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Abstract— This paper presents a methodology for the de-
velopment of control barrier functions (CBFs) through a
backstepping inspired approach. Given a set defined as the
superlevel set of a function, h, the main result is a constructive
means for generating control barrier functions that guarantee
forward invariance of this set. In particular, if the function
defining the set has relative degree n, an iterative methodology
utilizing higher order derivatives of h provably results in a
control barrier function that can be explicitly derived. To
demonstrate these formal results, they are applied in the context
of bipedal robotic walking. Physical constraints, e.g., joint
limits, are represented by control barrier functions and unified
with control objectives expressed through control Lyapunov
functions (CLFs) via quadratic program (QP) based controllers.
The end result is the generation of stable walking satisfying
physical realizability constraints for a model of the bipedal
robot AMBER2.

I. INTRODUCTION

Humans can perform many difficult dynamic behaviors
with ease, including: crawling, climbing and — of special
focus in this paper — walking. The core of performing
these tasks is the ability to satisfy structural and physical
constraints while simultaneously realizing dynamics based
control objectives. Realizing this balance between safety
constraints and control objectives in the context of dynamic
behaviors has yet to be fully realized on robotic systems.
A core issue preventing this is the unification of safety and
control objectives in a single unified framework—one that
can be solved online in real-time, i.e., does not require a
priori optimization, while still yielding formal guarantees of
correctness. The goal of this paper is to present a method-
ology for realizing physical constraints on robotic systems
through control barrier functions, and balancing these con-
straints through control objectives represented as control
Lyapunov functions expressed through a unified quadratic
program based control methodology. The application of these
ideas to robotic walking will demonstrate their affectiveness
in ensuring physical constraints during dynamic behaviors.

Barrier functions, first utilized in numerical optimization
methods [7], [23], are continuous functions whose values
approach infinity when the state approaches the boundary
of a set. For instance, given a set C, B(x) is a barrier
function, if B(x) → ∞ as x → ∂C. The concept recently
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has been related to control Lyapunov functions for the pur-
poses of constructing nonlinear controllers [22]. In particular,
Lyapunov-like barrier functions have been established; that
is, employing derivatives of barrier functions guarantees the
invariance of set C, e.g. Ḃ(x, u) < 0 [21], [19]. With a view
towards expanding the class of control inputs that imply set
invariance, recent work has focused on a new class of barrier
functions that ensure set invariance while yielding a larger
set of control inputs [4]. In particular, if C is the superlevel
set of a function h(x), there is the corresponding barrier
function candidate:

B(x) = − log

(
h(x)

1 + h(x)

)
(1)

which is a valid barrier function if it satisfies the condition:

Ḃ(x, u) <
γ

B(x)
(2)

for γ ≥ 0. Importantly, this allows B(x) to grow when it
is far away from the boundary of C while still provably
yielding set invariance [4]. Necessary to B(x) being a valid
barrier is its satisfaction of (2); yet there may not exist control
inputs that satisfy this condition (for example, if the relative
degree [11] of h is ≥ 2). The objective of this paper is
to provide quantifiable conditions for the existence of such
control inputs through the use of relative degree conditions
on h coupled with backstepping inspired methodology.

Motivated by the use of backstepping methods for Lya-
punov functions, as first developed by Kokotović [13], [14],
the main result of this paper is a methodology for con-
structing barrier functions that are guaranteed to satisfy the
condition (2). Beginning with a barrier function candidate of
the form (1) and assuming that the function h that defines
the set C has relative degree n, we are able to expand
the barrier function candidate through “virtual” inputs that
satisfy (2) and, through iteration on these virtual inputs,
ultimately yield the “true” control input that satisfies (2).
The end result is a barrier function, dependent on h and its
higher order derivatives, that provably satisfies the barrier
function conditions. This is formally established through the
main result of the paper.

