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Homotopy Meaningful Hybrid Model Structures

Aaron D. Ames

ABSTRACT. Hybrid systems are systems that display both discrete and contin-
uous behavior and, therefore, have the ability to model a wide range of robotic
systems such as those undergoing impacts. The main observation of this paper
is that systems of this form relate in a natural manner to very special diagrams
over a category, termed hybrid objects. Using the theory of model categories,
which provides a method for “doing homotopy theory” on general categories
satisfying certain axioms, we are able to understand the homotopy theoretic
properties of such hybrid objects in terms of their “non-hybrid” counterparts.
Specifically, given a model category, we obtain a “homotopy meaningful” model
structure on the category of hybrid objects over this category with the same
discrete structure, i.e., a model structure that relates to the original non-hybrid
model structure by means of homotopy colimits, which necessarily exist. This
paper, therefore, lays the groundwork for “hybrid homotopy theory.”

1. Introduction

Hybrid systems are systems that display both continuous and discrete behavior
and so have important applications to robotic systems, e.g., mechanical systems un-
dergoing impacts such as bipedal robotic walkers are naturally modeled by systems
of this form. As with dynamical systems, understanding the homotopy-theoretic
properties of hybrid systems—including topology and homology—allows for impor-
tant insights into the behavior of these systems. Unlike dynamical systems, there
is currently no such mathematical framework. The goal of this paper is to provide
the first steps toward establishing such a framework.

Fundamental to our investigations is the theory of model categories, which pro-
vides a method for “doing homotopy theory” on general categories with three dis-
tinguishable classes of morphisms (weak equivalences, fibrations and cofibrations)
which satisfy certain axioms. Originally formulated by Quillen in [Qui67], model
category theory has since blossomed into a full-fledged area of research capable of
addressing homotopy-theoretic questions in a general context. Some of the quin-
tessential model categories are the category of topological spaces, the category of
simplicial sets and the category of chain complexes—the model structure of these
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categories plays a fundamental role in algebraic topology and homology. There-
fore, understanding hybrid systems in the context of model categories will allow
one to understand the homotopy-theoretic properties of these systems, laying the
groundwork for hybrid homotopy theory.

The core observation of this work is that hybrid systems, and more generally
hybrid objects, can be represented equivalently as diagrams over a category. That is,
given a category M consisting of the non-hybrid objects of interest, e.g., topological
spaces, a hybrid object over this category consists of a small category D of a very
specific form, termed a D-category, that captures the discrete structure of the hybrid
object together with a functor:

A:D— M,

that captures the continuous structure of the hybrid object. Therefore, given a
category M, we are interested in studying the functor category MP.

This paper explores the theory of model categories in the light of hybrid objects.
For a D-category D, this amounts to finding a homotopy meaningful model struc-
ture on M? given a model structure on M; that is, the goal is a model category
structure that yields homotopy colimits—the total left derived functor of colim.
More specifically, it is desirable to find a model category structure on M? in which:

For every weak equivalence f: A 5 B between cofibrant objects
A and B in MP, colim(f) is a weak equivalence.

The model structure on M? thus is said to be cofibrantly homotopy meaningful. For
such a model structure, the colimit induces a functor

hocolim : Ho(M?) — Ho(M)
between homotopy categories, termed the homotopy colimit, which is given by
hocolim(A) 2 colim(A’)

with A’ any cofibrant object weakly equivalent to A.

The main result of this paper is: Given a model category M, there is a cofi-
brantly homotopy meaningful model structure on MP . Therefore, homotopy colimits
exist and relate the model structure of M? to that of M; that is, there is a direct
relationship between “hybrid homotopy theory” and the “non-hybrid homotopy
theory” from which it is derived. The connection between hybrid objects and hy-
brid systems implies that we thus have derived a homotopy theory of hybrid systems
with the same discrete structure.

2. Hybrid Systems

As the central topic of this paper is abstract, it is important to devote some
effort to establishing its relationship to robotic systems, i.e., the goal of this section
is to justify all subsequent constructions. We begin by introducing the definition of a
general hybrid system. In order to better understand how hybrid systems naturally
arise in the context of robotic systems, we then will discuss hybrid Lagrangians
and the associated hybrid systems; further details can be found in [Ame06a] and
[AS06].

DEFINITION 2.1. A hybrid system is a tuple
‘57.) = (F, D, G, R7 X)’
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where

I =(Q,E) is an oriented graph (possibly infinite), i.e., @ and E are sets

and there exist source and target functions, sor : E — @ and tar: £ — Q;

the source and target of edge e € E is thus given by sor(e) and tar(e),

respectively.

e D ={D,;},cq is a set of domains, where D; is a smooth manifold.

e G = {G.}eer is a set of guards, where G. C Digy(e) is an embedded
submanifold of Dggr(e)-

o R ={R.}eck is a set of reset maps; these are smooth maps R, : G, —
Dtar(e)'

o X = {X,}icq is a collection of vector fields, i.e., X; : D; — TD; is a

vector field on the manifold D;.

Roughly speaking, a hybrid system has both a “discrete” and a “continuous”
component. The discrete component is the graph I'; and the continuous component
is the collection of data (D, G, R, X'). That is, one can roughly view a hybrid system
as a collection of dynamical systems (D;, X;), i € @, with D; a manifold and X; a
vector field on that manifold, interacting based upon the guard and reset maps in
a way that is consistent with the discrete structure, T

2.1. Trajectories of Hybrid Systems. As with dynamical systems, one can
consider trajectories of a hybrid system. Unlike dynamical systems, these trajecto-
ries tend to display an abundance of “pathological” behavior, e.g., Zeno behavior
and non-uniqueness of solutions. Since this paper is devoted to the topological
properties of hybrid systems, we will not formally introduce trajectories for these
systems although we will briefly discuss some of their salient properties in the con-
text of an example; we refer the reader to [Ame06a] for a formal definition.

