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ABSTRACT
Lower-limb prosthesis provide a prime example of cyber-physical
systems (CPSs) that interact with humans in a safety critical fash-
ion, and therefore require the synergistic development of sensing,
algorithms and controllers. With a view towards better understand-
ing CPSs of this form, this paper presents a methodology for suc-
cessfully translating nonlinear real-time optimization based con-
trollers from bipedal robots to a novel custom built self-contained
powered transfemoral prosthesis: AMPRO. To achieve this goal,
we begin by collecting reference human locomotion data via Iner-
tial measurement Units (IMUs). This data forms the basis for an op-
timization problem that generates virtual constraints, i.e., parametr-
ized trajectories, for the prosthesis that provably yields walking in
simulation. Leveraging methods that have proven successful in
generating stable robotic locomotion, control Lyapunov function
(CLF) based Quadratic Programs (QPs) are utilized to optimally
track the resulting desired trajectories. The parameterization of the
trajectories is determined through a combination of on-board sens-
ing on the prosthesis together with IMU data, thereby coupling the
actions of the user with the controller. Finally, impedance control
is integrated into the QP yielding an optimization based control law
that displays remarkable tracking and robustness, outperforming
traditional PD and impedance control strategies. This is demon-
strated experimentally on AMPRO through the implementation of
the holistic sensing, algorithm and control framework, with the end
result being stable and human-like walking.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solving, Con-
trol Methods, and Search—Control theory
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1. INTRODUCTION
As one of the most important applications of bipedal robotic re-

search, powered lower-limb prosthesis is a prime example of cyber-
physical systems (CPSs) that requires tight interaction between the
able-body of the human and the prosthetic device in a safety crit-
ical fashion. During the course of a step, the human leg and the
prosthetic device interchange roles between weight bearing (stance
phase) and swing forward (swing phase) phases; therefore, a syn-
ergistic development of sensing, algorithms and controllers for the
correct and safe collaboration between the human and the device
are required. In particular, the prosthetic device must be able to
bear human weight during stance phase and sense the human inten-
tion (to move accordingly) during swing phase. Energy efficiency
is also a major concern for the self-contained powered prosthetic
device. The main goal of this paper is to present a methodology
for achieving these performance specifications via a nonlinear on-
line optimization based controller. Additionally, it will be shown
that the performance of the proposed controller outperforms tradi-
tional controllers such as proportional-derivative (PD) or variable
impedance control.

The knee and ankle joints of healthy humans generate significant
net power during daily locomotion [2, 25]. However, the current
market for transfemoral prosthesis is dominated by passive pros-
thetic devices, limiting the day-to-day life of amputees (increased
metabolic cost and constrained locomotion capabilities [24]). Mo-
tivated by this situation, the development of a powered prosthesis
capable of providing net power in conjunction with various pros-
thesis controllers have been developed. Most notably, [12, 13]
developed a hydraulically actuated knee prosthesis with the “echo
control” method to mirror the modified trajectory of a healthy leg
to the opposing side. Control based on gait-pattern generators has
been realized in [14, 19]. Under the assumption that the human
gait is cyclic, variable impedance control is also one of the most
common approaches for controlling prosthesis [9, 10, 11, 23].

Impedance control assumes that the torque at each joint dur-
ing a single step cycle can be represented by a series of passive
impedance functions [15], [23]. By reproducing this torque at the
prosthetic device joint, one can obtain prosthetic walking with sim-
ilar gaits found in normal humans. However, due to hand tuning



Figure 1: The novel Prosthesis AMPRO that is capable of running
nonlinear optimization based controllers in real-time.

and the lack of feedback [8, 18], impedance control lacks both op-
timality and robustness. Motivated by these issues, an innovative
controller that combines the rapidly exponentially stabilizing con-
trol Lyapunov functions (RES-CLFs) [6] with impedance control is
proposed with the goal of achieving better tracking and improved
robustness on prosthesis. This controller was first verified in simu-
lation for flat-ground and up-slope walking in [26] and then tested
on a bipedal robot which achieved stable “prosthetic” walking in
[27], yet it has never been realized on an actual prosthesis.

