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Abstract— In this paper we develop a feedback control law
that results in stable walking gaits on flat ground for a three-
dimensional bipedal robotic walker given stable walking gaits
for a two-dimensional bipedal robotic walker. This is achieved
by combining disparate techniques that have been employed in
the bipedal robotic community: controlled symmetries, geomet-
ric reduction and hybrid zero dynamics. Controlled symmetries
are utilized to obtain stable walking gaits for a two-dimensional
bipedal robot walking on flat ground. These are related to
walking gaits for a three-dimensional (hipless) bipedal robot
through the use of geometric reduction. Finally, these walking
gaits in three dimensions are made stable through the use of
hybrid zero dynamics.

I. INTRODUCTION

The central goal of research in bipedal robotic walking is
to obtain stable walking gaits, i.e., to prove the existence
of stable periodic orbits and/or to develop control laws
that create such orbits. Due to the inherent complexity
of bipedal robots, many approaches have been employed
in order to achieve this goal. While successful in their
respective domains of consideration, they often do not extend
outside of these domains to obtain a more encompassing
solution to the central problem. In this paper we combine
these techniques so as to obtain a more satisfying overall
solution—this requires a method for “gluing together” these
partial solutions. Before proposing our technique, we review
preexisting approaches to bipedal walking.

Possibly the first studies in obtaining dynamically sta-
ble bipedal walking were concerned with passive two-
dimensional (2D) bipeds walking down shallow slopes; such
walkers have subsequently been well-studied (see [7] and [3]
to name a few). It has been shown that for certain shallow
slopes, these passive bipeds have stable walking gaits, with
no control needed. These walking gaits appear very natural,
but unfortunately they only have been shown to exist for a
limited class of bipedal robots. For example, the techniques
employed by the passive walking community have since been
extended to three-dimensional (3D) bipedal walkers (cf. [5]),
although the understanding of bipedal walking obtained by
this extension seems to be limited since direct control over
hip splay is required (which may not be reasonable for certain
models). An interesting variant of the passivity paradigm has
been applied to a real biped [2].
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The limitation of the passive approach to bipedal walking
is just that—the approach is passive or uncontrolled, thus
preventing the application of this idea, for example, to bipeds
walking on flat ground (among other varying slopes). This is-
sue was addressed in [10] with the introduction of controlled
symmetries. This framework allows for the construction of
control laws that translate stable periodic orbits for passive
bipeds to stable periodic orbits for actuated bipeds walking
on arbitrary slopes. The advantage of this technique is that it
exploits the natural symmetries in bipedal walkers to obtain
natural and efficient walking gaits. The disadvantage is that
it presupposes the existence of passive gaits—these may not
exist for certain models of bipedal robots.

The limitations of controlled symmetries highlight the
need for a new, more control-oriented method for obtaining
walking gaits. The theory that successfully meets this chal-
lenge is that of hybrid zero dynamics (see [4] and [8]). This
technique uses virtual constraints in the form of output func-
tions to reduce the problem of finding stable periodic orbits
to a very low dimensional space where it is tractable. The
advantage of this method is that it works for very complex
models of bipedal walkers and, in fact, has been implemented
on a real robotic system: Rabbit. The disadvantages are that
the resulting walking gaits appear unnatural if one does
not choose the “correct” virtual constraints, and there are
essentially no results on extending this method to 3D bipeds.

The abstract goal of this work is to combine the advan-
tages of the aforementioned techniques, while attempting
simultaneously to eliminate the disadvantages, in order to
obtain natural stable walking gaits in three dimensions. This
requires a new theoretical technique capable of linking these
disparate approaches. The authors made a first attempt at
obtaining such a framework in [1], where methods from
geometric mechanics—specifically, a variant of Routhian
reduction termed functional Routhian reduction—were uti-
lized in order to map walking gaits in two dimensions
to walking gaits in three dimensions. These methods ex-
ploit controlled symmetries (and by association the passive
walking paradigm), and so the resulting 3D gaits have the
advantage of being natural. The problem with this approach
is that the resulting 3D gaits are stable only from a specific
submanifold. Hybrid zero dynamics provide the appropriate
framework in which to address this problem, thus linking all
of the aforementioned approaches.

