectg
Hybrid isotropy group : G;:¥9 LieGrp
Hybrid orbit space: M/G: .« Top
Reduced hybrid phase space : Mg: .4 Man
Important hybrid morphisms:

Hybrid exterior derivative : d: Q’,f M) Q],f“ M)
Hybrid wedge product: - R - Qv x QL Qv
Hybrid conjunction map: I:G G
Hybrid adjoint action: Adg:g g
Hybrid group action: O:GxM M
Hybrid infintesimal generator : g? M:M T. (M)
Hybrid momentum map : J:M g*

Important functors:

Hybrid tangent bundle functor : Hy(T):Hy(Man) — Hy(VectBundg)
Hy(Q%):Hy(Man) — CoHy(Vectg)
Hy(Lie) : Hy(LieGrp) — Hy(LieAlg)

Hy((-=)*):Hy(Vectg) — CoHy(Vectg)

Hybrid k — form functor :
Hybrid Lie functor :

Dual vector space functor :

Table 4.1: Important hybrid objects, morphisms between hybrid objects and functors between categories
of hybrid objects.
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Marsden mathematically describes, [86], the reduction theorem for classical mechanics as fol-
lows:
Given a symplectic manifold M (the phase space), there exists a symplectic manifold M, such
that “M,, inherits the symplectic structure from that of M, so it can be used as a new phase space.

Also, dynamical trajectories of the Hamiltonian H on M determine corresponding trajectories
on the reduced space.”

Upon inspection, it is clear that a rather copious mathematical framework is needed to perform reduction:
there must be a Lie group G acting on the symplectic manifold M, and an Ad*-equivariant momentum
map J: M — g*, and the Hamiltonian H must be G-invariant.
Hybrid objects will allow us to generalize all of the ingredients necessary for reduction to a hy-
brid setting. The main result is the following hybrid reduction theorem:
Given a hybrid symplectic manifold M (the hybrid phase space), there exists a hybrid symplectic
manifold My such that My inherits the hybrid symplectic structure from that of M, so it can be

used as a new hybrid phase space. Also, dynamical trajectories of the hybrid Hamiltonian H on
M determine corresponding trajectories on the reduced hybrid space.

That is, if (M, &, H) is a hybrid Hamiltonian system (M is a hybrid manifold, @ is a hybrid symplectic form
on M and H is a hybrid Hamiltonian), then this theorem says that under certain conditions we can reduce
this hybrid Hamiltonian system to obtain a reduced hybrid Hamiltonian system (Mﬁ,d)' o Hp).

The hybrid reduction theorem can be used to explicitly reduce hybrid systems since we can
associate to a hybrid Hamiltonian system (M*,&,H) a “classical” hybrid system $ o @ 1) (see Paragraph
2.1.2, Proposition 2.1 and Proposition 2.2). Therefore, the ability to reduce hybrid Hamiltonian systems
yields a method for reducing hybrid systems; graphically, the operation of “hybrid system reduction” is

defined by requiring the following diagram to commute:

reduction
—_—

1~ 1 ~
(M ) )H) (Mﬁ)wﬁrHﬁ)

association l association
reduction

dwom — Da,mp-

Moreover, since this association is constructive in nature, the result is a concrete method for reducing
hybrid systems. Finally, the hybrid reduction theorem proven in this chapter can be used to show that
trajectories (or executions) of $m: g i) determine corresponding trajectories of 5(M:I,(Dﬂ,Hﬂ)-

The work on which this chapter builds is the same as that of Chapter 3; see the related work
paragraph in that chapter.

Examples will be sparse in this chapter as we believe that we have more than motivated the
importance of reduction in Chapter 3, especially given the application of reduction to bipedal walking.

We will utilize a simple example throughout the chapter in order to illustrate the concepts involved.

Running example. Throughout this chapter, we will consider a ball bouncing in two-dimensions; this

differs from the one-dimensional version introduced earlier as well as the three-dimensional version ball
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Position: xvs.y

0471 1

0.2 1

0.0 4

Figure 4.1: A trajectory of the two-dimensional (completed) bouncing ball model.

bouncing on a sinusoidal surface. We will not use the standard model of this system (which has a single
domain) but rather the completed version of the system (obtained using the procedure outlined in Section
5.5 of Chapter 5) which allows the ball to “stop bouncing” after the Zeno point is reached; see Figure 4.1.

We introduce the model of this system directly as a categorical hybrid system rather than trans-
lating the definition from the standard definition as has been our custom. Since the goal is to define a
hybrid system, we first define its discrete structure.

Define .4 as the D-category given by the following diagram:

ap

AN = s, | |t

Sa ta
b = ag : s.

where “b” will correspond to the state where the ball is “bouncing” and “s” will correspond to the state
where the ball is “sliding.”
Define the hybrid manifold:
mball . gbal L Man

by:
ball
Mg,
yball ( '/%ball) — mball = z] \Mgau
ap ap
Mls)all =1 mball = iq
t
Mlzall — R4 - as Ml;:lll — RZ as M?all — [R2

where here the coordinates on R* are (x, ¥ Px> Py) T the coordinates on R? are (x, Px) T with Mg‘;u and ME::,I
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given by:

Mgzﬂ = y eR*:y=0and p, <0,
Px

Py

X

0
ME:;I(JC, 07 px; py) = i

Px

with 0 < e < 1 the coefficient of restitution.

Finally, the hybrid system is given by (., MP2l, xPall) where

Xball — {th;all , X?all } ,

with:
Px
xball _ 1 Py
b ()C,y,pxypy) = E 0 )
1 Px
ball
X0 (x, pe) = P 0

and m the mass of the ball.

4.1 Hybrid Differential Forms

In order to discuss the general geometric reduction of hybrid systems, we introduce hybrid dif-
ferential forms. The framework of hybrid objects makes this a relatively easy task, although it is nontrivial
as the constructions are not always the obvious ones. Note that we could first build up the general frame-
work of tensor bundles, etc., but since the construction is essentially the same, we proceed directly to the
notion of differential forms which is the main concept of interest.

Note that when dealing with hybrid differential forms, we are forced to deal with both covari-
ant and contravariant functors. To avoid confusion, we will explicitly state which type of functor we are
considering when necessary.

We refer the reader to [79] for any necessary background material.

4.1.1 Hybrid tangent bundles. We begin by discussing how one associates to a hybrid manifold its

hybrid tangent bundle. This will be useful for understanding later constructions.
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The process of associating a tangent bundle to a manifold defines a functor:
T : Man — VectBundy

where VectBundp is the category of (real) vector bundles. Specifically, we have T(M) = TM, where TM is
the tangent bundle of M; implicit in this notation is the canonical projection 7 : TM — M that makes TM
into a vector bundle. In addition, for a morphism f of manifolds T f is the pushfoward of this function.

The functor T induces a functor:
Hy(T) : Hy(Man) — Hy(VectBundg).
That is, for a hybrid manifold (.#,M), we can associate to this hybrid manifold its hybrid tangent bundle
(M, T. (M) := Hy(T) (4, M),
where
T.M) : 4 — VectBundr
is given by, for every a = b in ./,
T, = 7™, 2 Ma=TMg oy,
Here TMy, is the pushforward of M,

TMq(p, X) = Mq(p), TyMq (X)),

for (p,X) € TM,, i.e., for X € T,M, and p € M,.
If (F, f) : (M, ,M) — (N,N) is a morphism of hybrid manifolds, then there is an induced mor-
phism:
Hy(T)(ﬁ,f) =(F, T, (f)) sHy(T) (A,M) = (M, T (M) — (N, T« (N))

between the hybrid tangent bundles of these hybrid manifolds as outlined in Paragraph 1.3.7.

4.1.2 Hybrid sections. Note that we have a natural transformation 7 : T, (M) — M, i.e., a hybrid mor-
phism:

(Id.gz, 7) : (M, T (M) — (AL, M),
called the canonical hybrid projection map, and given objectwise by the natural projection, i.e., 7, :
T.M)g=TM,; — M,.

We can consider sections of the hybrid tangent bundle of a hybrid manifold:
(M) :={X: M= T,(M): 7+ X = idwm},

which in fact defines a collection of vector fields (of a very special form) on the hybrid manifold (.#,M),
i.e., associated to the hybrid section, X , we have the collection of vector fields X := {Xb}bev( _«)- That being

said, hybrid sections are typically not of interest as they are too restrictive.
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4.1.3 Differential forms. Let M be a manifold and let A¥(M) be the vector bundle consisting of all
alternating tensors, i.e., we have a canonical projection map 7 : A¥(M) — M. A section of this vector
bundle

w:M—»Ak(M) s.t. mow=idy

is a differential k-form or just a k-form. The set of all differential k-forms is denoted by:
QF M) = {w: M — A*(M) : mow = idag).
The process of associating to a manifold its differential k-forms induces a contravariant functor:
QF:Man — Vectp,
where for f: M — N,
ok(n): 0 — ok
is the pullback of f given by, for w € Q¥(N), pe M and X;,... X € T, M,
Qk(f)(w)p(Xl,...,Xk) =0 (Tpf (X, ..., Tpf(Xp),

where T, f (X1),..., Tp f (Xy) € TrpN.
Remark 4.1. Note that QF(f), termed the pullback of the function f, is typically denoted by f*. We opt for

the non-standard notation because it demonstrates that the pullback of a function is functorally obtained
from the original function. In addition, it avoids the proliferation of *’s that would be inevitable due to

the notation utilized to denote the pushforward of a functor.

4.1.4 Hybrid differential forms. The contravariant functor QF induces a contravariant functor:
Hy(Qk) :Hy(Man) — CoHy(Vectg).

For a hybrid manifold (.#,M),
Hy (QF) (., M) := (4, QF ),

with Q¥ (M) : .# — Vectg a contravariant functor given on objects by QX (M), = Q¥ (M,) and on morphisms
a:a— bin 4 by
Qf M, = Q*My) : QE M), — QF (M),

For a morphism (F, f) : (M ,M) — (A ,N) in Hy(Man), we have the corresponding morphism in CoHy (Vectg):
Hy(QY)(F, f) := (FOP, Q¥ () : (A, QE ) — (i, Q5 v,

where F°P : & — _# is the morphism in Dcat®P corresponding to F and Qf(f) : ﬁ*(Qf(N)) = Qf(M) in

“\/ectg. In particular, there is the following relationship

fa v LA
M, NF(a) Q" Mg) ~ Q (Nﬁ(a))
M, N: — QM) Q¥INz, )
F(a) a F(a)
fo Q*(fy)
M, Nz, ofm,) « QF Nz )
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in Man and Vectg, respectively, for every a:a — bin 4.

We are especially interested in elements of the cohybrid object (.#, Q¥ (M)).

Definition 4.1. Let (.#,M) be a hybrid manifold. A hybrid differential k-form is an element of the cohy-
brid object (., Q]*‘(M)), ie.,
@€ (M, Q% M)).

Therefore, a hybrid differential k-form must satisfy:
O Wy €E Qk(Ma), i.e, @, is a differential k-form,
o OFMy)(@p) =, foralla:a— bin /.

Notation 4.1. To simplify notation, when referring to elements of (.4 ,Qif (M)) we will often write @& €

QF (M) since we will always be considering the same D-category ..

4.1.5 Hybrid symplectic manifolds. The formulation of hybrid differential forms allows us to define
hybrid symplectic manifolds. Note that the definition of a hybrid symplectic manifold is not the most

obvious one—we do not require a hybrid differential 2-form to be objectwise a symplectic form.

Definition 4.2. A hybrid symplectic manifold is a hybrid manifold (.#,M) together with a hybrid 2-form

@ € Q%(M) such that &}, is smooth, closed and nondegenerate, i.e., a symplectic form, for all b € \V/(4).

Example 4.1. On the hybrid manifold (.« MP2!), we will consider the canonical hybrid symplectic

form, i.e., @ is specified by c?)ga“ and d)’ls’a”, which are the standard symplectic forms on R* and R?,

respectively, with
(1-)-2?11 — a—;t;an’ 0'32211 = Q2 (1)( a—;ll))all)_
A simple calculation verifies that:
2y (~bally _ ~ball =ball _ 2 npbally~ball
Q@) =dg, By, ="M, ) @),

so Definition 4.2 is satisfied and (.#P2!! MPall gbally i 4 hybrid symplectic manifold.

We are now interested in defining some elementary operations on ko).

4.1.6 Hybrid exterior derivatives. For a hybrid manifold (.#,M), the hybrid exterior derivativeis a nat-
ural transformation:

d: ko = af o
defined for all k € N. It is given on objects a of 2 by:

d,:QFm,) = oy,

where d,, is the exterior derivative on M. It follows that the hybrid exterior derivative is a hybrid linear
map, i.e., that it is objectwise linear. Moreover, if @ € Qf (M), then J((T)) € Qf“ (M) where J((T)) a= a?a (@Dga).

The hybrid exterior derivative displays the following obvious and yet important property:

124



Hybrid Geometric Mechanics

Lemmad4.l. ded=0.

In the preceding lemma, 0 is a natural transformation that is objectwise zero.

4.1.7 Hybrid wedge product. For a hybrid manifold (.#,M), the hybrid wedge product or hybrid inte-

rior product is a natural transformation:
— A —: 0% x QL o) = QF v
such that for all a € Ob(.#), the following map:
— Ra =105 Mp) x Q' M) - Q¥ (M)

is the wedge product. It follows that if @ € Q¥(M) and 7j € Q¥(M) then @A7j € QF*!(M) where (GA7), :=

Dalalig-

Hybrid wedge products and hybrid exterior derivatives are related through the following lemma.

Lemma4.2. Ford € Q],f(M) andij € Qi (M),

- - -

(@A) = d(@)Aij+ (-D*GRA),
where the addition in this expression is preformed objectwise.

To provide an example of some of the other constructions that can be carried out using cate-

gories of hybrid objects and categories of cohybrid objects, we briefly discuss de Rham cohomology.

4.1.8 Hybrid de Rham cohomology. For a smooth manifold M, the exterior derivative yields a cochain

complex in the category of vector spaces:

d d d

0 Qv d_, e —S 0" i Q' M) —= Q"N M) =——s ...

0

denoted by (Q° (M), d). Consider the linear subspaces:

Z"M) := Ker(d:Q"(M) — Q" (M)
= {weQ"(M):dw)=0}
B"(M) := Im(d:Q"'(M)— Q" (M)
= {weQ"(M):Ane Q" (M) s.t. dn) = w).

The n'™ de Rham cohomology group of M is defined to be the cohomology of the cohain complex (Q* (M), d):

Z"(M)
B"(M)’

Note that taking the de Rham cohomology of a manifold results in a contravariant functor:

HIL (M) = H"(Q" (M) =

Hyp : Man — Vectg
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defined for each n e N.
For a hybrid manifold (.#,M), the de Rham cohomology functor induces a contravariant func-
tor:
Hy(H[) : Hy(Man) — CoHy (Vectg).

That is, for a hybrid manifold (.#,M),
Hy (H) (4, M) 2= (M, HE, (VD)

is called the n'™ hybrid de Rham cohomology group of (.#,M).
Therefore, we are able to do “hybrid de Rham cohomology.” More on the homology of hybrid

systems can be found in [14].

4.2 Hybrid Lie Groups and Algebras

We are interested in studying the relationship between hybrid Lie groups and hybrid Lie algebras

via the relationship between Lie groups and Lie algebras.

4.2.1 Hybrid Lie groups. The category of Lie groups, LieGrp, has as

Objects: Lie groups, i.e., groups that are also (smooth) manifolds such that multiplication
and inversion define smooth maps,
Morphisms: Smooth maps that are also group homomorphisms.

A hybrid Lie group is a hybrid object over the category of Lie groups, LieGrp, i.e., a pair (¢, G) where
G:%4 — LieGrp.
An element of a hybrid Lie group, g € (¢4, G), must satisfy the following properties:
o g4 € G, for all objects a of ¢4,
o §y=Gg(gy) foralla:a—bin¥.

In particular, every element of (¢, G) has an inverse, g—l, defined objectwise to be the inverse of g, i.e.,

-1 = _ T |
8a "8a=€G, = 8a"8a

where eg, is the identity element of G,.

4.2.2 Liealgebras. Recall thata Lie algebra g is a vector space together with a binary operation:

[-,-l:gxg — g
X Y) — [XY],
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called the Lie bracket. This bracket must satisfy, forall X, Y, Z € g:

Bilinearity. Forall ,weR,

rX+wY,Zl = rlX,Zl+wlY,Z]
(Z, rX+wY] = rlZXl+wlZY]
Antisymmetry.
(X, Y]=-[Y,X]
Jacobi Identity.

(X, [V, Z]]+1Y,[Z,X]]1 +[Z,[X, Y]] = 0.

A morphism of Lie algebras is a linear map A: g — h such that:
A(X, Y]) = [AX), A(Y)].

We have thus defined the category of Lie algebras, LieAlg.

4.2.3 Hybrid Lie algebras. We could directly define a hybrid Lie algebra as a hybrid object over the
category of Lie algebras. We opt for a more circuitous route in order to demonstrate that hybrid objects
can often be defined using more “fundamental” information and that, in fact, the end result is the same.

A hybrid Lie algebra is a hybrid vector space (¥4, g),
g:%9 — Vecty

together with a natural transformation:

[ o = ] . g x g = g
where the product is the product of functors given on objects and morphisms by (g x g), = g, x g, and
(@xg)a =94 X 9, That s, it is the product in Vectﬁg which we know exists by Proposition A.4. In addition,

we require that for every object a of ¢, the corresponding binary operation:

(= —1ai8a%84— 84

satisfies the bilinearity, antisymmetry and Jacobi identities, i.e., it is a Lie bracket.

The following results say that this is in fact the “correct” definition of a hybrid Lie algebra:

Proposition 4.1. A hybrid object (4, g) over Vectg is a hybrid Lie algebra iff it is a hybrid object over LieAlg,

g9:% — LieAlg.
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Proof. Beginning with a hybrid Lie algebra (¥, g), it is clear that g, is a Lie algebra. Therefore, we must

only verify that g, is a Lie algebra homomorphism. This follows from the commutativity of the diagram:

[_)_]
gaxgu—‘LQa

9a X Ba [¢
[ e ]b
9p*8p —— = 9p
The converse direction is equally straightforward. O

4.2.4 ThelLiefunctor. The Lie functor is the functor:
Lie: LieGrp — LieAlg,
given on objects by associating to a Lie group G its Lie algebra:
Lie(G) = T,,G,

where T, G is the tangent space at the identity element of G. Note that Lie(G) is isomorphic to (and could

be defined as) the set of all left-invariant vector fields on G. For a morphism f: G — H,
Lie(f) := T, f : Lie(G) — Lie(H).

Note that Lie(G) is often denoted by g.

The Lie functor yields a functor between categories of hybrid objects:
Hy(Lie) : Hy(LieGrp) — Hy(LieAlg).
For a hybrid Lie group (¥, G), we will denote its corresponding hybrid Lie algebra by
Hy(Lie)(¥,G) := (4, 9),

and for a morphism of hybrid Lie groups (ﬁ , f ) : (9,G) — (S,H) we obtain a morphism of hybrid Lie
algebras:
Hy(Lie)(F, f) := (F,Lies () : (4, g) — (/,h).

We know that this is a hybrid vector space, g : ¢ — Vectg, and so an element of (¢, g), which we denote
by e (¥, g) or just e g when the underlying D-category is clear from context, is a hybrid vector (as

introduced in Example 1.21) and so must satisfy:
S fa € g, for all objects a of 4, i.e., Ea is a vector,
S fb :ga(fa) foralla:a—bin%.
In addition, we know from Example 1.21 that the set of elements of (¥, g),
Elempy(Liealg) (Y, @)

form a vector space. In fact, it is clear from Proposition 4.1 that the elements of (¢4, g) form a Lie algebra.
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4.2.5 The dual to a hybrid Lie algebra. As discussed in Example 1.22, the functor that associates to a

vector space its dual induces a functor between categories of hybrid and cohybrid objects:
Hy(( =)*) : Hy(Vectg) — CoHy(Vectg).
Through this functor we obtain the dual to a hybrid Lie algebra (¢, g), which is the cohybrid object:
(“,8"):=Hy(-)") ¥, 9.

It follows from Example 1.23 that an element of the cohybrid object (¢,g*), fi€ (4,g*) orjust fie g*, isa

hybrid covector and thus must satisfy:
o f[ig € g} for all objects a of 4, i.e., [i, : g, — Ris a covector,
o gx(fip) = fig, i.e., fipo@, =fig foralla:a— bin¥.
This implies that fi corresponds to a natural transformation ji: G - Ag(R).

Example 4.2. Returning to the bouncing ball, define a hybrid Lie group
Gball . J%ball . LleGrp

by
ball
G =R

GPall(_ggbally = ngilzidl lGE:H:id

b Gball ball _ i

tas

Gl;all — IR GEall — [R.

That s, GP¥! = A b (R). Note that in this case gP¥!' = GP¥! and (g*¥)* = A;’Zban (®).

4.2.6 The hybrid adjoint action. Let G be a Lie group and g € G. The conjunction map is defined to
be a map Iy : G — G with Ig(h) = ghg™! for h € G. Utilizing the Lie functor, we obtain a Lie algebra
homomorphism:

Adg :=Lie(lg):g — g,

which is termed the adjoint action. The functor that associates to a vector space its dual, ( —)*, yields a
morphism of vector spaces:

Ady:g* —g”
termed the coadjoint action.

The framework of hybrid objects allows adjoint and coadjoint actions to be easily generalized to

a hybrid setting. Given an element g € (¢, G), we obtain a natural transformation:

Ig:G—"G
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defined objectwise by (Iz), = Iz,. It is easy to verify that this in fact defines a natural transformation.

Utilizing the functor Hy(Lie) we obtain the hybrid adjoint action, i.e., a natural transformation:
Adg:=Lie.(I):g — g,

wherein it follows that (Adg) 4 = Adg, . Finally, utilizing the functor that associates to a hybrid vector space

its dual, Hy(( — )*), we obtain the hybrid coadjoint action, i.e., a natural transformation:
*x, Kk - *
Ad g9 g,
It follows that (Adg) = Ad;;a.

4.2.7 The hybrid isotropy subgroups. For a Lie group G, the isotropy subgroup under the coadjoint
action is given by, for p € g*,
Gu={geG:Ad,, () = .

For fi € (4,g%), define the hybrid isotropy group as the hybrid Lie group
G;:9 — LieGrp

defined on objects and morphisms of ¢ by:

(Gpa = (Ga)g,, (Gia = (Ga)lGp)a-
We must verify that:
Proposition 4.2. (¥4,Gy) is a hybrid Lie group.
Proof. We need to show that

Ad;—l (Ha) = fla = Adéa(g—1) (Hp) = fp-
Since fi € (¢4,g), i.e., g} (fip) = fig, this is equivalent to showing that:
85 (AdE (o (b)) = fa.

