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Abstract— It is possible to associate to a hybrid system
a single topological space–its underlying topological space.
Simultaneously, every hybrid system has a graph as its
indexing object–its underlying graph. Here we discuss the
relationship between the underlying topological space of a
hybrid system, its underlying graph and Zeno behavior. When
each domain is contractible and the reset maps are homotopic
to the identity map, the homology of the underlying topological
space is isomorphic to the homology of the underlying graph;
the nonexistence of Zeno is implied when the first homology
is trivial. Moreover, the first homology is trivial when the null
space of the incidence matrix is trivial. The result is an easy
way to verify the nonexistence of Zeno behavior.

I. INTRODUCTION

A dynamical system is defined by both a topological
space and a flow on that space, e.g., a manifold and a
vector field on that manifold. Moreover, the topological
space underlying the dynamical system gives information
about the behavior of the flow on that space. A classic
example of this is Morse theory which relates the homology
of the topological space with the qualitative behavior of the
dynamical system.

Similarly, a hybrid system can be viewed as a “space”
H, together with a collection of vector fields on that space.
The question is: how does the homology of this “space”
affect the behavior of the vector fields (and hence flows) on
this space? In order to answer this question, among others,
it was shown in [1] how to associate a singe topological
spaceTop(H) to the “space”H; this is referred to as
the underlying topological space of the hybrid systemH.
Considering the homology of this space, it is possible to
define a homology theory for hybrid systems, termedhybrid
homologyand given by

HHn(H, A) := Hn(Top(H), A),

where Hn(Top(H), A) is the homology ofTop(H) with
coefficients in an abelian groupA.

The purpose of this paper is to further investigate the
relationship between the homology of the underlying topo-
logical space of a hybrid system, i.e., hybrid homology,
and the behavior of flows on the “space”H. This is done
by considering the underlying graph,Γ, of a hybrid system;
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this is the graph that every hybrid system has as its basic
indexing object. Together with the results of [1], it is
possible to show that when each of the domains of the
hybrid systemH are contractible and the reset maps are
homotopic to the identity map, then

HHn(H, R) ∼= Hn(Γ, R),

whereHn(Γ, R) is the graph homology ofΓ.
The relationship between the homology of the underlying

topological space of the hybrid system and the homology of
the underlying graph of the hybrid system is especially in-
teresting because we will show in this paper thatHn(Γ, R)
dictates the type of behavior that the hybrid system can
display. Namely, we will show that

dimR(HH1(H, R)) = dimR(H1(Γ, R)) = 0
⇓

H is not Zeno.

More generally, and with this result in hand, we define the
distance of a hybrid system from being non-Zeno:d(H,Z ).
It is possible to show that

d(H,Z ) ≤ dimR(HH1(H, R)) = dimR(H1(Γ, R)).

Moreover, this condition is easy to verify since it will be
seen that the homology ofΓ is determined by the incidence
matrix of Γ: KΓ. Namely,dimR(H1(Γ, R)) = dimR(KΓ).

These relationships make some very deep statements
about hybrid systems. With respect to the underlying topo-
logical space of a hybrid system, these relationships say
that the topology of this space encodes some important and
basic information about the behavior of the hybrid system.
Moreover, they say that the homology of the underlying
topological space of a hybrid system is almostnevertrivial
and that, in the case when it is trivial, it excludes the most
interesting behavior that hybrid systems display: Zenoness.
This is very dissimilar to dynamical systems which almost
always are assumed to have underlying topological spaces
with trivial homology:Rn. From this, a general thesis can
be formed:

Thesis. Hybrid systems are fundamentally dif-
ferent from dynamical systems onRn, and this
difference is encoded in the homology of their
underlying topological spaces.

The results of this paper provide support for this statement.



II. HYBRID SYSTEMS

In this section the definition of hybrid systems is reviewed
(cf. [2],[3]) for the purpose of discussing Zeno behavior; in
this definition there will be special attention given to the
oriented graph underlying the hybrid system as this will be
main focus of this paper.

A. Basic Definitions

We begin by introducing the definition of a hybrid
system, follow with an explanation of the underlying graph
of a hybrid system, and conclude with some examples.

Definition 2.1: Define ahybrid systemas a tuple

H = (Q,E,D,G, R,X),

where

• Q = {1, ...,m} ⊂ Z is a set ofdiscrete stateswhich
is a finite subset of the integers.

• E ⊂ Q × Q is a set ofedgesthat define relations
between the domains. Fore = (i, j) ∈ E, denote the
source ofe by s(e) = i and the target ofe by t(e) = j;
sometimes the edges inE will be indexed, i.e., we will
label the edges so thatE = {e1, . . . , e|E|} where |E|
is the cardinality ofE.