The main result of this paper is the construction of a
feedback control law that results in stable walking gaits
on flat ground for a three-dimensional bipedal robotic
walker of a specific form, given stable walking gaits for



the planar-equivalent two-dimensional bipedal robot. To
obtain this result we proceed in the following manner:

Step 1: Consider a passive 2D biped able to walk down
a shallow slope.

Step 2: Use controlled symmetries to obtain stable
walking gaits on flat ground in two dimensions.

Step 3: Use functional Routhian reduction to obtain a
walking gait in three dimensions, stable from a
submanifold.

Step 4: Use hybrid zero dynamics to stabilize to the
submanifold, thus achieving stable walking
gaits in three dimensions.

The final control law resulting from this procedure appears
to have the advantage of producing walking gaits that are
natural and stable, i.e., it seems to demonstrate the positive
aspects of walking gaits obtained from all three of the
aforementioned approaches.

II. HYBRID SYSTEMS

Hybrid systems are systems that display both continuous
and discrete behavior and so bipedal walkers are naturally
modeled by systems of this form. This section, therefore,
introduces the basic terminology of hybrid systems.

Definition 1: A simple hybrid system1 is a tuple:

H = (D,G, R, f),

where
• D ⊆ Rn is a subset of Rn, called the domain,
• G ⊂ D is subset of D called the guard,
• R : G → D is a smooth map called the reset map (or

impact equations),
• f is a Lipschitz vector field on D, i.e., ẋ = f(x).
We also will be interested in studying hybrid control

systems.
Definition 2: A simple hybrid control system is a tuple

H C = (D,U,G, R, f, g),

where D, G and R are the domain, guard and reset map as
introduced in Definition 1 and
• U ⊆ Rk is a set of admissible controls,
• (f, g) is a control system, i.e., ẋ = f(x) + g(x)u.

Hybrid flows. A hybrid flow is a tuple χH = (Λ, I,C),
where
• Λ = {0, 1, 2, . . .} ⊆ N is an indexing set.
• I = {Ii}i∈Λ is a hybrid interval where Ii = [τi, τi+1]

if i, i+1 ∈ Λ and IN−1 = [τN−1, τN ] or [τN−1, τN ) or
[τN−1,∞) if |Λ| = N , N finite. Here, τi, τi+1, τN ∈ R
and τi ≤ τi+1.

1It is important to note that simple hybrid systems correspond to systems
with impulsive effects (see [4] and [8]) and vice versa. Specifically, to a
simple hybrid system there is the associated system with impulsive effects
of the form:

Σ :

{
ẋ = f(x) x ∈ D\G

x+ = R(x−) x− ∈ G
.

• C = {ci}i∈Λ is a collection of integral curves of f , i.e.,
ċi(t) = f(ci(t)) for all i ∈ Λ.

In addition, we require that for every i, i + 1 ∈ Λ,

(i) ci(τi+1) ∈ G,
(ii) R(ci(τi+1)) = ci+1(τi+1).

The initial condition for the hybrid flow is c0(τ0).
Hybrid periodic orbits. In the context of bipedal robots, we
are interested in discussing walking gaits and stable walking
gaits—these correspond to hybrid periodic orbits and stable
hybrid periodic orbits, respectively.

A hybrid flow χH = (Λ, I,C), of H is periodic if
• Λ = N,
• limi→∞ τi = ∞,
• ci(τi) = ci+1(τi+1) for all i ∈ Λ.

A hybrid periodic orbit O ⊂ D is a subset of D such that

O =
⋃
i∈N
{ci(t) : t ∈ Ii}

for some periodic hybrid flow χH .
As is standard, denote the distance between a point x and a

set Y by d(x, Y ) = infy∈Y ‖x− y‖. A hybrid periodic orbit
O is (locally) exponentially stable if there exist constants
M > 0, α > 0 and δ > 0 such that for all hybrid flows χH

with d(c0(τ0),O) < δ,

d(ci(t),O) ≤ Me−α(t−τ0)d(c0(τ0),O)

for all t ∈ Ii and i ∈ Λ.