EXAMPLE 2.2. To demonstrate the way in which non-uniqueness can arise in
hybrid systems due to the spacial configuration of the domains, guards and reset
maps, we will consider a specific example. The simplicity of this example indicates
the prevalence of such behavior.

Consider a hybrid system $ = (I', D, G, R, X) with
I'= (QvE)u where Q = {07 17 2} and £ = {61 = (07 1)762 = (07 2)}

D = {Dy, Dy, D3}, where D; = [0,00) for i = 1,2, 3.

G ={G,,,Ge, }, where G, = {0} for i =1, 2.

R ={R.,, R, }, where R.,(0) =1 and R.,(0) = 2.

X = {Xo,Xl,XQ}, where Xo({E) = —1, Xl(I) =1 and XQ(I) = 2.

The motivation for considering this hybrid system is that, as a result of the fact
that the guards are not disjoint, it displays non-uniqueness (or nondeterminism or
branching of solutions). To demonstrate how this non-uniqueness presents itself,
we will explicitly construct trajectories of the system. (Note that the notion of
trajectory considered in this example is specifically kept simple to avoid confusion;
the formal definition of trajectories is necessarily more involved [Ame06a].)

Let us consider trajectories of ) over the time interval [0, 00) with initial con-
ditions in Dg. In this case, for some zy € Dy, the system will evolve according
to the solution of the vector field Xy until the guard G., = G, is reached, i.e.,
until ¢o(7) = 0 for some 7 > 0 with ¢y(t) the solution to Xo. At this point, the
trajectory can do one of two things: (1) jump to domain D; and evolve according
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to the solution of the vector field X; with initial condition R, (co(7)) or (2) jump
to domain D5 and evolve according to the solution of the vector field X5 with initial
condition R.,(co(7)). Therefore, we see that for every initial condition zg € Dy
there exist two trajectories' over the time interval [0, 00) with initial condition x¢:

_ —t+ x if 0<t<ux

xa(t) = {t—xo—l—l if xg<t<oo
(t) - —t+ xg if 0<t<ux
X2 - 2t —mo)+2 if zo<t<oo

since, necessarily, 7 = xg. Thus $ does not have unique solutions.

Example 2.2 illustrates a couple of important points regarding the definition
of a hybrid system. Firstly, it demonstrates the role that the guards and reset
maps play in relation to one anther—the reset maps dictate how, when a guard is
reached, the state of the system changes; this is why, for example, R : Ge — Dyar(e)
for all e € E. Example 2.2 also illustrates the importance of the spacial interaction
between of the guards, domains and reset maps, e.g., how overlapping guards can
result in non-uniqueness. These considerations only serve to further motivate the
study of the topological properties of hybrid systems, since they are fundamentally
topological in nature.

We will now discuss hybrid systems in the context of robotic systems undergoing
impacts, i.e., hybrid systems as they relate to hybrid Lagrangians, in order to further
motivate the consideration of hybrid systems. First, we briefly recall:

2.2. Lagrangians. Consider a configuration space @ which is assumed to be
a smooth manifold. The equations of motion for a mechanical (or robotic) system
(cf. [MLS93]) are typically obtained from a Lagrangian L : TQ — R given in
coordinates by:

L(a,d) = 30" M(a)i — V(a),

where M (q) is the inertial matrix, %q'TM(q)q is the kinetic energy and V(g) is the
potential energy. In this case, the Euler-Lagrange equations yield:

M(q)+C(q,4)q + N(q) =0,

where C(q,q) is the Coriolis matrix and N(q) = %—‘;(q). Setting x = (¢, 4), we

obtain the Lagrangian vector field, X, : TQ — T(T'Q), associated to L:

&= Xp(z) = (4, M(g) " (=C(g,d)g — N(q))) -

We thus have associated to a Lagrangian a dynamical system (T'Q, X)), the be-
havior of which describes the behavior of the robotic system modeled by L.

2.3. Hybrid Lagrangians. In order to enter the realm of hybrid systems,
suppose that there is a unilateral constraint function h : Q@ — R, i.e., a function
that dictates the admissible configurations of the system, {q € @ : h(g) > 0}, which
usually arise from physical constraints on the system.

1n general, trajectories of hybrid systems take multiple values at the switching times (in this
case T); here we defined trajectories that take single values at this time for the sake of simplicity.
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FIGURE 1. (Left) Bouncing ball. (Center) Pendulum on a cart.
(Right) Spherical pendulum mounted on the ground.

DEFINITION 2.3. A hybrid Lagrangian is a tuple:
‘8 = (Q? L7 h))
where

e () is a configuration space.

e L:T@Q — Ris a Lagrangian.

e h: (@ — Ris a unilateral constraint function such that 0 is a regular value
of h, i.e., h~1(0) is a smooth manifold.

Systems that are described by hybrid Lagrangians arise naturally, e.g., a ball
bouncing on a flat surface where the ball is not allowed to pass through the ground,
a pendulum mounted on a cart when the pendulum is not allowed to pass through
the cart, and a pendulum mounted on the ground where the pendulum is not
allowed to pass through the ground; these examples are illustrated pictorially in
Figure 1. In this paper, we will consider the following simple example:

ExXAMPLE 2.4. Consider a ball bouncing on the ground in one dimension; see
Figure 1 (Left). In this case:
gball — (ball phall pball)

where Q"' = R with L"(z,4) = Iml#||? — mgz. Finally, the constraint that
the ball is not allowed to pass through the ground is manifested in the constraint
function A2l (z) = x.

2.4. Hybrid systems from hybrid Lagrangians. Just as one can associate
to a Lagrangian a dynamical system, one can associated to a hybrid Lagrangian
£=(Q,L,h) a hybrid system:

gﬂ _ (FQ,DQ,GE,RQ,XQ).