• D = {Di}i∈Q is a set ofdomainswhereDi is a subset
of Rn.

• G = {Ge}e∈E is a set ofguards, whereGe ⊂ Ds(e)

is a set that determines the switching behavior of the
hybrid system.

• R = {Re}e∈E is a set of reset maps; these are
continuous maps fromGe ⊆ Ds(e) to Re(Ge) ⊆
Dt(e).

• X = {Xi}i∈Q is a set ofvector fields, such thatXi

is Lipschitz when restricted toDi. The solution toXi

with initial condition x0 ∈ Di is denoted byϕi
t(x0).

2.1: The above definition has a graph1 as its basic
indexing object, so the definition can be restated using an
oriented graph. LetΓ be an oriented (or directed) graph.
This is a tupleΓ = (Q,E) where Q is a collection of
vertices andE is a collection of oriented (or directed)
edges, i.e.,E ⊂ Q × Q with a sources(e) and a target
t(e). Comparing this definition with the definition above, a
hybrid system is a tuple

H = (Γ, D, G,R, X).

The oriented graphΓ is referred to as the graph underlying
the hybrid systemH, or H hasΓ as its underlying graph.
We typically will use a diagram to denote the graphΓ,
wherein the source and target of each edge becomes clear.
For example, ifΓ is given by a diagram of the form:

j �e1
i

e2- k

1Technically this is a pseudograph because loops and multiple edges
between vertices are allowed.

Then from this diagram we can read of the definition of
Γ: Q = {i, j, k} and E = {e1, e2} wheree1 = (i, j) and
e2 = (i, k).

Example 2.1 (Bouncing ball):The hybrid system sim-
ulating the behavior of a bouncing ball is the standard
example of a hybrid system that displays Zeno behavior.
The bouncing ball, as a hybrid system, will be denoted by
HB . It has as its underlying graphΓB given by the diagram

1................................
...........
.........
.......
.......
.......
........
..........
...............
..................................................................................................

...
.........
...

e1

The other elements of the hybrid system are defined as:
D1 = {(x1, x2) : x1 ≥ 0}, Ge1 = {(0, x2) : x2 ≤ 0},
Xe1(x1, x2) = (x2,−g) and Re1(x1, x2) = (0,−cx2).
Hereg is the acceleration due to gravity and0 < c < 1 is
the amount of energy retained in each bounce.

Example 2.2 (The sign function):A classic example of
a differential equation with a discontinuous right hand side
is given by

ẋ = sign(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

This can be formulated as a hybrid systemHS . The
underlying graph ofHS is given byΓS which is defined
by the diagram

1
e1-�
e2

2

The rest of the hybrid system is given by definingD1 =
{x ≥ 0}, D2 = {x ≤ 0}, Ge1 = Ge2 = {0}, X1(x) = 1
andX2(x) = −1.

We also will consider the restrictedsign function ob-
tained by deleting an edge inΓS . We will denote the
corresponding hybrid system byH−

S . More specifically, we
defineΓ−S by the diagram

1
e1- 2

and defineD1, D2, Ge1 , X1 andX2 as before. Therefore,
for H−

S we do not allow switching to occur in both
directions.

B. Zeno Behavior

In order to discuss Zeno behavior in the context of hybrid
systems, the definition of an execution must be introduced.
Using the definition of an execution, two different types of
Zeno executions–genuinely Zenoexecutions andchattering
Zenoexecutions–can be introduced.

2.2: A execution2 of the hybrid systemH is a tuple

ε = (τ, ξ, η),

2Here we are considering onlyinfinite executions since these are the
executions that display Zeno behavior; introducing the definition of a finite
execution would require unnecessary complication. For the more general
definition see [2] or [3].



where

• τ = {τi}i∈N with τ0 = 0 ≤ τ1 ≤ · · · ≤ τj ≤ · · · is a
hybrid time sequenceor a sequence ofswitching times.

• ξ = {ξi}i∈N with ξi ∈
⋃

i∈Q Di is asequence of initial
conditions.

• η = {ηi}i∈N with ηi ∈ E is a hybrid edge sequence.

Additionally, we require thatε = (τ, ξ, η) must satisfy the
condition that fori ∈ N,

τi+1 = min{t ≥ τi : ϕ
s(ηi)
t−τi

(ξi) ∈ Gηi
}

s(ηi+1) = t(ηi)

ξi+1 = Rηi
(ϕs(ηi)

τi+1−τi
(ξi)).

We also require thatϕs(ηi)
t−τi

(ξi) ∈ Ds(ηi) for all t ∈
[τi, τi+1].