III. BIPEDAL MODELS

We now introduce the hybrid systems that will be of inter-
est throughout this paper—those modeling a two-dimensional
and a three-dimensional bipedal walker without a hip.
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Fig. 1. Two-dimensional bipedal robot.

2D biped model. We begin by introducing a model describ-
ing a controlled bipedal robot walking in two dimensions on
flat ground (see Figure 1). That is, we explicitly construct
the hybrid control system:

H C 2D = (D2D, U2D, G2D, R2D, f2D, g2D)

describing this system. The techniques utilized in the con-
struction of this hybrid system are further explained in [1].



The configuration space2 for the 2D biped is Q2D = R2

with coordinates θ = (θns, θs)T where θns is the angle of
the non-stance leg from vertical and θs is the angle of the
stance leg from vertical.

The domain and guard are constructed by utilizing the con-
straint that the non-stance (swing) foot is not allowed to pass
through the ground, i.e., by utilizing the unilateral constraint
function: H2D(θ) = cos(θs)− cos(θns). In particular:

D2D =
{(

θ

θ̇

)
∈ R4 : H2D(θ) ≥ 0

}
G2D =

{(
θ

θ̇

)
∈ R4 : H2D(θ) = 0,

(
∂H2D(θ)

∂θ

)T

θ̇ < 0
}

We put no restrictions on the set of admissible controls
and, therefore, U2D = R2.

The reset map R2D for H C 2D is computed using the
methods outlined in [1] and [4]. In particular, it is given by:

R2D(θ, θ̇) =
(

S2Dθ

P2D(θ)θ̇

)
,

where S2D and P2D(θ) are given in Table I.
Finally, the dynamics for H C 2D are obtained from the

Euler-Lagrange equations in the standard way. Specifically,
the Lagrangian describing this system is:

L2D(θ, θ̇) =
1
2
θ̇T M2D(θ)θ̇ − V2D(θ),

where M2D(θ) is the inertial matrix and V2D(θ) is the po-
tential energy (these can be found in Table I). The controlled
Euler-Lagrange equations yield:

M2D(θ)θ̈ + C2D(θ, θ̇)θ̇ + N2D(θ) = B2Du,

where C2D(θ, θ̇) is the coriolis matrix and N2D = ∂V2D(θ)
∂θ .

In addition, we assume that B2D is invertible. These equa-
tions yield the control system:

f2D(θ, θ̇) =

(
θ̇

M2D(θ)−1
(
−C2D(θ, θ̇)θ̇ −N2D(θ)

) )

g2D(θ, θ̇) =
(

02×2

M2D(θ)−1B2D

)
,

where 02×2 is a 2× 2 matrix of zeros.
We now discuss how a control law can be constructed

which yields stable walking gaits (stable periodic orbits) for
H C 2D utilizing the method of controlled symmetries.
Controlled Symmetries. Controlled symmetries were in-
troduced in [10] in order to shape the potential of bipedal
robotic walkers to allow for stable walking gaits on flat
ground based on stable walking gaits down a slope (which
exist and have been well-studied in [7] and [3]). This is
achieved by “rotating the world” via a group action.

2Technically, the configuration space is given by Q2D = T2, the two
torus. The motivation for taking the configuration space to be R2 is that
for the subset U of T2 containing the angular values of interest, there is
a diffeomorphism sending this subset to a subset of R2. Therefore, we
simply view the angles as being elements of R2; this allows us to consider
coordinates which we can view as being globally defined.

Consider the group action Ψ : S1 ×Q2D → Q2D denoted
by Ψγ(θ) := (θns − γ, θs − γ)T , for a slope angle γ ∈ S1.
Define the following feedback control law:

u = Kγ
2D(θ) = B−1

2D

∂

∂θ
(V2D(θ)− V2D(Ψγ(θ))) .