The discrete component of $* is a graph I'® consisting of a single vertex and

edge:

(2.1) e = Q

b

Therefore, D* = {Df}, G* = {GE}, R* = {R:} and X* = {X} }, i.e., hybrid
systems obtained from hybrid Lagrangians consist of a single domain, guard, rest
map and vector field. This data is obtained directly from the hybrid Lagrangian £
in the manner described below.
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FI1GURE 2. The hybrid model of a bouncing ball

From the constraint function h one obtains the domain:
Dy ={(4:4) € TQ : h(q) > 0},
which is the space on which the continuous behavior of the hybrid system evolves
according to the vector field X := X, the vector field obtained from the La-
grangian L. The “hybrid” nature of the system exerts itself when the guard,
G: ={(g.9) € TQ : h(q) =0 and dhyg < 0},

is reached, i.e., when a trajectory reaches the guard, an instantaneous transition in
the velocity occurs. This change in velocity is dictated by the reset map:

R3(q,d) = (q, P(q.q)),

where in coordinates:
dhgq

S 1T
P(q,q)—q—(1+e)ml\4(q) dh
q

which is obtained using the classical Newtonian impact equations [Bro99]. Here
0 < e <1 is the coefficient of restitution, e.g., for a perfectly elastic impact e = 1,
and for a perfectly plastic impact e = 0.

EXAMPLE 2.5. Continuing with Example 2.4, using the above constructions we
obtain a hybrid system modeling a ball bouncing in one dimension:
(2.2) gball — (pball pball Gball phall ybally

with TPl as in (2.1), from the hybrid Lagrangian £ball = (QPall| [ball pball),
Let z1 and x5 denote the position and velocity of the bouncing ball, respectively.

The domain and guard for the hybrid system are obtained from kP! as follows:
DEB‘“ = {($1,$2) S R2 Txy > 0},
GT“ = {(z1,22) €ER*: 2, =0, x5 <0},

which encodes the fact that the position always must be positive and that a tran-
sition in the velocities of the system should occur when the position is zero and
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the velocity is “downward pointing.” The reset map for the system is given by
RPN (21, 29) = (21, —exs), where 0 < e < 1 is the coefficient of restitution for the
ball; this map encodes the fact that when the ball impacts the ground, its velocity
is reversed and scaled down by the amount of energy lost through impact. Finally,
the vector field for this system is given by X! (x1,25) = (22, —g), where g is the
acceleration due to gravity. A graphical representation of this hybrid system can
be seen in Figure 2.

2.5. Hybrid spaces. As with dynamical systems, it is sometimes desirable to
consider the underlying “space” of a hybrid system. This amounts to “forgetting”
the vector field on each domain along with the smooth structure of the other data
defining a hybrid system. More specifically, we introduce the following:

DEFINITION 2.6. A (topological) hybrid space is a tuple:
H = (F7 D7 G7 R)’

where
e I'=(Q, F) is an oriented graph.
e D ={D,},cq where D; is a topological space.
e G = {Gc}eer where G, is a subspace of Dgy(c).
¢ R={Rc}ccr where Re : Ge — Diae(ey is a continuous map.

It will be demonstrated in the next section that hybrid spaces correspond to
hybrid objects over the category of topological spaces: hybrid topological spaces.
We first describe this correspondence in the context of hybrid systems obtained
from hybrid Lagrangians.

2.6. Topology and hybrid systems. The goal of this paper is to better
understand the topology of hybrid systems and, therefore, we will consider hybrid
topological spaces obtained from hybrid systems. To illustrate this construction
in the context of mechanical systems, we will show that the “topological” portion
of the hybrid system obtained from a hybrid Lagrangian, i.e., the data I'*, D*,
G* and R®, can be equivalently represented as a diagram over the category of
topological spaces.

Recall that the underlying “discrete” structure of the hybrid system obtained
from a hybrid Lagrangian is the graph I'* as given in (2.1). This graph can be
transformed into a small category Dge of the following form:

a

(2.3) De = Sa{ lta
b

where the identity maps on a and b are implicit in this representation. Viewing D
and G¥ as topological spaces and RS as a continuous map (by “forgetting” their
smooth structure), this data can be used to define a diagram in the category of
topological spaces, i.e., a functor X* : Dg — Top given by:

X: =Gy
X%(De)=  XE& :chl lxtﬂ =R}
Xy =Dy
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This important observation is the motivation for the definition of a hybrid object
over a category, e.g., the pair (Dg, X*) is a hybrid topological space. Before delving
into these details, which will be introduced formally in the next section, we discuss
some of the ramifications afforded by this alternative viewpoint.

Possibly the first question that arises naturally when studying hybrid topolog-
ical spaces is:

Can we understand hybrid topological spaces in terms of some
“non-hybrid” counterpart?

This question can and will be answered in the very general context of model cate-
gories, but first we discuss why problems arise if the question is addressed naively.
The most obvious way of associating a single topological space to a hybrid
topological space is by the taking the colimit?
Dy
z ~ RE(z), xe€GE
In fact, this construction has been utilized in the context of hybrid systems [STSLOO]
where it was referred to as the hybrifold. The problem with this construction is
that it does not behave well “homotopically.” Allen Hatcher describes this aptly in
[Hat02]:
“It can easily happen that the [colimit] is rather useless because
so much collapsing has occurred that little of the original
diagram remains.”

colim(X*®) =

Homotopy theorists have long understood this problem (see [Vog73]). This moti-
vated the introduction of the homotopy colimit as a method for obtaining a more
“homotopy meaningful” topological space from a diagram of topological spaces.
Homotopy colimits were first studied in the context of hybrid systems in [AS05],
where it was shown that this space encodes useful information about the hybrid
system, especially with respect to Zeno behavior, by studying the homology of the
homotopy colimit of a hybrid space (for more on Zeno behavior see [Ame06a] and
[ATSO06]). The motivation for this work is to extend the use of homotopy colimits
in the study of hybrid systems beyond the setting of topological spaces, i.e., to
general categories that “admit a homotopy theory.”

