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Abstract—It is possible to associate to a hybrid system

a single topological space-its underlying topological space.

Simultaneously, every hybrid system has a graph as its
indexing object-its underlying graph. Here we discuss the
relationship between the underlying topological space of a
hybrid system, its underlying graph and Zeno behavior. When
each domain is contractible and the reset maps are homotopic
to the identity map, the homology of the underlying topological
space is isomorphic to the homology of the underlying graph;
the nonexistence of Zeno is implied when the first homology
is trivial. Moreover, the first homology is trivial when the null
space of the incidence matrix is trivial. The result is an easy
way to verify the nonexistence of Zeno behavior.

. INTRODUCTION

A dynamical system is defined by both a topologicafiiSPlay. Namely,
space and a flow on that space, e.g., a manifold and a

this is the graph that every hybrid system has as its basic
indexing object. Together with the results of [1], it is
possible to show that when each of the domains of the
hybrid systemH are contractible and the reset maps are
homotopic to the identity map, then

HH,(H,R) = H,(I',R),

where H,, (T, R) is the graph homology of.

The relationship between the homology of the underlying
topological space of the hybrid system and the homology of
the underlying graph of the hybrid system is especially in-
teresting because we will show in this paper tha(T", R)
dictates the type of behavior that the hybrid system can
we will show that

dimg (H H, (H, R)) = dimg (H, (T, R)) = 0

vector field on that manifold. Moreover, the topological [}

space underlying the dynamical system gives information

H is not Zeno.

about the behavior of the flow on that space. A classifore generally, and with this result in hand, we define the

example of this is Morse theory which relates the homologyistance of a hybrid system from being non-Zei(, Z).
of the topological space with the qualitative behavior of thg; js possible to show that

dynamical system.

Similarly, a hybrid system can be viewed as a “space”
H, together with a collection of vector fields on that spaceMoreover, this condition is easy to verify since it will be
The question is: how does the homology of this “spaceeen that the homology &f is determined by the incidence
affect the behavior of the vector fields (and hence flows) omatrix of I': K1. Namely,dimg (H; (T, R)) = dimg (KT).
this space? In order to answer this question, among others,These relationships make some very deep statements
it was shown in [1] how to associate a singe topologicaibout hybrid systems. With respect to the underlying topo-
space Top(H) to the “space”H; this is referred to as logical space of a hybrid system, these relationships say
the underlying topological space of the hybrid syst&#in that the topology of this space encodes some important and
Considering the homology of this space, it is possible tbasic information about the behavior of the hybrid system.
define a homology theory for hybrid systems, terrhgldrid  Moreover, they say that the homology of the underlying
homologyand given by topological space of a hybrid system is almosvertrivial
and that, in the case when it is trivial, it excludes the most
interesting behavior that hybrid systems display: Zenoness.

where H,,(Top(H), A) is the homology ofTop(H) with This is very dissimilar to dynamical systems which almost
coefficients in an abelian group. always are assumed to have underlying topological spaces

The purpose of this paper is to further investigate thwith trivial homology: R". From this, a general thesis can
relationship between the homology of the underlying topo?® formed: _ _
logical space of a hybrid system, i.e., hybrid homology, ~ Thesis. Hybrid systems are fundamentally dif-
and the behavior of flows on the “spacE This is done ferent from dynamical systems @', and this
by considering the underlying graph, of a hybrid system; difference is encoded in the homology of their

underlying topological spaces

T This research is supported by the National Science Foundation (NSFhe results of this paper provide support for this statement.
award number CCR-0225610).