To apply the main result of the paper to bipedal robotic
walking, it is necessary to unify control barrier functions
(CBFs)—which encode safety and physical constraints—
with control objectives necessary to achieve locomotion as
encoded by control Lyapunov functions. Control Lyapunov
functions (CLFs), as pioneered by Artstein and Sontag [6],
[20], have been widely used in nonlinear control [16], [8]. In
the context of bipedal robotic locomotion, control Lyapunov



functions have been utilized in the context of quadratic pro-
grams (QPs) to balance control objectives with torque based
constraints, with the results being applied experimentally
[5], [3], [9]. This sets the stage for the main application
of the results of this paper: as motivated by [4], a CBF-CLF
QP is introduced in the context of bipedal locomotion that
ensures safety through control barrier functions and control
objectives expressed as control Lyapunov functions. This for-
mulation is applied to a hybrid system model of the bipedal
robot AMBER2, with the end result being stable walking
in simulation that satisfies physical constraints encoded as
control barrier functions.

II. CONTROL BARRIER FUNCTIONS VIA BACKSTEPPING
INSPIRED METHODS

This section develops and presents the main formal re-
sults of the paper: a backstepping inspired methodology for
constructing control barrier functions (CBFs). We begin by
introducing the form of barrier functions considered in this
paper, as introduced in [4], defined for a set C that is the
super level set of a function h(x). Motivated by the use of
backstepping in generating Lyapunov functions [21], [13],
we assume that h has relative degree n and utilize the higher
order derivative of h to iteratively construct valid control bar-
rier functions. The end product of this procedure yields the
main result of this paper: a formal guarantee that the resulting
control barrier function is valid, i.e., that control inputs exist
that satisfy the barrier function condition (2). With a view
toward the application of this method to robotic walking, we
conclude this section by briefly reviewing control Lyapunov
functions (CLFs), and the unification of CLFs and CBFs
through quadratic program (QP) based controllers.

A. Control Barrier Functions

Consider an affine control system:

ẋ = f(x) + g(x)u, (3)

for x ∈ Rn and u ∈ U = Rm with f and g assumed to
be locally Lipschitz. Given a set C ⊂ Rn, we determine
conditions on functions B : C → R such that solutions to
(3), with initial condition in C, remain in C for all time. First,
since (3) is assumed to be locally Lipschitz for any initial
condition x0 ∈ Rn, there exists a maximum time interval
I(x0) = [0, τmax) such that x(t) is the unique solution to (3)
on I(x0); in the case when f is forward complete, τmax =
∞. The set C is forward invariant if for every x ∈ C, x(t) ∈
C for all t ∈ I(x).

Consider the set C defined by

C = {x ∈ Rn : h(x) ≥ 0}, (4)
∂C = {x ∈ Rn : h(x) = 0}, (5)

Int(C) = {x ∈ Rn : h(x) > 0}. (6)

where h : Rn → R is a continuously differentiable function.
With a view toward ensuring forward invariance of C, we

consider the following definition [4]:

Definition 1. Let C ⊂ Rn be defined by (4)-(6) with h :
Rn → R continuously differentiable, then a function B :
C → R is a control barrier function (CBF) if there exist
class K functions α1, α2 and a constant γ > 0 such that

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
, (7)

inf
u∈U

[LfB(x) + LgB(x)u− γ

B(x)
] ≤ 0. (8)

Using the definition of a CBF, we can consider the set
consisting of all control inputs that guarantee the forward
invariance of set C:

KB(x) = {u ∈ U : LfB(x) + LgB(x)u− γ

B(x)
≤ 0}.

This yields the following result from [4]:

Theorem 1. Given a set C ⊂ Rn defined by (4)-(6) with
associated control barrier function B, any Lipschitz contin-
uous controller u(x) ∈ KB(x) for the system (3) renders the
set C forward invariant.