First note that

Adg,g 1080 = Teg,Ug,g )0 Teg, (Ga)
= Teg,Ug, (g °Ga)
= T, (Ggolg-1)
= Teg, (Ga) o Teg, (Ig-1)

= gq OAdg—l .
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This implies that
9a(Adg, o) (lp) = fpoAde,g1)°8a
= ﬁb °¢gq° Adg‘1
= ga(fip)oAdg
= Ad7 (g5 (i)
= Ad;—l (fa)
yielding the desired result. O

4.3 Hybrid Momentum Maps

We now switch our focus to hybrid reduction. Utilizing the constructions of the previous section,
we generalize reduction to a hybrid setting. In order to achieve this goal, we begin by introducing hybrid
momentum maps.

Momentum maps make explicit the conserved quantities of a Hamiltonian system. Hybrid mo-
mentum maps serve the same function, except that they define a set of conserved quantities. In order to
introduce hybrid momentum maps, it is first necessary to introduce the notion of hybrid symmetries, i.e.,
a hybrid action of a hybrid Lie group on a hybrid manifold. When such hybrid symmetries exist, along
with a momentum map, we are able to “divide” out by these symmetries to obtain the reduced hybrid
phase space.

We assume a basic knowledge of classical reduction throughout the rest of this chapter. We refer

the reader to the excellent reference [4] for any missing details.

Notation4.2. We now fix a D-category 2. We will assume that all hybrid objects have 2 as their underlying

discrete component except when discussing trajectories.

4.3.1 Hybrid group actions. For G:2 — LieGrp and M : 92 — Man, define the hybrid manifold G x M :
2 — Man as the product of G and M in Man?, i.e., on objects and morphisms:
(GxM)y:=G4xMg,, (GxM)g:=(Gg, Mg).
A hybrid group action or hybrid action is a natural transformation
d:GxM->M, 4.1)
that is objectwise a group action:
o Forall pe My, @a(ega,p) =p,

o Forevery g, heGy, d;a(g,éa(h, p) = Cﬁa(gh, p).

131



Hybrid Geometric Mechanics

We say that a hybrid group action is freeif ® is objectwise free and proper if it is objectwise proper.

For g € G, we can associate to this action a hybrid diffeomorphism (a natural isomorphism)

-

$;:M =M 4.2)

defined objectwise, for p € M, by (6g)a( p) = ﬁsa( ga, p). Since & g is a natural transformation, we have
Mg 0By (§a, ) = Bp(Ga(8a), Ma(p)), 4.3)

which is a form of equivariance; in the case when G, = G, and G, = id, this condition says that My, is
equivariant with respect to these actions.

Recall that in Definition 4.2 we introduced the definition of a hybrid symplectic manifold (M, ).

Definition 4.3. Let (M, ®) be a hybrid symplectic manifold. A hybrid action ®: G x M > M is a symplectic
hybrid action if for the hybrid diffeomorphism <_Iig M-S M,

Q2 (B)(@) =&

foreach geG.

4.3.2 Hybrid orbit spaces. For a hybrid manifold M with a hybrid group G acting on it, let M,/G, be
the orbit space of the action <f>u of G, on M; if p € M, we denote the elements of this space by [p]. Define
the hybrid topological space

M/G:2 — Top, (4.4)

defined on objects and morphisms of 2 by M/G, := M;/G, and M/Gg([p]) := [My(p)], which is well-
defined by (4.3).

Proposition 4.3. If®: G x M = M is a free and proper hybrid action, then M/G is a hybrid manifold, i.e.,

M/G: 2 — Man. Moreover, there is a hybrid submersion:
7:M-M/G.
That is, 7i is a natural transformation that is objectwise a submersion.

Proof. Define a natural transformation 7 : M — M/G by setting 7 ,(p) := [p]; this is a natural transforma-
tion since

M/Gg 07iq(p) =MIGq(Ip]) = Mg (p)] = 7Epo Mg (p).

By the definition of free and proper hybrid actions—they are objectwise free and proper—it follows that

M, /G, is a smooth manifold for every object a of 2, and 7 is objectwise a submersion.
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Therefore, we need only verify that M/G,, is smooth for all morphisms a of 2. This follows,

however, from the naturality of 7, i.e., we have the following commuting diagram

M, My M,

- =

T Tp

m/G, WSs g,

and 77, oM, is smooth so M/G, o 77, must be smooth, or M/G, must be smooth. O

4.3.3 Hybrid infinitesimal generators of hybrid actions. Suppose there is a hybrid action ®: G x M =
M. Then we can use this hybrid action to define a hybrid section of the hybrid tangent bundle of M for
every element feg.

Define the infinitesimal generator of the hybrid action ® corresponding to ieg by
Em:M = T.(M) (4.5)

which is given objectwise by

- d = =
CEma(p) = —Palexp(téa), p)
for pe M,.
Lemma4.3. &y isa hybrid section of the hybrid tangent bundle of M.

Proof. We need to show that for every diagram a:a — bin 2
T (Mg o €m)a = )b oMa-

First note that since ¢ € g, ie, g, (€4) = &p, we have (by the properties of the exponential map, cf. [79]),

Galexp(&a)) = exp(iTes, Gal(E0))
= exp(tgy(Eq)
= exp(idy).
Moreover, by (4.3),
My o®u(exp(t8a),p) = ®p(Galexp(t&a)), My (p))

= 5b(exp(t5h),Ma(P))-

Finally, for every p € M,, we have

- d . .
TpMao(fM)a(p) TpMao E[q)a(exp(téa);p)

t=0

— %(Maoéa(exp(t&),m)

t=0

d. "
= acbb(exp(tfb),Ma(P))

=0
= (Em)pMqg(p)).
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4.3.4 Hybrid regular values. Consider a natural transformation J: M -~ g*; since M is covariant and

@* is contravariant, this implies (see Table 1.2) that the following diagram

M, o (4.6)

must commute foralla:a — bin 2.
Definition 4.4. We say that ji € g* is a hybrid regular value of J if
1. fiq € g} is aregular value of J, : M, — g7 for all objects a of 2,

2. [fip=JpoMg(p) foralla:a— bin 2 and p € M, such that J,(p) = fia.

4.3.5 The hybrid manifold J-!(f). Given a hybrid regular value ji € g*, define a hybrid manifold
J7' (i) : 2 — Man 4.7)
given on objects and morphisms of 2 by
I @a:=T" ), T @a = Malprg,-
Note that there is a hybrid inclusion (a natural transformation that is objectwise an inclusion):
R (S § (4.8)

defined to be objectwise the inclusion: (i:;)a :J71 (f) g — M,.

Before continuing, we must verify that:
Lemma 4.4. J~L(fi) is a hybrid manifold if i € g* is a hybrid regular value of J.

Proof. Since we are assuming that i is objectwise a regular value, J~! (i), is a manifold. Since, J~! (fi) is
just the restriction of a smooth map to a smooth submanifold, it is also smooth. What we must verify is
that the image of this map is contained in J! (W), ie, forallpe J! (@) a, My (p) € ]'l(ﬁ)b. That is, we
need to show that for p e M,

Jap)=fa = JpMa(p)=fip.

This follows, however, from the second condition in the definition of a hybrid regular value. O
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4.3.6 Induced natural transformations. Given a natural transformation J: M = g*, for all £ € g we can

define a natural transformation:
JE M= Ag (R); 4.9)

given objectwise by
Fap) = Jap) Ea) = Ja(p) o),

for peM,.
Lemma 4.5. J¢ is a natural transformation.

Proof. Consider a diagram of the form « : a — b in 2. For p € M, we have

JpoMa(p),&p)

= UpoMa(p),84(Ea))
= (gyoJpoMu(p),&a)
= Jap.&a)

= ﬁa(p).

J My (p))

O

Definition 4.5. Let (M,®) be a hybrid symplectic manifold and @ : G x M = M a hybrid action. Define a

hybrid momentum map as a natural transformation
J:M = g*, (4.10)
such that for every e g and object a of Z:
AUt ) =1z, (@a), (411

where ¢ is the interior product on M, and & is the hybrid infinitesimal generator of the hybrid action

corresponding to E.

Definition 4.6. Let ® : G x M > M be a hybrid action of G on M. A hybrid momentum map is said to

be Ad*-equivariant under this action if for every g € G the following diagram of natural transformations

commutes:
&
M £ v M
T T
Adg,l
* *
g g
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4.3.7 The reduced hybrid phase space. Suppose that G acts on M through the hybrid action &, and let
J:M = g* be an Ad*-equivariant hybrid momentum map. Assume that ji € g* is a hybrid regular value of
J; therefore, J~1 (f) : 2 — Man is a hybrid manifold. The restriction of the hybrid action 4_38: toJ-1 (#) and
G; (also denoted by <I3§):

g0 17N @), §eGy (4.12)

is a hybrid action. In other words, if G acts on M, then G acts on J-! (ME

If G acts freely and properly on J71(ji), then
Mg := ]_l(ﬁ)/Gﬂ 19 — Man
is a hybrid manifold, and the canonical hybrid projection
A7 Hm S M =1 @ IG,

is a hybrid submersion. My is called the reduced hybrid phase space. In particular, for every a : @ — b in

2, there is a commuting diagram

M, Mo M,
(i) ()b
rl(Jﬂ)a I (H)a I_I(Jﬁ)b (4.13)
Fia @b

Mp)o = 071 (@)/Gp)a

Mp)a= 01 ({@)/Gpa Mp)p =01 (@IGp)

in Man.

Example 4.3. For our running example of a two-dimensional bouncing ball, we define a hybrid group

action by translating in the x-direction on all domains, i.e., define

q'sball . Gball « Mball - Gball

by
X+a
> y
(Dtb)aﬂ(a) (xry) px; py)) =
Px
Py
R x+b
&l (p, (x,p,)) =
Px
Zball _  zball
Cap = P
(isgiﬂl — q_stl;au|M2a“'
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Using the canonical construction of momentum maps on cotangent bundles, the hybrid momentum map
Jrat: Ml — (P2l = A% | (R) is given by:
PNy pop) =pe TN pa) = px
j’;ball _ fl;)an |M22” ]*atzau _ j’bball |M';";“ )
It follows that a hybrid regular value for this system is given by

ﬁ: (ﬁb :M’ﬁuh :Nrﬁs =Nyﬁas =IJ)y

for some p e R.
Therefore, the reduced hybrid phase space for the bouncing ball is given by Mzau 4P — Man,
which is defined by the following diagram:

¥ EIRZ:yZOandpySO
Py

Ml bl = . VA P (4.14)
Py —€Py

with R® = {0} a point.

4.4 Hybrid Manifold Reduction

We now introduce the main theorem on reducing a hybrid symplectic manifold. We begin by
reviewing the classic non-hybrid version of this theorem, originally proven by Marsden and Weinstien
[88] (also see [4, 86, 87] for a more thorough account of classical reduction), followed by a statement of the

hybrid version of this theorem.

4.4.1 Classical reduction. The starting point for classical reduction is a Hamiltonian G-space,
(M,0,0,])),
where
o (M, w) is a symplectic manifold,
o ®:Gx M — M is a symplectic action of a Lie group on M,
o Jis an Ad*-equivariant momentum map for this action.

Under these conditions, the classical reduction theorem [88] reads:
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Theorem 4.1. Let (M,w,®,]) be a Hamiltonian G-space and u € g* be a regular value of ]. If the action of
Gyon]J ~Y(w) is free and proper, then M, =] L/ Gy has a unique symplectic form w,, with the property:

Q% () (wp) = Q2 (i) (),
wherem,, : J~1(u) — My, is the canonical projection and iy, : ]~ (1) — M is the inclusion.

The hybrid reduction theorem will nicely mirror and utilize this theorem. There also is an in-
triguing connection between the classical reduction theorem and hybrid symplectic manifolds; this the-

orem implies that the following hybrid manifold
i 7
M «—Fs I\ AL M,
is a hybrid symplectic manifold.

4.4.2 Hybrid Hamiltonian G-spaces. Utilizing the framework developed thus far, we can prove a hy-
brid version of Theorem 4.1. First, we note that the necessary information in order to generalize this

theorem is a hybrid Hamiltonian G-space, i.e., a tuple
M, 3, P, )),
where
o (M, @) is a hybrid symplectic manifold,
¢ ®:GxM =M is a symplectic hybrid action of a Lie group on M,
o Jis an Ad*-equivariant hybrid momentum map for this hybrid action.

For such a hybrid Hamiltonian G-space, we can reduce the dimensionality of M through hybrid reduction.

This is done by utilizing the classical reduction theorem through the observation that
My, &, Dp, Jp)

is a Hamiltonian Gj-space for every b € V(2).

Before stating the theorem, recall that for a morphism of hybrid manifolds f ‘M -SN,
Q2(H): Q2N - 2w,
which is the natural transformation obtained from applying the functor Hy(Q?) (see Paragraph 4.1.4).

Theorem 4.2. Let (M,d,®, ]) be a hybrid Hamiltonian G-space. Assume i € g* is a hybrid regular value of
J and that the hybrid action of G; on J=1(fi) is free and proper. Then My has a unique hybrid symplectic
form &5 with the property:

Q2 (79 @) = Q2 (i) (@).
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Proof. The goal is to define a hybrid symplectic form @; on M. To do so, we first note that it follows from
the definition of (M, @, ®, J) that, for all b e V(2),

My, &p, Dp, Jp)

is a Hamiltonian Gy,-space, [ij, is a regular value of fb, and the action of (Gg)pon J-! (fi)p is free and proper.

Therefore, for b € V(2), define (@), to be the unique symplectic form satisfying:
Q2@ (@) p) = Q2 () (@)

For a € E(2) there is a diagram of the form

Sa

cod(s,) < a —ta cod(ty) (4.15)

in 2. To complete the description of @, define (&) 4 by the requirement that
Qi (M[j)sa ((ﬂ_jﬁ)cod(sa)) = (@ﬁ)a = Qi (Mﬁ)ta ((a_;ﬁ)cod(tu))'

To complete the proof, we must show that @ is well-defined and unique. Uniqueness clearly
follows from the uniqueness of (&) cod(s,) and (@z)codt,) and the definition of a hybrid symplectic form.

Therefore, we must only show that it is well-defined, i.e., that

Q5 Mp)s, (@) cods,) = 22 Mpt, (@) codt,)

for all a € E(9).

For the diagram (4.15) in 9, because the diagram in (4.13) commutes, we have that the diagram:

Msa Mta
Mcod(su) M, Mcod(ta)
(?ﬁ)cod(sa) (Z;I)a (;ﬁ)cod(ta)
U _l - U _1 - U
1, J7H (@), 1, 17 (), 1.

J 1(#)cod(sa) J l(ﬂ)a J l(ﬂ)cod(ta)
(ﬁﬁ)cod(sa) (ﬁﬁ)a (ﬁﬁ)COd(ta)
(Mp)s, (Mp)s,

(M) cod(s,) Mp)a (Mp) codit,)
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commutes in Man. The commutativity of this diagram implies that the following diagram:

Q% (M)s, Q% (M),

Q% (M) cods,) Qi (M), Q% (M) codey

Q2 (i) cod(s) Q% (ig)a Q2 (i) cod ()

Q2071 (f@))s, Q207N (@),

Q207N (@) codss,) Q207 (@) Q207 () cod(t,)

2= 2= 2=
QL (T i) cod(sy) QLT Q5 (T @) cod(ty)

Q2 (Mp)s, Q2 (Mp)y,

Q% Mp) cods,)

Q2(Mp)q Q% Mp)codt,)

commutes by the functorality of Q?. The commutativity of this diagram implies that for the symplectic

form (d;ﬁ)cod(sa)»

Q% (1) a° 2 Mp)s, (@codis,) = QEOHEs, © Q2 (7 ) codis,) (@) codis,)

Q507 (@)s, 0 Q% (i) cod(s,) @cods,)

Q% (i) a 0 QF M)s, (Beod(s,)-

A similar calculation shows that for the symplectic form (@z)codt,),
Q% () a© Q2 Mpt, (B codity) = Q2 (i) a © Q5 My, @eod(r,))-
Because @ is a hybrid symplectic form:
Q% M)s, (@cod(s,) = 22 M, Beod(e,)>
which implies that
(a0 0 Mps, (Bp)codis,y) = % Fa © Q% Mpde, (Fp)code)-

By Proposition 4.3, ﬁﬁ is a hybrid surjective submersion, i.e., (7% [i)a 1S a surjective submersion. Therefore,

the following lemma completes the proof. O
Lemma 4.6. If7: M — N is a surjective submersion, then QX (1) is injective.

Proof. Let w,0' € Qk(N), g€ Nand 1,---, Y, € T;N. Because 7 is surjective, there exists a p € M such

that (p) = g. Because 7 is a submersion, there exists Xj, -+, Xy € T, M such that T, (X;) = ¥;. Therefore, if

140



Hybrid Geometric Mechanics

QF(m) () = QF (1) (@),

wg(V1,+, ) = QFm)pXi,, Xx)
= Q"W X1, -, Xp)
= w’q(yl,...,yn)
as desired. O

4.5 Hybrid Hamiltonian Reduction

The hybrid reduction theorem (Theorem 4.2) only gave conditions on when the phase space of a
hybrid system can be reduced. In practice, we are interested in reducing the dynamics of a hybrid system.
That is, we want to understand how to reduce hybrid Hamiltonians. This yields a method for reducing

hybrid systems.

4.5.1 Classical Hamiltonian reduction. Before discussing how to reduce hybrid Hamiltonians, and
hence hybrid systems obtained from hybrid Hamiltonians, we review the classical Hamiltonian reduc-
tion theorem (cf. [4]). The setup for this theorem is a Hamiltonian G-space (M,w,®, J) satisfying the
assumptions given in Theorem 4.1.

A Hamiltonian systemis a tuple (M, w, H), where (M, w) is a symplectic manifold and H: M — R
is a Hamiltonian. From the Hamiltonian H, we obtain a vector field Xy defined by d(H) = tx,, (w). That is,
associated to the Hamiltonian system (M, w, H) there is a dynamical system (M, Xp), or an object of Dyn.
Recall (see Definition 2.4) that a trajectory of (M, Xyy) is an object (Z,d/dt) of Interval(Dyn) together with a
morphism of dynamical systems:

c:(l,d/dt) — (M, Xg).

In other words ¢(f) = Xp(c(#)). The initial condition of such a trajectory is c(f).

A Hamiltonian H : M — R is said to be G-invariantif for the action ®: G x M — M,
Ho®(g, —)=H.
for all g € G. From a G-invariant Hamiltonian, we obtain a Hamiltonian H, on M,, defined by the require-
ment that it make the following diagram

i
T 'w —+— M

Ty H

H,
L

My
commute. The end result is reduced Hamiltonian system (M, w,, Hy,), for which we have an associated

dynamical system (My, Xp,). We denote trajectories of this dynamical system by

cu: (I, d/dt) — (My, Xp,,).
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The classical Hamiltonian reduction theorem (cf. [4] and [88]) relates trajectories of (M, Xp) and
trajectories of (My, Xp,). We state this result in a slightly different formulism, although it is equivalent to

the standard result.

Theorem 4.3. Let (M,w,®,]J) be a Hamiltonian G-space satisfying the assumptions given in Theorem 4.1.
If H is a G-invariant Hamiltonian and c : (I,d/dt) — (M, Xy) is a trajectory of (M, Xy) with c(ty) € J~*(w),
then

c:(I,d/d) — U~ (1), Xu)

and there exists a trajectory ¢ : (I,d/dt) — (My, Xp,) of (My, Xn,) defined by the factorization:

Cu
(I,d/dt) (My;XHﬂ)

Cc Ty

U Hw, X
Remark 4.2. In Theorem 4.3, it would have been more accurate to write (]‘l(u),XHI ]_1(”)) instead of
( ]’l(p),XH). We opted for the latter notation as it is clear from context that, in this case, Xy must be

restricted to take values in J~1 (W).

We now establish the necessary groundwork needed in order to establish the hybrid analogue
of Theorem 4.3. We begin by defining hybrid Hamiltonians. In doing so, we again make explicit the D-
category associated with hybrid objects, e.g., we will now denote the hybrid manifold M by (.#,M). The

motivation for this is that we are once again interested in trajectories.
Definition 4.7. A hybrid Hamiltonian H on a hybrid manifold (.#,M) is defined to be a set of maps:
H= {Hq . Mq b R}qgv(ﬂ).

A hybrid Hamiltonian systemis a tuple (4, M, &, H), where (.#,M, @) is a hybrid symplectic manifold and
H is a hybrid Hamiltonian.

Example 4.4. For the bouncing ball hybrid manifold (.# ball pbally ongider the hybrid Hamiltonian
gball — {leallyHls)all}'

where

L2+ p2+ mgy
2m Y ’

1 2
om P

Hll;all (xr y) ,Dx; py)

HY (x, )

The bouncing ball hybrid Hamiltonian system is given by
(J%ball Mball a—;ball Hball)

where @' is the hybrid symplectic form given in Example 4.1.
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4.5.2 G-Invariant hybrid Hamiltonians. Let (.#,G) be a hybrid Lie group acting on the hybrid mani-
fold (.#,M) through the hybrid action:

(Id, ®) : (M,GxM) — (M, M).
A hybrid Hamiltonian H is said to be G-invariant if
Hqo®4(g,-) =H,

forallge G, and ge V(A4),ie, Hyis Gg-invariant forall ge V(4).
Under the assumptions of Theorem 4.2, if H is a G-invariant hybrid Hamiltonian on (.#,M),

then there is a hybrid Hamiltonian
Hp={Hpg: Mp)g — Rlgevin

on M defined by requiring that the following diagram commute:

_ N (;ﬁ)q
J l(ﬂ)q — My

(T@)q Hy

(H[j)q R

M),

for all g € V(). This defines a hybrid Hamiltonian system (.4 Mg, cT)ﬂ, Hp).

4.5.3 Trajectories of hybrid Hamiltonian systems. From a hybrid Hamiltonian system (.#,M, ,H)
we obtain a (categorical) hybrid system:
('M!M’XH))

where X is the collection of vector fields given by Xy = {(Xn) 4} gev (1), With (Xg) 4 defined by the require-

ment that

d(Hq) = t(XH)q (d)’q)

Similarly, we obtain a hybrid system (.# ,Mﬁ,XHﬁ) from the hybrid Hamiltonian system (.#,M ) d’)ﬁ, Hp).
Note that (/4,M,Xy) and (A ,Mﬁ,XHﬁ) do not correspond to “classical” hybrid systems unless
we make certain assumptions on the hybrid manifold (.#,M), i.e., that it is of the form (.#,M*) (see Para-
graph 2.1.2, Proposition 2.1 and Proposition 2.2).
Recall from Definition 2.7 that a trajectory of the hybrid system (.#,M, Xy) consists of an object
(#,1,d/dt) of Interval(HySys) together with a morphism of hybrid systems:

(C,0): (£, L,d/dt) — (4, M,Xg).