HH,(H, A) := H,(Top(H), A),



II. HYBRID SYSTEMS Then from this diagram we can read of the definition of

In this section the definition of hybrid systems is reviewed - € = {i,j,k} and E' = {e1, ez} wheree, = (i,7) and

(cf. [2],[3]) for the purpose of discussing Zeno behavior; in"2 ~ (@, k).

this definition there will be special attention given to the Example 2.1 (Bouncing ball): The hybrid system sim-

oriented graph underlying the hybrid system as this will belating the behavior of a bouncing ball is the standard

main focus of this paper. example of a hybrid system that displays Zeno behavior.
] o The bouncing ball, as a hybrid system, will be denoted by

A. Basic Definitions Hp. It has as its underlying gradhs given by the diagram

We begin by introducing the definition of a hybrid €1
system, follow with an explanation of the underlying graph
of a hybrid system, and conclude with some examples. 1

Definition 2.1: Define ahybrid systenas a tuple The other elements of the hybrid system are defined as:
D1 = {(’El 1‘2) I Z O}, Ge = {(0 xz) . X2 S 0},
H-= E,D.G,R, X ’ y ’
(@.5D,G.k X), Xey(@1,a2) = (v2.—g) and Ry, (e1.z2) = (0, —ca).
where Here g is the acceleration due to gravity afd ¢ < 1 is

« Q=1{1,...,m} C Z is a set ofdiscrete statesvhich the amount of energy retained in each bounce.

is a finite subset of the integers. Example 2.2 (The sign function):A classic example of
« £ C @ x Q is a set ofedgesthat define relations a differential equation with a discontinuous right hand side
between the domains. Fer= (i,j) € E, denote the is given by

source ofe by s(e) = i and the target of by t(e) = j; 1 if >0

sometimes the edges i will be indexed, i.e., we will & = sign(z) = 0 if =0

label the edges so thdl = {ei,..., ez} Where|E| 1 if <0

is the cardinality ofE. . .
e D ={D,}icq is a set oidomainswhereD; is a subset This can be formulate.d as a hybrid systgiils. The

of R™. underlylr_lg graph ofHg is given byI's which is defined
o G = {G.}cck is a set ofguards whereG. C Dy, by the diagram

is a set that determines the switching behavior of the €1

hybrid system. 1 ‘? 2

e R = {R.}.cr is a set ofreset mapsthese are
continuous maps fronG. C D, to R.(G.) C
Dy(ey-

e X = {X,}ico Is a set ofvector fields such thatX;
is Lipschitz when restricted t®;. The solution toX;
with initial condition zy € D; is denoted by (zo).

The rest of the hybrid system is given by definihy =
{zx >0}, Dy = {z <0}, G¢;, = G, = {0}, Xq1(z) =1
and Xo(z) = —1.

We also will consider the restrictedgn function ob-
tained by deleting an edge ihg. We will denote the
corresponding hybrid system . More specifically, we

2.1: The above definition has a grdplas its basic defineI'y by the diagram
indexing object, so the definition can be restated using an e
oriented graph. Lel’ be an oriented (or directed) graph. 1——2
This is a tuplel' = (Q, ) where Q is a collection of anq defineD;, D, G.,, X; and X, as before. Therefore,
vertlces_ andFE is a coIIec;uon of oriented (or directed) o, H; we do not allow switching to occur in both
edges, i.e.F C Q x Q with a sources(e) and a target irections.

t(e). Comparing this definition with the definition above, a
hybrid system is a tuple B. Zeno Behavior

H=(I,D,G,R,X). In order to discuss Zeno behavior in the context of hybrid
systems, the definition of an execution must be introduced.
The oriented graplh' is referred to as the graph underlyingUsing the definition of an execution, two different types of
the hybrid systenH, or H hasT" as its underlying graph. Zeno executionsgenuinely Zen@xecutions anahattering
We typically will use a diagram to denote the graph Zenoexecutions—can be introduced.
wherein the source a}nd target qf each edge becomes clear.z_z: A executio of the hybrid systenH is a tuple
For example, ifl" is given by a diagram of the form:

e=(1,§,n),

2Here we are considering oniyfinite executions since these are the
executions that display Zeno behavior; introducing the definition of a finite

ITechnically this is a pseudograph because loops and multiple edgezecution would require unnecessary complication. For the more general
between vertices are allowed. definition see [2] or [3].