B. Main Result: CBFs via Backstepping

The main observation that motivates our result is: KB(x)
may be empty when LgB = 0. More specifically, if
h(x) has relative degree greater than 1, then LgB = 0;
if furthermore LfB(x) ≥ γ

B(x) , then KB(x) is empty
and therefore no control can make (8) satisfied. However,
physical constraints on robotic systems, as represented by
sets C, will be guaranteed to have relative degree greater than
1 if the constraints only depend on the configuration of the
robot. As a result, it is necessary to find a methodology for
dealing with this situation. Motivated by [21], we introduce
a backstepping inspired methodology for the form of control
barrier functions considered in this paper.1 The control
barrier functions calculated through our methods render the
C forward invariant when h(x) has a relative degree great
than 1.

To make the inputs appear in derivatives of the control
barrier function, h(x) will be utilized in the context of
dynamic extension. Suppose h(x) has (vector) relative degree
2, wherein it follows that: :

φ1(x) = h(x), (9)

φ̇1(x) = φ2(x), (10)

φ̇2(x, ẋ) = LfLfh(x) + LgLfh(x)u, (11)

and a set C is defined by (4)-(6). We can pick a function
B1(x) so that B1(x) satisfies the inequality

1

α1,1(h(x))
≤ B1(x) ≤ 1

α1,2(h(x))
, (12)

where α1,1 and α1,2 are class K functions. Note that an
example of such a candidate is given by

B1(x) = − log

(
h(x)

1 + h(x)

)
. (13)

1Note that the form of barrier functions considered in this paper is very
different from that in [21]; the end result is a more general methodology
for constructing control barrier functions.



In addition, let h1(x) = φ2(x) − ξ1, where ξ1 is a
stabilizing function we have to design. The time derivative
of B1(x) is thus given by:

Ḃ1 =
dB1(x)

dh
ḣ =

dB1(x)

dh
φ2 =

dB1(x)

dh
(h1(x) + ξ1).

Picking ξ1 = 0 results in:

Ḃ1 =
dB1(x)

dh
h1(x) =

dB1(x)

dh
ḣ.

Motivated by the backingstepping method for Lyapunov
functions [12], we can define a control barrier function
candidate with ḣ:

B2(x) := B1(x) + E(ḣ(x)), (14)

where E(ḣ(x)) has the following properties:

inf
x∈Int(C)

E(ḣ(x)) ≥ 0, (15)

sup
x∈Int(C)

E(ḣ(x)) ≤ Emax, (16)

dE(ḣ(x))

dḣ(x)
= 0 if and only if ḣ(x) = 0, (17)

where Emax is a positive constant depending on the choice
of E(ḣ(x)). An concrete example of a function satisfying
this properties is given by:

E(ḣ(x)) = aE
bE ḣ(x)2

1 + bE ḣ(x)2
(18)

where aE and bE are the positive parameters that can be
chosen. These allow us to state the main result of the paper.

Theorem 2. Given a set C ⊂ Rn defined by (4)-(6), if h(x)
has relative degree 2, then B2(x) given in (14) is a control
barrier function and any Lipschitz continuous controller
u(x) ∈ KB2

(x) renders the set C forward invariant.

Before proving the theorem, the following Lemma must
be established.

Lemma 3. Given a set C ⊂ Rn defined by (4)-(6), if a
function B(x) : C → R for a continuously differentiable
function h(x) : Rn → R satisfies the following conditions:

inf
x∈Int(C)

B(x) ≥ 0, lim
x→∂C

B(x) =∞,

and B(x)→∞ if and only if x→ ∂C, then there exist class
K functions α1, α2 such that

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
.

Proof. Taking the reciprocal of B(x), we have

inf
x∈Int(C)

1

B(x)
≥ 0, lim

x→∂C

1

B(x)
= 0.

Define a function ψ(s) as

ψ(s) = inf
{x|s≤h(x)}

1

B(x)
, ∀s ≥ 0.

Because 1
B(x) approaches zero if and only if h(x) is close to

zero, the function ψ(s) is continuous, positive definite, and
increasing but not necessarily strictly increasing. Therefore, a
class K function α2(s) can be established such that α2(s) ≤
ψ(s), that is,

1

B(x)
≥ ψ(h(x)) ≥ α2(h(x)). (19)

Similarly, define a function φ(s) by

φ(s) = sup
{x|0≤h(x)≤s}

1

B(x)
, ∀s ≥ 0.