The initial condition of such a trajectory is (C(0), & (7)) with & (7o) € M¢()-
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Example 4.5. For the bouncing ball, the reduced hybrid Hamiltonian is given by:
ball _ ¢ gyball ball
H;™ = {H;)p, (H; sl

where

1 2 N 1 5
— m — ,
2mpy 8y 2m'u

L
omt

H (0, py)

HY50)

From this we obtain the reduced hybrid Hamiltonian system:
ball yaball ~ball gyball
(-/% ’ Mp’ ’ wﬁ ’ Hﬁ )y

where &)»Ball is the “canonical” symplectic form on the reduced phase space (.# ,Mgau). From the reduced

hybrid Hamiltonian system, we obtain the reduced hybrid system:
ball prball yball
(M X5,
where Mzau is defined as in (4.14) and
X = (M, )

with

&MNphpy) = —

|
S|~
—_—
|
33
oQ
~_—

x55(0)

I
e

Therefore, the reduced hybrid system is exactly the hybrid system modeling a one-dimensional bouncing

ball which stops bouncing once the Zeno point is reached.

We now demonstrate that the “dynamics” of H determine the corresponding “dynamics” of Hy

in the hybrid analogue to Theorem 4.3.

Theorem 4.4. Let (M,®,®, ]) be a hybrid Hamiltonian G-space satisfying the assumptions of Theorem 4.2.
IfH is a G-invariant Hamiltonian and ¢, 0 : (#,1,d/dt) — (4, M, Xy) is a trajectory of (4 ,M,Xy) with
50 (TO) € I_l (ﬁ)c‘(o)’ then

(€,0): (#,L,d/dt) — (i, ({1), Xn)
and there exists a trajectory (, Eﬁ) (£, Ldldt) — (AL ,Mﬁ,XHﬂ) of (M ,Mﬁ,XHﬁ) defined by the factoriza-
tion:

(C, &)

4

(#,1,d/dt) (./M,Mﬁ,XHﬁ)

(€, 0 Aﬁﬁ)

78 B (1B N
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Proof. We must first show that for a trajectory
€,0: (7,1, d/db) — (4, M, Xn)

Of(‘/ﬂerXH))
cao) e g = (C0:(,1dIdD) — (4, (), Xn).

It is enough to show that
Q@) el M (Meg = (€0:(I,D— (I (@). (4.16)
This would imply that & (7;) € J~1(f5) ¢(i) and by Theorem 4.3 we know that
G Wy = &:;,d/d) — 07 (@) Keggp)

forall i e V(.%).

To show (4.16), it is clearly sufficient to show:
Gamic) eV M ey = Ga)el  (@ay) (4.17)

for i —1,i € V(#); (4.16) would then follow from Theorem 4.3. Assuming that ¢;_;(7;_1) € I_l(ﬁ)é(i—l)

(hence, assuming that ¢;_1 (¢) € J~1 (ji) -y forall £ €1;-1), we need to show that for every diagram of the

form
i—-1 ﬁ ei=(i—-1,0) tel—» i
in.#,
Jeion @ @) = figi_y, = Jé(en Ce; @) = fige (4.18)
= Jew @@ = By

First note that because ¢ is a natural transformation, the diagram

Is, =t L, =1t
L ~— =1, — L
Ci1 Ce; Ci
MC’(sel) Mc’(tei)
Mgy ~— Mg, — Mg

commutes.
. - * * R _ . . T .
Since fi € g™, we know that gé(sei)(pc(i_l)) = fi¢g(,- BY the naturality of J, i.e., because of the

commuting diagram given in (4.6),

J6(ep) (Ce; (1)) Ui Mg, ) (e ()

(]G(ifl] (Ei—l (Tl)))

*
8¢

*
8.y
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Since we are assuming that fi is a hybrid regular value of J (Definition 4.4), we have that:
jC-"(ei)(Eei (Ti)) :ljé(ei) = ﬁé(l) :jé(i) (Mé(tei)(gei (Tl))) :jé’(i)((_f"i(":i))-

Therefore, (4.18) coupled with the naturality of ¢ implies (4.17), which in turn implies (4.16).

Now, we need to show that
(g, ) 2 (0,771 (), Xu) — (M, Mg, Xn1,)
is a morphism of hybrid systems. Theorem 4.2 implies that
Ud., ) : (T (E) — (M, M)
is a morphism of hybrid manifolds, so we need only show that
GEa)p: 07 (@) p, Xe)p) — (Mp)p, Xer)p)

is a morphism of dynamical systems for all b € VV(.#), but this follows from Theorem 4.3.

Finally, it follows from Lemma 2.1 that
(C, &) = (dg, i) 0 (C,0): (#,1,d/dt) — (M, My, Xn,)

is a trajectory of (., My, Xu,).
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Chapter 5

Zeno Behavior & Hybrid Stability Theory

Zeno behavior is a phenomena that is unique to hybrid systems; it has no counterpart in dis-
crete or continuous systems. It has remained relatively unexplored over the years—before the work of the
author [18] there were no sufficient conditions for the existence of Zeno behavior in general hybrid sys-
tems. This is a byproduct of the fact that to determine whether Zeno behavior exists in a hybrid system,
the vector fields on each domain must be solved for explicitly. Since this generally is not possible, finding
sufficient conditions on the existence of Zeno has remained an open problem in the hybrid systems com-
munity, at least in the case when the vector fields on each domain are nontrivial, i.e., when they are not
constant vector fields.

It is only through a necessary paradigm shift in the study of hybrid stability that we are able to
provide a remedy. It is only through the use of categories of hybrid objects that we are able to provide
sufficient conditions for a general class of hybrid systems.

Zeno behavior can be likened to stability, in that its existence implies a type of convergence; the
convergence is to a set, termed a Zeno equilibria, that is invariant under the discrete dynamics. Super-
ficially, this is where the similarities end, e.g., each element of the Zeno equilbria set cannot be a zero of
its corresponding vector field. Motivated by the peculiarities of Zeno equilibria, we consider a form of
asymptotic stability that is global in the continuous state, but local in the discrete state. We provide suffi-
cient conditions for stability of these equilibria, resulting in sufficient conditions for the existence of Zeno
behavior.

Regardless of, or because of, the unique nature of Zeno equilibria, they can arise in many sys-
tems of interest, e.g., mechanical systems undergoing impacts. The convergent behavior of these systems
is often of interest—even if this convergence is not to “classical” notions of equilibrium points. This mo-
tivates the study of Zeno equilibria because even if the convergence is not classical, it still is important.
For example, simulating trajectories of these systems is an important component in their analysis, yet this
may not be possible due to the relationship between Zeno equilibria and Zeno behavior.

An equally important reason to address the stability of Zeno equilibria is to be able to assess the
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existence of Zeno trajectories. This behavior is infamous in the hybrid system community for its ability to
halt simulations. The only way to prevent this undesirable outcome is to give a priori conditions on the ex-
istence of Zeno behavior. This has motivated a profuse study of Zeno hybrid systems (see [33, 59, 69, 119]
to name a few) but a concrete notion of convergence (in the sense of stability) has not yet been introduced.
As aresult, there is a noticeable lack of sufficient conditions for the existence of Zeno behavior.

The main contribution of this chapter is sufficient conditions for the stability of Zeno equilibria.
As a byproduct, we are able to give sufficient conditions for the existence of Zeno behavior. The categori-
cal approach to hybrid systems allows us to decompose the study of stability into two manageable steps.
The first step consists of identifying a sufficiently rich, yet sufficiently simple, class of hybrid systems em-
bodying the desired stability properties: first quadrant hybrid systems. The second step is to understand
the stability of general hybrid systems by understanding the relationships between these systems and first
quadrant hybrid systems described by morphisms (in the category of hybrid systems).

In this vain, we devote some effort to the introduction of first quadrant hybrid systems, demon-
strating in a step-by-step fashion how to transform these systems into categorical hybrid systems. We
then study a special class of first quadrant hybrid systems, diagonal first quadrant hybrid systems, giving
sufficient conditions for the existence of Zeno behavior in systems of this form. The techniques employed,
while not immediately generalizable, indicate a fundamental connection between stability and Zeno. We
then proceed to study general hybrid systems, and Zeno equilibria, through the use of categories of hybrid
objects and thus solidify the connection between stability and Zeno behavior. We conclude the chapter
by indicating how it is possible to “go beyond” Zeno, i.e., carry trajectories past a Zeno point, in a simple

class of hybrid systems: Lagrangian hybrid systems.

Related work. There has been a rather profuse study of Zeno equilibria (see [48, 59, 68, 69, 103, 104, 118,
119], to name a few), yet a concrete notion of convergence (in the sense of stability) has not been formally
introduced (except in [18], on which this chapter is based). The author has explored this relationship in
some limited contexts, namely in [7] where diagonal first quadrant hybrid systems were studied, and [12]
where the geometric “stability preserving” regularization of a class of hybrid systems was considered; in
fact, the latter paper first introduces the notion of a Zeno equilibria, albeit a special case thereof. In addi-
tion, the author has studied the relationship between Zeno behavior and the topology of hybrid systems
in [13] and [14]. Finally, methods for carrying executions past the point(s) at which Zeno behavior occurs
has been studied in [19] and [121].

While the convergent properties of Zeno equilibria have not been well-studied, the stability of
hybrid and switched systems has. We refer the reader to [32, 33, 34, 35, 52, 80, 81, 94, 120] for some of the
approaches taken. While our approach is essentially different, there are analogies that can be drawn. For
example, common to the study of stability of hybrid systems is the idea of multiple Lyapunov functions
[34]. In fact, we arrive at a similar construction in Theorem 5.5, where the morphism between hybrid
systems can be viewed as a “hybrid Lyapunov function” and, as such, consists of a collection of Lyapunov

functions.
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5.1 Zeno Behavior

This section is in many ways unorthodox in that it is more discussional in nature. We begin
by reintroducing the definition of Zeno behavior, distinguishing different ways in which this phenomena
can occur. We then illustrate how this Zeno behavior can occur in practice—with devastating results. The
section is concluded with a discussion on the prospects of obtaining necessary, sufficient and necessary

and sufficient conditions for the existence of this behavior.

5.1.1 Zeno trajectories. However one chooses to represent a hybrid system, either as a tuple
$H=(Q,ED,GRX),

or categorically,

= (4, MX),
Zeno behavior is necessarily a factor. Since it is a property of the trajectories (or executions) of a hybrid
system, pick a representation of these trajectories, i.e., either:

e=(A\1,p,0),
or:

(C,0): (s, Ld/dt) — (U M,X).

In either case, suppose that
Ii=lr;Tin] if ieA
Ii=[t,1i] if eV

Since V(.#) = A, recall that Zeno behavior is defined as follows:

Definition 5.1. A trajectory of a hybrid system §) is Zeno if \V(.#) = N and
o0
Y @i —T) =Too
i=0

for some finite constant 7., termed the Zeno time.

A hybrid system is Zeno if it admits a Zeno trajectory, i.e., if there exists an trajectory ¢ that is

Zeno.

5.1.2 Zeno Behavior in practice. Zeno behavior is sometimes referred to as pathological. While this
is justified in that it does not seem to appear in nature, it certainly appears often enough in practice to
warrant fervent study. We believe that it is justified to argue this point, hopefully addressing the concerns
of any naysayers.

A strong motivation for studying hybrid systems is that they can greatly simplify models of com-

plex dynamical systems; Zeno behavior can often arise out of such simplifications. It is often argued that
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Ded& 0w [Nomal B »

IRunning 100% HEREEN [7=20.358

Figure 5.1: Zeno behavior that effectively makes a program (Matlab) halt.

if Zeno arises is such a case, the model is wrong—maybe a hybrid model is not the right one. Rather than
“throwing the baby out with the bath water,” the author believes that it is better to understand the role of
Zeno behavior in hybrid systems in order to more effectively deal with the phenomena. To those who are
not in agreement, a simpler rebuttal is: in order to modify Zeno models so that they are no longer Zeno,
one must first detect that they are Zeno. Hence we are back to our initial claim: Zeno behavior needs to be
properly understood.

One may now argue that Zeno behavior does not appear often enough to be an interesting phe-
nomena. Yet, as was seen in Chapter 3, mechanical systems undergoing impacts are naturally modeled
as hybrid systems; if systems of this form loose energy at each impact, they will tend to display Zeno
behavior. If the category of all mechanical systems undergoing impacts does not provide a large enough
example of systems that can display Zeno behavior, one can rest assured that there are more. For example,
hybrid models of communication networks display Zeno behavior (cf. Figure 5.2), as illustrated in [2].

After hopefully convincing the reader as to the necessity of studying Zeno behavior, it is impor-
tant to remark on how it manifests itself. To provide a quintessential example, if one runs the bouncing
ball example in Matlab’s Simulink for 25 seconds (rather then the default 20 seconds) the simulation will
never finish; see Figure 5.1. Zeno behavior makes a simulator effectively halt. This implies that the ex-
istence of such behavior can have catastrophic effects on the simulation—hence verification—of hybrid
systems. If it were possible to detect the existence or non-existence of this behavior a priori, it could have

far-reaching effects.

5.1.3 Types of Zeno. The definition of a Zeno trajectory results in two qualitatively different types of

Zeno behavior (as first introduced in [13]); they are defined as follows: a Zeno trajectory is
Chattering Zeno: If there exists a finite C such that
Tit1—7;=0

foralli=C.
Genuinely Zeno: If
Ti+1—T;i>0

forall i e N.
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Figure 5.2: An example of Genuine Zeno behavior (left). An example of Chattering Zeno behavior (right).

There are obviously more characterizations of Zeno behavior—ones that could go beyond simple condi-
tions on the differences between successive switching times. This will be discussed in more detail after
we illustrate the differences between chattering and genuine Zeno behavior, which is especially prevalent
in there detection and elimination.

Chattering Zeno trajectories (cf. Figure 5.2) result from the existence of a switching surface on
which the vector fields “oppose” each other; for this reason they are easy to detect (simply look at the
orientation of the vector fields along the guards). In addition, they can be eliminated in a fairly simple
manner. Filippov solutions can be defined on these surfaces in order to force the flow to “slide” along the
switching surface [50]. Later in this chapter we will generalize this technique to extend genuinely Zeno
executions past the Zeno point.

Genuinely Zeno trajectories (cf. Figure 5.2) are much more complicated in their behavior. The
only methods currently available to detect the existence of trajectories of this form can be found within
this chapter. Very little has been done in the area of eliminating these executions, although there have
been some results [12] and [69], again for a special class of hybrid systems.

To better understand why this is the case, recall that the bouncing ball is, in fact, globally (minus
the origin) genuinely Zeno (if 0 < r < 1), i.e., every trajectory is Zeno. Recall from Example 2.17 that the

the Zeno time for the bouncing ball is given by:

0o X2+ (1-28)\/28x1+x5 oo \/28x1+X5
ghall _ 3 (gball _ pbally £y 2 i
i=0

: r.
i+1 i
g i=0 8

For a geometric sequences {ar’};en, recall that picking initial conditions x; = a? g/8 and x, = 0 for a tra-
jectory of the bouncing ball yields:
hall _ la(l—z i
o =% g+ Z ar’ |,
2 i=0
where the expression on the right is positive if a is positive and negative if a is negative. This implies

that even for one of the simplest examples of a hybrid system—the bouncing ball—the switching times
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effectively yield any geometric series.!

Therefore, to completely characterize the switching times of Zeno trajectories, it is reasonable to
suspect that one would need to effectively characterize all series and the convergence properties thereof.
This is assuming that one were able to solve for the switching times—something that is not even possible
for linear hybrid systems since it involves solving transcendental equations. All of this hints at the com-
plexity of Zeno behavior—determining conditions on the existence or non-existence of Zeno behavior is

a formidable task that will take serious and concerted effort.

5.2 First Quadrant Hybrid Systems

This section is devoted to the study of first quadrant hybrid systems, categorical hybrid systems,
and their interplay. We begin by defining first quadrant hybrid systems; these systems are easy to under-
stand and analyze, butlack generality. Yet, they are very useful for understanding Zeno behavior in general
hybrid systems. The connection between these two types of systems—first quadrant hybrid systems and
general hybrid systems—is achieved through the use of morphisms of hybrid systems. Therefore, we be-
gin by introducing first quadrant hybrid systems using the classical notation for hybrid systems. We then
proceed to demonstrate, in a step-by-step fashion, how to obtain a categorical representation of these

systems.

5.2.1 First quadrant hybrid systems. First quadrant hybrid systems are hybrid systems which can be
viewed as the “simplest” hybrid systems that display Zeno behavior.

A first quadrant hybrid system, or just FQ hybrid system, is a tuple:
Hrq=T,D,G,R,X),
where
o I'=(Q, E) is a directed cycle, with

Q= {17---1k}) E= {el = (1)2)) € = (2)3))"'761(3 = (kyl)}-

o D=1{D;}ieq, where forall i € Q,

X
Diz(Ra’)zz ! €ER?:x;=0and x, =0},
X2
hence the name “first quadrant.”
o G ={G,lecg, Wwhereforall ee E
X1 2
G, = eER“:x;=0and x, =0
X2

1As a side note, our proof later in this chapter that the bouncing ball is Zeno does not rely on the convergence of geometric series,
and so we prove, independently, that geometric series converge (when 0 < r < 1).
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Figure 5.3: The hybrid system ﬁggl.

¢ R={Re}ec, where R, : G, — (R} )2 and for all e € E there exists a function r, : Ry — Ry with

Te(x2)
Re(x,x0)=| ° 2

X1

¢ X = {X;}ieq, where X; is a Lipshitz vector field on (R})?.

Remark 5.1. We could consider higher dimensional FQ hybrid systems, but this would add complication

without generality.

Example 5.1. We will transform the bouncing ball hybrid system introduced in Example 2.1 into a first
quadrant hybrid system:
ball _ yball yball ~ball pball y-ball
ﬁF% _(ra:D )G yRa)X )

by dividing the original domain into two components, and changing the vector fields accordingly.
We first define I'P!! to be the directed cycle:
1 —*2

——

(=)

Since f_)%ﬂ will be a first quadrant hybrid system, the domains and guards must satisfy the conditions
given in Paragraph 5.2.1. In the case of the bouncing ball, the domain D}’a” is obtained from the top half
of the original domain for the bouncing ball by reflecting it around the line x; = x,. The domain Dga“ is

obtained from the bottom half of the original domain by reflecting it around the line x, = 0. This implies
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that the reset maps are given by?

X2 exXo
R (x1, %) = . R, x) =
X1 X1
Finally, the transformed vector fields are given by
XD (xy, 20) = , X0, xp) =
X1 g

A graphical representation of this system can be seen in Figure 5.3.

5.2.2 Categorical FQ hybrid systems. We now proceed to show, in a step-by-step fashion, how to ob-
tain a categorical FQ hybrid system (.2, M"Q XFQ) from a first quadrant hybrid system Hrq-
The graph for a FQ hybrid system is given by a directed k-cycle graph:

14,

e e
k 3
i+2 i—1
€i+1 €i-1
\. e; /
i+1 < I

Therefore, the associated D-category, .4, is given by:

e
ek Se te e
te, Se,
Se\ 1 2 te,
k 3
i =
i+2
te,/( i+1 i
/ »
€it1 e te; Se;
e;

The hybrid space of $gq is the tuple (I', D,G, R). Therefore, as outlined in Proposition 2.1, the
hybrid manifold associated to $gq is given by the pair (.#F2 MFQ) where MFQ is the functor defined on

“«, n “«.»

2Note that we do not denote the coefficient of restitution for this system by “e” and not “r” due to the notation used to define FQ

hybrid systems.
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MFQ by

Ge,

Ge, %‘ l R / Ge,

\ Dy D> Re,
Dy Ds
MEQ ( ./”FQ) —
D> D
Re;., Dii1 D; 1
/ %

Ge, l RX 1 Re,.. Ge, ,

Ge;

Finally, the categorical hybrid system associated to $gq is given by
("M X,

where XFQ = {X;} iev(«FQ)=q- This categorical hybrid system can be visualized graphically as follows:

G,
Ge, w‘ 1 Re, / Ge,
\ (X1,D1) (X2, D») A
(Xx, Dy) (X2, D3)
(J%FQ’MFQ’XFQ) —
(Xi+1,Di+2) (Xi-1,Di-1)
R@/ (Xis1.Div) (X0 Dy) \
Gery — Re l ‘R\ Ger s
Ge,

1

ball

FQ We will transform this

Example 5.2. Returning to the first quadrant bouncing ball hybrid system, §)

hybrid system into a categorical hybrid system

(J%ball, Mball,Xball) .
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The D-category associated with I'®2! is given by

(4]

sel tel

Y D 2

/
N

€2

together with the identity morphisms on each object. The functor
Mball . ﬂball — Man

takes the following values:

Mball Gball
SaV MEau Rball
el €]

Mball_ggbally - Mball Dball Mball Dball

ball ball ball
Mte2 x A =1

Mball Gball
Finally, the collection of vector fields X" is given by:

Xball {X:)a }IEV(J%baH) Qball {X})all; X;an}-

5.3 Zeno Behavior in DFQ Hybrid Systems

Diagonal first quadrant (DFQ) hybrid systems are a special class of first quadrant hybrid systems
that have diagonal affine vector fields on each domain. It is this restrictive class of hybrid systems that we
will now consider. The main impetus for this is that these hybrid systems have sufficiently interesting
dynamics, in that they are not trivial, while remaining amenable to analysis. Studying these systems will
yield important intuition about Zeno behavior.

The main result of this section is sufficient conditions for the existence of Zeno behavior in DFQ
hybrid systems. Given certain assumptions on a diagonal first quadrant hybrid system, we construct an
infinite execution for this system. To this execution, we associate a single discrete time dynamical system
that describes its continuous evolution. Therefore, we reduce the study of executions of diagonal first
quadrant hybrid systems to the study of a single discrete time dynamical system. We obtain sufficient
conditions for the existence of Zeno behavior by determining when this discrete time dynamical system

is exponentially stable.
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Definition 5.2. A diagonal first quadrant hybrid system (DFQ hybrid system) is a FQ hybrid system
$Horq = T'=(Q,E),D,G, R, X)
such that
o re=idforall e€ E.

o X = {Xy = Agx + aglqeq is a set of diagonal affine linear systems, i.e., ag € R* and A, € R**? is a

diagonal matrix for every g € Q.

Notation 5.1. To avoid the proliferation of subscripts, we denote the i" entry of ag by af,. Similarly, the

)th

(i,1)™ entry of A4 is denoted by AL; this is just the i eigenvalue of Ag.

5.3.1 Trajectories. Because of the special form of the vector fields for a DFQ hybrid system, we can
explicitly solve for trajectories. A trajectory of the dynamical systems ([R?Z,Xq) with initial condition c(f),
c:(I,d/dt) — R? Xy),
with f the left endpoint of , is given by:
c(t) = (exp(Aq(t— 10)) — DA, ag+exp(Aq (1 — fp)) c(to),

which is well defined even if A4 has zero eigenvalues; in the case when A, = 0, this expression becomes

c(t) = (t - fp) aq + c(fp), or this is the flow of the constant system X, = a,.

5.3.a Event Detection

Discrete transitions in a hybrid system occur when there is an event—that is when the flow hits
the guard. In this section we determine when an event exists for some domain and initial condition of a
DFQ hybrid system, and we explicitly solve for the time in which this event occurs. These conditions are

important because when they are satisfied, it is possible to construct an execution.
5.3.2 Existence of events. For some x € Dy, we say that there exists an event if for a trajectory
c:(I,d/dH — R? X,)

of (IRZ,Xq) with initial condition c¢(fy) = x, there exists a finite Az(x) = 0 such that

@ a(tg+At(x)=0
(ii) () =0 Vel o+ At(x)].