ExAMPLE 2.7. The hybrid topological space associated to the hybrid system
modeling a bouncing ball, HP2! is given by:
X" Dy — Top,
where Dy, is the small category given in (2.3) and
xball _ ball
a a
Xball (Dball) — Xgaall — ’LG‘;"‘“l lxl)aall — Rgall

ball __ pyball
Xb - Db

A graphical representation of this hybrid topological space can be seen in Figure 3.

2This (slightly non-standard) notation means the following: “z ~ RL(z), = € G2»
is the least equivalence relation generated by the binary relation (Gg,Df,Graph(RS)), with

°
Graph(RS) C GE x Dg the graph of RE, and D

o~RE(z), wece 15 the corresponding quotient

space.
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ball _ (ball
Xa, - Gu

ball _ pball
X:ﬂall = 1gpan Xta - Ra

L2

z le>all — Dball
FI1GURE 3. The hybrid topological space for the bouncing ball

3. Hybrid Objects

The starting point for introducing the notion of a hybrid object over a category
is the observation that systems that display both continuous and discrete behavior,
i.e., hybrid systems, can be represented by a small category of a specific form,
termed a D-category and denoted by D, together with a functor:

A:D—(C,

where C is the category of “non-hybrid” objects of interest. This alternative for-
mulation of “hybrid objects” allows for the use of preexisting mathematical con-
structions in the study of hybrid systems, such as the one that defines a homotopy
meaningful model structure on diagrams in a model category.

In this section we formally introduce D-categories and hybrid objects. More-
over, we demonstrate that the “standard” notion of a hybrid topological space
corresponds to a hybrid object over the category of topological spaces. A more
detailed discussion of hybrid systems, hybrid objects, and their relationship can
be found in [Ame06a]. We refer the reader to [Lan98] for additional background
information on category theory.

3.1. D-categories. Let D be a small category. We use Mor(D) to denote the
morphisms of D, i.e.,

Mor(D) = U Homp(a,b),
(a,b)E0b(D) x Ob(D)
and Morg (D) to denote the set of non-identity morphisms of D, i.e.,
Morig (D) = {a € Mor(D) : a # id}.

For a morphism « : @ — b in D, its domain is denoted by dom(a) = a and its
codomain is denoted by cod(a) = b.
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DEFINITION 3.1. A D-category is a small category D such that:

e There exist two subsets of Ob(D), E(D) and V(D), termed the edge set
and the vertex set, satistying:

E(D)NV(D) = 0,
E(D)UV(D) = Ob(D),
e There exists a pair of functions:
E(D) == Mor (D)
t
such that:
s(E(D)) Nt(E(D)) = 0,
s(E(D)) Ut(E(D)) = Morg (D).

The pair (s,t) is termed an orientation of D.
e The following diagram:

E(D)
e
E(D):S:Mond (D)
' lcod
V(D)

cominutes.

The definition of a D-category D implies that for every a € E(D), there is a
diagram of the form

(3.1) y &

cod(s,) cod(tg)
where cod(s,), cod(t,) € V(D). Diagrams of this form can be thought of as the
“canonical” D-categories—note the similarity between this diagram and the one
given in (2.3).

3.2. D-categories and graphs. D-categories can be essentially thought of as
graphs (although, in the context of hybrid systems, it is not sufficient to work with
graphs). That is, to every D-category there is an associated graph and, conversely,
to every graph there is an associated D-category.

More specifically, given a graph I' = (Q, E), one associates to this graph a
D-category Dr by defining the edge and vertex sets, and hence the objects, to be:

E(Dr):=E,  V(Dr):=Q, Ob(Dr) = E(Dr) UV(Dr).

To define the orientation (s,t) of Dp we define, for every e € E, morphisms:

N
)

sor(e tar(e)
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We complete the description of Dr by defining an identity morphism on each object
of DF.
Conversely, one can associate to a D-category D a graph

with source and target maps given by:

sor = cod(s(_))

E(D) V(D).

tar = cod(t(_))

~

More generally, it was shown in [Ame06a] that Dcat = Grph, where Grph
is the category of graphs (as defined in [Lan98]) and Dcat is the category of D-
categories which has as objects D-categories and morphisms functors that “preserve
orientations.”

EXAMPLE 3.2. The D-category obtained from the graph I'® given in (2.1) is
the D-category Dg given in (2.3) and, conversely, the graph obtained from the
D-category Dg is the graph I'*.

3.3. Hybrid Objects. With the notion of a D-category in hand, we define
hybrid objects over a category C.

DEFINITION 3.3. Let C be a category. A hybrid object over C is a D-category
D together with a functor

A:D—C.

The functor A can be thought of as the continuous component of the hybrid
object, and the category D as its discrete component. The category CP is thus the
category of hybrid objects over C with the same “discrete structure.” That is, the
objects of this category are pairs (D, A), (D,B), ..., and the morphisms between

two objects of CP, (D, A) and (D, B), are natural transformations f:A-=SB.

EXAMPLE 3.4. Some specific examples of hybrid objects are given by:

Hybrid simplicial set K :D — SSet
Hybrid chain complex C: D — Ch(A)
Hybrid manifold M : D — Man

where SSet is the category of simplicial sets, Ch(A) is the category of chain com-
plexes over an abelian category A and Man is the category of (smooth) manifolds.

More generally, we will be interested in studying hybrid objects over a model
category M, i.e., functors A : D — M.

REMARK 3.5. Utilizing the category of D-categories, Dcat, one can define the
category of hybrid objects over a category C, denoted by Hy(C). The objects of
this category are hybrid objects over C, i.e., pairs (A, A), (B,B), ..., with A and
B D-categories and A : A — C and B : B — C functors. The morphisms are
pairs (ﬁ, f) : (A4,A) — (B,B), where F : A — B is a morphism in Dcat and
f: A 5BoFisa morphism in CcA.