In this work, we will present the complete methodology by which
the proposed novel controller was explicitly implemented on a cus-
tom built self-contained transfemoral prosthesis to achieve stable
prosthetic walking with a healthy human subject. We begin with
the introduction of a motion capture system using Inertial Mea-
surement Units (IMUs) to collect human locomotion trajectories.
With the collected data, the human-inspired optimization problem
[4] is then leveraged to obtain a stable and robust gait for a specific
test subject. IMUs are then used to estimate human intention during
walking thus providing human sensory feedback. With this system-
atic development (including sensing, algorithms and controllers)
the end result is stable robust human-like prosthetic walking in both
the laboratory and outside in real-world environments. Other dif-
ferent controllers (such as PD) are also tested on the prosthesis in
order to compare the performance with the proposed controller. In
addition to demonstrating the ability of the proposed controller, it is
compared against existing control stratifies—the online optimiza-
tion based controller is able to achieve better tracking with reduced
torque and power consumption.

The structure of this paper is as follows: In Sec. 2, human loco-
motion data collection with IMUs is introduced. Based on the col-
lected data, human-inspired optimization is utilized to obtain the
optimized trajectories for the prosthesis. Utilizing RES-CLFs and
impedance control, in Sec. 3 the novel model independent quadratic
program (MIQP) based controller is introduced specifically with a
view toward practical application. Finally, the experimental real-
ization of the nonlinear on-line optimization based controller on a
real prosthesis device is illustrated explicitly in Sec. 4. Conclusions
and future work are presented at the end.

2. PROSTHETIC GAIT GENERATION
In an effort to achieve human-like walking with a transfemoral

robotic leg, an inertial motion capture system with IMUs is devel-
oped and interfaced with the human-inspired control approach [17].
In particular, this system is first used to capture the walking trajec-
tories of the healthy test subject. Utilizing the collected human
locomotion data as the reference, a human-inspired optimization
problem [17] is employed to design a stable and optimal gait which
suits the specific test subject or amputee. The IMU system is then
embedded on the user to interface with the controller in real-time
to achieve prosthetic walking.

2.1 Motion Capture with IMU
A model based Extended Kalman Filter (EKF) that extends from

the work presented by [22] is introduced to obtain accurate joint
angle information about the human subject. In particular, the algo-
rithm used in this work is different in two aspects: the kinematic
model of the human legs is assumed to be two dimensional in the
saggital plane and the kinematic chain is built from the hip. Be-
fore the filter can be implemented, sensor readings for each seg-
ment must be corrected. Attaching IMUs to the user is not ideal
since the sensor frame of reference will not align with that of the
kinematic link. A two step calibration procedure is performed to
rotate sensor readings into the appropriate frame. Once the sensor
frame has been corrected through calibration, sensor readings are
collected from the IMU along the saggital plane to update the EKF
model. Since AMPRO has restricted actuation in solely the saggital
plane and because joint variations in the coronal plane are not used
for gait parameterization, they are excluded from the model.

During data collection, inertial sensing is performed by seven
Invensense MPU-9150 devices consisting of a tri-axial gyroscope
(range ±5000/s) and a tri-axial accelerometer (range ±4g). Each
IMU transfers angular velocity and acceleration readings to a mi-
crocontroller at a rate of 200 Hz for processing. During the ex-
periment, the subject was asked to walk along a straight line in a
flat-footed gait for several steps. The joint states are estimated and
collected with the EKF algorithm, and then several steps are aver-
aged to yield their unique trajectories for optimization. Note that,
flat foot walking is a simplification of human walking. We real-
ize that it introduces limitations on the prosthetic gait, however, it
captures the essential behavior of walking that suits the capabili-
ties of the first iteration of the prosthetic device AMPRO. Specifi-
cally, the our first iteration of AMPRO is designed to walk with flat
foot, with the goal to test our controllers obtained from the control
framework designed for bipedal robots. More complex behaviors
such as, multi-contact and human-like gaits (as discussed in [28])
will be addressed in the ongoing development of the next iteration.

2.2 Gait Generation For Prosthetics
With the reference human trajectories in hand, the next step is

to design a gait that is specific to the individual amputee and the
particular prosthetic device. In particular, a planar bipedal robot
with anthropomorphic parameters is considered to be the “human”
model for the purpose of gait design in this work. Based on this
model and the human locomotion data obtained with the IMUs,
the human-inspired optimization [4] is implemented to generate a
human-like gait that is both stable and optimal for the prosthetic
device.