Applying this control law to (f2D, g2D) yields the dynamical
system: fγ

2D(θ, θ̇) := f2D(θ, θ̇) + g2D(θ, θ̇)Kγ
2D(θ).

The main result of [10] is that there exists3 a γ such that

H s
2D := (D2D, G2D, R2D, fγ

2D), (1)

has a stable walking gait, i.e., an exponentially stable hybrid
periodic orbit. Such a periodic orbit can be seen in Figure 3
(in red and blue) with γ = π/50 radians, M = 10, m = 5,
l = 1 and a = b = 1/2.
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Fig. 2. Three-dimensional bipedal robot.

3D biped model. We now introduce the model describing a
controlled bipedal robot walking in three dimensions on flat
ground (see Figure 2), i.e., we will explicitly construct the
hybrid control system:

H C 3D = (D3D, U3D, G3D, R3D, f3D, g3D).

Since this construction is very similar to the construction of
H C 2D, we will be brief.

The configuration space for the 3D biped is taken to be
Q3D = R3, with coordinates q = (ϕ, θT )T , where ϕ is the
lean (or roll) from vertical and θ = (θns, θs)T as in the 2D
biped model.

The guard and domain are constructed from the constraint
function: H3D(q) = cos(θs)−cos(θns), which again gives the
scaled height of the non-stance foot above the ground with
the implicit assumption that ϕ ∈ (−π/2, π/2), allowing us
to disregard the scaling factor cos(ϕ) that would have been
present. In particular,

D3D =
{(

q
q̇

)
∈ R6 : H3D(q) ≥ 0

}
G3D =

{(
q
q̇

)
∈ R6 : H3D(q) = 0,

(
∂H3D(q)

∂q

)T

q̇ < 0
}

3This γ is not unique, but we will pick one once and for all.



M2D(θ) =

(
l2m
4

− l2m cos(θs−θns)
2

− l2m cos(θs−θns)
2

l2m
4

+ l2(m + M)

)
S2D =

(
0 1
1 0

)
V2D(θ) =

1

2
gl((3m + 2M) cos(θs)−m cos(θns)) B2D =

(
−1 0
1 1

)
P2D(θ) =

1

−3m− 4M + 2m cos(2(θs − θns))

(
2m cos(θns − θs) m− 4(m + M) cos(2(θns − θs))

m −2(m + 2M) cos(θns − θs)

)
m3D(θ) =

1

8
(l2(6m + 4M) + l2(m cos(2θns)− 8m cos(θns) cos(θs) + (5m + 4M) cos(2θs)))

V3D(θ, ϕ) = V2D(θ) cos(ϕ)

p3D(θ) =
−m cos(2θns) + 8(m + M) cos(θns) cos(θs)−m(2 + cos(2θs))

6m + 4M + (5m + 4M) cos(2θns)− 8m cos(θns) cos(θs) + m cos(2θs)

TABLE I
ADDITIONAL EQUATIONS FOR H C 2D AND H C 3D

We again put no restrictions on the set of admissible
controls and, therefore, U3D = R3.

The reset map R3D is given by:

R3D(q, q̇) =


1 0 0 0
0 S2D 0 0
0 0 p3D(θ) 0
0 0 0 P2D(θ)




ϕ
θ
ϕ̇

θ̇


where p3D(θ) is given in Table I.

To obtain the dynamics of H C 3D we first note that the
Lagrangian describing this system is given by:

L3D(q, q̇) =
1
2
q̇T M3D(q)q̇ − V3D(q),

with

M3D(q) =
(

m3D(θ) 0
0 M2D(θ)

)
,

where m3D(θ) and V3D(q) are given in Table I. Using the
controlled Euler-Lagrange equations, the dynamics are given
by M3D(q)q̈ + C3D(q, q̇)q̇ + N3D(q) = B3Du, with

B3D =
(

1 0
0 B2D

)
.