In this paper, we will not consider explicitly the category Hy(C), but properties
of this category have been studied in both [Ame06a] and [Ame06b].
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3.4. Hybrid topological spaces. We justify the notion of a hybrid object
by relating hybrid topological spaces to hybrid spaces (see Definition 2.6).

A hybrid topological space is given by a pair (D, X), where X : D — Top. In
physical systems such as robotic systems, it often is the case that for every a € E(D),
and hence every diagram in D of the form given in (3.1), the corresponding diagram
in Top is given by:

Xa
S N
Xcod(sa) Xcod(ta)

where X, C Xcoq(s,) 18 a subspace of Xcoq(s,) and Xs, = 1x, is the natural inclusion.
We denote hybrid topological spaces of this form by X*.

Although we do not assume explicitly that X, is an inclusion, this often is the
case, as the following proposition indicates.

PROPOSITION 3.6. There is a bijective correspondence:
{Hybrid Spaces, H= (T, D,G,R)}

{Hybrid Topological Spaces, X*: D — Top}.

PROOF. Given a hybrid space H = (T', D, G, R), we define the corresponding
hybrid topological space to be X(P:¢:%) . Dp — Top, where Dr is the D-category
obtained from the graph I' as described in Paragraph 3.2 and X(P-G-R) is defined
for every e € E(Dr) = E by

€ Ge
XD / \ - 7 N\
)

sor(e tar(e) Dsor(e) Dtar(e)

It is clear that X(P-¢-F) . Dp — Top is a hybrid topological space.

Conversely, consider a hybrid topological space X* : D — Top. Let I'p =
(V(D),E(D)) be the graph obtained from the D-category D as defined in Paragraph
3.2. We define H(’D7Xz) = (FD, sz, ze,sz), where sz = {Xz}bEV(D)a ze =
{X&}ace(p) and Rx» == {X{, }ace(m)- .

4. Model Categories

This section introduces the basics of model categories. While these concepts can
be found in many references ([Qui67], [CS02], [DHKSO04], [Hov99] and [DS95],
to name a few), we briefly revisit them here in order to justify subsequent con-
structions. We begin by recalling the definition of a model category. Note that
this definition of a model category essentially corresponds to the notion of a closed
model category as introduced by Quillen [Qui67].

4.1. Model categories. A model category M is a category with three special
classes of morphisms:

e weak equivalences (denoted by —— ),
e fibrations (denoted by — ),
e cofibrations (denoted by »— ),
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which are closed under composition and contain all identity morphisms. In addition,
they must satisfy axioms MC1, MC2, MC3, MC4 and MCS5 as given in [DS95]
(Definition 3.3), except that we strengthen® MIC1 by assuming that M is complete
and cocomplete, i.e., small limits and colimits exist in M. These axioms simply
give natural conditions on the relationships between weak equivalences, fibrations
and cofibrations. For example, MC5 states that any morphism f : A — B can be
factored in the following two ways: (1) f = poi where i is a cofibration and p is an
acyclic fibration, (2) f = p o where ¢ is an acyclic cofibration and p is a fibration.

4.2. A model structure on Top. Since we are interested in studying the
topological properties of hybrid systems, we will consider the category of topological
spaces, Top. This category provides an example of a model category (as one would
expect). What is interesting is that there is not a unique model structure on Top.
This is common when dealing with categories that admit model structures—these
structures often are not unique, so the specific model structure chosen depends
on the application. In our case, we will consider the model structure in which
the weak equivalences are homotopy equivalences following the excellent paper by
Strom [Str72].

A morphism p: X — Y in Top is a Hurewicz fibration if it has the homotopy
lifting property with respect to all topological spaces, i.e., for every topological
space A such that the solid arrows in the following diagram commute

A— X

AxI Iy

where I is the unit interval and ig(a) = (a,0), there exists a u : A x I — X making
the entire diagram commute.

Let X be a closed subspace of Y. The inclusion ¢ : X — Y is a (closed)
Hurewicz cofibration if it has the homotopy extension property with respect to all
topological spaces, i.e., for every topological space Z such that the solid arrows in
the following diagram commute

X x«r1

there exists a u : Y x I — Z making the entire diagram commute.
With these formulations, the category of topological spaces has the following
model structure:

3The motivation for strengthening MC1 is that we want to allow for the possibility of D-
categories with an infinite number of objects.
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THEOREM 4.1 ([Str72]). The category of topological spaces, Top, is a model
category with the following choices of weak equivalences, fibrations and cofibrations:
a morphism f: X —Y is

We: A weak equivalence if it is a homotopy equivalence,
Cof: A cofibration if it is a (closed) Hurewicz cofibration,
Fib: A fibration if it is a Hurewicz fibration.

4.3. Cofibrant and fibrant objects. An object A of M is said to be cofibrant
if the morphism from the initial object of M to A is a cofibration: ) —— A. An
object B of M is fibrant if the morphism from B to the terminal object is a fibration:
B — x.

Given an object A of M, we can use MC5(1) to define its cofibrant replacement.
That is, for the morphism ) — A, there is a factorization:

@ b 4
k DA
QA

Therefore, QA is a cofibrant object weakly equivalent to A, termed the cofibrant
replacement of A.

Similarly, for an object B of M and the morphism B — x, there is a factoriza-
tion:

A

B

*
Pl

z'B A;

RB

Therefore, RB is a fibrant object weakly equivalent to B, termed the fibrant re-
placement of B.

Fibrant and cofibrant replacements are functorial in the following sense: for
every morphism f : A — B there exist morphisms Qf : QA — QB and Rf : RA —
RB such that there is a commuting diagram:

04 2L oB

1T

RA — RB

Moreover, f is a weak equivalence iff Qf is a weak equivalence iff Rf is a weak
equivalence.