2.2.1 Robot Model
A seven-link planar bipedal robot (one torso, two thighs, two

calves and two feet) with anthropomorphic parameters correspond-
ing to the test subject, is considered to be the “human” model in



Figure 2: Robot Model including joint angles.

this work. Due to the existence of discrete behavior (when foot
impacts the ground) present in walking, we represent the bipedal
robot as a hybrid system with the configuration space QR with co-
ordinates given by: θ = (θsa,θsk,θsh,θnsh,θnsk,θnsa)

T as shown in
Fig. 2. The equations of motion of the continuous dynamics are
found using the Euler-Lagrange formula:

D(θ)θ̈ +H(θ , θ̇) = Bu, (1)

where D(θ) ∈R6×6 is the inertial matrix and H(θ , θ̇) ∈R6×1 con-
tains the terms resulting from the Coriolis effect C(θ , θ̇)θ̇ and the
gravity vector G(θ). The torque map B = I6 (under the assump-
tion that the robot is fully-actuated) and the control input, u, is the
vector of torque inputs. With the notation x= (θ ; θ̇), the affine con-
trol system ẋ = f (x)+g(x)u can be obtained by reformulating (1)
[21]. The discrete behavior of impact is modeled with the perfectly
plastic impact assumption [4], [16].

2.2.2 Human-Inspired Outputs
With the goal of achieving human-like bipedal robotic walk-

ing, we take the perspective of viewing the “complex” human lo-
comotion system as a “black box.” Therefore, the goal becomes
to drive the actual robot outputs ya(θ) to the desired human out-
puts yd(t,α) that are represented by the canonical walking function
(CWF) which is characterized with a parameter set α [4]. In par-
ticular, for the pinned-to-ground 7-link bipedal robot considered in
this paper, a total of 6 outputs are of interest; for details, refer to
[17]. Therefore, we introduce human-inspired outputs:

y(θ , θ̇ ,α) =

[
y1(θ , θ̇ ,α)

y2(θ ,α)

]
=

[
ya

1(θ , θ̇)− vhip
ya

2(θ)− yd
2(ρ(θ),α)

]
, (2)

where y1(θ , θ̇) is the relative degree one output, which is the dif-
ference between the actual hip velocity ya

1(θ , θ̇ ,α) and the desired
hip velocity vhip. The vector y2(θ ,α) contains the relative degree
two human-inspired outputs which are the differences between the
actual outputs ya

2(θ) and desired outputs yd
2(ρ(θ),α).

Upon observation of human locomotion data, the linearized for-
ward hip position, δ phip(θ), was discovered to increase linearly as
a function of time; this motives the following phase variable:

ρ(θ) = (δ phip(θ)−δ p+hip)/vhip (3)

that will be used to parameterize a given walking gait. More im-
portantly, this phase variable also serves as the key factor for inter-
action between the human and the device, the details of which will
be discussed later. Note that, δ p+hip(θ) is the initial linearized for-
ward hip position at the beginning of a step, which will be decided
through an a priori optimization problem.

Utilizing these outputs, the human-inspired controller [4] can be
utilized to drive both y1 → 0 and y2 → 0 in a provably exponen-
tially stable fashion. However, while the human-inspired controller
renders exponential convergence for the continuous dynamics, the
robot will be “thrown-off” the designed trajectory when impacts
occur. This motivates the introduction of the partial hybrid zero
dynamics (PHZD) constraints aiming to yield a parameter set α

that ensures the tracking of relative degree two outputs will remain
invariant even through impacts. In particular, with the partial zero
dynamics (PZD) surface defined as:

PZα = {(θ , θ̇) ∈ T QR : y2(θ ,α) = 0,L f y2(θ ,α) = 0}, (4)

the PHZD constraint can be explicitly stated as:

∆R(SR∩PZα ) = PZα , (PHZD)

where ∆R and SR are the reset map and switching surface of the
robot model, respectively. The detailed explanation of these con-
straints can be found in [4], [17].

2.2.3 Human-Inspired Optimization
By enforcing the PHZD constraint discussed above, the human-

inspired optimization can be utilized to generate robot trajectories
that are both provably stable and human-like [4], [28]. However,
for the cyber-physical system of a lower-limb prosthesis interact-
ing with humans in a safety critical fashion, more attention must be
placed on physical constraints that relate to safety and energy con-
servation. One particular goal is to optimize the torque profile such
that the motors are able to bear the human weight during the stance
phase. More importantly, walking gaits that require smaller torques
also decrease the energy consumption and, as a result, will prolong
battery life. These specifications yield the optimization problem
subject to PHZD and physical constraints::

α
∗ = argmin

α∈R26
CostHD(α) (HIO)

s.t (PHZD),

Physical Constraints,

where the cost function (HIO) is the least-square-fit error between
the human experimental data (which are obtained from the IMUs
as discussed in Sec. 2.1) and the CWF representations (2). Note
that the physical constraints include addition constraints that ensure
good foot clearance and that joint limits intrinsic to the prosthetic
device are satisfied. The end result of this optimization problem
is the parameter set α that renders an optimal (w.r.t. torque, foot
clearance, joint position and velocity) and provably stable human-
like walking gait, which can be implemented directly on the pros-
thetic device. The stability of the walking gait obtained through
(HIO) was numerically validated through the Poincaré map [20],
wherein the magnitude of the maximum eigenvalue was found to
be 0.11 indicating stability. The limit cycles of both the ankle and
knee are shown in Fig. 3a.