€1 €2
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where . THEHOMOLOGY OF A GRAPH

e T={nilienWith p,=0<7 <---<7;<..-isa In this section, we will review the very basic elements
hybrid time sequencer a sequence afwitching times  of homology theory as well as the homology of a graph.
o £ ={& ienWith§; € UZ_EQ D; is asequence of initial If T' is an oriented graph, then we can associatd’ta
conditions chain complex; the homology of this chain complex is
o 1= {n;}ien With ; € E is ahybrid edge sequence the homology of the graph (for a further review of these
concepts, see [4]). We will restrict our attention to the
homology of " with coefficients in a field, specificallR,
because in this case the homologylbis a vector space.
The section will conclude by relating the incidence matrix

Additionally, we require that = (7,&,n) must satisfy the
condition that fori € N,

: _ : . s(ni) .
Tipr = min{t 27070 (E) € G} with the homology of". The motivation for considering the
s(niy1) = tim) homology of a graph will become clear in the next section;
Eip1 = Rm(@fﬁ[ﬂ (&))- the homology of the graph underlying a hybrid system is

related (and in some cases isomorphic) to the homology of

We also require thatpf(_n;i)(&) € Dy, for all ¢ e the underlying topological space of a hybrid system.

[T, Ti1]- 3.1: Let R be a ring. Achain complexC, is a family of
R-modules {C,, },.cz together withR-module maps, called

Definition 2.2: A hybrid systemH is Zenoif for some . . . L
y y differentials d,, : C,, — C,,_1, i.e., it is a sequence

executione of H there exists a finite constant, such that

- ...Cnﬂd"_ﬂcnﬂ, e
Jim 7 = Z(Ti“ = Ti) = Too: such that,, od,,; = 0. Then'™ homology of such a chain
=0 complex is denoted byi, (C) and is given by
The executiore is called a Zeno execution. Ho(C) Ker(d,,)
2.3: The definition of a Zeno execution results in two " Im(dni1)
qualitatively different types of Zeno behavior. They arene will be interested especially in the case whgp is a
defined as follows: for an executienthat is Zenog is vector space over a fielll, and hence &-module. In this
case we can consider tiiiler characteristioof C,; this is

Chattering Zeno: If there exists a finite”' such

thatm,.y —, =0forall i > C. given by

X(Co) = ) _(—1) dimg(H;(CL)),
Genuinely Zeno: If 7,41 — 7, > 0 for all ¢ € N. é ’
The difference between these is prevalent especially in thgifhen the sum exists.

detection and elimination. Chattering Zeno executions result . i )
from the existence of a switching surface in which the 3-2° Given a grapi’ and a fieldF, we can associate to

vector fields “oppose” each other; for this reason they ar @ chain complexC, (T, F) and hence we can consider its
easy to detect. Fillipov solutions can be defined on thed®@mology. First define
surfacc_as in order to force the flow to “slide” along the Cy(,F) = @IE‘ — FlEl Co(T,F) = @]F _Flel
switching surface.

Genuinely Zeno executions are much more complicated .
in their behavior. There currently is no way to detect the©t {)‘e}eeEI be a basg ;ogl(F’F)b as ‘?‘F'mOd”'_e’
existence of genuinely Zeno executions, and very Iittlsf" every element. € C1(I',F) can be written am =

has been done in the area of eliminating these executiorseecE feAc for unique f € F. Similarly, let {A;}icq be a

This is due to the fact that genuinely Zeno executions afpsis forCo(I',F) as aF-module, e.g., the standard basis

. . FlQl,
fundamentally global in nature, preventing the use of loc pr ¥ L '
techniques in their analysis. With this in mind, define a map

Example 2.3: 1t is well known that the bouncing ball d=dy: Ci(T,F) =F* — Co(I', F) = F1?
hybrid systemH  is genuinely Zeno; this can be verified by, for everya e C, (T, F), setting
easily by explicitly solving the vector fields. It is also well
known that the sign function hybrid systeHg chatters; _ o _
this is the quintessential example of chattering behavior. It d(a) = d (Z feAe) o Z fe o) = A0))
can be verified thally is not Zeno (by solving for the
executions explicitly) and thail; andHg have the same 107 Jfe € F.