EXAMPLE 4.2. For the category of topological spaces, every object is both
cofibrant and fibrant. This implies that the cofibrant and fibrant replacement of a
topological space can be taken to be the original topological space.
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4.4. Left homotopies. Consider the morphism (id,id) : AITA — A. A
cylinder object, denoted by Cyl(A), is any object such that there is a factorization:

ATl A\ld id)
Cyl(A

Cylinder objects exist by MC5(1). A left homotopy from f:A— Btog: A— B
is a morphism H : Cyl(4) — B making the following diagram

AITA —Z f, >
Cyl(4)

!
commute. In this case, we write f ~ g
There is also the notion of a right homotopy from f: A — Btog: A —

B, denoted by f < g, but since f L g iff f < g when A is cofibrant and B is
fibrant (Lemma 4.21, [DS95]), we forgo introducing right homotopies for the sake
of brevity. In addition, as a result of this observation, when A and B are both

!
fibrant and cofibrant, if f ~ g we say that f and g are homotopic and write f ~ g.
ExXAMPLE 4.3. In the category of topological spaces, Top, X x I is a cylinder
object. The map ¢ : X IT X — X x I is given by i = (ig, 1), where ig(x) = (,0)
and i1(z) = (z,1). Two maps f,g : X — Y between topological spaces are left
homotopic iff they are homotopic in the traditional sense.

4.5. The homotopy category. Let A and B be objects of M that are both
fibrant and cofibrant. Then the binary relation on Homy, (A, B) given by associating
homotopic morphisms forms an equivalence relation: ~. Therefore, define

F(AuB) = HomM(AuB)/ ~

where [f] € 7(4, B) is given by [f] = {g € Homy (A4, B) : f ~ g}.
Since the fibrant-cofibrant replacement RQ A of an object of A is simultaneously
fibrant and cofibrant, consider the following;:

DEFINITION 4.4. The homotopy category Ho(M) of a model category M is a
category with the same objects as M and with
HomHo(M) (A, B) = F(RQA, RQB).
Recall that for all morphisms f: A — B (A and B arbitrary objects of M), we

have a commuting diagram:
RQA RQ
A B

RQS oo
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Therefore, we can define a functor v : M — Ho(M) with v(A) = A for all objects
of A of M and ~v(f) = [RQf]. (See [Qui67] for more on the structure of homotopy
categories.)

The following lemma (see [Qui67]) relates homotopies with weak equivalences:

LEMMA 4.5. If f : A — B with A and B both fibrant and cofibrant, then f is
a weak equivalence iff f is homotopic to the identity, i.e., there exists a morphism
g: B — A such that fog ~idp and go f ~ida. Therefore, f is a weak equivalence
in M iff v(f) is an isomorphism in Ho(M).

EXAMPLE 4.6. Since every topological space is both fibrant and cofibrant, the
homotopy category of Top, Ho(Top), is the traditional homotopy category obtained
by formally inverting homotopy equivalences.

5. Homotopy Meaningful Model Structures

We now introduce the notion of a Quillen adjunction, which is fundamental in
understanding the interplay among different model categories. This follows from
the fact that adjunctions of this form imply the existence of total (left and right)
derived functors and thus induce an adjunction between homotopy categories. The
discussion of homotopy colimits utilizes this observation in a fundamental fashion.
Again, the contents of this section can be found in many references—most notably
[DS95], [DHKS04] and [Qui67]. They are reintroduced here so as to justify the
notion of a homotopy meaningful model category structure and the specific model
structure that is chosen for MP.

To motivate the introduction of derived functors, and hence Quillen adjunc-
tions, consider a functor F' : M — D with M a model category. In general, this
functor does not factor through the homotopy category of M, i.e., there does not
exist a factorization:

F

N
Ho(M)

Left and right derived functors are introduced in order to find the “closest approx-
imation” to such a factorization “from the left” or “from the right.”

M

D

5.1. Left derived functors. Let F' : M — D be a functor, with M a model
category. The left derived functor of F is a functor LF : Ho(M) — D together

with a natural transformation ¢ : LF o v 5 F where, again, v : M — Ho(M). In
addition, it must satisfy the universal property that for any G : Ho(M) — D and

any s : G o~y = F there exists a unique s’ : G - LF such that the following
diagram
!

o7 LF oy

N A

commutes. While the left derived functor of a functor is not unique, it is unique
up to isomorphism.
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The total left derived functor of a functor F': M — N between model categories

is a functor

LF : Ho(M) — Ho(N)
such that LF is the left derived functor of the composite vy o F' : M — Ho(N),
where vy : N — Ho(N).

Right derived functors and total right derived functors are defined dually. In
particular, the total right derived functor of a functor F' : M — N between model
categories is a functor RF : Ho(M) — Ho(N).

The following result is very useful:

PROPOSITION 5.1 ([Qui67]). Let F : M — D with M a model category. If F(f)
is an isomorphism whenever f is a weak equivalence between cofibrant objects, then

the left derived functor LF of F exists and
LF(A) = F(A)
for every cofibrant object A of M.

This motivates the following (where the terminology is chosen based upon Def-
inition 3.3 of [CS02]):

DEFINITION 5.2. A functor F' : M — N between model categories is said to be
cofibrantly homotopy meaningful if it preserves weak equivalences between cofibrant
objects, i.e., if F'(f) is a weak equivalence whenever f is a weak equivalence between
cofibrant objects.

The importance of homotopy meaningful functors is outlined in the following
straightforward corollary of Proposition 5.1, which is essential when considering
homotopy colimits.

COROLLARY 5.3. If F': M — N is cofibrantly homotopy meaningful, then the
total left derived functor LF : Ho(M) — Ho(N) exists and can be computed by:

LF(A) > F(A)
for any cofibrant object A" weakly equivalent to A.

In particular, this corollary implies that if QA is a cofibrant replacement of A,
then LF(A) = F(QA).
5.2. Quillen Adjunctions. Let M and N be model categories and let
F:-MT—T—/—N:G
be an adjunction. This adjunction is a Quillen adjunction if

(i) F preserves cofibrations and acyclic cofibrations,
(ii) G preserves fibrations and acyclic fibrations.