To summarize, this optimization problem uses the trajectory of a
healthy subject as the reference, which is subject to PHZD con-
straints (to ensure smooth transitions between stance and swing
phase) and physical constraints (torque and angle limitations) such
that the output gait is applicable for implementation on the pros-
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Figure 3: (a) Limit cycles for both the ankle and knee; (b) Compar-
ison between the collected data and outputs optimized via (HIO);
the shadowed region represents the swing phase.

thetic device. Therefore, the main advantages of utilizing this op-
timization problem are twofold: a) an optimal smooth gait can be
designed for a specific amputee without hand tuning and, b) the
output gait can be practically used on the prosthetic device directly
with optimal torque and energy efficiency.

2.3 Prosthetic Trajectory Reconstruction
The result of the optimization problem (HIO) is the parameter set

α that define the human-inspired outputs. Via these outputs, we can
obtain desired joint angles and angular velocities on the prosthetic
device in every iteration through the inverse projection from the
PHZD surface. This is achieved through a methodology termed the
PHZD reconstruction (a detailed derivation can be found in [28]).

In particular, on the PHZD surface, the zero dynamic coordinates
can be defined as:

ξ1 = δ phip(θ) := cθ (5)

ξ2 = ya
1(θ , θ̇) := δ ṗhip(θ) := cθ̇ , (6)

where c is the coefficient array defining the linearized hip position
δ phip(θ) [28]. Since the linearized hip position is utilized to pa-
rameterize time (3), as the direct result of (5) the desired relative
degree two outputs can be stated as yd

2(ρ(θ),α) = yd
2(ξ1,α). Sim-

ilarly, due to the linearity of the actual relative degree two outputs,
we have ya

2 = Hθ and ẏa
2 = Hθ̇ .

Therefore, utilizing the fact that the actual outputs are equal to
the desired outputs on the PHZD surface, we have the following re-
lationships between the desired joints states and the desired outputs
of the robot given by:

θd(ξ ) = Ψ(ξ1,α) =

[
c
H

]−1(
ξ1

yd
2(ξ1,α)

)
(7)

θ̇d(ξ ) = Φ(ξ1,ξ2,α) =

[
c
H

]−1
(

vhip
∂yd

2(ξ1,α)
∂ξ1

ξ2

)
.

The immediate result of this expression is that by knowing ξ1 and
ξ2, which are simply the linearized hip position and hip velocity,
respectively, the desired angles and velocities can be obtained us-
ing the parameter α directly while simultaneously guaranteeing the
resulted joint states and velocities are on the PHZD surface. Fig. 3b
shows the reconstructed knee and ankle angles compared with the
experimental locomotion data obtained from the IMUs. Note that
the large negative ankle angle recorded by the IMUs is because flat-
footed walking was enforced during the data collection experiment.
As a result of this unnatural constraint, the test subject had to in-
crease plantar flexion in order to land with a flat foot. Aside from

this difference, the walking gait obtained through the optimization
problem (HIO) is human-like in nature.

3. CONTROLLER CONSTRUCTION
In this section, we begin by briefly summarizing impedance con-

trol. This traditional control approach will be utilized in the de-
velopment of a novel control Lyapunov function (CLF) [6] based
model independent quadratic program (MIQP) controller for two
joints. This controller was first proposed in [26], and it will be
revised with a direct view towards application to prosthesis.