The function φ(s) thus is continuous, positive definite and
increasing but not necessarily strictly increasing. Therefore, a
class K function α1(s) can be established such that α1(s) ≥
φ(s), that is,

1

B(x)
≤ φ(h(x)) ≤ α1(h(x)). (20)

Taking the reciprocals of (19) and (20) we have

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
.

Now, we can apply this Lemma to the proof of Theorem
2.

Proof. By assumption, and specifically (12), B1 has the
properties

inf
x∈Int(C)

B1(x) ≥ 0, lim
x→∂C

B1(x) =∞.

By (14), we know that

inf
x∈Int(C)

B2(x) ≥ 0, lim
x→∂C

B2(x) =∞,

because E(ḣ) is always positive and bounded. It is also
known that B2(x) → ∞ if and only if x → ∂C, so B2

satisfies the following condition by Lemma 3:

1

α2,1(h(x))
≤ B2(x) ≤ 1

α2,2(h(x))
, (21)

where α2,1 and α2,2 are class K functions, which implies
that (7) is satisfied.

To establish (8), taking the time derivative of B2 yields:

Ḃ2 = Ḃ1 +
dE(ḣ)

dḣ
ḧ

=
dB1(x)

dh
ḣ+

dE(ḣ)

dḣ
(LfLfh(x) + LgLfh(x)u).

Therefore, (8) yields the following condition:

dB1(x)

dh
ḣ+

dE(ḣ)

dḣ
(LfLfh(x) + LgLfh(x)u) ≤ γ

B2(x)
.

(22)



If dE(ḣ)

dḣ
= 0, then ḣ = 0 and thus the left hand side of

(22) equals to 0, which means that (22) holds. If dE(ḣ)

dḣ
6= 0,

rearranging (22), we obtain the final inequality constraint:

u ≤ 1
dE(ḣ)

dḣ
LgLfh(x)

(
γ

B2(x)
− dB1(x)

dh
ḣ

)
− LfLfh(x)

LgLfh(x)
,

(23)

if dE(ḣ)

dḣ
LgLfh(x) > 0, and

u ≥ 1
dE(ḣ)

dḣ
LgLfh(x)

(
γ

B2(x)
− dB1(x)

dh
ḣ

)
− LfLfh(x)

LgLfh(x)
,

(24)

if dE(ḣ)

dḣ
LgLfh(x) < 0, where LgLfh(x) is non-singular

because of the assumption that h(x) has relative degree 2.
As a result, an input u satisfying (23) and (24) are guaranteed
to exist. According to Definition 1, B2 is a control barrier
function because (21) and (22) hold. Finally, from Theorem
1, any Lipschitz continuous control input u satisfying (22)
renders the set C forward invariant.

Having established Theorem 2, the method can be ex-
tended to the case where h(x) has relative degree n where
n ≥ 2. Consider the coordinates:

φ1(x) = h(x),

φ̇1(x) = φ2(x),

φ̇2(x) = φ3(x), (25)
...

φ̇n(x, ẋ) = Lnfh(x) + LgL
n−1
f h(x)u,

Following the backstepping methodology, and motivated by
the control barrier function considered in (14), define the
following control barrier function candidate:

Bn(x) = B1(x) +
n−1∑
i=1

Ei(hi), (26)

where hi = φi+1 − ξi, ξ1 = 0, ξ2 = −1
dE1
dh1

dB1

dh h1, ξi =

ξ̇i−1− 1
dEi−1
dhi−1

dEi−2

dhi−2
hi−1 and Ei(hi) has the properties given

in (15) - (17).
The derivative of Bn(x) thus can be calculated as

Ḃn(x) =
dEn−2

dhn−2
hn−1

+
dEn−1

dhn−1

(
Lnfh(x) + LgL

n−1
f h(x)u− ξ̇n−1

)
.