It is easy to verify that (i) and (ii) are equivalent. Therefore, Quillen adjunctions
are intrinsically related to the existance of left and right derived functors as the
following proposition indicates.

PROPOSITION 5.4 ([Qui67]). Let M and N be model categories, and
F:M = N:G
be a Quillen adjunction. Then the total derived functors:

LF : Ho(M) = Ho(N) : RG




18 AARON D. AMES

exist and form an adjunction.

Related to this proposition (and the proof thereof, see [DS95]) is the following
lemma due to K. Brown, which is useful in its own right.

LEMMA 5.5 (Brown’s Lemma). Let F: M — N be a functor between model cat-
egories. If F' carries acyclic cofibrations to weak equivalences, then F' is cofibrantly
homotopy meaningful.

5.3. Homotopy Meaningful Model Category Structures. Let M denote
a model category and J a small category. The goal is to give conditions on the
model structure of M7, if such a structure exists, so that it is cofibrantly homotopy
meaningful, i.e., a model structure such that the total left derived functor of colim
exists. More formally, consider the following:

DEFINITION 5.6. A model category structure on MY is said to be cofibrantly
homotopy meaningful if colim is cofibrantly homotopy meaningful, i.e., if colim
preserves weak equivalences between cofibrant objects.

Since there is an adjunction:
(5.1) colim: MY == M : A,

with A the constant functor, for a model category structure on M7 to be cofibrantly
homotopy meaningful, we need this adjunction to be a Quillen adjunction, i.e., we
need A to preserve fibrations and acyclic fibrations. This helps to characterize
cofibrantly homotopy meaningful model structures on M-. That is:

PROPOSITION 5.7. If there exists a model structure on M, then it is cofibrantly
homotopy meaningful if:

(i) The weak equivalences are objectwise weak equivalences in M,
(ii) The fibrations are objectwise fibrations in M.

In this case, the total left derived functor of colim exists and is termed the homotopy
colimit:
hocolim := Lcolim : Ho(M?) — Ho(M).
Moreover,
hocolim(A) 22 colim(A")
for any cofibrant object A’ weakly equivalent to A.

PROOF. This result follows in a straightforward manner from the other results
mentioned in this section. By (i) and (ii) we know that A preserves fibrations and
acyclic fibrations, and so the adjunction (5.1) is a Quillen adjunction. Therefore,
hocolim exists by Proposition 5.4. Now, by Brown’s Lemma, colim is cofibrantly
homotopy meaningful (again, since (5.1) is a Quillen adjunction). Finally, by Corol-
lary 5.3, it follows that hocolim(A) 2 colim(A’) for any cofibrant object A’ weakly
equivalent to A. O

6. Hybrid Model Structures

Given a model category M and a D-category D, in this section we determine a
cofibrantly homotopy meaningful model structure on M?. To illustrate the concepts
introduced, we construct homotopy pushouts in general model categories which, to
provide a concrete example, will be specialized to the category of topological spaces.
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6.1. Setup. We begin by introducing some constructions necessary for the
main result of this paper.
For b € V(D), define
E(D)y = {ac€EM):3a:a—bin D}
= {a€E(D):b=cod(s,) or b=cod(t,)}.

For example, if the subcategory of D of all morphisms with codomain b has the

general form:
[} [} [} L [} [}
\ b

the set E(D), consists of all of the objects on the top of this diagram, which is
necessarily a subset of E(D).

Let f : A 5 B in MP. Consider the following morphisms:

e For every a € E(D), define i,(f) = fa-
e For every b € V(D), define i5( _’) to be the unique morphism induced by
the following pushout diagram:

H A, <Asa’Ata>a6E(D)b
a€E(D)y

HaGE(D)b fa{

where (As,, A¢,)acg(p), and (Bs,, By, )acg(p), are the unique morphisms
induced by the coproduct; for example, (Asa,Ata>a€E(D) is the unique
morphism making the following diagram commute:

A, —— ] A

a€E(D)y

: <Asa ; Ata>a€E(D)b
A, or Ay, !
\4

Ay
Using these definitions, we present the main result of this paper.

b

THEOREM 6.1. For any D-category D and model category M, the category MP
is a cofibrantly homotopy meaningful model category for the following choices of

weak equivalences, fibrations and cofibrations: a morphism f :A S5 Bis

We: A weak equivalence szzs objectwise a weak equivalence in M, i.e., ﬁl
is a weak equivalence for all a € Ob(D),
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Fib: A fibration szzs objectwise a fibration in M,
Cof: A cofibration if io(f) and ip(f) are cofibrations in M for all a € E(D)
and b € V(D)

This theorem is simply a corollary of a more general theorem relating to the
model structure of diagrams over direct categories. Therefore, proving the theorem
amounts to discussing how it fits within this more general framework—that is, the
main result of this paper is not the theorem per se, but rather the observations that
hybrid objects can be represented categorically and that this representation is such
that preexisting results can be utilized.

PROOF. Recall that the category 2 consists of two objects and a single (non-
identity) morphism: 0 — 1. Define the degree functor deg : D — 2 on objects
a € D by

[0 if a€ED)

deg(a) _{ 1 if aeVv(D)
This functor sends every (non-identity) morphism in D to the single (non-identity)
morphism in 2 by the definition of a D-category. Since deg is thus a linear extension,
every D-category D is a direct category. The theorem now follows from Theorem
5.1.3 in [Hov99]; for a more thorough explanation, see [Ame06b]. O

The importance of Theorem 6.1 is that the model structure on M? was defined
in such a way that homotopy colimits exist, thus relating the model structure on
MP to the model structure on M. That is, we have the following:

COROLLARY 6.2. For every model category M and D-category D,
hocolim : Ho(M?) — Ho(M)

exists and

e hocolim(A) 2 hocolim(B) if A and B are weakly equivalent.
e hocolim(A) = colim(A) for every cofibrant hybrid object A’ weakly equiv-
alent to A.