3.1 Impedance Control for Prosthesis
Based on the notion of impedance control in [15], the torque

at each joint during a single step can be represented in a piecewise
fashion by a series of passive impedance functions [23] of the form:

τ
imp = k(θ −qe)+bθ̇ , (8)

where, k, qe and b represent the impedance parameters for stiffness,
equilibrium angle and damping, respectively, which are constant
for a specific phase. Based upon previous work [3], analysis of flat
foot locomotion data obtained from human models shows that one
gait cycle can be divided into four subphases (two subphases for
the stance phase and two subphases for the swing phase) based on
the profile of prosthesis joint angles. The explicit criterion of the
phase separation is bypassed here but can be found in [3, 26]. With
the phase transitions in hand, the impedance parameters for each
subphase are estimated using the method discussed in [3], in which
the authors showed that the impedance parameters for a lower-limb
prosthesis can be learned by the observation of unimpaired human
walkers. The results have been validated both in simulation and in
experiment with a transfemoral prosthetic device. In this paper, we
extend the method to estimate the impedance parameters by observ-
ing the experimental walking data that is obtained using only PD
control on the device via (7). The estimation algorithm is discussed
explicitly in [3, 26].

3.2 CLF Model Independent QP
As a means for stabilizing systems undergoing impacts, i.e., hy-

brid systems, rapidly exponentially stabilizing control Lyapunov
functions (RES-CLFs) were introduced in [6] to yield controllers
with stronger convergence guarantees. Quadratic programs can be
used to realize RES-CLFs (via inequality constraints). When com-
bined with the impedance control (implemented as a feed-forward
term), the result is a novel feedback control methodology: Model
Independent Quadratic Programs (MIQP)+Impedance control.

3.2.1 Human-Inspired Control Revisited
With the human-inspired outputs defined in (2), the dynamics in

(1) can be reformulated as:[
ẏ1
ÿ2

]
=

[
L f y1(θ , θ̇)
L2

f y2(θ , θ̇)

]
︸ ︷︷ ︸

L f

+

[
Lgy1(θ , θ̇)

LgL f y2(θ , θ̇)

]
︸ ︷︷ ︸

A

u, (9)

where L f is the Lie derivative and A is the dynamic decoupling
matrix, which is invertible because of the specific criterion of the
outputs selection [29]. By picking u = A−1(L f + µ), equation (9)
becomes: [

ẏ1
ÿ2

]
= µ. (10)

By designing µ properly (see [4]) one can drive both y1 → 0 and
y2 → 0 exponentially. However, due to the lack of the model in-
formation, it is not possible to realize this controller on prosthesis.



As a result, traditional PID control is the more favorable option—it
does not require accurate model information, i.e., it is model inde-
pendent. However, PID controllers lack formal guarantees (when
applied to nonlinear systems) and require hand tuning [7]. This mo-
tivates the need to find a new control strategy that overcomes the
weaknesses of PID control while maintaining model insensitivity.
This balance of performance and lack of model-based assumptions
was achieved with CLF based MIQP as first introduced in [26].

3.2.2 CLF MIQP
The prosthetic device AMPRO has two actuators for the ankle

and knee joints, therefore, is natural to choose the outputs to be the
ankle and knee angles. By defining the vector η = (yp; ẏp) ∈R4×1

with yp = (θ
p
a ,θ

p
k )

T , equation (10) can be written as a linear affine
control system:

η̇ =

[
02×2 I2×2
02×2 02×2

]
︸ ︷︷ ︸

F

η +

[
02×2
I2×2

]
︸ ︷︷ ︸

G

µ. (11)

Note that, θ
p
a and θ

p
k are the angles for the prosthetic ankle joint

and knee joint, respectively. By considering the Continuous Alge-
braic Riccati Equations (CARE) with P = PT > 0:

FT P+PF−PGGT P+ I = 0, (12)

we can obtain the optimal solution µ = −GT Pη . The solutions of
the CARE also allows for the construction of a rapidly exponen-
tially stabilizing control Lyapunov functions (RES-CLFs) [6]. In
particular, by defining ηε = (yp/ε; ẏp) with ε > 0, we define the
positive definite RES-CLFs to be:

Vε (η) = η
T
[ 1

ε
I 0

0 I

]
P
[ 1

ε
I 0

0 I

]
η := η

T Pε η . (13)

Differentiating this function yields:

V̇ε (η) = LFVε (η)+LGVε (η)µ, (14)

where LFVε (η) = ηT (FT Pε +Pε F)η , LGVε (η) = 2ηT Pε G.
In order to exponentially stabilize the system, we want to find µ

such that, for specifically chosen γ > 0 [6], we have:

LFVε (η)+LGVε (η)µ ≤− γ

ε
Vε (η). (15)

Therefore, an optimal µ could be found by solving the following
quadratic programs (QP):

m(η) = argmin
µ∈R2

µ
T

µ (16)

s.t ϕ0(η)+ϕ1(η)µ ≤ 0, (CLF)

where ϕ0(η) = LFVε (η) + γ

ε
Vε (η) and ϕ1(η) = LGVε (η). The

end result of solving the QP problem is a control input µ which is
independent of model information, i.e., we obtain a MIQP.