It is easy to check that the above equation still holds if dEi

dhi
=

0 for any 1 ≤ i ≤ n − 1. Finally, if dEn−1

dhn−1
= 0, then

Ḃn(x) = 0, which is guaranteed to be smaller than γ
Bn(x) ; if

dEn−1

dhn−1
6= 0, the control law can be determined through the

inequality:

u ≤ 1
dEn−1

dhn−1
LgL

n−1
f h(x)

(
γ

Bn(x)
− dEn−2

dhn−2
hn−1

)

−
Lnfh(x)− ξ̇n−1

LgL
n−1
f h(x)

,

if dEn−1

dhn−1
LgL

n−1
f h(x) > 0, and

u ≥ 1
dEn−1

dhn−1
LgL

n−1
f h(x)

(
γ

Bn(x)
− dEn−2

dhn−2
hn−1

)

−
Lnfh(x)− ξ̇n−1

LgL
n−1
f h(x)

,

if dEn−1

dhn−1
LgL

n−1
f h(x) < 0, where LgL

n−1
f h(x) is non-

singular because h(x) has relative degree n by assumption.
Therefore, u is guaranteed to exist.

Using the same argument as in Theorem 2, it is easy to
show that for a relative degree n output h(x), the function
Bn(x) defined by (26) is a CBF. This is summarized in the
following theorem.

Theorem 4. Given a set C ⊂ Rn defined by (4)-(6), if h(x)
has relative degree n, then Bn(x) as given in (26) is a control
barrier function and any Lipschitz continuous controller
u(x) ∈ KBn(x) renders the set C forward invariant.

C. Control Lyapunov Functions

Consider the affine nonlinear control system (3) where it
is assumed that f(0) = 0. To achieve exponential stability
of x to 0, we utilize a special class of control Lyapunov
functions V (x) termed rapidly exponentially stabilizing con-
trol Lyapunov function (RES-CLF) [3]. This yields the set of
control inputs that exponentially stabilizes the system (3):

Kε(x) = {u ∈ U : LfVε(x) + LgVε(x)u+ c3Vε(x) ≤ 0}.

D. Combining CLFs and CBFs via QPs

To unify CLFs and CBFs, we can formulate a QP as

u∗(x) = argmin

u=

u
δ

∈Rm+1

1

2
uTH(x)u + F (x)Tu (27)

s.t. ψ0(x) + ψT1 (x)u ≤ δ, (CLF)

LfB(x) + LgB(x)u ≤ γ

B(x)
, (CBF)

where ψ0(x) = LfV (x) + c3V (x), ψ1(x) = LgV (x)T ,
H(x) ∈ Rm+1×m+1 and F (x) ∈ Rm+1 are arbitrarily
smooth cost functions that can be chosen based upon desired
(state based) weighting of the control inputs, and δ ∈ R is
a relaxation of the CLF constraint, which can be chosen
to guarantee a feasible solution to the QP. Coupling the
results from [4], [18] and Theorem 4, we have the following
theorem.



Theorem 5. Given a set C ⊆ Rn defined by (4)-(6) with h
relative degree n and B = Bn an associated control barrier
function given in (26), any Lipschitz continuous control law
u∗(x) obtained by solving the QP (27) renders the set C
forward invariant.

In practice, if x ∈ Int(C) are far away from the boundary,
∂C, the control objective (as represented by the CLF) will
be achieved exponentially; otherwise, it will be violated
depending on how x close to ∂C (as dictated by the CBF).

III. ROBOTIC MODELING AND CONTROL

The main goal of this paper is to apply control barrier
functions to the control of bipedal walking robots. In this
section, based on the mathematical model of the 7-link
bipedal robot, AMBER2 [17], we review the construction
of output functions that are utilized to formulate control
Lyapunov functions. Then, we present a multi-objective
QP based controller representing a combination of control
objectives, torque and forced based constraints. This will set
the stage for the utilization of control barrier functions in the
context of bipedal robotic locomotion.