The first condition says, in the context of DFQ hybrid systems, that the trajectory c(t) reaches the guard

of D, at time # + At(x). The second condition says that

c: (lto, to + At(x)],d/dt) — (Dg, X) = (R X,),
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is a morphism of dynamical systems, i.e., ¢ is a trajectory of (Dg, Xj).
In the case of DFQ hybrid systems, we can give conditions on when events exist. The first two

components of a trajectory of ([RZ,Xq), with initial condition c(fp) = (x1, x2) 7, is given by

(exp(Ay(t— 1) =1)

ca(t) = /111 a},—kexp(/l;(t—tg))xl,
(exp(A3(r—1p)) — 1)

o) = —2l — az +exp(A5 (£ — 1)) Xz

’167
There exists an event if
Atg(x1) L 1 a}, ) (6.1)

tg(x1) = —log| ——7— .
a Ay a,17+/1}7x1

is finite and positive (possibly zero) and

(exp(AZ (1= 1)) =1)

2
/lq

2
q

az+exp(As(t—1)x 20 V1€ [ty fp+Atg(x1)].

We can make these conditions more explicit by considering initial conditions in a ball of radius § > 0
around the origin:
Bs(0) = {xeR": | x|| < 6}.

We have the following Proposition.

Proposition 5.1. For some § > 0, there exists an event for x € B;(0) N Dy if
al <o and az=0
q q— "

Proof. Proving this proposition amounts to first considering the inequality

1
1 a
/1,1 aq+)qu1

and deriving conditions on acll and /1}1 such that it holds for 0 < x; < § for some 6 > 0. It turns out that these
conditions are independent of A}, i.e., we only require that a}, < 0. Note that /1}1 does affect 6. Specifically,
if A, <0, then & = oo, while if A}, >0,

1
q

-
Ag

a
5=

The second step in showing this proposition is to understand what the conditions are on aé and
AZ such that
(exp(AZ (£~ 1)) ~1)
2
Ag

az +exp(A7 (t— 1)) %, = 0

for 1 € [f, fo + Aty (x1)]. It easily can be seen that this holds as long as af, = 0, regardless of the values of x;,

and /137. O
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Figure 5.4: The phase space of the diagonal system given in Example 5.3 for ¢ = 1 (left) and ¢ = —1 (right).

Corollary 5.1. There exists an event for all x € Dy if

v
e

)Li, <0 and a,l7 <0 and a

QN

Example 5.3. Consider the diagonal system given by

In the case when ¢ = 1, an event exists if x; < 4, and otherwise one does not exist. If ¢ = —1 then an event

always exists.

5.3.b Discrete Nonlinear Systems from DFQ Hybrid Systems

Using the conditions obtained in the previous section, we are able to construct an infinite exe-
cution for a DFQ hybrid system satisfying these conditions. From this execution, we can define a set of
discrete time maps—analogous to Poincaré maps—defining the evolution of the sequence of initial con-
ditions of this execution. Thus, studying a discrete evolution in space is equivalent to studying a set of dis-
crete time dynamical systems. Later, we will study one of these discrete time dynamical systems, termed
the discrete time dynamical system associated to a DFQ hybrid system, and show that its behavior in some
way dictates the behavior of the other discrete time dynamical systems. Thus, we will demonstrate that

studying the behavior of a hybrid system is equivalent to studying a discrete time dynamical system.

Assumption 5.1. For a DFQ hybrid system $ipgq, assume that for every g € Q, A4x + ay satisfies the con-
ditions:

1 1 2
/lqso and aq<0<aq.
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5.3.3 Constructing an infinite execution. If the above assumption holds, we can construct an infinite
execution (see Definition 2.5)

e=WN,Lp,0),

of Hprq. Before doing so, we introduce the set-up under consideration.

We will take the initial time for the execution to be 0, i.e., 0 will be the left endpoint of . In
addition, we will take the initial condition of ¢ to be ({y,0) for some ¢y € R. This implies that all of the
initial conditions for the trajectories C = {c;};en Will be of the form ¢;(7;) = ({;,0) for 7; the left endpoint
of I; and some ¢; € R. We know that there will exist an infinite number of such trajectories because of
Assumption 5.1. That is, for every (¢;,0) there will exist a switching time given by A#,(;)(¢;), as defined in
(5.1). The end result is a sequence:

§={Sitien,
which we can view as a sequence of initial conditions.

With these formulations, we define € as follows:
o I={I;};eny Where I; = [1;,T;41] with the switching times 7; defined recursively by:
790 = 0
Tivt = Al ([§i) +Ti
fori=0.

o p:N— Qisdefined to be
p(i):=imodk+1.

o C={ci}ien, Where
(exp(AL ) (t=1)-1)

pli 1 . .
’1;17(1') ap(l.)+exp(/1p(i)(t 7))
¢i(t) = (exp(A2,,, (t-7:))-1)
p(i) az
A2 (i)

p()

For this to be a valid execution, we require that the sequence ¢ = {£;} ;e satisfy:

Siv1 = (ci(Tiv1))2
(exp(AZ ;) Atp(iy (§1)) —1)
= 2, Fotiy:
o(i

This, together with the results on the existence of events, implies that € is a well-defined execution.

5.3.4 Overview of construction. From the execution given in the previous paragraph, we would like to
construct a single nonlinear discrete map; this map will be used to derive sufficient conditions on the exis-
tence of Zeno behavior. This is done by first defining a map that computes this sequence ¢ independently
of the sequence of switching times. The next step is to define a map that computes this sequence inde-

pendently of both {7} ;e and p. The end result is a single map that iteratively computes ¢, i.e., a discrete
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time dynamical system, so we can study the behavior of the sequence of initial conditions by studying the

behavior of this map.

5.3.5 Step 1: Removing dependence on time. ForgeQ,i.e.,forge{l,..., k}, let®,: [Rg — [Ra' be given
by

1 Ag a
q)q(X) = 7 (exp (—llog(ﬁ -1 {llZ].
Ag Ag ag+Agx

Note that this function is well-defined because of Assumption 5.1. This function also has some important

properties. It is a diffeomorphism and both ®, and its inverse satisfy the properties:

Dy(0)=0 ®,'(0)=0
az al
@, (0)=-— (@, (0)=——
4q 4q

This function gives the elements in the sequence ¢ = {¢;};en inductively, i.e.,
Cir1=DPp(i) (&4).

So we have eliminated the dependence of ¢ on {7;} ;e (o1 the switching times).

5.3.6 Step 2: Removing dependence on the discrete evolution. The next step in defining a single non-
linear discrete map from this execution is to eliminate p from a subsequence of the sequence ¢ that has

the same limiting behavior as the original sequence. To do this, define the map ¥ : Rj — R by

V=@rod)_j0:---00. (5.2)

|

Note that this map has the following important properties:

k
¥(0) =0, v'(0) = (]‘[ -
q=1

SIS

It also can be verified that

Skirk Dpkitk-1) (€ kivi-1)
= Dpki+k-1) ° PLpki+k—2)° " ° Pp(ki) (ki)
= Qpodp_jo---0®(Eky)

= WY(ki)
since p(i) = imod k + 1. Therefore, define the following subsequence
z={zi}ien = {Skitien

of this sequence ¢. This subsequence is important because, as we have just shown, it is defined by a
discrete time dynamical system:

zi+1 = ¥Y(z;).
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It is also important because when it converges to the origin, so does the sequence ¢; this will be demon-

strated in Lemma 5.1.

5.3.7 Step 3: Removing Dependence on initial conditions. The final step in deriving a single map that
describes the sequence ¢ is to show that every element of { can be expressed in terms of the map ¥
(composed with other maps); this fact will be essential in establishing the main result of this section.

Define the following subsequences of the sequence ¢,
nU) =D itien =S ki+j-1}ieN,

for Je{1,..., k}. Note that in particular z =7(1), and it is clear that
k
¢=Un0.
J=1

Now we can relate each sequence 7(J) to the sequence z by defining the maps Y; : Ry — Ry, for J €

{1,..., k}, given by

Y] = (I)]_lo...o(I)lo(I)ko(l)k_lo...o(I)]

= @j_jo-0@o¥odilo0d)]
In other words, they are related to each other and ¥ by conjugation:
Y =V, Yy =®j0Y 005
These maps are important because they describe the sequences 1(J), i.e., it easily can be verified that
nDi+1=Y;mU):).

The maps Y also have the following important properties:

Y(0)=0

k a?
q
‘I"“”:(“ )

Y ;(0)

Y'(0) —
7 a

All of the aforementioned properties can be summarized by noting that we have the following lemma.

Lemma5.1. If
lim z; =0 = lim n(J); =0,
1—00 1—00
forallJe{l,..., k}.

Proof. We will reason by induction on J. For the case when J = 1, by assumption:

lim n(1); = lim z; =0.
1—00 1—00
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Now assume that lim;_..,n(J —1); =0, and note that

nDi = Skitj-1
= @pki+j-2)§ki+s-2)
= ©11(Ckiv-2)
= O 1mU-1Dj).
Therefore,
l.lij)loﬂ(m = ilir{.l()q)]—l(ﬂ(]— Di)=®;,(0)=0.
O
This lemma indicates that in studying the behavior of the hybrid system $)prq, one can study
the behavior of the sequence z = {z;};en. Moreover, analyzing the behavior of this sequence is more man-

ageable since it is determined by a discrete time system. We thus can apply the theory of discrete time

systems to hybrid systems. This motivates the following definition.

Definition 5.3. The discrete time dynamical system associated to the hybrid system §)pgq is given by
zi+1 =¥ (z),

where ¥ : Ry — Ry is as defined in (5.2).

Note that the discrete time system given by z;,; = ¥(z;) has an isolated equilibrium point at the
origin: ¥ (0) = 0. It also is interesting to note that this system is linear in the case when /1%, = )Lé =0. To see
this, note that in this case we have the discrete time linear system

k aé
zir1=V¥(z) = H - | %i-
q=104q
The startling fact is that the stability of the map ¥ in the general case will be directly related to the stability
of this linear system. We will derive results relating the properties of this function, specifically its stability,

to Zeno behavior.

5.3.c Sufficient Conditions for Zeno Behavior
Studying the discrete time dynamical system associated to a dynamical system, we are able to
obtain easily verifiable conditions on the existence of Zeno behavior in DFQ hybrid systems.
5.3.8 Discrete time exponential stability. Recall that a discrete dynamical system, z;+1 = ¥(z;), is ex-
ponentially stable at the origin if there exist constants ¢ > 0 and 0 < a < 1 such that
|2l < ca'lz].

We can derive conditions on when the discrete dynamical system associated to a DFQ hybrid system is

stable—at least when it satisfies Assumption 5.1.
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Theorem 5.1. Let $iprq be a DFQ hybrid system and I’ be a cycle of the underlying graph I" of this hybrid

system satisfying Assumption 5.1. Then the discrete dynamical system
zi+1 = ¥Y(z;)

associated to Hppq and I is exponentially stable at the origin if

|Q
SIS

13-

Proof. The result follows from the Hartman-Grobman theorem (cf. [101]) after suitably extending the

map VY to the entire real numbers. O

Theorem 5.2. Let $ppq be aDFQ hybrid system satisfying Assumption 5.1. Then if Aqx+ag, q € Q, satisfies

the conditions:

5 r = $prq is Zeno.

Proof. Let y = (N, I, p,C) be the execution constructed in Paragraph 5.3.3. The goal is to show that the
series

(o)

Y (T —T))

i=0
converges. To do this, we will consider subsequences of the sequence {7;;; — T;};en. Namely, recall from

the definition of the execution and the sequences 7(J) that

Z(THI

1
M8

tp(t) (&)

i=0

=

™8

= ZAtp(kH]_n(fkiH—l)
i=0/=1

I
M=
M8

Aty ).

n
o
I
(=}

Therefore, we need show only that 372 At;(n(J);) converges for each J. First, it can be seen that

At;(0) =0, Aty (0) = —.
4

—

Now our assumptions imply that the sequence z = {z;};cn is exponentially stable to the origin, i.e., for all

]€{1,...,k},

lim z; =0 => lim n(J); =0,
1—00 1—00
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Figure 5.5: A simulated trajectory of the two tank system given in Example 5.4.

by Lemma 5.1. Applying the ratio test for each J, we have

Atim(Di+1)

im ‘ At (Y m(D:))
i—oo| Aty(n(J);)

im ‘

i—oo| Aty(n());)

Aty (Y 5(x))
At](x)

At}(x)Y’](x)
At]’(x)

x—0

x—0
!

A t](O)

A t’ 0)

-

_1
:1 q

Y'(0)

2
aq

Y Aty(n(i)
i=0

converges for each J and hence Z?ZO(THI —T;), S0 $pEq is Zeno. O

Example 5.4. The two water tanks hybrid system as introduced in Example 2.2 is a classic example of a
hybrid system that displays Zeno behavior; see Figure 5.5 for a simulated trajectory of this system. We will
demonstrate how the conditions above allow us to verify that this hybrid system is Zeno without explicitly
solving for the vector fields. First, we transform the hybrid system into a DFQ hybrid system by “flipping"

the dynamics on one of the domains. The graph and domains are the same as the ones introduced in

165



Zeno Behavior & Hybrid Stability Theory

Example 2.2. In accordance with the fact that it should be a DFQ hybrid system, the guards are now the
upper half of the x,-axis. Therefore, to complete the description of this system, we need only specify the

vector fields on each domain. These are given by:

— U —U1
X1 (x) =( ), Xo(x) =( )
w-—mn w—v

Here, again, w > 0 is the inflow of water into the system, and v; > 0 and v, > 0 are the outflows of water

from each tank. Recall that we made the assumption that
max{v;, w} < w< v+ .

Under these conditions, we would like to verify that this hybrid system is Zeno.

Applying Theorem 5.2 to this system we conclude that the system is Zeno because:
A}:A?:o, —1,—1n <0, w—v,w—1v>0,

and

(w—u)(w-1) < (n+w)-v)((n+w)-v) _
1R%) 4% -

1

because w < v; + vs.

5.4 Stability of Zeno Equilibria

The purpose of this section is to study the stability of a type of equilibria that is unique to hybrid
systems: Zeno equilibria. The uniqueness of these equilibria necessitates a paradigm shift in the current
notions of stability, i.e., we must introduce a type of stability that is both local and global in nature and,
therefore, has no direct analogue in continuous and discrete systems. The main result of this section is

sufficient conditions for the stability of Zeno equilibria in general hybrid systems.

5.4.a Classical Stability: A Categorical Approach

In this section we revisit classical stability theory under a categorical light. The new perspec-
tive afforded by category theory is more than a simple exercise in abstract nonsense—it motivates the
development of an analogous stability theory for hybrid systems and hybrid equilibria.

Remarkably, stability also can be described through the existence of certain morphisms. Let us
first recall the definition of globally asymptotically stable equilibria; for more on the stability of dynamical

systems see [70] and [101].

Notation 5.2. For all dynamical systems (M, X) considered in this section, we assume that M is a subset of
R". Thus we can write expressions like “||x — y||” without ambiguity. Alternatively, we could assume that

M is a Riemannian manifold.

166



Zeno Behavior & Hybrid Stability Theory

Definition 5.4. Let (M, X) be an object of Dyn. An equilibrium point x* € M of X is said to be globally
asymptotically stable when for any morphism c: ([t,00),d/dt) — (M, X), for any t; = t and for any € > 0

there exists a § > 0 satisfying:
1. le(r)—x*l1<d = le)—x*|<e Vh=H=t,
2. lim; o c(1) = x*.

Consider now the full subcategory of Dyn, denoted by GasDyn, with objects (R, —a) where « is
a class £, function, i.e., « is strictly increasing satisfying a(0) = 0 and a(x) — oo as x — oco. Lyapunov’s

second method (see [70], Theorem 3.8, page 138) can then be described as follows:

Theorem 5.3. Let (M, X) be an object of Dyn. An equilibrium point x* € M of X is globally asymptotically
stable if there exists a morphism:
(M, X) > (R§,—a) € GasDyn

in Dyn satisfying:
1. v(x) =0 implies x = x*,
2. v:M — Ry is a proper (radially unbounded) function.

The previous result suggests that the study of stability properties can be carried out in two steps.
In the first step we identify a suitable subcategory having the desired stability properties. In the case of
global asymptotic stability, this subcategory is GasDyn; for local stability we could consider the full sub-
category defined by objects of the form (R, —«a) with @ a non-negative definite function. The chosen
category corresponds in some sense to the simplest possible objects having the desired stability proper-
ties. In the second step we show that existence of a morphism from a general object (M, X) to an object in
the chosen subcategory implies that the desired stability properties also hold in (M, X). This is precisely

the approach we will develop for the study of Zeno equilibria.

5.4.b Zeno Equilibria

We now proceed to study Zeno equilibria. It is important to note that we do not claim that Zeno
equilibria are the most general form of equilibria corresponding to Zeno behavior. We do claim that the
type of Zeno equilibria considered are general enough to cover a wide range of interesting (and somewhat

peculiar) behavior, while being specific enough to allow for analysis.

Definition 5.5. Let (.#,M,X) be a hybrid system. A Zeno equilibria is a pair (Z, Z), where
o Z isaD-subcategory of .4 such that grph(Z) is a directed cycle,
o Z=1{Za} qe0b(z) such that

- Z,eM, forall ae Ob(Z),
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Figure 5.6: Zeno equilibria for a FQ hybrid system.

- Zp=My(Zy) foralla:a— bin Z,

— X, (Zp) #0for all a € Ob(Z).

5.4.1 Another interpretation of Zeno equilibria. There is a more categorical definition of a Zeno equi-
libria. Starting with the one point set *, we obtain a hybrid manifold (Z, A 7 (). Denoting by In: Z — .«

the inclusion functor, a Zeno equilibria is a morphism of hybrid manifolds:
(0, 2): (Z,A7 (%) = (4, M)

such that X, (Z,) #0.
To see that these definitions are equivalent, by slight abuse of notation denote Z,(*) := Z,. Now,
the first condition, Z, € M, for all a € Ob(Z), follows trivially. The second condition is implied by the

following diagram, which must commute

M,
Zq
* M,
Zp
M

foreverya:a— bin Z.

Example 5.5. For the hybrid system $)gq, and since we are assuming that the underlying graph is a cycle,
the conditions expressed in Definition 5.5 imply that a set Z = {Z},...,Z} is a Zeno equilibria if for all
i=1,...,k Zi € G, X;(Z;)) #0 and

Re; 00 Rg oR, 0--0 R, (Z;) = Z;. (5.3)
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Because of the special structure of Hrq, (5.3) holds iff Z; = 0 for all i. That is, the only Zeno equilibria of
$Hrq is the singleton set Z = {0}. A Zeno equilibria for a FQ hybrid system is pictured in Figure 5.6. Note that
the formulation of Zeno equilibria for FQ hybrid systems implies that for Z = {0} to be a Zeno equilibria, it

must follow that r,(0) = 0 for all e € E (otherwise (5.3) is not well-defined).

5.4.2 Induced hybrid subsystems. Let (.#,M,X) be a hybrid system, Z be a D-subcategory of .4, and
In: Z — . be the inclusion functor. In this case, there is a hybrid subsystem (Z JM=Z,XZ) of (4, M,X)

corresponding to this inclusion, i.e.,
MZ =In" M), X% = Xalaev(2),
and there is an inclusion in HySys:
(In,id) : (Z,M*,X?) — (4, M,X)
where id is the identity natural transformation.

Definition 5.6. A D-subcategory Z of a D-category . is said to be a locally attracting D-cycle if grph(Z)
is a directed cycle and

cod(sy) = In(b) = cod(sg) = a1=ay,
forall be V(Z).

Definition 5.7. Let (.#,M,X) be a hybrid system. A Zeno equilibria (Z, Z) of (.#,M,X) is globally asymp-
totically stable relative to (Z,MZ,X?) if Z is a locally attracting D-cycle and for every trajectory:

€,0): (#,L,d/dt) — (Z,M7% X7),
with A =N, and for any €6y > 0, there exists & cw > 0 such that:

1. If ||5i(Ti)—Zc’(l-)|| <6C~(l.) fori=1,...,ke€Qthen

with je Aand t€l; =[7},7j4+1].

2. Forallae V(Z)
lim Ej(‘[’j) =2Za lim C_:j(Tj+1) =Zg.
j—oo J—o0

C(j)=a C(j=a

We say that a Zeno equilibria (Z, Z) of (.#,M,X) is globally asymptotically stable if it is globally asymp-
totically stable relative to (Z JMZ,X<) and (4, M,X) = (Z,M<,X%).
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Region of Stability

Figure 5.7: A graphical representation of the “local” nature of relatively globally asymptotically stable Zeno
equilibria.

5.4.3 The global-local nature of Zeno equilibria. The definition of relative global asymptotic stability
implicitly makes some very subtle points. The first is that this type of stability is both local and global in
nature—hence the use of the words “global” and “relative” in the definition. While for traditional dynam-
ical systems this would seem contradictory, the complexity of hybrid systems requires us to view stability
in a much different light, i.e., we must expand the paradigm for stability.

To better explain the mixed global and local nature of relatively globally asymptotically stable
Zeno equilibria, we note that the term “global” is used because the hybrid subsystem (Z, M=Z,XZ) is glob-
ally stable to the Zeno equilibria; this also motivates the use of the word “relative” as (.#,M,X) is stable
relative to a hybrid subsystem. Finally, the local nature of this form of stability is in the discrete portion of
the hybrid system, rather than the continuous one. That is, the D-subcategory Z can be thought of as a
neighborhood inside the D-category .# (see Figure 5.7, where the D-categories Z and ./ are represented
by graphs in order to make their orientations explicit). The condition on the inclusion functor given in the

definition is a condition that all edges (or morphisms) are pointing into the neighborhood.

5.4.4 Zeno equilibria and FQ hybrid systems. Zeno equilibria are intimately related to Zeno behavior
for first quadrant hybrid systems. While this relationship is established, it is useful to have a graphical
representation of the convergence to a Zeno equilibria in a FQ hybrid system; this can be found in Figure

5.8.

Proposition 5.2. Ifa first quadrant hybrid system $)gq is globally asymptotically stable at the Zeno equi-
libria Z = {0}, then every trajectory with A =N is Zeno.