More explicitly, the basic principle of the MIQP algorithm is to
construct a new linear control system (11) that only focuses on the
errors between the actual outputs and desired outputs, while not
requiring any information about the original model. Note that, in
order to obtain optimal torques that are also subject to other con-
straints (for example, torque bounds due to hardware limit), we take
a further step by relaxing the CLF constraints with a large penalty

value p > 0 [5]. In particular, we consider the MIQP:

argmin
(δ ,µ)∈R2+1

pδ
2 +µ

T
µ (17)

s.t ϕ0(η)+ϕ1(η)µ ≤ δ , (CLF)
µ ≤ µMAX , (Max Torque)
−µ ≤ µMAX . (Min Torque)

This QP problem yields an optimal controller that regulates the er-
ror in the output dynamics in a rapidly exponentially stable fashion.

3.3 MIQP+Impedance Control
While MIQP control benefits from its model independent prop-

erty in an optimal fashion, it also suffers the problems due to the
lack of model information. For example, the MIQP controller will
generate the same torque of two different systems if they have the
same tracking error, regardless of the torque actually required of
the system. Therefore, model information must be utilized in the
controller in order to achieve a more responsive controller; this mo-
tivates the introduction of MIQP+Impedance control.

By viewing the impedance controller τ imp as a feed-forward term,
the desired torque τd of the prosthetic joints can be stated as:

τd = τ
qp + τ

imp, (18)

where τqp is the torque computed from the MIQP problem. Taking
this idea further, we add the impedance term τ imp into the MIQP
construction for the total hardware torque bounds, which yields the
following MIQP+Impedance formula:

argmin
(δ ,τqp)∈R2+1

pδ
2 + τ

qpT
τ

qp (19)

s.t ϕ0(η)+ϕ1(η)τqp≤δ , (CLF)

τ
qp ≤ τ

qp
MAX , (Max QP Torque)

− τ
qp ≤ τ

qp
MAX , (Min QP Torque)

τ
qp ≤ τMAX − τ

imp, (Max Input Torque)

− τ
qp ≤ τMAX + τ

imp. (Min Input Torque)

By adding the impedance control as a feed-forward term into the
input torque, the model independent dynamic system (11) gath-
ers some information about the system that it is controlling. It
can, therefore, adjust τqp accordingly to accommodate for the feed-
forward term in order to achieve good tracking. By setting the QP
torque bounds τ

qp
MAX , we can limit problems with overshoot. We

also set the total input torque bounds for the QP problem such that
the final optimal input torque (18) will satisfy the hardware torque
bounds τMAX , which is critical for practical implementation.

The readers may notice that the final formulation of the MIQP +
Impedance controller in this paper is slightly different than previ-
ously presented in [26, 27]. In particular, instead of adding the
feed-forward impedance torque into the QP problem, this work
only considers the impedance term in the torque boundary con-
straints. This important modification is specifically considered be-
cause of safety concerns related to prosthesis that interact with hu-
mans. In [26, 27], when considering the feed-forward term in the
QP problem, the MIQP+Impedance control is solved optimally for
the total input torque; for this reason, the resulting optimal torque
tends to be as small as possible. However, for prosthesis control
where safety is of primary concern, small torques may result in
instability or even failure, i.e., the user falling. Therefore, by re-
moving the feed-forward term from the QP problem, we are only
optimizing the QP torque while enforcing the total torque bounds
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that must be satisfied. The end result is a controller with optimal
torque that does not sacrifice safety.

4. EXPERIMENTAL IMPLEMENTATION
With the gait and controller discussed above, we now have the

framework to implement the nonlinear real-time optimization based
controller experimentally on the self-contained transfemoral pros-
thesis, AMPRO. Specifically, the design specifications of AMPRO
are briefly introduced at the beginning of this section. Then the high
level control algorithm along with IMU sensing are explained. Fi-
nally, the results of using the MIQP+Impedance controller along
with other controllers are analyzed in a comparative study.