Definition 2.2: A hybrid systemH is Zeno if for some
executionε of H there exists a finite constantτ∞ such that

lim
i→∞

τi =
∞∑

i=0

(τi+1 − τi) = τ∞.

The executionε is called a Zeno execution.

2.3: The definition of a Zeno execution results in two
qualitatively different types of Zeno behavior. They are
defined as follows: for an executionε that is Zeno,ε is

Chattering Zeno: If there exists a finiteC such
that τi+1 − τi = 0 for all i ≥ C.

Genuinely Zeno: If τi+1 − τi > 0 for all i ∈ N.

The difference between these is prevalent especially in their
detection and elimination. Chattering Zeno executions result
from the existence of a switching surface in which the
vector fields “oppose” each other; for this reason they are
easy to detect. Fillipov solutions can be defined on these
surfaces in order to force the flow to “slide” along the
switching surface.

Genuinely Zeno executions are much more complicated
in their behavior. There currently is no way to detect the
existence of genuinely Zeno executions, and very little
has been done in the area of eliminating these executions.
This is due to the fact that genuinely Zeno executions are
fundamentally global in nature, preventing the use of local
techniques in their analysis.

Example 2.3: It is well known that the bouncing ball
hybrid systemHB is genuinely Zeno; this can be verified
easily by explicitly solving the vector fields. It is also well
known that the sign function hybrid systemHS chatters;
this is the quintessential example of chattering behavior. It
can be verified thatH−

S is not Zeno (by solving for the
executions explicitly) and thatH−

S andHS have the same
qualitative behavior with respect to the continuous variables.

III. THE HOMOLOGY OF A GRAPH

In this section, we will review the very basic elements
of homology theory as well as the homology of a graph.
If Γ is an oriented graph, then we can associate toΓ a
chain complex; the homology of this chain complex is
the homology of the graph (for a further review of these
concepts, see [4]). We will restrict our attention to the
homology ofΓ with coefficients in a field, specificallyR,
because in this case the homology ofΓ is a vector space.
The section will conclude by relating the incidence matrix
with the homology ofΓ. The motivation for considering the
homology of a graph will become clear in the next section;
the homology of the graph underlying a hybrid system is
related (and in some cases isomorphic) to the homology of
the underlying topological space of a hybrid system.

3.1: Let R be a ring. Achain complexC• is a family of
R-modules,{Cn}n∈Z together withR-module maps, called
differentials, dn : Cn → Cn−1, i.e., it is a sequence

· · ·Cn+1
dn+1−→ Cn

dn−→ Cn−1 · · ·

such thatdn ◦dn+1 = 0. Thenth homology of such a chain
complex is denoted byHn(C) and is given by

Hn(C•) =
Ker(dn)
Im(dn+1)

.

We will be interested especially in the case whenCn is a
vector space over a fieldF, and hence aF-module. In this
case we can consider theEuler characteristicof C•; this is
given by

χ(C•) =
∑
i∈Z

(−1)i dimF(Hi(C•)),

when the sum exists.

3.2: Given a graphΓ and a fieldF, we can associate to
it a chain complexC•(Γ, F) and hence we can consider its
homology. First define

C1(Γ, F) =
⊕
e∈E

F = F|E|, C0(Γ, F) =
⊕
i∈Q

F = F|Q|.

Let {λe}e∈E be a basis forC1(Γ, F) as a F-module,
i.e., every elementa ∈ C1(Γ, F) can be written asa =∑

e∈E feλe for uniquefe ∈ F. Similarly, let {λi}i∈Q be a
basis forC0(Γ, F) as aF-module, e.g., the standard basis
for F|Q|.

With this in mind, define a map

d = d1 : C1(Γ, F) = F|E| → C0(Γ, F) = F|Q|

by, for everya ∈ C1(Γ, F), setting

d(a) = d

(∑
e∈E

feλe

)
:=
∑
e∈E

fe

(
λt(e) − λs(e)

)
,

for fe ∈ F.
By settingCn(Γ, F) = 0 for n 6= 0, 1 and dn = 0 for

n 6= 1, we complete our description of the chain complex



associated toΓ, i.e., it is given by a sequence of differentials
and vector spaces of the form:

0 d2=0−→ C1(Γ, F) = F|E| d=d1−→ C0(Γ, F) = F|Q| d0=0−→ 0.

From this it follows that the homology ofΓ with coefficients
in F is given by

H1(Γ, F) = Ker(d)

H0(Γ, F) =
F|Q|

Im(d)
= Coker(d).