Proof (sketch). For simplicity, we will assume that I" consists of a single vertex and a single edge; consider-
ing larger cycles would amount to repeating the same argument on each vertex with subsequences of the

switching times. Because of asymptotic convergence of the sequence of initial conditions, ¢;(t;), there
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Ge, Ge,

50(7'1)
51 (7’2)
() C3(74)
21 Co (7’2) Co (’7'0) 2o 53(T3> C1 (Tl)

Figure 5.8: Convergence to a Zeno equilibria.

exists a neighborhood U in Dy, of the Zeno equilibria {0}, and K € N such that ¢;(#) € U for all i = K and
t € I;. By the assumption that X,(0) # 0, we can apply the straightening out theorem (cf. [95]), wherein

X, (%) 0
X) = .
a 1

We now pick two rays, r; and r», emanating from the origin and such that their convex hull, C = conv(ry, ),

the new coordinates X,; becomes:

contains the transformed U; if U is sufficiently small, the angle between the two rays is less than 7. The
time difference 7;41 — 7;, i = K| is less than the height of a vertical line, /, intersecting C and passing

through the transformed ¢;(7;). Consider the triangle:
T=conv(0,nnl,rnnl),

and note that:
(e 0]
Area(T) = ) Ti41—T;
i=K
since the set of all switching time differences {7;+1 — 7;};en is not dense while the set of all vertical slices
of T is (after all, they have different cardinalities).
By Cauchy’s condition on the convergence of series, for any € > 0, we can always make U suffi-
ciently small so that Area(T) < €. This implies that
o0
Y Tiv—Ti<e.
i=K
Since the sum Zf: _01 T;+1 — T; is finite, we conclude that

=)
Z Tiy1 —T; <00
i=0
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5.4.c Conditions on Stability

We now give conditions on the stability of Zeno equilibria for first quadrant hybrid systems.
These will be instrumental in providing conditions on the stability of Zeno equilibria for general hybrid

systems.

5.4.5 Conditions for the stability of Hrq. In order to give conditions on the stability of Zeno equilib-
ria, it is necessary to give conditions on both the continuous and discrete portions of the hybrid system.
That is, the conditions on stability will relate to three aspects of the behavior of the hybrid system: the

continuous portion, the existence of events and the discrete portion.

Continuous conditions: For all i € Q,

M X;(x) #0 forall x € (R})2.

(I) There exists a function v; : (Rj )2 — Ry of class %, along each ray emanating from
the origin in D; and d(v;) . X;(x) <0 for all x € (R})?.

Event conditions: For all i € Q,

(D (X;(x1,0))2 = 0.
Now consider the map v ; defined by requiring that:
yi) =y if 0,3 =v"(vi(x,0)N{x; =0and x, = 0}
which is well-defined by condition (II). Using y; we introduce the function P; : Rj — Ry given by:

Pi(x) = rei,IOU/i—lo"'OrelOWelOrekOU/eko"’oreIOU/l(x)~

The map P; can be thought of as both a Poincaré map or a discrete Lyapunov function depending on the

perspective taken. The final conditions are given by:

Discrete conditions: Forall i e Qand e€ E,

(IV) re is order preserving.

(V) There exists a class %, function a such that P;(x) — x < —a(x).

Theorem 5.4. A first quadrant hybrid system $xq is globally asymptotically stable at the Zeno equilibria
Z =10} if conditions (I) — (V) hold.

Proof. Proving this result requires us to show three things: the existence of events, the boundedness of
trajectories and asymptotic convergence of the sequence of initial conditions.

We begin by demonstrating the existence of events; if ¢(0) is an initial condition of a solution
c(t) of ¢ = X4(c) on Dy = (R})?, then there exists an event if ¢(7) € Ge, for some finite 7, i.e., if (c(7)); = 0
and (c(t))2 = 0 for all ¢ € [0,7]. To show that there exists an event, we must rule out two other possible

scenarios:
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1. The trajectory c(t) exits Dy in finite time without intersecting the guard. In particular, since D; =

(IR;)Z, this implies that there must exist a 7 such that (c¢(7))2 < 0 and (c¢(#)); > 0 for ¢ € [0, 7].
2. The trajectory never exits Dy, i.e., ¢(f) € Dq\Geq for all .

We will show that conditions (I) — (III) exclude these scenarios.

Beginning with scenario 1, if (¢(1))2 < 0, since (¢(0))2 = 0, it follows by continuity that there exists
a t € [0,7] such that (c(1))2 = 0 and (X;(c(1)))2 < 0 for (c(#)); > 0. But these inequalities are ruled out by
condition (III).

For scenario 2, we first note that condition (I) implies that

q

Il
—_

luz! (v(1)) N {x; = 0 and xp = 0} (5.4)

Il
—

v, (g (1)) N 1x2 = 0 and x; = 0}] (5.5)

for all y € D;. Now define the set

Vg =1{x€ Dg:vg(x) < vg4(c(0)}.

Note that the boundary of this set consists of three smooth components, i.e., a piece of the vertical axis
(the guard), a piece of the horizontal axis and a piece of the level set vy 1 (v4(c(0))). We have already shown
that the solution cannot exit through the horizontal axis, and it cannot exit through the piece of the level
set (intersection D) since we are supposing that d(v4) X, (x) < 0 by condition (I). In view of this, if the
trajectory exits the set V,;, then it must exit through the guard, i.e., there must exist an event. Therefore,
we must show that the trajectory exits this set, i.e., that V; is not an invariant set.

We are assuming that V; is proper. Suppose, by way of contradiction, that V is an invari-
ant set. By the Poincaré-Bendixson theorem, because we are assuming that V;; contains no equilib-
rium points (condition (I)), it must contain a limit cycle: y(#) with y(¢) = y(¢ + T). First suppose that
Uq(y(1)) = ¢, then by condition (II) (and more specifically (5.4)), y(#) must intersect the vertical and hor-
izontal axis and because this is a one-dimensional limit cycle in two dimensional space it has an ori-
entation. Therefore, the assumption that y(#) is contained in Vj is violated. Alternatively, suppose that
vg(y (1)) = cand v, (y(t") = ¢’ for ¢ > ¢’ and some ¢ < t' < T. By the periodicity of the y(#), this implies that
vg(y (1) < vg(y(t + 1)) = v4(y(?)) = ¢, where ¢+ T > ¢/, which implies that d(v,)y()X4(y (1)) = 0 for some
te[t', t + T], which violates condition (II).

We conclude that events must always exist.

Let us now address the issue of asymptotic convergence of the sequence of initial conditions.

Recalling the construction of (.FQ,MFQ, XQ) from $gq, for a trajectory

7 Ld/dt ‘& (4P MFQ xFQ),

we need to show that for all a € V(#Q)

lim ¢&(z;)=0. (5.6)
j—oo

C(j)=a
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Define ¥;(x,0) = (0,1//,-(x))T. Starting from i > 1, ¢;(t;) € {x; = 0 and x, = 0} so
Vé(i)(a(Ti+l)) = Ué(i)(c_:i(ri)) = Vé(i) (‘PC*(,)(C_‘}(TJ))

from condition (II). Also by this condition, we can take the inverse of vz ;) because it is class £ along
every ray emanating from the origin (which intersects D,;) and hence along the vertical axis, which implies
that

(Ei (Ti+l))2 = 1//6“) ((61(71))1)

Applying r. to this inequality, which by condition (IV) is order preserving, yields
re,((Ci (Ti+1))2) = Te, W (Ci(T))1)).
By iterating this process k times, and noting that C(i + k) = C(i), we have
(Ciak (Tiri1 = Py (G (T))1).

Therefore, the sequence (4 x(7;+))1 is bounded by the sequence Paiiy ((¢;(11))1) which converges to z, in
view of (V). Convergence of ¢;(7;+1) now follows from convergence of ¢;(r;) and the fact that y; (¢;(7;)) =
Ci(1;+1) is an order preserving function as v; is of class £, when restricted to the guard of domain D;.
Finally, boundedness of the continuous trajectories in each mode (and hence boundedness of
the sequence of initial conditions) follows from the existence of the Lyapunov function vg;), i.e., by the

conditions given in (II), and by the fact that the map P, satisfies condition (V). O

Corollary 5.2. If$gq is a first quadrant hybrid system satisfying conditions (I) — (V), then there exist trajec-

tories with A = N and every such trajectory is Zeno.

Note that the condition that A = N in Proposition 5.2 and Corollary 5.2 is due to the fact that
there always are trajectories with finite indexing set A, e.g., any trajectory with A = N has “sub-trajectories”

with finite indexing sets. These trajectories are trivially non-Zeno, so we necessarily rule them out.

Example 5.6. To verify that 531132)” is globally asymptotically stable at the Zeno point Z = {0}, and hence
Zeno by Proposition 5.2, we need only show that conditions (I) — (V) are satisfied. It is easy to see that
conditions (I) and (III) are satisfied (see Figure 5.9). Since re, (x) = x and r,, (x) = ex, condition (IV) holds.
We use the original Hamiltonian

1
H(x1,x) = zx% +mgx,

suitably transformed, for the Lyapunov type functions given in (II), i.e., we pick:
L L,
v (X1, %) = Exl +gx, V2 (X1, X2) = Exz +8x.

It is easy to see that these functions meet the specifications given in (II); some of the level sets of these
functions can be seen in Figure 5.9. Note that the level sets on one domain increase, but this is compen-
sated for by the decreasing level sets on the other domain. Finally, condition (V) is satisfied when e < 1
since

P (x) =Py (x) =ex.
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Figure 5.9: Graphical verification of the properties (I) — (III) for the bouncing ball hybrid system for the
first domain (left) and the second domain (right).

A graphical representation of the maps P; and P, can be seen in Figure 5.10.

5.4.d Hybrid Stability Theory

Building upon the results of the previous section, we are able to derive sufficient conditions for
the stability of general hybrid systems. Mirroring the continuous case, we simply find a morphism to the

“simplest stable object,” i.e., a first quadrant hybrid system. Formally:

Definition 5.8. Define GasZeno be the full subcategory of HySys consisting of first quadrant hybrid sys-
tems (./5FQ, MSTQ XSFQ) that are globally asymptotically stable at the Zeno equilibria Z = {0}.
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ball ball ball ball
Gel Dl G62 D2

Y2(y)

Figure 5.10: A graphical illustration of the construction of the functions P; and P, for the bouncing ball.

Theorem 5.5. A Zeno equilibria (Z, Z) of (#,M,X) is globally asymptotically stable relative to (Z,MZ X7 )

if there exists a morphism of hybrid systems:

(Z,MZ,x7%) w5 (5FQ MSFQ X8FQ) ¢ GasZeno

in HySys satisfying, for all a € Ob(Z),
1. U4(x) =0 implies x = Z,,
2. Uy is a proper (radially unbounded) function.

Animmediate, and very important, corollary of this theorem is that it yields sufficient conditions
for the existence of Zeno behavior.
Corollary 5.3. Under the assumptions of Theorem 5.5, there exist trajectories
(o7

#,L,d/dy £ (z,mZ x7)

with A =V (%) =N and every such trajectory is Zeno.
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Of course, a trajectory of (Z,MZ,X7Z) immediately yields a trajectory of (.#,M,X) through com-
position. That is,

7, Ld/dy £2 (z,m7 x%) 29 u,mx)

is a trajectory of (.#,M,X). Therefore, we have given conditions for the existence of Zeno trajectories for
(A, M, X).

Proof of Theorem 5.5. Let

7, Ld/dy £2 (7, M7 x7)

be a morphism where (.#,1,d/dt) € Interval(HySys) and A = V(.#) = N. Assume that

” 61' (Ti) - 26(,) ” = 66(,)
for i =1,2,..., k. This implies that c;(7;) is contained in a compact set containing Z¢(;. If we denote such
set by Sg;, it follows by continuity of ;) that Uz, (Sg(;) is compact and that g, (Ci (7)) € Ug ;) (Sa)
and g, (Zg ;) € U (Sg(;))- Taking into account that ;) (Z5(;)) = 0 we obtain:

1 U¢ ;) o Ci(Ti) — Ol < 6/‘706(1')'

It now follows from global asymptotic stability of the Zeno equilibria (.#57Q, Z = {0}) of (./5FQ, MSFQ, X5FQ)
that:

’a

||UC:(].)OC]'(I)—0||SEVOC(j), telj, jeA.

This inequality implies that g e Cj(t) belongs to a compact set for all ¢ € I;. Because 7; is assumed to be

proper, there exists a £ ) such that:
|I5j(t)—25(j)||5£5(j), relj, jeA.

A similar argument yields, by the continuity of 175( i for all a € V(Z) with ¢ (j)=a,

}I_.I?o Cj(tj) = Uz

1
€)
C()=a VoC(j)=V(a)

. . IUEEN N
}152 V() © Cj (Tp|= V(i) (0) = Zg.

Theorem 5.5 is an important result in many respects.

¢ It would have been very difficult to obtain without our categorical framework for hybrid systems.
This indicates that categorical hybrid systems theory can yield results that are important, interesting

and novel.

o It yields a general method for studying the stability of hybrid systems. That is, any other type of
more “classical” stability that might be of interest—asymptotic stability, exponential stability, etc.—
can be studied using the same methodology. In fact, these types of stability are easier to study; this
is why we opted to study Zeno equilibria. For other types of stability, the “simplest” stable objects
will be one-dimensional hybrid systems with the desired stability property. These extensions follow

in a trivial manner from the framework established here.
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5.5 GoingBeyond Zeno

Motivated by the fact that for a Zeno trajectory time never progresses past a certain time (the

Zeno time) and “point” (the Zeno point(s)), a natural—and intriguing—question to ask is:

What happens after a Zeno point?

Inspired by the construction of [50], we propose a method for extending Zeno executions past a Zeno
point for Lagrangian hybrid systems as were introduced in Chapter 3; for the sake of simplicity and con-
sistency, we revert to the notation utilized in that chapter.

Using the special structure of Lagrangian hybrid systems obtained from hybrid Lagrangians, we
are able to demonstrate that the Zeno point must satisfy constraints imposed by the unilateral constraint
function. These constraints are holonomic in nature, and this implies that after the Zeno point the hybrid
system should switch to a holonomically constrained dynamical system. The resulting system obtained
by “composing” the hybrid system with this dynamical system defines a completed hybrid system, which
inherently allows an execution to continue past the Zeno point. Although we do not prove that this is
the correct way to carry executions beyond Zeno points, we argue that our method correctly represents
the physical, post-Zeno, behavior of the system being modeled. In order to substantiate this argument,
we discuss how to practically implement a completed hybrid system and illustrate these concepts with a

series of examples.

5.5.1 Lagrangian hybrid systems and their executions. Here we quickly recall the notation from Chap-
ter 3, which will be in force throughout this section. First, recall from Definition 3.1 that a simple hybrid
Lagrangian is given by a tuple:

L=(Q L h.

Associated to a hybrid Lagrangian is a simple hybrid system,

ﬁL = (DLr SL, RL)XL))

as constructed in Subsection 3.2.a; see Figure 5.11 for a graphical representation of a Lagrangian hybrid
system.
An execution of a Lagrangian hybrid system, which we referred to as a hybrid flow in order to
avoid confusion, is a tuple
eh=(A1,0)

as introduced in Paragraph 3.2.1. We will revert to the terminology “hybrid flow” to again differentiate
executions of this form from the ones considered in the rest of this chapter. In addition, we utilize the su-
perscript “L” to indicate that the hybrid flow is the hybrid flow of the Lagrangian hybrid system associated
to a hybrid Lagrangian.

We now introduce the notion of a Zeno point, which can be thought of as a form of Zeno equi-

libria for Lagrangian hybrid systems.
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RL (:L')

T €Sy

Figure 5.11: A Lagrangian hybrid system: ..

Definition 5.9. The Zeno point of a Zeno hybrid flow e® is defined to be
Xoo = (Goo» Goo) = lim ¢;(7;) = lim (q;(1;), G; (7).
1—00 1—00

Here ¢; = (g, gi) € C, and the Zeno point is necessarily a single point because of the specific problem

formulation considered in this section.

5.5.2 Zeno points. Lagrangian hybrid systems display both chattering and genuinely Zeno behavior;
roughly speaking, the coefficient of restitution can be used to differentiate between these systems. More-
over, Zeno points must satisfy certain constraints based on the unilateral constraint function. In order to
do so, let
—[ on oh
Alq) = ( (@ g, (@ )
Now, recalling the distinction between types of Zeno behavior made in Paragraph 5.1.3, we make the
following observations:
CZ: If $i, has a chattering Zeno hybrid flow, €L then 1o, = 71— Tg and xy, = (q1(71), g1 (1)) with
h(q1(71)) =0 and A(q:1(11)) g1 (1) = 0.

GZ: If $Hi, has a genuinely Zeno hybrid flow, then 0 < e < 1. Moreover, if €" is a genuinely Zeno
hybrid flow, then Xo = (goo, o) is @ point with h(geo) = 0, and A(Geo) oo = 0.

Summarizing, our main observation is:

Main Observation. Ife" is a Zeno hybrid flow of a Lagrangian hybrid system $y, then the Zeno
POInt Xeo = (Goor goo) 1 a point satisfying h(geo) = 0 and A(Goo) oo = 0.

This observation indicates how the system should behave after the Zeno point, i.e., it should sat-
isfy a holonomic constraint. This holonomic constraint forces the system to slide along surface 7! (0) =
{q € Q: h(g) = 0}. From this we argue that after the Zeno point, the hybrid system should switch to a

holonomically constrained dynamical system.
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5.5.3 Holonomically constrained systems. Recall that for a holonomically constrained system described
by a Lagrangian, L, of the form given in (3.2), the equations of motion for the holonomically constrained
system are obtained from the equations of motion for the unconstrained system (3.3); they are given by
(cf. [93])

M(q)§+C(q,§)g+N(q) + Alg)" 1 =0,
where A is the Lagrange multiplier, which in this case is given by
A= (A@M(@ A ™ (A(q)ﬁ - A@M(q)~L(C(q, qg+ N(g)).

From the constrained equations of motion, for x = (g, ), we get the vector field

b’ X (x)

(4, M@ (-C(q,9) G- N(q) - A@™ ).

Note that the XE" defines a vector field on the manifold TQ|;,-1(), from which we obtain the dynamical
system
Or = (TQly1(0) XE)-

This, when coupled with the Main Observation, will be essential to understanding how to carry hybrid

flows beyond Zeno points.

5.5.4 Completing hybrid systems. We begin by considering the case when §)y, is a chattering Zeno
hybrid system; in this case, the idea of carrying hybrid flows past the Zeno point has been well-studied. In
[50], it is argued that once the solution hits the “switching surface” (or in our case, the guard), the solution
should slide along the switching surface. In terms of Zeno points, this implies that before the Zeno point
the dynamics should be dictated by X;, while after the Zeno point the dynamics should be dictated by

X7°. We can generalize this construction to include genuinely Zeno Lagrangian hybrid systems.

Definition 5.10. If §); is a Lagrangian hybrid system, we define the corresponding completed hybrid

system® (or the completion of 1) as

L=

_ @‘L’o if h(g)=0and A(q)g=0

{ L otherwise.
5.5.5 Completing trajectories. A completed hybrid system, as obtained from a Lagrangian hybrid sys-
tem $r, can be seen in Figure 5.12. To make the definition of the completed system somewhat more
transparent, some comments are in order. The Main Observation indicates that the only way for the tran-
sition to be made from the hybrid system §, to the dynamical system D{° is if a specific Zeno hybrid

flow reaches its Zeno point. Therefore, before the Zeno point, the Zeno system simply will be the hybrid

3This terminology (and notation) is borrowed from topology, where a metric space can be completed to ensure that “limits exist.”
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h(q) = 0 and A(g)¢ =0

Figure 5.12: A completed hybrid system: fy.

system $)1, while after the Zeno point, the completed system will be the dynamical system D7°. Since the
dynamical system forces the system dynamics to be constrained to the manifold defined by ~2~'(0), this
implies that the completed system will slide along the guard (switching surface) after the Zeno point.

This can be understood further on the level of hybrid flows. We can define a hybrid flow of the
completed hybrid system §p by concatenating a Zeno hybrid flow of £, with an integral curve of the
dynamical system D°.

Specifically, let e“ = (N, I, C) be a Zeno hybrid flow of $);,. We obtain a hybrid flow of the com-
pleted hybrid system AL by defining it to be

e = (NU (00}, 1,0),

where

I=1U{lo = [T00,00)}, C=CU{Coo},

with ¢ (2) an integral curve of X7° with initial condition the Zeno point:

Coo(Too) = Xoo = (Goos qoo)

We now discuss some practical issues related to simulating integral curves of completed systems.

5.5.6 Practical issues. We discuss two practical issues when modeling and simulating completed hy-
brid systems (see Figure 5.12). These issues are related to the transition from the left state i, to the right
state D7°, and the corresponding initial conditions of ©7°. The theoretical framework established in this
section allows us to justifiably surmount the practical problems introduced in simulation.

The first simulation issue is derived from the unavoidable numerical errors that result from the
finite representation of values in a computer and truncation errors introduced by practical ODE solvers,
i.e., a simulator produces an approximate hybrid flow € to the hybrid flow €. Therefore, we cannot guar-

antee or expect an integral curve of reach the exact Zeno point X = (g0, §oo)- Moreover, in order to reach
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the Zeno point, an infinite number of computation steps have to be performed (in a finite amount of
time). Therefore, instead of resolving a solution that passes through the Zeno point exactly, we will com-
pute an approximation of the Zeno solution; the approximated solution will pass through a neighborhood
of the Zeno point, so we must modify the transition to the system Dp° accordingly. Before discussing the
details of the construction of the approximate solution, we first address the second modeling issue.

The other concern is the reinitialization of the new constrained system ©7°. In other words, after
the transition to this system, we must give initial conditions for the constrained system. Theoretically, the
initial condition is the Zeno point, but because in simulation we do not actually reach the Zeno point, an
initial condition must be estimated—one that satisfies the same conditions as a Zeno point: h(gx) =0

and A(Geo) oo = 0.

5.5.7 Approximating completed systems. The approximation to the completed hybrid system 91, de-
—0

noted by $); , is given by

—6 Dp° if abs(h(g)) =6 and abs(A(g)g) <6

L otherwise

for some 6 > 0. When switching from )1, to D7° via the approximated guard condition, we use a map
which resets the variables so that they satisfy the conditions of a Zeno point: /(ge) = 0 and A(geo) oo = 0.
Specifically, for a point (g, ) satisfying the approximate guard condition

abs(h(q)) <6 and abs(A(q)g) <6,
we define a reset map R® which sends (g, §) to an approximate Zeno point, (oo, Z/;O) = R*°(q, q), satisfying
h(Gow) = 0 and A(Goo) Geo = 0.

We now briefly discuss how to construct the map R* for the running examples in this section. In all of

these examples, the vector fields for the constrained dynamical systems are easy to calculate.

Example 5.7. Again consider the hybrid system modeling a bouncing ball on a sinusoidal surface, g, as

first introduced in Example 3.5. In this example, the vector field for the holonomically constrained system

Dy is given by
0
S 2c0s(xp) (—g+sin(xp) %2)
Xﬁo(q’ D=9 3+cos(2x2)
_2(gcos(xp)* +sin(x) X2%)
3+cos(2x2)
Note that
hg(x) = 0 > X3 = sin(xy),
Ag(x)x = 0 = X3 —cos(xp) iz = 0.
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Figure 5.13: Simulation gets stuck at the Zeno point. Velocities over the time (top), displacements over the
time (middle) and displacement on the x3 direction vs. the displacement on the x, direction (bottom).
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Figure 5.14: Simulation goes beyond the Zeno point. Velocities over the time (top), displacements over
the time (middle) and displacement on the x5 direction vs. the displacement on the x, direction (bottom).
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And so we define the approximate reset map as:

X1 X
Ry’ (x1, X, X3, X1, X2, X3) = X2 , X
sin(xy) COS(x2) X2

We begin by simulating the "non-completed" hybrid system $)g, the results of which are shown
in Figure 5.13 (to which the rest of the paragraph refers). The simulation time is set to 6.0, but the sim-
ulation gets stuck at around 2.04; the bottom figure indicates that the ball tries, but is unable, to climb
upwards along the surface (a sinusoidal waveform). Its velocities decrease during this process due to the
energy loss through impact as can be seen in the top figure. As a consequence, more and more collisions
are triggered and the time interval between two consecutive collisions keeps shrinking. The dense points
near time 2.04 in the middle figure indicate that more and more computation steps are taken, which
makes the simulation halt. This behavior is indicative of genuinely Zeno behavior.