4.1 Design Specifications of AMPRO
AMPRO (AMBER Prosthetic) was designed to be a high pow-

ered, compact and structurally safe device. The device uses a roller
chain drive train consisting of a 374 W brushless DC motor (Moog
BN34 silencer series) and a harmonic gearhead (Harmonic Drive
model CSG-2UH-LW) to actuate the ankle and knee joints in the
sagittal plane. This design utilizes two incremental encoders for
each motor and is designed to incorporate absolute encoders at both
actuated joints. Two Elmo motion controllers are used to drive the
motors and read the encoder values. Additionally, two FlexiForce
(Parallax 30056) force sensors are located at the base of the foot
(mounted at the toe and heel) to measure the normal reaction forces
which are used for the purpose of leg switch. The prosthetic device
is powered by a 8-cell LiPo battery with 4000 mAh capacity. The
technical diagram can be seen in Fig. 4.

4.2 High Level Control and IMU Sensing
The high-level controller of AMPRO is coded into C++ packages

and run on the Robot Operating System (ROS). The complete code
is realized independently with a low-power single-board comput-
ers: Beaglebone Black (BBB) at 200 Hz. The pseudo-code of the
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with Encoders 

𝝉𝒅 = 𝝉𝒑𝒅 
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Figure 5: Flow chart of the pseudo-code.

algorithm is shown as the flowchart in Fig. 5.
To provide a point of human-robotic interaction, two IMUs are

mounted on the shin and thigh of the human leg. An IMU is not
placed on the human foot as the human-robotic interaction during
prosthetic swing takes place when the human foot is flat on the
ground. The EKF internal model for each IMU is used to obtain
relative orientation and velocity between body segments. Informa-
tion which is directly used for control is knee angle/velocity (thigh
to shank) and ankle angle/velocity (shank to earth). While the hu-
man leg is in stance, IMU readings are utilized to compute ξ1 and
ξ2; therefore, the desired swing trajectories of the prosthetic can be
calculated accordingly using the method discussed in Sec. 2.3. For
hardware implementation, one BBB is dedicated to run the EKF
algorithms as introduced in Sec. 2.1. The communication to a sec-
ond BBB which runs the primary code structure is achieved over a
networked crossover cable.

4.3 Experimental Results
Before the implementation of MIQP+Impedance control on the

prosthesis, the PD controller (obtained from (7)):

τ
pd =−Kp(θa−θd(ξ ))−Kd(θ̇a− θ̇d(ξ )), (20)

is first realized to track the reconstructed trajectories obtained in
Sec. 2 to achieve continuous walking. Walking trials were per-
formed on a treadmill providing a constant speed of 1.4 mph. With
the estimation algorithm introduced in [26], impedance parameters
are then learned based on the experimental walking data obtained
using PD control.

4.3.1 MIQP+Impedance Control
With the impedance parameters obtained above, we apply impedance

control as the feed-forward term while using the MIQP (19) as
the feedback to track the desired joint trajectories. For the first
round of testing, we set both the torque bounds τ

qp
MAX and τMAX
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Figure 6: Tracking results of using PD control and
MIQP+Impedance control with HS.
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Figure 7: Torque comparisons between using PD control and
MIQP+Impedance control with HS.

to be 100 Nm which is relatively high due to the safety concerns.
With this controller, the tracking results of both the ankle and knee
are plotted in Fig. 6b along with the results obtained through PD
control as shown in Fig. 6a. It is evident that the tracking per-
formance of both the ankle and the knee are exceptionally good for
MIQP+Impedance control. Fig. 7 shows the corresponding torques
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Figure 8: Tracking results of using PD control and
MIQP+Impedance control with HS.

of using these two controllers; the MIQP+Impedance control uses
more torque as due to its increased ability to track the desired tra-
jectories. With the goal of showing the torque optimality of the
proposed novel controller, the torque bounds τ

qp
MAX and τMAX are

reduced to be 50 Nm for the second round of testing. The tracking
results of using MIQP+Impedance control with low torque bounds
are shown in Fig. 6c. While the tracking performance is not as good
as the tracking with high torque bounds, it is still on par with the re-
sult with PD control. More importantly, this is achieved with lower
torque when compared to PD control, which is shown in Fig. 7.

Note that, since the test subject is a healthy human, a special
knee adapter is utilized for the connection between the test subject
and the device, which results in a significant leg asymmetry. For
this reason, it is hard to maintain lateral balance especially when
there is no support for the test subject. Therefore, for control veri-
fication purposes, two test situations are considered. One test case
is that the subject is allowed to use hand support (HS), i.e., push
or pull a side handrail if the subject is about to lose lateral balance.
Importantly, the HS only helps with lateral balance but does not
support the test subject in the sagittal plane. Another test case is
that the subject walks with no hand support (NHS) at all. When us-
ing HS, the subject was found to walk more periodically since there
is no issue with lateral stability. The above test results are all with
HS. On the other hand, when with NHS, the subject has to balance
himself by placing his foot differently in each step. Therefore, the
tracking performance is sacrificed and the walking is less periodic,
which will be shown in the following section.