These equations yield the control system (f3D, g3D) as in
the case of the 2D bipedal walker.

IV. 1st CONTROL LAW: RELATING 2D AND 3D BIPEDS

The first step in utilizing stable walking gaits for a 2D
biped to obtain stable walking gaits for a 3D biped is to
relate the dynamics of these systems. The method for doing
this is the main result of [1], which we summarize here since
it forms an integral part of the construction of our second
control law—that which yields stable walking gaits in three
dimensions given stable walking gaits in two dimensions.

The first control law. The main idea of [1] is that methods
from geometric mechanics, and specifically a variant of
Routhian reduction [6], can be utilized to relate two- and
three-dimensional bipedal walkers satisfying certain assump-
tions. In order to apply these techniques, it is necessary to
shape the potential energy of L3D, i.e., V3D, so that it is
in a form amenable to the application of hybrid functional

Routhian reduction (see Theorem 2 of [1]). This motivates
the introduction of the following control law for H C 3D.

Define the feedback control law parameterized by α ∈ R:

u = Kα
3D(q)

:= B−1
3D

∂

∂q

(
V3D(q)− V2D(Ψγ(θ)) +

1
2

α2ϕ2

m3D(θ)

)
,

with γ as in (1). Applying this control law to the control
system (f3D, g3D) yields the dynamical system:

fα
3D(q, q̇) := f3D(q, q̇) + g3D(q, q̇)Kα

3D(q) (2)

whence we obtain a hybrid system:

H α
3D := (D3D, G3D, R3D, fα

3D).

The main result of [1] is the following:
Theorem 1: χH α

3D = (Λ, I, {(θi, θ̇i, ϕi, ϕ̇i)}i∈Λ) is a hy-
brid flow of H α

3D with

ϕ̇0(τ0) = − αϕ0(τ0)
m3D(θ0(τ0))

, (3)

if and only if χH s
2D = (Λ, I, {θi, θ̇i}i∈Λ) is a hybrid flow of

H s
2D and {(ϕi, ϕ̇i)}i∈Λ satisfies:

ϕ̇i(t) = − αϕi(t)
m3D(θi(t))

, (4)

ϕi+1(τi+1) = ϕi(τi+1).
Implications of Theorem 1. We now devote some attention
to discussing the implications of Theorem 1 and what it does,
and does not, imply about the behavior of H α

3D.
Let ι0 : R4 → R6 be the inclusion given by ι0(θ, θ̇) =

(0, θT , 0, θ̇T )T . The first implication of Theorem 1 is the
following:

Corollary 1: If O2D is a hybrid periodic orbit of H s
2D,

then O3D := ι0(O2D) is a hybrid periodic orbit of H α
3D.

Therefore, if H s
2D has a walking gait in two dimensions,

then H α
3D has a walking gait in three dimensions. Herein lies

the importance of Theorem 1, although one immediately sees
its limitations—nothing can be said about the stability of this
walking gait (in the sense of local exponential stability).

Utilizing (3) and (4), we can obtain an understanding of
the nature of the periodic orbit O3D. If χH α

3D is a hybrid
flow of H α

3D satisfying (3), then Theorem 1 implies that
(4) holds. Therefore, the walker stabilizes to the “upright”



Fig. 3. Phase portraits for different walking gaits obtained by varying
ϕ(τ0) and ϕ̇(τ0) and keeping the initial values of θ and θ̇ constant. The
black region shows values of ϕ(τ0) and ϕ̇(τ0) that result in convergence
to O3D.

position. This is because the roll, ϕ, will tend to zero as time
goes to infinity since (4) essentially defines a stable linear
system ϕ̇ = −αϕ when α > 0, because m3D(θi(t)) > 0 by
the positive definiteness of M3D. Thus the lateral and sagittal
dynamics effectively have been decoupled. We conclude that
the periodic orbit O3D is “stable” from initial conditions
satisfying (3); a plot of this set of initial conditions can be
seen in Figure 3. Unfortunately, the dynamics are unstable for
initial conditions not satisfying (3). The goal of the second
control law, to be introduced in the next section, is to render
the periodic orbit stable.