qualitative behavior with respect to the continuous variables. BY Setting Cy,(I', ) = 0 for n # 0,1 andd,, = 0 for
n # 1, we complete our description of the chain complex

ecE 1E€EQ
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associated td', i.e., it is given by a sequence of differentials Proposition 3.1: Let 4" (K) be the null space oK and

and vector spaces of the form: let Z(K) be its range, then
0 2= (1, F) = FIPI =% co(1, F) = FIQl =0, Ho(,R) = RIQ-ama(0
R\Q\f\E’\erimg/V(K) (1)
From thl_s it follows that the homology af with coefficients Hi(T,R) = Rim A (K) @
in F is given by
Example 3.1: For the bouncing ball hybrid systei g,
H(L,F) = Ke‘r(‘d) the incidence matrix is given bi(z = ( 0 ). This implies
Fl@ that H, (I'z, R) = Ho(I', R) = R.
Ho(T\F) = Im(d) Coker(d). For the sign function hybrid systefs, the incidence

. . . - matrix is given
Using this we can consider the Euler characteristic of aat s given by

graphT; it is given by K = ( -1 1 )
o 1 -1 /-

x(T) dimg (Ho(T', F)) — dimg (H: (T, F)) Therefore, (s, R) = Ho(T's.R) ~ R. Similarly, f
B L o erefore, H;('s,R) = Hy(I's,R) = R. Similarly, for
= |Q| — dimp(Im(d)) — dimg(Ker(d)) Hg, we have

= Q| —|E],
k=(1)

by the rank-nullity theorem. Note that we need not specify

the coefficient field since the Euler characteristic is the sanmgy H(I'g,R) =0 and Hy(I'y,R) = R.

for any field. The Euler characteristic will prove useful for

calculations. IV. THE UNDERLYING TOPOLOGICAL SPACE OF
Remark 3.1:The homology considered above is the ho- AHYBRID SYSTEM

mology of a graph with coefficients in a field; this is done A dynamical system is defined by both a topological

because the homology @f is then a vector space ov&; space and a flow on that space, e.g., a manifold and a

and we can consider its dimensidimr. The homology of vector field on that manifold. Similarly, a hybrid system

I" also can be considered over an arbitrary abelian groun be thought of as a “space” and a set of vector fields on

A, and is denoted byi, (T, A); in the case wheml = Z,  that space. With this in mind, tHeybrid spaceor H-space

it is just denoted by, (T"). Note that the homology of  underlying a hybrid system is given by the tuple

with coefficients in a field is related to the homology Iof

with coefficients inZ by the universal coefficient theorem H= (I, D,G, R).

which states that

The main problem is that it is not clear how to associate to

H,(D,F) = H, (') ®, F & Tor’(H,_,(T'), F). this tup!e an ac_tual topological space—one that encodes the
proper information about the system.
We now restrict our attention to the case whEn= In [1], it was shown that to associate i a single

R. This is done mainly for the sake of simplicity; thetopological space it is necessary to define hybrid systems
calculations that follow, for the most part, could be carriedn a different, yet analogous, way in order to clarify the
out with general fields and, in fact, genefdmodules. This relationships between the underlying space of a hybrid
would involve more laborious proofs in some cases, angystem, its H-space, and the behavior of that hybrid system.
is unnecessary because no relevant information would §&e possible and promising way of doing this is to define an
gathered. There are some cases in which considering thespace as a certain type of small categgrand a functor
field R results in simplifications that otherwise might notfrom that small category to the category of topological
be obtained. For example, becauReis torsion free, the spacesZop. It is not the goal of this paper to go in depth

universal coefficient theorem implies that into this construction, but we can give an overview of its
major points. First we will show how to construgt (as a
H,(T,R) = H,(T') ®z R, graph) fromT.
which is not true for a general field. 4.1: Let H be a hybrid system and its underlying

graph. Then td" we associate a graphr (this is a simple
graph, not a pseudograph). We defide by defining, for
each diagram — j in T', a diagram

Definition 3.1: For the graphl’, the incidence matrix,
denoted byK, is a|Q| x |E| matrix given by