While MIQP+Impedance controller contains both the feedback
term and feed-forward term, we also compare it with a more straight-
forward augmented control strategy, PD+Impedance:

τ
d = τ

pd + τ
imp, (21)

which also includes the impedance control as a feed-forward term.
The tracking results comparison with using MIQP+Impedance con-
trol are shown in Fig. 8. We can see that the PD+Impedance control
achieves slightly better tracking. However, it requires much bigger
torques than MIQP+Impedance controller. To illustrate the overall



Figure 9: Walking unsupported in the Student Recreation Center.

control performance more clearly, the experimental results (includ-
ing the rms tracking errors, maximum tracking errors, maximum
torque requirement and average net power consumption) of 5 steps
for the HS case are listed in Table. 1 thereby giving a detailed com-
parison. In particular, the best performances are highlighted in the
table, from which we can see that except the max knee error, all
of the best performances are achieved with the MIQP+Impedance
controllers. More importantly, compared with PD or PD+Impedan-
ce, the proposed novel controller has reduced the torque and power
significantly, which is an essential consideration in prosthesis con-
trol. Note that, the user was also able to walk on uneven terrains in-
dicating the stability of the proposed controller, the details of which
can be seen in the video [1]. In summary, after comparing the dif-
ferent controllers under different situations, the MIQP+Impedance
controller has the best balanced performance between stable track-
ing and power requirements.

4.3.2 Outdoor Test
As an additional form of testing, AMPRO was taken out of the

lab to walk in various environments. In particular, two tests were
performed at the student Recreation Center of Texas A&M Univer-
sity as illustrated in Fig. 9. The first test was carried out using the
MIQP+Impedance control with low torque bounds; the test subject
was able to walk 30 mins continuously with a total travel distance
of 3/4 miles. The gait tiles are plotted in comparison with the sim-
ulated walking as shown in Fig. 10. Testing was prematurely termi-
nated due to an electrical failure on the shin IMU sensor. The bat-
tery voltage drop was monitored to estimate the power cost. The
voltage drop during the course using the MIQP+Impedance con-
troller for the continuous walking test was 1 V. For comparison
purposes, another test was performed employing PD control. The
subject successfully finished 1 mile in 40 mins (the average walking

Table 1: Experiment Results Comparison with Hand Support.

Control erms[rad] emax[rad] τmax[Nm] Prms[W ]

PD Ankle 0.0311 0.1139 56.4042 9.966
Knee 0.0817 0.3038 62.2391 34.1918

PD+ Ankle 0.033 0.1165 47.5438 15.6797
Imped Knee 0.056 0.2106 64.8324 40.9382

MIQP-L Ankle 0.0368 0.1231 33.0213 7.8233
+Imped Knee 0.0631 0.2292 49.3158 27.5365
MIQP-H Ankle 0.0192 0.08 58.4356 9.4622
+Imped Knee 0.0528 0.25 85.3194 39.3123

speed was similar to the speed of using MIQP+Impedance control)
with 1.5 V voltage drop over the course of the continuous walking
experiment. From the voltage drop comparison, we can conclude
that the MIQP+Impedance controller required less power during
the test of walking freely. The experiment video is shown in [1].

5. CONCLUSIONS
By leveraging a systematic methodology—including sensing, al-

gorithm and control—which has been validated on various bipedal
robots, this work has successfully translated robotic walking to
prosthetic walking. In particular, a nonlinear real-time optimiza-
tion based controller (i.e., MIQP+Impedance) was implemented
on a custom built powered transefemoral prosthesis. Continuous
and stable flat ground walking was shown with this novel con-
troller during both in-lab and real-world testing. The proposed
MIQP+Impedance controller outperforms PD control in both track-
ing and torque optimality and displays a well balanced performance
(tracking and power requirements) when compared with PD+Imp-
edance control. The rate of power consumption is also improved
by the MIQP+Impedance controller when compared to both PD
and PD+Impedance. More importantly, by benefiting from both
the simple algorithm infrastructure and the optimal control strategy
(MIQP), the self-contained prosthesis was estimated to have a con-
tinuous walking capacity of more than 3 hours on a single battery
charge. A new design of AMPRO is currently focused on reducing
the size of the electric motors and optimizing other structural com-
ponents with the aim to provide a more comfortable experience for
the user and to significantly reduce power consumption.
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