Figure 5.14 shows a simulation of the completed hybrid system Eg with the same initial condi-
tions. Note that the simulation closely approaches the Zeno point before the behavior of the ball auto-
matically switches to what Xg° specifies, i.e., the ball oscillates along the surface (a sinusoidal waveform).
Therefore, the simulation does not halt, freely moving beyond the Zeno point in a manner consistent with

physical reality.

Example 5.8. Now consider the hybrid system modeling a pendulum on a cart, $¢, as introduced in

Example 3.6. The vector field for the holonomically constrained system D¢ is given by

o . —cot(6)6?
X@D=\a| pecoiz ||
M+m

Note that

hc(q) 0 => cos(@) =0

Ac(qg = 0 = sin(0)8 = 0.

From the above two equations, we can compute precisely that 8 = sign(9)z/2 and 6 = 0. The rest of the

variables x and x have no extra constraints. Therefore, the complete reset map is:

. Ol .
R?(H,x,@,fc):(( sign(0)m )’( | )
* X

Simulation verifies that the completed version of this hybrid system has the correct post-Zeno behavior;

see Figure 5.15.

Example 5.9. As afinal example, consider the hybrid system modeling a pendulum mounted on the floor,
Hp, as introduced in Example 3.7. Although this system was introduced as a Hamiltonian hybrid system, it

can be converted without difficulty to a Lagrangian hybrid system through the Legendre transformation.
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Figure 5.15: Simulation of the Cart that goes beyond the Zeno point. Velocities over the time (top) and
displacements over the time (bottom).

In this example, the vector field for the holonomically constrained system Dg° is given by

—cot(0)9?
Xq,9=|4q, . .
p i (q( —2cot(®)0¢ ))

Note that

|
[}

hp (o) =3 cos(@) =0

= sin(0)0 = 0.

|
(=)

Ap (qoo) qoo

From the above two equations, we can calculate precisely that § = 7/2 and 8 = 0. Therefore, the complete

. /2 0
RIOJO (ey(py 9,(,0) = ’ . .
4 4

Simulation verifies that the completed version of this hybrid system has the correct post-Zeno behavior;

reset map is:

See Figure 5.16.
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Angular Velocities

theta_dot ®
phi_dot ™

“ /M/IVAVAVAVAVM""I" |

-05[
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35[ T
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Figure 5.16: Simulation of the Pendulum goes beyond the Zeno point. Angular velocities over the time
(top) and angles over the time (bottom).
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Chapter 6

Universally Composing Embedded

Systems

In an embedded system, different components of the system evolve according to processes lo-
cal to the specific components. Across the entire system, these typically heterogeneous processes may
not be compatible, i.e., answering questions regarding the concurrency, timing and causality of the en-
tire system—all of which are vital in the actual physical implementation of the system—can be challeng-
ing even if these questions can be answered for specific components. Denotational semantics provide
a mathematical framework in which to study the behavior (signals, flows, executions, traces) of embed-
ded systems or networks thereof. This framework is naturally applicable to the study of heterogeneous
networks of embedded systems since signals always can be compared, regardless of the specific model of
computation from which they were produced.

Tagged systems provide a denotational semantics for heterogeneous models of computation;
they consist of a set of tags (a tag structure), variables and maps (behaviors) from the set of variables to
the set of tags—hence, tagged systems are a specific case of the tagged signal model (cf. [76]). A heteroge-
neous network of embedded systems, e.g., a network consisting of both synchronous and asynchronous
systems, can be modeled by a network of tagged systems with heterogeneous tag structures communi-
cating through mediator tagged systems. Benveniste et al. [22], [23] and [24], introduced the notion of
tagged systems and dealt with the issues we set forth in this chapter; this work extends and generalizes
the ideas introduced in these papers. Of course, there is a wealth of literature on semantics preservation
in heterogeneous networks, cf. [25], [40], [77], [97], and [117], the last of which approaches the problem
from a categorical prospective.

A network of tagged systems can be implemented, or deployed, through heterogeneous par-
allel composition—obtained by taking the conjunction (intersection) of the behaviors that agree on the
mediator tagged systems—which results in a single, homogeneous, tagged system. Thus, heterogeneous

networks of tagged systems can be homogenized through the operation of composition. This chapter
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addresses the question:

When is semantics preserved by composition?

That is, when is the homogeneous tagged system obtained by composing a heterogeneous network of
tagged systems semantically identical to the original network? Understanding this question is essential to
understanding when networks of (possibly synchronous) embedded systems can be implemented asyn-
chronously while preserving the semantics of the original system. Since implementing asynchronous
systems is often more efficient (less overhead) when compared to the implementation of synchronous
systems, deriving conditions on when this can be done while simultaneously preserving semantics would
have many important implications.

In this chapter, taking a similar approach to Benveniste et al., we address the issue of seman-
tics preservation. However, we use the formalism of network objects as introduced in Chapter 1, i.e., we
introduce the category of tagged systems, TagSys, and demonstrate that a network of tagged systems cor-
responds to a network over the category TagSys. The result is necessary and sufficient conditions for

semantics preservation.

Simple networks We begin by considering a network of two tagged systems &7, and &7, communicating
through a mediator tagged system . as described by the diagram: &2, — .# — £?,. The first contribution
of this chapter is that we are able to show that the (classical notion of) heterogeneous composition of &,

and &, over A, 21| 4 P2, is given by the pullback of this diagram:
Py Po= P % g P>

The importance of this result is that it implies that composition is endowed with a universal property;
this universal property is fundamental in understanding when semantics is preserved. Consider the case
when &) and £, have the same semantics, i.e., the same tag structure. Therefore, they always can com-
municate through the identity mediator tagged system, .#, and the homogeneous composition of &7, and
Py, P11 P, is given by the pullback &) x g &, of the diagram: &} — . — P,. It is possible through
this framework to give a precise statement of what it means to preserve semantics by composition over

the mediator tagged system ./

Semantics is preserved by composition if 21| P = Py Po.

Through the universality of the pullback, we are able to give verifiable necessary and sufficient conditions
on semantics preservation. A corollary of our result is the sufficient conditions on semantics preservation

established by Benveniste et al..

General networks. A network of tagged systems is given by an oriented graph I' = (Q, E) together with a set
of tagged systems & = {4} 4o communicating through a set of mediator tagged systems .# = {#Z,} ecE;

that is, for every e € E, there is a diagram in TagSys of the form:

/
Ao @,
gzsource(e) - /%e ~ gtarget(e)-
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Equivalently, a network of tagged systems is given by a network over the category TagSys,
N sz Or — TagSys,

where M is a D°P-category obtained from I (see Section 1.5). As in the case of a network of two tagged
systems, the heterogeneous composition of a network of tagged systems is given by the limit of this dia-
gram,

I 2 =Limy (N2,.z,a))»
and so composition again is defined by a universal property.

If all of the &7]s have the same semantics, then we can again consider the identity mediator .#

(which in this case is a set) for which there are associated diagrams in TagSys of the form:

Res Res;,
£ f/le £ iz target(e)

c@soulrce(e)

with Res, and Res), restriction maps. To this network of tagged systems there is a corresponding network

object, N(5 g pes) : Ir — TagSys, and the homogeneous composition of this network is given by
” @ = lemr (N((@’lees)).

The categorical formulation of networks of tagged systems allows us to give a precise statement

of when semantics is preserved:

Semantics is preserved by composition if | 4z & = | 2.

The universality of composition allows us to derive concrete necessary and sufficient conditions on when
semantics is preserved, indicating that this framework can produce results on semantics preservation that

are both practical and verifiable.

Extensions. Although this work is centered around the formalism of tagged system, the results are easily
extendable to arbitrary networks over categories and the composition thereof. That is, this work is the
first step toward addressing the general question of how to compose systems in a general and systematic

fashion in order to ensure that the composite system has the proper behavior.

Notation 6.1. In this section, we use calligraphic symbols to denote tag structures and tag systems; do not
confuse these with D-categories (which will not be utilized in this section, although D°P-categories will
be). The reason for this notation is historical precedence. Note that this is why we denote a D°P-category

by the symbol 91 (not to be confused with a hybrid system).

6.1 Universal Heterogeneous Composition

In this section, we begin by defining the category of tag structures. This definition is used to

understand how to associate a common tag structure to a pair of tag structures which can communicate
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through a mediator tag structure. We then introduce the category of tagged systems, which will be instru-
mental in understanding how to form the heterogeneous composition of a network of tagged systems.
Finally, we discuss how to take the composition of a “simple” network of embedded systems.

Given two tagged systems, &) and %,, we would like to form their composition, i.e., a single
tagged system obtainable from these two tagged systems. We begin by reviewing the “standard” definition
of composition, followed by a categorical reformulation of composition. We demonstrate that the com-
position of two tagged systems corresponds to the pullback of a specific diagram in the category of tagged

systems. This will allow us later to generalize the notion of composition.

6.1.1 Tagstructures and the corresponding category. Fundamental to the notion of tagged systems is
the notion of timing. This timing is encoded in a set of tags; these “tag" the occurrences of events, i.e., they
index the events such that they are (partially) ordered. Hence, a set of tags or a tag structure is a partially
ordered set 9, with the partial order denoted by <. The category of tags, Tag, can be defined as follows:
Objects: Partially ordered sets, i.e., tag structures.
Morphisms: Nondecreasing maps between sets p: I — I, i.e,, if t < t' € I then p(1) <

o(thed'.
Composition: The standard composition of maps between sets.

Clearly, two objects in the category Tag are isomorphic if p: 3~ — 7 is a bijection: there exists a p’ :
I — J such that pop’ = idg+ and p' o p = idg. Note also that the terminal objects in the category Tag
are just one point sets Jyiy := {*} (called asynchronous tag structures), i.e., for all tag structures 9~ there
exists a unique morphism p : 9~ — Jyiy defined by p(#) = * which desynchronizes the tag structure. The

synchronous tag structure is given by Jgyne = N.

6.1.2 Common tag structures. Tags are fundamental in understanding tagged systems in that mor-
phisms of tag structures will induce morphisms of tagged systems. To better understand this, we will dis-
cuss an important operation on tag structures: the pullback (the pullback of elements in a category will be
used extensively in the chapter—see Appendix A for a formal definition). Consider two tag structures 93
and J,. We would like to find a tag structure that is more general than J; and 9>, and has morphisms to
both of these tag structures, i.e., we would like to find a common tag structure for these two tag structures.

To do this, first consider the diagram in Tag:

L N G B 7y 6.1)

where  is the mediator tag structure. We know that such a tag structure always exists since it always can
be taken to be Ji;y (although this rarely is the wisest choice). We define the common tag structure to be

the pullback (see Paragraph A.2.3) of this diagram:

T1xg T ={(t1, L) €T x T2 : p1(11) = p(R2)}. (6.2)
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o(6,x)
7(2,)
Events ° !
(1, z) . E ° °

Tags (timing)

Figure 6.1: A graphical representation of a behavior of a tagged system.

The pullback is the desired common tag structure since it sits in a commutative diagram of the form:

Tixg Ty 2w T
n1\ 02 (6.3)
b M

g — T

Moreover, that fact that the common tag structure is the pullback implies that for any other tag structure
that displays the properties of a common tag structure, there exists a unique morphism from this tag

structure to the common tag structure. More precisely, for any tag structure 9 such that the following

diagram commutes:

(6.4)

there exists a unique morphism from T t0 T1 xg T also making the diagram commute. This construc-
tion on tag structures both motivates and mirrors constructions that will be performed throughout this
chapter on tagged systems. To demonstrate this we must, as with tag structures, define tagged systems

and the associated category.

6.1.3 Tagged systems. Following from [22], [23] and [24] (although our notation slightly deviates from

theirs), we define a tagged system. We then proceed to introduce the category of tagged systems.
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Let 7 be an underlying set of variables and D be the set of values that these variables can take,

i.e., the domain of the variables. A tagged system is a tuple
P =V,T,3),

where V is a finite subset of the underlying set of variables 7, 9 is a tag structure, i.e., an object of Tag,
and X is a set of maps:

o0:Nx V-9 xD.

Each of the elements of %, i.e., each of the maps o, are referred to as V-behaviors (or just behaviors when
the variable set is understood). It is required that for each v € V, the map 6 ,(n) :=m(o(n,v)) :N— T isa

morphism in Tag, that is, nondecreasing (and called a clock in [24]).

Remark6.1. In defining the set of behaviors of a tagged system, we made an explicit choice for the domain
of the behaviors: N x V. This choice is motivated by the fact that the behaviors of a tagged system are
signals generated by a computer, and hence discrete in nature. It is possible to consider other domains
for the behaviors, e.g., R x V, without any significant change to the theory introduced here. This indicates

an interesting extension of this work to behavioral dynamical system theory (cf. [98, 111, 112]).

6.1.4 The category of tagged systems. We can use the formulation of tagged systems above in order to
define the category of tagged systems, TagSys, as follows:
Objects: Tagged systems & = (V,T,%).
Morphisms: A morphism of tagged systems a : & = (V,J,%) —» &' = (V',9,%') is a mor-
phism (in the category of sets) of behaviors a: X — X',
Composition: The standard composition of maps between sets. In other words, for a : & —
P and a': P’ — 2" the compositionof ¢ : X — 3 and a’: ' — ¥ isgivenbya’oa: = —
",

From the definition of morphisms in the category TagSys, it follows that two tagged systems, &2 and &',
are isomorphic, & = &, if and only if, to use the terminology from the literature, the two tagged systems

are in bijective correspondence.

6.1.5 A “forgetful” functor. By the definition of the category TagSys, there is a fully faithful functor:
B:TagSys — Set,

where Set is the category of sets. This functor is defined on objects and morphisms in TagSys as follows:

for every diagram in TagSys of the form:
P=W,T,5%2 =75,

the functor B is given by:
B(7=(,T,5%2 =V, 7,35 =25%.
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When discussing composition, we often will blur the distinction between the categories TagSys and Set,
i.e., we often will define the composition of a diagram of tagged systems by the behaviors of the composite
system, and hence implicitly view it as an object of Set. In this case, we always will construct an object in

TagSys with behaviors isomorphic to the corresponding object in Set.

6.1.6 Induced morphisms of tagged systems. Suppose that there is a morphism of tag structures p :
I — J'. Then there exists a tagged system Z?* together with an induced morphism of tagged systems
()P P — PP First, if Z = (V,T,%) we define 2P = (V,T',2P) where

P = {oP:NxV -3 'xD:o”(n,v) = (p),d) iff (t,d) = o(n,v)

for some o € X}.

That is, 2” is defined by replacing ¢ with p(¢) in the codomain of o. With this definition of ?°, we obtain

a morphism (-)° : & — P, called the desynchronization morphism and defined by, for each o € X,
def
a’(nv)=(p®),d < onv)=(tad.
Note that (-)? is always surjective.

Example 6.1. Consider the following synchronous tagged systems, %) and &, defined as follows:

@1 = (Vl = {x}»to/—sync = Nyzl = {Ul})’
Py = (VZ:{X,y}r%ync=N;22:{02;&2})y
where
o1(n,x) = (m(n),x*),
(m(n),*x) if v=xeW,
o2(n,v) = )
(k(n),*) if v=yel,
i { (m(n), %) if v=xeV
o2(n,v) =
(In),*) if v=yeW,

Here m(n), k(n) and I(n) are any strictly increasing functions with k(n) # I(n), and * is a (single) arbitrary
value in D.

For p : Tsync — Juiv the desyncronization morphism, P = 9‘{) because & consists of a single
behavior. Since X, = {02,673}, Z‘ZJ = {05 = 65 1 e, Zg consists of a single behavior. Therefore, &2, is not in

bijective correspondence with 335

6.1.7 Heterogeneous composition. Let &) = (V},97,Z;) and &, = (V,,93,Z7) be two tagged systems.
Consider a mediator tag structure 9 between the tag structures J; and 9>, i.e., there exists a diagram in

Tag:

T3 01 T 02 .
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Recall that the common tag structure to J; and 9, (relative to ) is given by the pullback of the above
diagram in Tag (the fibered product as defined in (6.2)): I7 xg J>.

We define the parallel composition of &7 and &, over the mediator tag structure I by
P g P2:i= VU V2, T xg T2, 21 Ag Z2).

This notation for parallel composition is taken from [22]; the morphisms p; and p, are implicit in this

notation. In the above definition, X; Ag X, is given by the set of behaviors
0:Nx(ViuVz) = (T1 xg J3) x D

such that the following condition holds: for all (n, v) € N x (V} U V»), there exist unique 0, € Z; and 03 € Z,

such that!
@ o1(mv)=(,d) ifvel
and
onv)=(f,n),d < (i o2(n,v)=(b,d)ifve s (6.5)
and

() of'(mvy=oim v ifveVini.

Since o is uniquely determined by o, and o, and vise-versa, we write o = 0 Lig- 2. We pick this notation
so as to be consistent with the literature, cf. [22], where a pair (01,02) € X x Z; is called unifiable when
it satisfies condition (iii), and o} Lg 0 is called the unification of o, and o,. We will always assume that

such a pair exists; in this case composition is well-defined (£; Ag Z; is not the empty set).

6.1.8 Universal heterogeneous composition. The common tag structure for the composition of two
tagged systems is given by the pullback of a certain diagram. The natural question to ask is: can the

composition of two tagged systems be realized as the pullback of a diagram of tagged systems of the form

) a2

P

M Py?

The importance of this question is that if the answer is yes, then the composition between two hetero-
geneous tagged systems is universal, i.e., defined by a universal property. We then can ask when the
composition of two tagged systems is the same as the composition of these tagged systems with different
tag structures, i.e., when semantics is preserved. It is possible to show that composition is in fact given by
a universal property.

In order to define composition universally, we must define the tagged system .# in the above

diagram. In this vein, and using the same notation as the above paragraph, define

Ig=WVn,T,Z1 Vg Zy), (6.6)

INote that conditions (i) and (ii) imply condition (iii); this follows from the fact that (1, &) € I7 xg 92, so0 p1(#1) = p2(t2) in
condition (i) and (ii). Condition (iii) is stated for the sake of clarity.
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where I is a mediator tag structure (between 97 and 93) and
ZiVgZy = {o:Nx(VinW) -9 xD:

UzafiIVmVZ, foro;€X;, i=1or2}. (6.7)

Now for the tagged systems &7, and £, there exist morphisms

Resf ! Resg2
P I

Py (6.8)

defined as follows:

Res? (0;) = 0% v, :Nx (ViNV3) =T x D

foro; e€X;, i =1,2. Clearly, such a morphism always exists.
Note that .%5 is a mediator tagged system or channel between the tagged systems &) and &;
Z4 “communicates” between &) and &2,. In the case when I = I = 95, ¥ := L4 is exactly the identity

mediator tagged system or identity channel introduced in [22].
Theorem 6.1. Consider two tagged systems &) = (V1,91,%1) and Py = (V2,93,%,) with mediator tag
structure I, i.e., suppose that there is a diagram in Tag:

1 2
g g2 g

The parallel composition of &1 and &7, over this tag structure, ) || g= &, is the pullback of the diagram:

Res‘lJl Resg2
P ——— I ~— P

in the category of tagged systems, TagSys.

6.1.9 Implications of Theorem 6.1. Before proving Theorem 6.1, we discuss some of the implications
of this theorem.

If we consider the following diagram in the category of sets, Set:

esP! Res?? Res‘;J !

1 5 Resh?
21—>21V3—22< 2>=B @1

I P |,
the pullback of this diagram is given by:

21 X3vy3, 22 = 1(01,02) €21 x Zp : Res!' (01) = Resh? (02)}.

It is important to note that the pullback of the above diagram (which is an object in Set) is related to—
in fact, isomorphic to—the behavior of the tagged system #; || £?,. More precisely, for the functor

B:TagSys — Set, we have:

21 X5,vg3, 22 EB(P g Po) =21 Vg Zo. (6.9)
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This observation will allow us later to, justifiably, blur the distinction between pullbacks (and limits) in
the categories TagSys and Set.

In order to produce the bijection given in (6.9), first note that there are projections defined by:
i 21N g Zp—2; (6.10)

where for each 0 Ug 02 € 21 Ag 2y, mi (01 Ug 02) :=0; for i = 1,2. Because of (6.5), it follows that any
element o € X1 Ag- X, can be written as 0 = 711 (0) Ug 72 (0).

Theorem 6.1 implies—by the universality of the pullback—that there is a bijection:

(T1,72) i 21 Ag 2y —  Z1X3ugs, L2 (6.11)

o=01Ug02 — (01=m(0),02=m2(0))
where the inverse of this map is the unification operator:

(DUg ():Z1x5vy522 — Z1AT I (6.12)

(01,02) — o1Ug02.
This completes the description of the bijection given in (6.9).

Proof. (of Theorem 6.1) From the definition of £ A5 X, and X, v g X5, it follows that the following diagram

in Set:
7
2 Ng 29 1—> 21
Ty Res’lJl
Resh?

) —2> 21 Vg 2o
commutes, which implies, by the definition of morphisms of tagged systems, that the following diagram

in TagSys:

P g Py s Py

Ty Res‘;J !

P2
Res,

2 ST

commutes. Consider a tagged system 2 such that the following diagram commutes:

9 0 P,

1
77 Res;

Resg2
Py —= Jo

We can define a morphism y: 2 — & |l &, by, forog € X 9,

Y(©0) = q1(0) Ug q1(0).
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It follows that there is a commuting diagram:

Moreover, by replacing y with any other morphism making the diagram commute, say ¥, it follows that
foroceXy

Y(0) = (¥(0)) Ug m2(¥(0)) = q1(0) Ug g2 (0) = y(0).

Soy =7, i.e., y is unique. O

6.2 Equivalent Deployments of Tagged Systems

Standard composition is just the pullback of a specific diagram in TagSys; this observation nat-
urally allows us to generalize composition. To perform this generalization, we introduce the notion of a

general mediator tagged system, ./, and define composition to be the pullback of a diagram of the form:

421 a2

P

M P (6.13)

in TagSys. This process will be instrumental later in understanding how to take the composition of more
general networks of embedded systems.

We conclude this section by reviewing the definition of semantics preservation and giving nec-
essary and sufficient conditions on when semantics is preserved. We apply these results to the special

case of semantics preservation through desyncronization.