A. Bipedal Robot Model

Given the mass and inertia of the links and motors of
AMBER2, the Euler-Lagrange equations yield the equations
of motion, which can be converted to an affine control system
of the form given in (3) (see [5], [17]). The discrete dynamics
of AMBER2 describes the change of the states, i.e. the angles
and angular velocities, after the non-stance foot impacts the
ground. The end result is a hybrid system model of this
system; additional details can be found in [1] and [10].

B. Output Design

To construct control Lyapunov functions, we will utilize
the framework of human-inspired control [1], [15]. In partic-
ular, the end results of this method are relative 1 and 2 degree
outputs of the form (see [2], [17] for additional details):

y1(q, q̇, vhip) = ya,1(q, q̇)− vhip, (28)
y2(q, α) = ya,2(q)− yd,2(τ(q), α), (29)

where ya,1(q, q̇) and ya,2(q) are the “actual” outputs, and
yd,2(τ(q), α) is the ”desired” output. It is important to
note that the parameters α of yd,2 are typically chosen
through nonlinear optimization methods to yield hybrid zero
dynamics and, thereby, guarantee a stable walking gait [10].
In this paper, we will instead choose α to be parameters
obtained directly from human data [2] and utilize control
barrier functions to achieve robotic walking.

C. Control Lyapunov Functions and Quadratic Programs

With the goal of driving y1 → 0 and y2 → 0, utilizing the
methods from [3] and [5], the end result is a QP that unifies
control objectives (CLFs), torque bounds, friction and Zero

Moment Point (ZMP) constraints:

argmin
(δ,ū)∈R11

δT pδ + ūT ĀT Āū+ 2LTf Āū (30)

s.t. ψi,0(q, q̇) + ψTi,1(q, q̇)(Āū+ Lf ) ≤ δi, (CLF)

J̇ q̇ + JD(q)−1(B̄ū−H(q, q̇)) = 0,
(Constrained Dynamics)

u ≤ umax, (Max Torque)
− u ≤ umax, (Min Torque)

− lhF fz < Fmy < ltF
fz, (ZMP)

|F fx| < µkF
fz, (Friction)

where i = {1, 2, 3}, p = diag(p1, p2, p3) chosen to penalize
relaxations δi of the CLF constraints. In addition, umax ∈ R6

are maximum allowed torques, µk is the coefficient of static
friction between AMBER2 and the ground, lt is the length
of the toe, lh is the length of the heel, and Ā, ū and ψ are
given as in [5].

IV. CBFS AND ROBOTIC LOCOMOTION

In this section, we utilize the main formal results of this
paper presented in Sect. II to construct control barrier func-
tions in the case of robotic locomotion. In particular, each of
the CLFs utilized in (30), (CLF1) - (CLF3), correspond to
physical behavior on the robot: regulation of hip velocity,
regulation of the non-stance foot height, the stance knee
angle, and the forward movement of the non-stance leg
(through the “non-stance slope” output [17]). Corresponding
to each of these physical phenomena, we will construct a
control barrier function that will ensure that the behavior of
the robot satisfies physical constraints.

A. Control Barrier Functions

We will now construct control barrier functions enforcing
physical constraints. Note that these constructions will utilize
the fact that there is a natural correspondence between these
constraints and a set C satisfying (4)-(6) where, in this case,
the function h(x) will correspond to elements the human-
inspired outputs (28) and (29). As a result, the assumption of
Theorem 4 are valid. In particular, we formulation (CBF1)-
(CBF5) as (2) for every physical constraint. The following
gives an overview of the specific CBFs considered, and the
motivation for their constructions.

Hip velocity (CBF1): Since (CLF1), which corresponds
to modulation of hip velocity, has relaxation parameter,
the hip velocity will not converge to the desired velocity.
Therefore, we should guarantee the velocity does not go
below a lower bound, i.e., this CBF keeps the robot moving
forward.