ProoOF. Follows from Theorem 6.1 and Proposition 5.7. O

This corollary indicates that an important aspect of computing homotopy col-
imits is understanding what the cofibrant objects are in MP. This motivates the
final result of this paper.

PROPOSITION 6.3. For every D-category D, an object A : D — M of MP s
cofibrant if for every a € E(D):
e A, is a cofibrant object of M,
o A, and Ay, are cofibrations in M.

This proposition implies that A is cofibrant if for every a € E(D), and thus
every diagram of the form (3.1), the corresponding diagram in M has the form:

A,
7N
Acod Sq Acod ta

with A, cofibrant.
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PROOF. The initial object in M? is given by A(()), where () is the initial object
of M. Consider the morphism f : A()) = A. Clearly, for a € E(D),
ia(f):ﬁli(b—’Aa
is a cofibration since A, is cofibrant. For b € V(D), the pushout diagram defining

l a

ip(f) becomes:
a€E(D)y

<Asa ) Ata >a€E(D)b

1d]—[a€E(‘D)b Aa

Therefore, for all b € V(D), iy(f) = (As,, A, )acg(p),- To verify that this is a

—

cofibration, we utilize Proposition 3.13 of [DS95]. That is, we show that i;(f) has
the LLP with respect to acyclic fibrations. Consider a commuting diagram:

H A, f_, X
a€E(D)y
in(f) )\ ~|p
A, Y
where p is an acyclic fibration. For every b € E(D), there is an associated diagram
f
A _— —_—
a [T Ac——x
a€E(D)p v
w(f) - ~|p
A, or Ay, .’
A, —L oy

with the far right arrow either Ag, or A;,. In both cases, the dashed arrow exists
by the assumption that these morphisms are cofibrations. Since this holds for all

—

a € E(D)p, the dashed arrow therefore provides the desired lift for i;(f). O

6.2. Computing homotopy pushouts. In light of Corollary 6.2, an impor-
tant aspect of computing homotopy colimits is being able to, given an object A
of MP, compute a cofibrant object A’ weakly equivalent to A. For general D-
categories this is difficult, although a general method for doing so is presented in
[Ame07]. In the case when

(6.1) D= / \
b
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this is a simple matter. We will demonstrate this to give a sense of what the general
procedure entails.

Let A be an object of M®*~%7¢. If QA, is a cofibrant replacement of A,, then
we have a commuting diagram:

Factoring the left and right diagonal morphisms by MC5(1) for M yields a com-
muting diagram:

Msa —<QA, — Mta

T

A, A, A,

QA,
A'(D) := / \
Msa Mta

which is a cofibrant object in M*~%~¢ weakly equivalent to A. Therefore, the
homotopy colimit of A, termed the homotopy pushout, is given by:

hocolim(A) = M, Lga, M,,.

Let

These concepts can be further illustrated in the context of topological spaces.

6.3. Homotopy pushouts in Top. To illustrate how one applies the previous
ideas in a concrete setting, we will explicitly construct homotopy pushouts for
topological spaces. It will be seen that the resulting topological space is in fact the
space that one would expect.

Recall that for any map f : X — Y between topological spaces, there exists a
factorization of this map:

X / Y
i(k /(f)
M(f)
where
M(f) = YI(X x1I)

" fla)~ (a,0), a€ X
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is the mapping cylinder, i(f) : X — M(f), i.e., the inclusion sending X to X x
{1} € M(f), is a cofibration and r(f) : M(f) — Y is a homotopy equivalence (see
[Pic92)).

Now consider a hybrid topological space X : D — Top with D as in (6.1),
i.e., an object in Top’ ™ *7°. The goal is to compute the homotopy pushout of this
hybrid object. Using the mapping cylinder construction, we obtain a diagram of

topological spaces:
Xa
(X, (X,
e N
X
M(Xs,)

M(X.,)

where X, is cofibrant (since every topological space is cofibrant) with i(Xs,) and
i(X,,) cofibrations. Hence, X’ is a cofibrant object in Top”~*7¢. Finally, the
following diagram

(X, X
M(Xs,) (Xs) |, 5 1K) M(X.,)
|
T(Xsa)l““ idx, ~|r(Xy,)
X, J X,
Xb = Xu, XC

commutes, and so X’ is weakly equivalent to X. Summarizing, it follows that for
every object X of Top? ¢

hocolim(X)

1%

M(X,) IIx, M(X,,)
X, 11X, 1T (X, % 1)
Xsa(.’IJ) ~ ($70)7 Xta(x) ~ ((E, 1)7 z € Xq

where the second isomorphism (in Ho(Top), hence homotopy equivalence) essen-
tially is given by contracting [0, 2] to [0, 1]. Therefore, we have recovered the stan-
dard homotopy pushout through the general framework of model category theory;
that is, we have recovered the homotopy pushout “axiomatically.”

More generally, utilizing the explicit formula for homotopy colimits in Top given
in [Vog73], in [AS05] it was shown (see [Ame06b] for a proof) that the homotopy
colimit of a general hybrid topological space X : D — Top is given by:

(Hbev(D) Xb) nl (HaeE(D) (Xa x I))
(2,0) ~ X, (2), (x,1) ~X, (z), z€X, a€cED)
It is important to note that this formula was not derived axiomatically through
the framework of model category theory; therefore, results like Corollary 6.2 do not

follow automatically. The goal of [Ame07] is to derive explicit formulas for the
homotopy colimit of hybrid objects axiomatically and for general model categories.

1%

hocolim(X) =

7. Conclusion

In this paper, we demonstrated that there exists a cofibrantly homotopy mean-
ingful model structure on M? for every model category M and D-category D. The
homotopy theory on MP and the homotopy theory on M are thus related through
homotopy colimits. The author believes that this result presents the first steps
toward establishing a homotopy theory for hybrid systems.
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