6.2.1 Composition through mediation. Given the results of Theorem 6.1, we can develop a more intu-
itive notation for composition. Specifically, if I is the mediator tag structure, then we write & ||lg &, =
Pl g, P2 (in the case when J1 = 9, = 9 and p; = p2 = id in (6.1), we just write P, | P, := 1| 4 P>).
The mathematical reason for this is that 9| », %, is (isomorphic t0) & x 4, 9%, i.e., the pullback of
the diagram given in (6.8). The philosophical motivation for this notation is that the composition of &
and &, can be taken over general mediator tagged systems. In other words, the parallel composition of
P and &, over a general mediator tagged system .# , denoted by 2 || Z», is defined to be the pullback
of the diagram given in (6.13):
P gy P2 = P % gy Po.

This implies that if £ _ is the set of behaviors of .#, then the set of behaviors for &, ||_, 4, is isomorphic

to:

2y %3, Zp={(01,02) €Z) x 2ot a1(01) = az2(02)}. (6.14)
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The explicit construction of Z ||, <, as a tagged system is not especially relevant, as we are interested
only in its set of behaviors which must be isomorphic to the set of behaviors given in (6.14). That being
said, this construction is a special case of a more general construction (given in Section 6.4) for which the

construction of the tagged system is carried out. We only note that there are bijections
(DU ():Z1xx,Z — Zo,2 (6.15)
1L,72) 2, — Z1Xs 422 (6.16)
which are generalizations of the unification and projection maps given in (6.12) and (6.11), respectively.
6.2.2 Specification vs. deployment. Consider two tagged systems &7 and &7, with a mediator tag

structure 9. As in [23] (although with some generalization, since &) and &, are not assumed to have

the same tag structure), we define the following semantics:

Specification Semantics: 7 | Iy Py
Deployment Semantics: & ||, %,

for some mediator tagged system .. The natural question to ask is when are the specification semantics
and the deployment semantics “equivalent.” Formally, and following from [23], we define a mediator .#

to be semantics preserving with respect to .94, denoted by
PN P2= P gy P2 (6.17)

ifforall (o1,02) € 21 x 2o,

Jo'e Zp 4P St m1(0") =01 and m2(0") = 02
0 (6.18)

JoeXy, Iy P2 s.t. 1 (0) =07 and 72 (0) = 0>.

Utilizing Theorem 6.1, we have the following necessary and sufficient conditions on semantics preserva-

tion.

Theorem 6.2. For two tagged systems &1 and s,
Py P2= P gy P2,
ifand only iffor all (01,02) € 1 x X3

ai(o1) =az(0z) < Res('(01) =Resh’ (o).
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Proof. (Sufficiency:) If

(01,02) €Z1 xZp s.t. ay(01) = az(o2)

by (6.14)

= (01,02) €21 x5, 2o
by (6.15)

> o1U 4 02€Z9, , 2, Where

m(o1U gy 02) =01 and ma(o1 Uy 02) =02

by (6.18)

EEN doeXy, loy P2 s.t. m1(0) =01 and w2 (0) = 02
by (6.16) )

= (01,02) €X1 x5, 22
by (6.14)

= Res‘f1 (o)) = Resg2 (02).

The converse direction proceeds in the same manner: if
(01,02) €21 x Ty s.t. Res}' (01) =Resy?(02) = a1(01) = a2(02),

by (6.14), (6.15), (6.16), and (6.18).

(Necessity:) We have the following implications:

30'€Xy, , 2, st.m1(0") =01 and m2(0") = 0,

by (6.16)

> (01,02)€Z1 x5, 2
by (6.14)

> a1(01) = az(02)

= Res!" (01) = Resh* (02)
by (6.14)

=> (01,02) €X1 x5, 22
by (6.15) ’

=

01Uy, 02€ 20, 2, and

(01U g, 02) =01 and 7y (07 Uy, 02) =02.
Therefore o1 U g, 07 is the element of Z g, Iy 2 such that 71 (01 U g, 02) =01 and m2 (01 U g, 02) = 02,
as desired.

The other direction follows in the same way:

doeZy, lsy P s.t. m11(0) =01 and 72 (0) =02

> o1U y02€29, ,», and

m(o1U g 02) =01 and mp (01 Uz 02) = 02,
by (6.14), (6.15) and (6.16). O

To demonstrate the power of Theorem 6.2, we prove the following theorem, which is a general-
ization of one of the two main theorems of [22]. Moveover, we show that the theorem in [22] is a corollary

of this theorem; thus, our results are more general. First, we review the general set-up for this theorem.
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.3 Desynchronization. Consider the case when &2, and &, have the same tag structure, i.e., 97 =

6.2
I =9 . Consider a mediator tag structure 3’ of 7, i.e., suppose there exists a diagram in Tag;:

p ;P

g g g.

In this case, we ask when the mediator tagged system .4~ is semantics preserving, i.e., when
PNP2= Pl g, P (6.19)

A very important example of when this framework is useful is in the desynchronization of tagged systems;
in this case I/ = Jyiv = {*}, and &, .7, P, is the desynchronization of &1 and &2,.

Using the notation of this paragraph, we have the following theorem and its corollary.

Theorem 6.3. Y5 is semantics preserving w.rt. &, 21|l g_, &2 = P11, ifand only if for all (01,02) €
Zl X Zg.’

p _ P _
01 lvinv, =051y, = o1lvinv, = 02lvins.

Proof. Note that by the definition of the desynchronization morphism (-)” (and the fact that it is always

surjective), it follows that

_ P _ P
O1lvinv, = 02lvinv, > o1 lvinv, =05 lvinn,.
Therefore, this result is a corollary of Theorem 6.2. O

Corollary 6.1. If@f is in bijection with 2; for i = 1,2 and (2| %,)° = ,@fllﬁp, then &, Iz, Py =

PN Py (Pg is semantics preserving w.r.t. .7 ).

Proof. We need only show that the suppositions of the theorem imply for all (o1,07) € 21 x X,

p _ P _
01 lvinv, =051y, = o1lvinv, = 02lvins.

The result then follows from Theorem 6.3.

To see that the desired implication holds, note that we have the following chain of implications:

P _ 0
1 lviny = 03 lviny

01,02) € Zixz, Za=Loy, 2,
P P P P~
(07,03) € Zyxz, Iy =20 gm0
af Uy, ag € Z'QOJ1 |, (since (1| H5)P = @fll @g)

- i ~p_ P p
36 € Iy, st.  0P=0,Ug, 0,

Ll

Setting 6; = 7;(6), the last of these implications implies that (64,65) = (o¥,05) € =} x5 S 5. Now, the

fact that @f is in bijection with &?; for i = 1,2 implies that 6; = g;, or:

(01,02)=(01,02) €X1 x5, 22 = o1lvinv, = 02lvinv,-
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Example 6.2. We would like to know semantics is preserved by desynchronization for the tagged systems
given in Example 6.1, i.e., for p: Tsync — Juiv the desyncronization morphism, is ;|| 2, = 21 || T, P2
First we apply the necessary and sufficient conditions given in Theorem 6.3. Since V; NV, = {x},
ol (n,x) =0 (n,x) = o1(n,x) = 02(n, X)
ol (n,x) =65 (n,x) = 01(n,x) =62(n, X)
because 01 (n, x) = 02(n, x) and o1 (n, x) = 62(n, x). Therefore, semantics is preserved.
Note that Corollary 6.1 would not tell us whether semantics is preserved, because &7, is not in

bijective correspondence with @5’ , and so the conditions of the corollary do not hold. This demonstrates

that Theorem 6.3 is a stronger result than Corollary 6.1.

6.3 Networks of Tagged Systems

In this section, we introduce the notion of a network of tag structures, tagged systems and be-
haviors. Moreover, we are able to show that these objects correspond to networks over the categories Tag,
TagSys and Set, respectively (see Section 1.5). This observation will be fundamental in defining compo-

sition for these networks.
6.3.1 Networks of tag structures. We begin by defining a network of tag structures as in [23] (although
we state the definition in a slightly different manner). A network of tag structures is defined to be a tuple
T,g,<,p),
where
o I'=(Q,E) is a graph.
o J ={T4}qeq is a set of tag structures.
o & ={S}eck is a set of mediator tag structures, mediating between Jsor(e) and Jiar(e)-

o p={(0e, PL)}eck is a set of pairs of morphisms in Tag, such that for every e € E, there is the following

diagram in Tag:

O

Pe
tO/—sor(e) — % ‘ f)/—tar(e)-

Networks of tagged systems are defined in an analogous manner.

6.3.2 Networks of tagged systems. A network of tagged systems is defined to be a tuple
(F7 L@’ ‘ﬂ) a)!

where
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o I'=(Q, E) is a graph.
o P ={P4l4eq is a set of tag structures.
o M = {Me}eck is a set of mediator tagged systems, mediating between Psqr(e) and Prar(e)-

o a = {(ae, al)}eck is a set of pairs of morphisms in TagSys, such that for every e € E, there is the
following diagram in TagSys:

/
a

Psorte) — M — Prar(e)-
Suppose we have a network of tag structures (I, 9, %, p) and a collection of tagged systems & = {@q}qeo
such that 7, has tag structure ;. Then we can associate to this set of tagged systems a network of tagged

systems, ([, &, £»,ResP) with:

Iy =197} e Res® = {(Reste, , Resys, eck
where £, is defined as in (6.6), and Resg gr(e) and Resfaer(e) are defined as in (6.8), i.e., there is a diagram in
TagSys of the form:
Res?* Res’e

sor(e) tar(e)
@sor(e) jjﬂe — @tar(e)

foreveryec E.

6.3.3 Networks of behaviors. We can define a network of behaviors from the network of tagged sys-
tems, ([, &, #,a), as a tuple:
22,2 y,q),

where
o I'=(Q,E) is a graph.
¢ Ly ={Zp tqeq, where X 5 is the set of behaviors for 7.
o 2y =1{Z 4, }eck, Where Z_, is the set of behaviors for M.

o a={(ae a,)}eck is a set of pairs of morphisms in Set, such that for every e € E, there is the following

diagram in Set:
a a,
- e > _e
z"'@sor(e) Z//[e h z<@tar(eJ :

The association of a network of behaviors from a network of tagged systems can be viewed categorically.
For the network of tagged systems (', &, ., a), the functor B: TagSys — Set yields the corresponding
network of behaviors (I', 2 5,24, @) because

Zgz {qu}qeq = {B(r@q)}qu

2a = Zgleer= {B(A )} ecE-
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More generally,

/ /
a

[04 a a
2Py > Blle " ZPrag = B| Psorio —— Me = Prario

foreveryec E.

6.3.4 Networks as networks over a category. We define a network of tag structures and a network of

tagged systems to be networks over the categories Tag and TagSys:
T:N — Tag, N: O — TagSys,

where 91 is an D°P-category. For example, if 9 is given by the diagram: ¢ — e < e, then the network of
tag structures given in (6.1) and the network of tagged systems given in (6.13) are defined, respectively, by
the functors:

T(o——oe—e) = (3-1 Pr g . P2 372) (6.20)

aq

N(e——oc—se) = (% M 22 %). (6.21)

More generally, we can associate to a network of tag structures (I',.J,.#, p) and a network of tagged sys-

tems (I', 2, #, a) functors:
T7,7,p :Nr — Tag, N @, a) - Nr — TagSys,

where 1r is the D°P-category associated with I', and T(s, # ;) and N(», 4 o) are defined by:

Tg,7,p (sor(e) — e < tar(e)) := (6.22)
pl
(Lo/—sor(e) P_e» ye — thar(e))»

N2, 4« (SOr(e) — e <— tar(e)):= (6.23)

l
gztar(e)) ’

Qe

a
(ysor(e) — Mo ~

for every e€ E.
If (T, 7, #,a) is a network of tagged systems, and (I', X »,% 4, @) is the associated network of
behaviors, then there is a functor

S(Z@,Zﬂ,a) :Mr — Set,

where 1r is the D°P-category associated with I', and S(s , 5, ) is defined to be the composite:
N
MNr L= A07A TagSys B, Set.

In other words, S(s 4, =, ) is defined by:

!
a
S(Z(@'Z/fl'a) (sor(e) — e «— tar(e)) := (zgzsor(e) —= Z;uﬂe — Z:32tar(e))’
!
a a
= B(gzsor(e) — Mo ~— gztar(e))

for every e€ E.
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Example 6.3. An example of a network of tagged systems associated to the D°P-category 91, (as intro-

duced in Example 1.24) is given in the following diagram:

M
/N
g (=3

'///e"\\ o /@ \ v /;///ez
s PR
\% %/
NO,) =
Piso Pia
/ \
' aﬁotew\/ QZH{ / % \Ql,\l i \
et F &% M,
\///e:/

6.4 Universally Composing Networks of Tagged Systems

In this section, we give a categorical formulation for composition. Since a network is just a dia-
gram, the composition of a network is the limit of this diagram. To illustrate this concept, we first consider
anetwork of tag structures and demonstrate how taking the composition of this network is consistent with
the notion of a common tag structure as first introduced in Section 6.1. We then discuss how these ideas
can be generalized to networks of tagged systems. Finally, we explicitly relate the composite of a network
of tagged systems with the composite of a network of behaviors. This relationship will be important when

attempting to prove results relating to semantics preservation.

6.4.1 Composing networks of tag structures. Recall that for two tag structures, 97 and 95, communi-
cating through a mediator tag structure, 9, we obtained a single, common, tag structure that was unique
up to isomorphism; the common tag structure, 97 x g~ 93, was the pullback of the diagram given in (6.1).

But the pullback is just a special case of the limit of a functor (see Appendix A), i.e.,

a- P1 02

T xg Ty = Lim(._,._.) (T) = Lim(._,"_.) I1 g

T2|,

where T: (e — o — ) — Tag is defined as in (6.20).
Therefore, we can define a tag structure common to an entire network of tag structures by tak-
ing the limit (defined in Appendix A) of the corresponding diagram in Tag describing this network. If

(T, 9,4, p) is a network of tag structures and

T 7,0 :Nr— Tag
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is the corresponding functor and D°P-category, we define the common tag structure to be Limg. (T(g, 7)),

which because of the special structure of a D°P-category is given by:
Limf)’tr (T(E/_,y,p)) = {(tq)qu € H 3-57 :Pellsor(e) = P’e(ttar(e))r Vee E},
qeQ

which corresponds to the common tag structure defined in [23]. By the properties of the limit, we know

that this is in fact the desired common tag structure since for every e € E, we have a diagram of the form

. Tltar(e)
Limgy (T(7,7,0) —— Jtar(e)
Tlsor(e) 0%
o e
Jsor(e) ye

which is a direct generalization of (6.3). Moreover, the limit is universal in the same sense as (6.4) (see

Appendix A for a complete discussion).

6.4.2 Composing networks of tagged systems. As with networks of tag structures, we can consider the
limit of a network of tagged systems (when viewed as a diagram)—this is the heterogeneous composition
of the network. This is justified by the discussion in Section 6.2, where the composition of a network of
two tagged systems, &) and #,, was defined to be the pullback of these systems over the mediator tagged
system, .:

. . (07 a
Py Py =LiMe—ee—u)(N) = LiM(e—e_oy | PP} —— H 2

P,

where N: (e — o — o) — Tag is defined as in (6.20).

This indicates a general, and universal, way of taking the composition of a network of tagged
systems: through the limit. Consider a network of tagged systems (I', &, .#, a), with the tagged systems
P4 and M, given by

Pq = VpTepiy  qEQ
Me = Vo, %o, Ze), ecE.

For the corresponding functor and D°P-category:
N _#.a  Dr — TagSys

denote the heterogeneous composition of (I', &, .#,a) by | 4, < (to be consistent with the notation of
[23]) and define it by (unlike [23])

Iy 2 :=Limp N» z0)=|U Ve [1 70,2 , 2| (6.24)
qeQ  geQ
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where 2 5 is the set of behaviors

o:Nx|JV, — []JyxD
qeQ qeQ
o(n,v) — ((t9geq,d)

such that the following conditions hold: for all (n, v) e N x Ugeq Vg there exists unique (0 4) geq € [MgeoZq
such that® forall e€ E

" OTsor(e) (1, V) = (Tsor(e) a)ifve Vsor(e)
and
o(n,v) = ((tg)geqr d) & () Otarie (n, V) = (ltarcer, d) i V € Vearce (6.25)
and
(iii") Ae(Tsor(e)) (1, W) = Ay (Trar(e)) (1, W)
YV we V,.

Because 0 € X  » is uniquely determined by (0¢) 4eq € [14eq 24 satisfying the right-hand side of (6.25),

we write
o=||0gge€Z) , 2
M

for the corresponding element on the left-hand side of (6.25), and call it the unification of (04)4eq €
[14eqZ4- Conversely, every element of 2 5 can be written as the unification of an element of [15eq 24,

so there are projection maps 74, g € Q, given by
gLl .2 — Zq
o=]0ggeq — 0g=m400).
M

We can obtain a better understanding of the behaviors of the tagged system ||_, %2 by consider-

ing the associated network of behaviors.

6.4.3 Composingnetworks ofbehaviors. Let ([, Z, #,a)be anetwork of tagged systems, (I', 2 »,% _;, @)

the associated network of behaviors, and

Scwr g0 =BoND za: MNr — Set,

the associated functor and D°P-category. Because of the special structure of an D°P-category, we can

explicitly compute the limit of the functor Sz , 5 ,,a); it is given by

Limy. Sz 40) = (6.26)

{(Uq)qu € H 24 @e(Osor(e) = a,e(Utar(e)), Vee E}
qeQ

2Unlike (6.5), the third condition stated here is no longer redundant.
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Now, there is a bijection:

Z"/ﬂgz = Limmr (S(ZE@,Z%,a))‘ (6.27)

The map from X | 5 to Limy. (S 4,5, @) is given by

TPgeQ:Z) , 2 — Limp Szzz 0 (6.28)

o — (14(0))ge0-
The inverse of this map is given by the unification operator generalized to the network case. That is
%( O :Limy Seprpm) — I ,2 (6.29)
| 0geq — 0=10¢q¢eq
M

where o is given as in the left-hand side of equation (6.25), which is well defined because of the definition
of Limgz (S¢z 5,5 @), i.€., because an element (0 4) geq € Limg (Sz 4,5 @) automatically satisfies the
right-hand side of (6.25) by (6.26).

6.4.4 Composition over identity mediator tagged systems. An especially interesting case is when the
network of tagged systems is obtained from a network of tag structures (I',97,.%, p), i.e., the network of
tagged systems is given by (I', &, £»,ResP). Here we explicitly carry out the construction of || o 2, and
demonstrate how this yields the correct definition of || ¢, Z s0 as to be consistent with [23].

If Py =(Vq, Ty, Zy) forall g€ Q, then

Iy, & =Limgy (N2, g, res?)) = | | Vg, Limey, TT,7.0)Z),, 2|
qeQ ‘

where X 5y P is defined in the same way as X 5 with the appropriate modifications, i.e., 2 s, P is the
set of behaviors
o:Nx|JV; — Limyp (Tg,snxDc[]TyxD
qeQ q€Q
on,v) — ((t9geq 4),

such that the following conditions hold: for all (n, v) e N x Ugeo Vo there exists unique (0 4) geq € [1 4€0Zq
such that® forall ee E

() Osor(e) (1, V) = (Isor(e), 4) ifve Vsor(e)
and
o(n,v) = ((tg)geq.d) & (i) Ttar(e) (1, V) = (trar(e), d) if V€ Viar(e) (6.30)
and
sasll Pe _ P
(") 055 Veore N Veare) = Ttar(e) | VsorterN Viarce-

3Like (6.5) and unlike (6.25), the third condition stated here is again redundant because we are taking Limmr Tg,, p)) as our
tag structure.
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Note that the fact thato € 2, 9y P takes values in Limgy. (T(g .7, p)), rather than [ ;e I, is exactly because
of condition (iii").

The conditions given in (6.30) demonstrate that our definition of 2 , 5 is consistent with the
one given in [23] (although our definition of X 5 is more general that anything defined in that chapter).

Moreover, (6.26), (6.27) and (6.30) imply that we have the following bijection

Z”Jyy lemr (S(z@'zly'Resp)) (631)

. Pe _ P
{ (Uﬂi)qu € 1_!2261 : Usor(e)lvsor(e>m/tar(e> - Utar(e)h/sor(e)ﬂvtar(e)’ Vee E}
qe
as defined in (6.28) and (6.29). Here

S 3, Res?) = BN, g, Rest) : M — Set

is the functor corresponding to the network of behaviors (I', £ 5, X 4, , Res’) obtained from the network of

tagged systems (T, &, |, ResP).

6.5 Semantics Preserving Deployments of Networks

Using the framework established in this chapter, we are able to introduce a general notion of
semantics preservation. After this concept is introduced, we state the main result of this work: necessary
and sufficient conditions for semantics preservation. We conclude this section by applying this result to

the specific case of network desyncronization.

6.5.1 Network specification vs. network deployment. Generalizing the notion of specification vs. de-
ployment given in Section 6.2, we define the following semantics (using the notation of the previous para-

graph):

Network Specification Semantics: || 5, &
Network Deployment Semantics: ||, &

The set of mediator tagged systems .# is said to be semantics preserving with respect to ., denoted by
l.w? =g, P
ifforall (64)geq € quQ 24

d0'€eX ,pstmgld)=04 YV qeQ
0 (6.32)
HUEZ”yygz st.aglo)=04 VYV qeQ.

We now are able to generalize the results given in Theorem 6.2 on semantics preservation to the networks

of tagged systems case.
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Theorem 6.4. For the networks, (I', 2, #,a) and I, 2, $<,ResP),
Iy P =g,
ifand only if for all (0 g) geq € [1qeq Zg and all e € E:
Ae(Tsor(e) = Xo(Otare) & Res’,, (Tsor(e)) = Reste, , (Ttar(e))-
Proof. (Sufficiency:) If

(Uq)qEQ € H Zq S.t. ae(Osor(e) = a;(o'tar(e)) VeeE

qeQ
by (6.26) .
= (0g)geq € Limm; Sz 2 4 ,@)
by (6.29)
= U.#(©@gqgeq€Zy , » where
mq(U#(0g)qeq) =04 ¥ qeQ
by (6.32)
= Elaezujygs.t.ﬂq(a):ch VgeQ
by (6.28) _
= (@) geq € Lime, Sz 5 3, , Res?))
bygsl) Respe (o )= Respg (o ) VeeE
sor(e) \¥ sor(e) tar(e) \J tar(e) .

The converse direction proceeds in the same manner: if

0geq€ [] Zq st Rests, , (sore)) = Resys, ) (Gtare) V¥ e€E

qeQ

by (6.29)

= I_lﬂy (U'q)qu € Enjy o where

mq(Us, (0g)geq) =04 ¥V q€Q

by (6.32) , /

= o ey ,pstnglo)=0q Y qeQ
by (6.28) ‘

= (09)geq € Limy Sz 5 x_y )
by (6.26) /

= Ae(Tsor(e)) = @p(Otar(e)) V e€E.

(Necessity:) We have the following implications:

d0'€x) ,pstmglo)=04 VqeQ

by (6.28) .