Non-stance foot height boundary (CBF2)-(CBF3): In
order to ensure that the foot of the robot does not scuff the
ground during a step, we must constraint the height of the
foot to lie in a feasible region. Since the height of the foot is
a function of the configuration variables of the system, the
end result will be a function h(x) of relative degree 2, so it
is necessary to apply the methods introduced in Sect. II.



Stance knee angle (CBF4): In order to ensure that the
stance knee does not hyper-extend, we introduce a physical
constraint that the knee angle must be greater than 0.

Non-stance slope (CBF5): Since the CLF conditions
(CLF1) and (CLF2) in (30) are relaxed, the corresponding
outputs (in this case, the non-stance slope) will not track the
desired values. As a result, a CBF constraint related to the
non-stance slope can be constructed to ensure that, even in
the presence of imperfect tracking, the non-stance foot will
continue to move forward and thus the robot will complete
a step. In particular, the non-stance slope will be constrained
to lie under the desired non-stance slope: yH(τ(q), αnsl).

B. Results and Discussion

Adding the control barrier functions constructed in Sect.
IV-A, as represented by constraints (CBF1)-(CBF5), to the
control law presented in (30), the end result is a QP based
controller that yields stable robotic walking. In particular,
we use parameters vhip and α of the human-inspired outputs
(28) and (29) obtained by directly fitting the desired outputs
to human data (see [1], [2], [17] for a more complete dis-
cussion). This is in contrast to the methods presented in [2],
since we do not perform an a priori optimization to obtained
parameters that guarantee (partial) hybrid zero dynamics
[10]. If the control law (30) obtained from these outputs is
simulated directly with the parameters vhip and α obtained
by fitting human data, the robot would stumble and fall. Yet,
through the addition of the control barrier functions (CBF1)-
(CBF5), the biped displays a stable walking gait (with the
proper choice of parameters of the barrier functions); this
points to the importance of enforcing physical constraints in
the synthesis of robotic walking gaits.

In particular, to obtain a stable walking gait on the
model of AMBER2, the parameters were chosen. The initial
condition for the gait, (q0, q̇0) := (θ(α), θ̇(α)), was obtained
by solving the inverse kinematics problem as outlined in
[2]. The simulation result is illustrated in Fig. 1 to Fig. 4;
importantly, the actual outputs do not converge to the desired
outputs by design, i.e., the use of control barrier functions
prevent exact convergence since they enforce physical con-
straints that dominate the control law. Yet a stable walking
gait is still achieved, as evidenced by calculation of the
eigenvalues of the Poincaré map—the maximum eigenvalues
is 0.4432 (and hence smaller than 1) indicating stability.

V. CONCLUSION

This paper presented a novel method for constructing
control barrier functions through a backstepping inspired
approach. In particular, we began by introducing a type
of control barrier function that gives the maximum control
authority (by allowing B to grow away from the boundary
of the set C); this allowed for the unification of safety
constraints and control objectives through CLF-CBF based
QPs. Yet the existence of control barrier functions of this
form are not guaranteed to exist, i.e., there may not be control
inputs that satisfied the required derivative conditions on the
CBF. This motivated the main result of this paper: formal
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Fig. 1: Desired (dotted lines) and actual (solid lines) outputs
during a stable periodic walking gait.
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Fig. 2: Torques on each joint during stable periodic walking.



Fig. 4: Gait tiles for one step of a stable walking gait.
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Fig. 3: Phase portraits for each joint over 20 steps when
started from an initial condition away from the fixed point;
convergence to a stable periodic orbit can be seen.

guarantees on the existence of CBFs under assumptions on
the relative degree of the function defining C. To demonstrate
the usefulness of these results, they were applied to bipedal
robotic walking. Physical constraints that the robot must sat-
isfy while locomoting were encoded as CBFs and combined
with control objectives and torque/force constraints through
a single QP based control law. The end result was stable
walking in simulation.
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