V. 2nd CONTROL LAW: STABLE WALKING GAITS IN 3D

In this section, we introduce our second control law with
the goal of stabilizing to the surface from which trajectories
converge to the periodic orbit O3D—that is, we render O3D

stable. To achieve this goal, we utilize the main result of [8].

A new hybrid control system. Before introducing the
second control law, we define a new hybrid system that
implicitly utilizes the first control law (as introduced in the
previous section). Specifically, let

H C α
3D = (D3D, R, G3D, R3D, fα

3D, gα
3D)

where D3D, G3D and R3D are defined as for H C 3D (defined
in Section III). The control system (fα

3D, gα
3D) is obtained by

applying the control law

u = Kα
3D(q) +

(
1 0 0

)T
v

to H C 3D, where v ∈ R. In particular, fα
3D(q, q̇) is given as

in (2) and

gα
3D(q, q̇) =

(
0 0 0 1

m3D(θ) 0 0
)T

.

The second control law. Motivated by our desire to satsify
(4), let

h(q, q̇) := ϕ̇ +
αϕ

m3D(θ)
.

The main idea in the construction of the second control law
is that we would like to drive h(q, q̇) to zero, i.e., we would
like to drive the system to the surface

Z =
{(

q
q̇

)
∈ R6 : h(q, q̇) = 0

}
,

wherein the first control law introduced in the previous
section should take over (roughly speaking, the surface Z

is the black region in Figure 3). From Theorem 1, we know
that solutions will then converge to the periodic orbit O3D.
We thus will have rendered this periodic orbit stable.

With this in mind, and motivated by the standard method
for driving an output to zero in a nonlinear control system
(see [9]), we define the following feedback control law:

v = Kα,ε
3D (q, q̇)

:=
−1

Lgα
3D

h(q, q̇)

(
Lfα

3D
h(q, q̇) +

1
ε
h(q, q̇)

)
,

where Lgα
3D

h(q, q̇) is the Lie derivative of h with respect to
gα
3D and Lfα

3D
h(q, q̇) is the Lie derivative of h with respect

to fα
3D. Note that we know Kα,ε

3D (q, q̇) is well-defined since

Lgα
3D

h(q, q̇) =
1

m3D(θ)
,

and m3D(θ) > 0 by the positive definiteness of M3D.
Utilizing the feedback control law Kα,ε

3D (q, q̇), we obtain
a hybrid system:

H α,ε
3D := (D3D, G3D, R3D, fα,ε

3D ),

where fα,ε
3D (q, q̇) := fα

3D(q, q̇)+gα
3D(q, q̇)Kα,ε

3D (q, q̇). We now
have the necessary framework in which to introduce the main
result of this paper.

Theorem 2: If H s
2D has a locally exponentially stable

hybrid periodic orbit O2D such that

•

(
θ∗

θ̇∗

)
= O2D ∩G2D is a singleton,

• Lfs
2D

H2D(θ∗, θ̇∗) 6= 0,
then there exists a δ > 0 such that O3D = ι0(O2D) is a
locally exponentially stable hybrid periodic orbit of H α,ε

3D

for all α > 0 and all ε such that δ > ε > 0.
This theorem essentially follows from the previous results

of this paper coupled with the Main Theorem of [8]. To
see this, we first must introduce a global diffeomorphism
that makes the structure of H α,ε

3D more transparent. We then
provide a proof of Theorem 2.
The coordinate transformation. Consider the following
global diffeomorphism:

Φ(q, q̇) =


h(q, q̇)

θ
ϕ̇

θ̇

 =:
(

η
z

)
,

where η ∈ R and z = (θT , ϕ̇, θ̇T )T ∈ R5. It is easy to see
that this is in fact a global diffeomorphism since it clearly
is smooth and has a smooth inverse:

Φ−1(η, z) =
(

m3D(z1,z2)
α (η − z3)

z

)
,



where it follows from the definition of z that z1 = θns,
z2 = θs and z3 = ϕ̇. Note that in this new coordinate system
the surface Z becomes:

Z̃ =
{(

η
z

)
∈ R6 : η = 0

}
.