K =( Aer) = Asler) "+ Meeym) — Aslem) ) k(e)
=
whereE = {ey,..., ez} and); is thei't standard basis ,Oy /sy
vector forRI@!.



in $ such that|Qr| < k(e) < |Qr| + |Er| wherek(e) = -
k() iff e = e, Bouncing
We note that we can associate withr a small category Ball

£ by defining its objects to be the vertices of this graph and Hybrid
its nonidentity morphisms to be the edges (of course, the
identity morphism for each object also must be added to Space
complete the definition). It is not possible to obtain a small Hpg
category fromI" in this way since the composition of two
edges inl" would not necessarily be an edgelin

hocolim

Fig. 1. The underlying topological space of the bouncing ball.
Example 4.1: For the sign function hybrid systersy-

is defined by the following diagram

3 easily in a quite general case (which will be our focus
@Q < here). WherTop(He,:) is domain contractiblgi.e., when
& &, the domainsD; are contractible for each € @ and the

reset mapsk. are homotopic to the identity map for each
ec F,

1 2
% /@ H Hy(Heat, A) = Hy (5, A),
2/ A &

where H,, (9, A) is the homology of the small categofy.

4.2: A categorical H-spacell¢q,, is a defined by The key point is that, in the case of an H-small category,
the homology of the small categosy is equivalent to the
Heat = (9,5), homology of$) when it is viewed as a graph, i.e., it is the

mology of §r as constructed above. Equally important

. - o
where$) is a specific type of small category (for example, ag the fact that we will prove here: the graph homology of

given in the above construction) called an H-small catego L g .
andS is a functor from$ to Top. For the actual definitions ~which is the graph homology o¥r—is isomorphic to the_
of $ andS see [1]; space does not allow a review of all Ofgraph_homolpgy of’. _Th|s provides support for the thesis
these constructions. This paper emphasizes the relationsﬂfﬁen in the introduction.

between the underlying gragh of a hybrid systenH and Theorem 1: If H is a hybrid system such that its under-
the small category$), which can be established withoutlying topological space€Top(Heq:), is domain contractible,
introducing the complete construction. then

4.3: We can outline some of the important results thatHHn(H@t,R) ~ H,(%,R) = H,($r,R) = H, (T, R).
are obtained by considering categorical H-spaces instead
of H-spaces (summarizing the results of [1]). The firshere H;($,R) is the homology of the small categafiyand
necessary fact is that whefnis a H-small category with a H,($r,R) is the homology of the graphr.

finite number of objects, there is a bijective correspondence: Example 4.2: For the bouncing ball hybrid systeil ;.

{H — spaces, H} «— {categorical H — spaces, Heq} the underlying topological space is homotopic to the punc-
_ ) o _ tured cone (see Fig. 1). The hole in this cone is the warning
and in fact there is an explicit way of constructing amnat this hybrid system may be Zeno; it forces the first

categorical H-space from an H-space. o homology of this space to be nontrivial.
The second important fact is that by considering cat-

egorical H—spaces as opposed to.H—spaces, it is possible V. A HOMOLOGY-BASED MEASURE OF

to associate tdH a single topological space, called the ZENONESS

underlying topological spacef H, denoted byTop(Heg:)

and given by the homotopy colimit: Given a hybrid systentl, we can define a notion of how

. far that hybrid system is from being non-Zeno based on
Top(Heat) := hocolim™(S). considering the graph underlyingH. To be more explicit,

Given this, a homology theory for hybrid systemsthis distance can be defined to be the minimum number of

can be created, calledhybrid homology denoted by €dges ofl’ that need to be deleted such that the resulting

HH, (Hea, A), and given by hybri_d system is not Zeno; in some sense this measures
the likelihood that a Zeno execution will occur. We will
HH, (Heqt, A) := Hp(Top(Heat), 4), make this definition more explicit, but first we need a little

where H,, (Top(Hea(), A) is the homology ofTop(Heq) orovo™

as a topological space with coefficients in an abelian group 5.1: If £ C E, then definel\E := (Q,E\E).
A. Fortunately, the hybrid homology can be computed veriket H(I'\ E') be the hybrid system with underlying graph