= (0g)geq €Limy. Sz 5,5 4 ,m)
by (6.26) ,

= Qe(Osor(e)) = Ap(Otare)) V e€E

!
= Resgér(e) (Osor(e) = Resfgr(e) (Otare)) V e€eE

by (6.29)

= Uy (0g)geq € 2y, 2 and

74(Usy (09geQ) =04 YV q€Q.

Therefore ||z, (04) geq is the element of 2y, 5 such that 74 (Lls, (0¢)geq) = 0¢ forall g€ Q.
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The other direction follows in the same way:

EIO'EZHJ?QZ stmgl0)=04 VY qeQ

> Uz (0gge0€l) , 2 and
nq(Unr0gqe)=0q Y qeQ,

by (6.26), (6.28) and (6.29), so Ll 4 (04) 4eq is the element of Z”%g such that

g (U(Uq)qu) =0y
Vi

forall ge Q. O

6.5.2 Network desyncronization. LetJ and 9’ be two tag structures and p: 9~ — 9’ be a morphism
between these tag structures. By slight abuse of notation, let (I, 9,9, p) denote the network of tag struc-
tures such that 7, =  forall g € Q and F, = I, p. = pl, = p for all e € E; denote the corresponding
network of tagged systems by (', &2, .95/, ResP). Similarly, let (I', 9,7, id) denote the network of tag struc-
tures with Jsor(e) = Ttare) = e = J for all e € E, and with all morphisms of tag structures being the
identity; denote the corresponding network of tagged systems by (T', &, .#, Resid). Therefore, this network
consists of a set of tagged systems, all with the same tag structure, communicating through the identity
tagged system. A special case in which this framework in interesting is when 9’ = Jy4y = {*}; in this case
(T, P, Fq1,ResP) is the desynchronization of (T', #, .7, Res'd).

Utilizing the notation of Section 6.4, and generalizing the discussion on desynchronization given

in this Section 6.2, we are interested in when
2 := Limgy. (N(g g ia)) = Limegn. N g7 p)) =: .o, &

In other words, we would like to know when .#5 is semantics preserving. The following corollary (of

Theorem 6.4) says that this happens exactly when every element of .#5 is semantics preserving.

Corollary 6.2. Z5 is semantics preserving, | & = |l g,, &, if and only if for all (0 ¢) geq € [14eq 24 and all

ecE:

o _ 4P —
Usor(e) | Vsor(e) r-]Vtar(e) - Utar(e) | Vsor(e) ﬁVtar(e‘) = Usor(e) | Vsor(e)mvtar(e) - Utar(e) | Vsor(e) thar(e] *
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Appendix A
Limits

Central to category theory, and hence to all of mathematics, is the notion of a universal prop-
erty, which characterizes objects that share a certain property, i.e., objects displaying such a property are
unique up to isomorphism. Examples abound in category theory (e.g., products and limits) but also ap-
pear in engineering, although almost never recognized (e.g., stability is a universal property).

This appendix reviews some of the most fundamental universal constructions in a category:
products, equalizers, pullbacks and limits. This is done in order to provide the necessary preliminaries for

Chapter 6.

A.1 Products

A.1.1 Binaryproducts. Let Cbe acategory and A and B two objects in C. The product of these objects,
if it exists, is an object C = A x B of C together with a pair of morphisms p4: AxB— Aand pp: AxB— B
(called projections). It must satisfy the universal property that for any other object D of C together with
a pair of morphisms f: D — Aand g: D — B, there exists a unique morphism % : D — A x B making the

following diagram:

D
f h g
PA '

PB

A < AxB

B

commute. The morphism # is typically denoted by (f, g).

Example A.1. For two sets A and B, the binary product of these sets is the usual cartesian product:

AxB={(a,b):a€ Aand b€ B}.

213



Limits

A.1.2 Products. LetC be acategory, I be asetand {A;};e; a set of objects of C. The product of these ob-
jects is an object [[;c; A; of C together with projections pa; : [1;e; Ai — A; satisfying the universal property

that for any other object C of C with morphisms f; : C — A;, there exists a unique morphism

(fier:C—[]Ai
i€l
making the following diagram
C
fi : (fier
pa !
A; — [TA:
iel

commute forall i € I.
Given two sets of objects {A;};e; and {B;};e; together with morphisms f; : A; — B;, there is a
unique induced morphism

[1fi=iopadier:[[Ai = []Bi

iel iel i€l
making the following diagram
PA;
Ay ——[] A
iel
fi Mlier fi = (fiopayier
i
PB;
B; HB,‘
i€l

commute.

Definition A.1. A category C is said to have products, or products exist in C, if for any set of objects {A;};er

in C, the product [];<; A; exists.

Remark A.1. Products of the form given in Definition A.1 are often referred to as small products. Some-

times finite products—I is a finite set—are often of interest.

Example A.2. The category of sets, Set, has products. For a set of sets {X;};¢, the product is the usual

cartesian product:
[1Xi = () ier: xi € X}
iel
The projections are defined as
pi:[[Xi - X
i€l
(X)ier — X
To verify the universal property of the product, consider a set D and functions f; : D — X;. From these we

obtain a function f : D — [];¢; X; given by:

T ={iWier
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forall ye D.

A.1.3 Productsofgraphs. The category of graphs, Grph, has products. Foraset of graphs {I'; = (Q;, Ej)}ier,
the product is induced from the product on sets as follows:

[Iri=(JQi]]E».

iel iel iel
The source and target maps for the product graph [];¢;I'; are defined to be the unique maps making the

following diagrams commute:

PE; PE;
Ei ——— []E:i E; [1E:
iel iel
sor; :Hielsori tar; :Hieltari
PQ ' PQ '
Qi ~—— []i Qi ~—— []Qi
iel iel

Specifically, for (e;)jer € [1;er Ei»

[ Isori((enien) = (sori(ei)ier, [Ttari((edien) = (tari(e;)jer.

iel iel
Note that the projections are defined by:

Pl"i = (pE,-, le) : ]_[rl - ri'
iel

Finally, we must verify the universal property of the product. Consider a graph I" = (Q, E) together with
a collection of morphisms F; = ((Fg);, (Fg);) : I' — T';. It follows from the universality of products in the
category of sets that the diagrams given in Table A.1 are commutative. So F = (Fg, Fg) : I' — [];¢;I'; is the

desired unique morphism.

A.1.4 Products in categories of hybrid objects. The existence of products in C relates to the existence
of products in Hy(C). In order to establish this relationship, we need to show that products exist in Dcat
and that if products exist for C then they exist for CJ for any small category J. These two results are then
“glued” together to yield products in Hy(C).

Proposition A.1. Products exist in Dcat. Specifically, for {<f;} ;e a set of D-categories, the product [1;c; </;
exists and is given by:
[ [ % = dcat([ [ grph(«#)),

iel iel

where[];c;grph(sf;) is the product of graphs.

Proof. This follows from the fact that dcat and grph are isomorphisms between categories (Theorem 1.1).
Specifically, the projections:
P;: [ ] grph(s#) — grph(s#;)

iel
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Table A.1: Commuting diagrams verifying the universality of the product in Grph.

yield projections of D-categories:
P;:=dcat(P) : [ | o = dcat(J | grph(#;)) — o; = dcat(grph(«s))).
iel i€l
Now, to verify universality, for any other D-category 2 with morphisms F; : 2 — <f; there is a graph

grph(2) and morphisms grph(F;) : grph(2) — grph(s#;). By the universality of the product in Grph, there

exists a unique morphism F making the following diagram

grph(2)
grph(F;) !
p. A\
grph(s#;) <= []grph(s)
iel
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commute. Applying the functor dcat yields a commuting diagram

2

E dcat(F)

- v
i R B [It

iel
where dcat(F) must be unique; if there were another morphisms making the diagram commute, it would

also make the corresponding diagram of graphs commute, thus violating the uniqueness of F. O

LemmaA.l. Ifproducts exist in C, then products exists in C? for any small category ). Specifically, for a set
of functors F; : J — C, i € I, the product is given on objects and morphisms by:

(IF)@=[]Fi@, (]F)@=]]Fi@.

iel i€l i€l iel

Proof. See [74], Theorem 1, page 115. O

Proposition A.2. If products exist in C, then products exist in Hy(C). Specifically, for a set of hybrid objects
{(i, A1)} ier, the product is given by:

[Testi, A0 = ([T, [1PF @A)

iel iel iel
where [1;c; <f; is the product of D-categories, [ ey 13;‘ (A;) is the product in cllier?i with B; : ier i — <

the projection morphisms in Dcat.

Proof. The projection morphisms are given by:
(B, p) : [ [ (i, AD) — (£3,A0),
iel
where ﬁi [lierofi — <5 and
pi: [15; @A) = Pr @A)

iel
is objectwise the projection in C. We must verify the universality of the product. Consider a hybrid object
(2,D) together with morphisms (ﬁi, f; ):(2,D) — (&;,A;). By the universality of the product in Dcat, there

exists a unique morphism F : @ — [[;¢;</; yielding a commuting diagram
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Therefore, we need only find a unique natural transformation f : D = F*([T;e; P} (A)) in C?. Since f; :

D> ﬁi* (A;) there is a commuting diagram

D
'f
7 (51 '
Fray <22 B (15 A

iel

in CZ where the existence and uniqueness of f follows from the universal property of the product in
c?. O

A.2 Equalizers and Pullbacks

A.2.1 Equalizers For a category C and a pair of morphisms:

f
4

A B

between two object A and B of C, the equalizer of this pair is an object eq(f, g) of C together with a mor-
phism u:eq(f, g) — B making diagram

eq(f,8) LI A B

8
commute, i.e., f o u = go u. In addition, it must satisfying the universal property that for any other object
C with a morphism v: C — Asuch that f o v = g o v, there exists a unique morphism & : C — eq(f, g) such

that the following diagram commutes:

“-=-- 0
<

f
g

eq(f,8) BN A B

Definition A.2. A category C is said to have equalizers if for any pair of morphism f,g: A — B between

any pair of objects in C, the equalizer exists.

Example A.3. In the category of sets, Set, equalizers exist. For two sets X and Y and two functions f, g :
X — Y, the equalizer is given by:
eq(f,8) ={xeX: f(x)=g(x)},

with u : eq(f, g) — X the inclusion. For a set Z and a morphism % : Z — X such that fo h = go h, then
h:Z —eq(f,g) by the definition of eq(f, g), and hence is unique.
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A.2.2 Equalizers in Grph. For a diagram in Grph of the form:
F = (Fy, Fg)

I'=(Q,E) I'=(Q,EN,

G = (Gg,GEg)
the equalizer of this pair of morphisms exists. It is given by:

eq(F Q) = (eq(Fg, Go),eq(Fg, Gg)),

where the equalizers on the right are in the category of sets. The source and target functions for eq(F, G)

are given uniquely by requiring that the following diagrams commute:

Fg
eq(Fg, Gp) £ E = E
| E
SOfeq(FG) E sor sor’
v uQ FQ ,
Q
Fg
eq(Fg, Gp) ~E— E = E
| E
tareqrG) E tar tar’
¥ uQ Fo ,
eq(Fp,Gg) — E e Q
Q

Note that the uniqueness of the source and target functions are due to the universality of equalizers in

Set. It also follows from the definition of equalizers in Set that

SOleq(FG) = SO leq(Fy,Gg)y  taleq(EG) = tarleq(Fg,Ge)»

since ug and ug are inclusions.
The universality of the equalizer in Grph is easy to verify (it is a simple exercise in diagram chas-

ing).

A.2.3 Pullbacks. Consider a category C and a diagram of the form:
B

f

C A

g
The pullback of this diagram is an object B x 4 C of C together with two morphisms p and g such that the

following diagram

Bx,C -+ B

q f

C
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commutes. It is universal in the following sense: for any other object D of C with morphisms « and v

making the following diagram commute

v f

A
g

there exists a unique morphism % : D — B x 4 C such that the following diagram commutes:

Pullbacks are very useful when dealing with networks over a category since the canonical D°P-category is

b
a

Example A.4. In the category of sets, pullbacks exists. Specifically, for a diagram of sets of the form:

of the form:

C ———

ta

X

f

zZ

The pullback is given by:
XxzY={x,)eXxY:f(x)=g}.

A.3 Limits

A.3.1 Limits For a category C and a functor D: J — C the limit, if it exists, is an object of C, denoted by

Lim (D), together with morphisms:

Vq:Lim (D) — D(a), ae Ob()),
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such that for every a : a — b in J, the following diagram

Lim,(D)
/ X
D(a) D(@) D(b)

commutes. In addition it is required to satisfy the universal property that for any object C of C with mor-

phisms ¢, : C — D(a), a € Ob(J), such that there is a commuting diagram:

C

/ y
D(a)

D(a) D(b)

there exists a unique morphism u : C — Lim (D) making the following diagram

C

u
\
€a/ Limj(D) \Cb
Va Vp
D(a)

D(a) (@ D(b)

commute.

The notion of a limit perhaps can be better understood utilizing the language of natural trans-
formations. For the constant functor A : C — CJ, the limit of D is an object Lim j(D) of C together with a
universal natural transformation:

v:Aj(Lim (D)) = D.

It must be universal in the following sense: for any other object C of C and natural transformation c :

Aj(C) = D, there exists a unique morphism u : C — Lim j(D) such that the following diagram commutes

Aj(O)

Aj(w)
Y v
Aj(Lim (D)) — D
in CJ.

Definition A.3. A category C is complete if for every small category J and every functor D : J — C, the

limit exists.

Example A.5. The category of sets, Set, is the canonical example of a complete category.
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The category of small categories Cat is complete; this completeness is directly a result of the
completeness of Set. In fact, one might be tempted to say that the category of D-categories is complete
since the category of small categories is complete. The problem with this logic is that there is no guarantee
that the limit of diagram in Dcat is again in Dcat.

Another example of a complete category is the category of graphs, Grph, which is again complete
because the category of sets is complete. It turns out that the completeness of this category does imply

the completeness of Dcat, which is not surprising in light of the isomorphism Dcat = Grph.

A.3.2 Special cases of the limit. The limit includes as a special case all of the previous universal con-

structions we have introduced. Specifically,

Products. The limit of a functor
D:1-C

where | is the discrete category obtained from an indexing set 1.
Equalizers. The limit of a functor
D:(eZe) —~C.

Pullback. The limit of a functor
D:(e—>e—e)—C.

Interestingly enough, the existence of limits in a category is related to the existence of equalizers and

products.

Proposition A.3. A category C is complete iff it has equalizers and products.

Proof. See Corollary 2, page 113, [74]. O
Corollary A.1. The category of graphs, Grph, is complete.

A corollary of this is that the category of D-categories is complete. Before stating this result, we

introduce some notation.

NotationA.1. To differentiate, when necessary, between limits in different categories, we sometimes write

LimJC for the limit of a functor D: J — C. Similarly, we sometimes write AJC.

Theorem A.1. The category of D-categories, Dcat, is complete. Specifically, for a functor D : J — Dcat, J
small, the limit is given by:

Lim{%(D) = dcat (Limj;rph (grph, (D))) .

Proof. Follows from the fact that dcat and grph are isomorphisms of categories; the proof is analogous to

the proof of Proposition A.1. O
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A.3.3 Thelimit as a functor. If C is a complete category, then the limit exists for every diagram over a
small category J, i.e., for every functor D: J — C. In fact, the universality of the limit implies that it defines
a functor

LimJ:CJ—>C.

Specifically, consider two functors D, D’ : ] — C together with the corresponding universal natural trans-

formations:

v:Aj(Limy(D) = D,
v':Aj(Limy(D") = D
The object function of the limit (as a functor) associates to these functors their limit. For a morphism

f: D= D, the limit of this morphism is the unique morphism Lim (f) : Lim j(D) — Lim(D’) making the

following diagram:
. v
Aj(Lim;(D)) —— D

Ay (Lim; () f

/

Aj(Lim, (D)) Y D'
commute.

An especially useful result is outlined in the following proposition (see [74], Theorem 1, page
115).

Proposition A.4. IfC is complete, then CX is complete for every small category K. Specifically, for D : ) —

CK, the limit is given on objects and morphisms of K by:

Lim§" (D)(@) =Lim{ (D(@),  Lim§" (D)(@) = Lim$ (D(a)).

A.4 Limits in Categories of Hybrid Objects

As an application of these ideas, we will prove that if C is complete, then Hy(C) is complete.
This result was established in [6]; in addition, it was proven that if C is cocomplete (the dual notion to

completeness) then Hy(C) is complete.

A.4.1 Diagrams in categories of hybrid objects. By slight abuse of notation, we denote a diagram in
Hy(C) by
@),0%): ) = Hy(O.

That is, for every a : a — b in J, there are corresponding hybrid objects and morphisms:

(27 (@), DI ()

(27 (a), D) (a)) (@7 (b), D4 (b)).
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In particular, 27 (a) : 27 (a) — 27 (b) is a morphism of D-categories and
DJ(a):DI(a) = (@7 (a)* D (b))

is a morphism in 2’ @,
Note that by the definition of a hybrid object, we can without ambiguity write 24 : J — Dcat;
note that 27 is not a D-category, but a diagram of such categories. Since the category of D-categories is

complete, there exists a D-category LimJDcat (27) together with a universal natural transformation:
VAPt wimPet(@d) - o).

The motivation for denoting this natural transformation by V is that for every diagram of the form a : a —

b in J, there is a diagram of D-categories:

Lim{<(2Y)

Vs 1 Al

24(a)

a0 24 (b)

For the diagram (24,DJ) : J — Hy(C) in Hy(C), the limit of 27 : J — Dcat yields a functor:
7" (DY) : ) — CLimy=" @)
defined on objects and morphisms of J by:
VD)@ :=V; @), V' OH@:=V D0 @)

Note that V* (DY) is well-defined because of the commutativity of (A.1).
Using this notation, we can now prove that categories of hybrid objects are complete and give

an explicit formula for the limit of a diagram.

Theorem A.2. If C is complete, then Hy(C) is complete. Specifically, for (24,D7) : J — Hy(C), the limit is
given by:

Lim?cat(.@

Lim'"© (@, p) = (LimJDcat(@J),Lich "o,
Proof. The first step is to find the universal natural transformation in Hy(C)”
Ve ATY(O (LimTy(O (@J,DJ)) = @4, D).
There are universal natural transformations
v AJDcat (LimJDcat (QJ)) = gl
cLimJDcat(_@J) ( CLichat(_@

J
¢ Lim§™ @Y = 7o)

. s Dcat gyJ
in Dcat? and (CH™ ™ @yJ,
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The claim is that the universal transformation v is given by v = (V,¥). To verify this, first note

that for an object a of J,

Lichat (QJ) N
’ (V* (DY)

Va = (Va,¥a) :Lim)”© (@), DY) = [LimD=* @), Lim§
= @ (a), D) @)

since 17; (D! (a)) = V* (D7) (a). Now, we need to verify that defining v = (V, V) in fact yields a natural trans-

formation. Thatis, for a: a — b in J, we need to show that there is a commuting diagram:

Deat CLimE)cat(@J) R
Lim}**(27), Lim§ (V* (D)
(Vayva) (Vb»vb)

(@2 (a),DI(a))

@4 (@),D7 () (@7 (b),D? (b))

By the commutativity of (A.1), this follows from the fact that
Vs D) (@) eV, =V D) (@) e Vo =7,

which is implied by the naturality of ¥ and the definition of V*(D”).

To conclude, we need only show the universality of v = (V, 7). Suppose that there is a hybrid
object (€, C) together with a collection of morphisms (C,, &) : (€¢,C) — (27(a),D? (a)) of hybrid objects
making the following following diagram

(€,0)
(Ca» Ea) (Cp, &)

J J
2@, DID) 55y, D) (b))

@7 (@), D’ (@)
commute. This yields commuting diagrams and unique morphisms:

€

- QL'

LimD< (@4) \Cb

Va Vb
24(a)

23 (a) 24 (b)
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C
i

\
Lichat(_@J)

0" (Lim§ (V')

U*(V} (D ()

U*(V; (D (@) U*(V; (D (b))

That is, we obtain a unique morphism of hybrid objects:
(@, @):(¢,C) — Lim V9 @4, p)

that makes the following diagram

(€,0)

(Cp, &)

(@7 (a),DI(a))

@ (@), D (@) (@ (b), D (b))

commute as desired.
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This dissertation developed a unifying mathematical theory of hybrid systems, i.e., a theory sat-
isfying Properties I-IV discussed in the introduction. Yet there is still much to be done. We, therefore,

briefly discuss some future research directions.

Mathematical Foundations. The connections between modern mathematics and our categor-
ical framework for hybrid systems have only begun to be established. The theory of hybrid objects makes
the possibility of further connections not only likely, but certain. For example, hybrid objects allow us to
utilize the theory of model categories, which provides a method for “doing homotopy theory” on general
categories satisfying certain axioms. Understanding hybrid systems in the context of model categories
allows one to understand the homotopy-theoretic properties of these systems, laying the ground work
for hybrid homotopy theory. This promises to play a fundamental role in understanding the topological

properties of hybrid systems. We refer the reader to the author’s master’s thesis [6] for more details.

Hybrid Systems. This dissertation discussed applications of the theory of hybrid objects to hy-
brid systems, but there is still much to be done. Understanding the implications of the results presented
on a practical level provide important research directions. For example, we gave “Lyapunov-like” condi-
tions on the existence of Zeno behavior. Can explicit “hybrid Lyapunov” functions be constructed in the
case of linear hybrid systems? Can the conditions on the stability of Zeno equilibria be used to give analo-
gous conditions on the stability of other types of “hybrid” equilibria? Applications of hybrid reduction to
bipedal robotic walking also were discussed, although we restricted our attention to walkers without hips.
Can these ideas be extended to the hipped walker case? Answers to these questions promises to further
the general understanding of hybrid systems.

In addition to extensions of the ideas presented in this dissertation, categories of hybrid objects
can provide a framework in which to address questions related to the relationship between different hy-
brid systems—this is one of the general strengths of category theory. For example, bisimulation relations
have been well-studied in the hybrid systems community. Because there is a categorical formulation of
bisimulation relations, it seems likely that it is possible to completely characterize bisimulation relations

for hybrid objects, given a characterization for their non-hybrid counterparts.
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Networked Systems. The first steps toward understanding how to compose networked systems
in a “behavior preserving manner” were taken in the final chapter of this dissertation. Yet these first steps
are tentative. We considered a very specific behavioral representation of embedded systems: the tagged
system model. Can these ideas be extended to general behavioral representations of systems? We briefly
discuss what such an extension may entail.

In networked systems, one typically considers a collection of simple systems whose behavior
is understood. These systems are then interconnected. In general, there is no guarantee that properties
of the simple systems constituting the network are preserved through interconnection. That is, one of
the fundamental questions in networked systems is: how does one compose a network while preserving
the behavior of the components of the network? A theory of behavior preserving composition, or deep
compositionality, is needed. This is related to the notion of “semantics preservation” discussed in this
dissertation, but semantics preservation does not appear to address this issue in its full generality. Is
there a more general concept capturing the notion of property preserving composition? To answer this
question, the notion of a property needs to be formulated mathematically and conditions need to be given
on when taking the composition of a network (the limit) preserves a given property. The ability to do so

could greatly increase the general understanding of networked systems.
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