Transforming H α,ε
3D . We now proceed to transform H α,ε

3D

to this new coordinate system; we will denote the trans-
formed system by:

H̃ α,ε
3D = (D̃3D, G̃3D, R̃3D, f̃α,ε

3D ).

The domain and guard for the transformed system and the
original system are the same:

D̃3D = Φ(D3D) = D3D, G̃3D = Φ(G3D) = G3D,

by the definition of D3D and G3D, i.e., by the fact that H3D

is independent of ϕ. In particular, if we let

H̃3D(z) = cos(z2)− cos(z1),

then it follows that:

D̃3D =
{(

η
z

)
∈ R6 : H̃3D(z) ≥ 0

}
G̃3D =

{(
η
z

)
∈ R6 : H̃3D(z) = 0,

sin(z1)z4 − sin(z2)z5 < 0

}
The reset map for the transformed system is given by:

R̃3D(η, z) = Φ ◦R3D ◦ Φ−1(η, z)

=


p3D(z1, z2)η

S2D

(
z1

z2

)
p3D(z1, z2)z3

P2D(z1, z2)
(

z4

z5

)

 (5)

since
p3D(z1, z2) =

m3D(z1, z2)
m3D(z2, z1)

when H̃3D(z) = 0. Finally, the transformed vector field is
given by

f̃α,ε
3D (η, z) = DΦ(Φ−1(η, z))fα,ε

3D (Φ−1(η, z)),

where DΦ(q, q̇) is the Jacobian of Φ (evaluated at (q, q̇)). In
particular, because of the construction of Kα,ε

3D ,

η̇ = −1
ε
η. (6)

We now prove Theorem 2.
Proof: In order to apply the main result of [8], we must

verify that assumptions (H1.1)-(H1.6) and (H2.1)-(H2.6)
hold inasmuch as they are needed4 in the proof of the Main
Theorem of [8]. It is immediately obvious that most of the
assumptions hold, so we only comment on the assumptions

4That is, these assumptions do not hold as they are stated in this paper,
but they are violated to such a small degree that it does not affect the main
result of this work.

that require some verification (space constraints prevent us
from including a more detailed proof).

(H1.1)-(H1.6) hold with the exception that D̃3D is not an
open set and G̃3D 6= H̃−1

3D (0). Both of these violations do not
affect the Main Result of [8]. For example, G̃3D ⊂ H̃−1

3D (0)
and is a smooth manifold of codimension one. Therefore, it
can be viewed as the zero-level set of H̃3D in the region of
interest, i.e., in a neighborhood of the periodic orbit O3D.

(H2.1): In our case, the z-dynamics are not independent
of ε as is required by (H2.1) in [8]; despite this, the axiom is
sufficiently satisfied inasmuch as it is needed in this paper.
Specifically, f̃α,ε

3D (0, z) is independent of ε and Theorem 1
implies that Z̃ is invariant under the continuous part of the
model, i.e., the dynamics on Z are given by fα

3D which is
independent of ε.

(H2.2): Consider the map Υ : D̃3D → R2 with

Υ(η, z) :=
(

η

H̃3D(z)

)
.