I'\E obtained by settingi(I\E) = G\{G.},.; and  Corollary 5.1: If ' is connected then

R(I\E) = R\{R.}, 5. P < 1 (D)= 1 —
Using this we car61Edefine the distance lffrom being dH, Z) < 1=x([) =1-[Q+ |
non-Zeno,d(H, %), by Example 5.1: Since dim(H;(I's,R)) = 1, we cannot
_ -~ ~ conclude thafl" is not Zeno; this is a good thing since
d(H, Z) := min{|E| : E C E and H(T'\E) is not Zeno}, jt js Zeno. Similarly, dim(H;(I's,R)) = 1 so the same
It is clear from this definition thati(H, Z) = 0 implies conclusion follows. We know thai(H, ) = 1, so it is
that H is not Zeno becausd — ( is the empty set po_SS|_bIe to delete one e_dge and havg a n_on-Zeno_ system.
and H(I'\) = H. Clearly, in order to define such aThls_|S exactly the hybrid systerflg; in this case it is _
metric, we would need to have a necessary and sufficieRPSSiPle to delete the edge and not change the qualita-
condition for a hybrid system not to be Zeno. Since thi§Ve behavior of the system. We also know that because
presently is not available, the best we can hope for Bm(H1(I's,R)) =0, Hg is not Zeno. A general way of
to find bounds ond(EH, Z). In fact, giving a method for determl_nmg when it is possm_)Ie to remove edges from the
detecting the Zenoness or non-Zenoness of a hybrid syst&ffiderlying graph of the hybrid system in order to remove
is equivalent to giving upper bounds ofH,Z); the Zenon_ess, while smu}taneously qot changing the quqlltatlve
tighter the bounds, the better the method. The key poiftehavior of the hybrid system, is not known; this is the
is that just by considering the graph underlying the hybri§ubiect of further research.
system, it is possible to obtain an upper bound on this
distance. VI. CONCLUSION
5.2: A cycle or circuit, in T is a sequence of vertices In this paper, we have shown how to associate to every
- ' .~ hybrid system—more specifically, to every hybrid space—a
qu,---5 0k € Q, ¢ # g;, and edges between these Vemce%ingle topological space. Through homology, we were able
€1, ex € E such that to relate this space to the underlying graph of a hybrid
{e1} = {q1. g2}, {eat ={a2,q3}, ... ,{ex}={aqn.q1}. System; since the homology of a graph is computable via
o ) ) its incidence matrix, this gives a concrete way of comput-
H.ere{e} |nd|c_ates_that the orientation of the edge should bﬁ:‘]g the homology of this space. The main result of this
disregarded, i.e., it = (4:,4;), {¢} = {41,495} ={4;:4:}-  paper is that this homology and, more generally, this space
Let I'; denote the subgraph &f formed by this cycle. gives useful information about the behavior of the hybrid
We can consider the set of all cyclésdefined by system—especially with respect to Zeno. The distance of a
£ = {cycles Ty CT}. hybrid system from being non-Zeno was defined, and we
demonstrated that this distance is bounded above by the first
The important fact that will be needed about the homologMomomgy of the underlying graph of a hybrid system—
of I' is its relationship to£, which is the following: hence, the first homology of the underlying topological
dimg (H1 (I, R)) = |£] = # of cycles in T. space of a hybrid system. Therefore, a hybrid system is
not Zeno if the first homology of its underlying graph is
This fact was first discovered by Kirchhoff [5]. Morover, trivial. This statement, coupled with the other results of this
the number of Kirchhoff’s independent current and voltag@aper, supports the main thesis of this paper: the underlying
laws are|Q| — dimg (Ho(T',R)) anddimg (H;(T',R)), re-  topological space of a hybrid system is almosvertrivial
spectively (cf. [6]). It is now possible to show the followingand, in the case when it is trivial, it excludes the most
proposition. interesting behavior that hybrid systems display: Zenoness.
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