It is easy to verify that rank(DΥ(η, z)) = 2 when restricted
to G̃3D, and so G̃3D∩Z̃ is a (n−2)-dimensional submanifold
of D̃3D. In addition, it follows from (5) that

R̃3D(G̃3D ∩ Z̃) ⊂ Z̃

since η = 0 implies that p3D(z1, z2)η = 0.
(H2.3): Since O3D = ι0(O2D), clearly O3D ⊂ Z.
(H2.4): Due to the difference in the notion of solution

between [8] and this paper, we need not take the closure of
O3D (since it is already closed). Now a simple calculation
shows that:(

θ∗

θ̇∗

)
= O2D∩G2D ⇒ ι0

(
θ∗

θ̇∗

)
= O3D∩G3D∩Z

and so Φ(O3D) ∩ G̃3D ∩ Z̃ = Φ(ι0(θ∗, θ̇∗)) is a singleton.
(H2.5): Due to the specific form of fα,ε

3D , the fact that H3D

is independent of ϕ and ϕ̇ and the fact that Φ leaves θ and
θ̇ fixed, it follows that:

Lfs
2D

H2D(θ∗, θ̇∗) = Lfα,ε
3D

H3D(ι0(θ∗, θ̇∗))

= Lf̃α,ε
3D

H̃3D(Φ(ι0(θ∗, θ̇∗))).

Therefore,

Lfs
2D

H2D(θ∗, θ̇∗) 6= 0 ⇒ Lf̃α,ε
3D

H̃3D(Φ(ι0(θ∗, θ̇∗))) 6= 0.

(H2.6): Follows from (6).
Simulation results. To demonstrate the effectiveness of the
proposed control law and the usefulness of Theorem 2, we
provide some simulation results. For these simulations, we
begin with a numerically-computed periodic orbit O2D for
H s

2D; this periodic orbit can be seen in Figure 3 (in red
and blue). It can be verified numerically that this periodic
orbit is stable and satisfies the assumptions of Theorem 2;
in particular,

(
θ∗

θ̇∗

)
= O2D ∩G2D ≈


−0.2884
0.2884
−1.6009
−1.9762

 .
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Fig. 4. A walking gait for the three-dimensional biped.

Therefore, by this theorem, we know that O3D = ι0(O2D) is
a stable periodic orbit of H α,ε

3D for α > 0 and for sufficiently
small ε > 0.

We first note that the stability of O3D implies the existence
of stable walking gaits. An example of a specific walking gait
can be seen in Figure 4 for ε = 1/15. For this walking gait,
the biped exponentially converges to the “upright” position as
the theory would indicate. This exponential convergence can
be better visualized in Figure 5, where ϕ(τ0) is varied while
ϕ̇(τ0) = 0, θ(τ0) = θ∗ and θ̇(τ0) = θ̇∗ are held constant.

While we know that the periodic orbit O3D is locally
exponentially stable by Theorem 2, this theorem does not
yield any information about the radius of convergence of
this periodic orbit. A better understanding can be obtained
through simulation. Since the region of stability for O2D

has been well-studied (see [3]), we are interested in the
region of stability of O3D in the (ϕ, ϕ̇)-plane. We therefore
simulate hybrid flows of H α,ε

3D while fixing θ(τ0) = θ∗ and
θ̇(τ0) = θ̇∗ and varying ϕ(τ0) and ϕ̇(τ0). The resulting
behavior can be seen in Figure 6. In this figure, the red
and blue regions are a result of perturbations in the (θ, θ̇)-
dynamics that occur when initial conditions are chosen off of
the surface Z. The lateral and sagittal dynamics are no longer
decoupled because Theorem 1 does not hold for these values.
For these initial conditions off of the surface Z, the second
control law drives the (ϕ, ϕ̇)-dynamics to this surface as the
figure indicates. Finally, we note that this simulation result
seems to imply that the region of convergence of O3D is
fairly large, indicating that the proposed law can effectively
stabilize the biped from a large set of initial conditions.

VI. CONCLUSION

In this paper, a method was presented for stably extending
two-dimensional walking gaits to three dimensions using
geometric reduction. The techniques utilized to obtain this
result also can be applied to three-dimensional bipeds with
a hip; this will be the subject of future papers. Finally, in
this paper, the assumption of full actuation was necessary—
extensions to the case of underactuated bipedal robots is a
very interesting and promising research direction.

Fig. 5. The exponential convergence of ϕ for different values of ϕ(τ0).

Fig. 6. The convergent behavior of O3D for different initial values of ϕ
and ϕ̇.
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