Using this we can consider the Euler characteristic of a
graphΓ; it is given by

χ(Γ) = dimF(H0(Γ, F))− dimF(H1(Γ, F))
= |Q| − dimF(Im(d))− dimF(Ker(d))
= |Q| − |E|,

by the rank-nullity theorem. Note that we need not specify
the coefficient field since the Euler characteristic is the same
for any field. The Euler characteristic will prove useful for
calculations.

Remark 3.1:The homology considered above is the ho-
mology of a graph with coefficients in a field; this is done
because the homology ofΓ is then a vector space overF,
and we can consider its dimensiondimF. The homology of
Γ also can be considered over an arbitrary abelian group
A, and is denoted byHn(Γ, A); in the case whenA = Z,
it is just denoted byHn(Γ). Note that the homology ofΓ
with coefficients in a field is related to the homology ofΓ
with coefficients inZ by the universal coefficient theorem
which states that

Hn(Γ, F) ∼= Hn(Γ)⊗Z F⊕ TorZ
1 (Hn−1(Γ), F).

We now restrict our attention to the case whenF =
R. This is done mainly for the sake of simplicity; the
calculations that follow, for the most part, could be carried
out with general fields and, in fact, generalR-modules. This
would involve more laborious proofs in some cases, and
is unnecessary because no relevant information would be
gathered. There are some cases in which considering the
field R results in simplifications that otherwise might not
be obtained. For example, becauseR is torsion free, the
universal coefficient theorem implies that

Hn(Γ, R) ∼= Hn(Γ)⊗Z R,

which is not true for a general field.

Definition 3.1: For the graphΓ, the incidence matrix,
denoted byK, is a |Q| × |E| matrix given by

K =
(

λt(e1) − λs(e1) · · · λt(e|E|) − λs(e|E|)

)
,

whereE = {e1, . . . , e|E|} andλi is the ith standard basis
vector forR|Q|.

Proposition 3.1: Let N (K) be the null space ofK and
let R(K) be its range, then

H0(Γ, R) ∼= R|Q|−dim R(K)

= R|Q|−|E|+dim N (K) (1)

H1(Γ, R) ∼= Rdim N (K). (2)

Example 3.1: For the bouncing ball hybrid systemHB ,
the incidence matrix is given byKB =

(
0
)
. This implies

that H1(ΓB , R) ∼= H0(ΓB , R) ∼= R.
For the sign function hybrid systemHS , the incidence

matrix is given by

KS =
(
−1 1
1 −1

)
.

Therefore,H1(ΓS , R) ∼= H0(ΓS , R) ∼= R. Similarly, for
H−

S , we have

K−
S =

(
1
−1

)
.

So H1(Γ−S , R) ∼= 0 andH0(Γ−S , R) ∼= R.

IV. THE UNDERLYING TOPOLOGICAL SPACE OF
A HYBRID SYSTEM

A dynamical system is defined by both a topological
space and a flow on that space, e.g., a manifold and a
vector field on that manifold. Similarly, a hybrid system
can be thought of as a “space” and a set of vector fields on
that space. With this in mind, thehybrid space, or H-space,
underlying a hybrid system is given by the tuple

H = (Γ, D,G,R).

The main problem is that it is not clear how to associate to
this tuple an actual topological space–one that encodes the
proper information about the system.

In [1], it was shown that to associate toH a single
topological space it is necessary to define hybrid systems
in a different, yet analogous, way in order to clarify the
relationships between the underlying space of a hybrid
system, its H-space, and the behavior of that hybrid system.
One possible and promising way of doing this is to define an
H-space as a certain type of small categoryH and a functor
from that small category to the category of topological
spaces:Top. It is not the goal of this paper to go in depth
into this construction, but we can give an overview of its
major points. First we will show how to constructH (as a
graph) fromΓ.

4.1: Let H be a hybrid system andΓ its underlying
graph. Then toΓ we associate a graphHΓ (this is a simple
graph, not a pseudograph). We defineHΓ by defining, for
each diagrami

e−→ j in Γ, a diagram

k(e)

i
�
α(

e)

j

β(e)
-



in H such that|QΓ| < k(e) ≤ |QΓ| + |EΓ| wherek(e) =
k(e′) iff e = e′.

We note that we can associate withHΓ a small category
H by defining its objects to be the vertices of this graph and
its nonidentity morphisms to be the edges (of course, the
identity morphism for each object also must be added to
complete the definition). It is not possible to obtain a small
category fromΓ in this way since the composition of two
edges inΓ would not necessarily be an edge inΓ.

Example 4.1: For the sign function hybrid system,HΓS

is defined by the following diagram

3

1
�
α(

e 1
)

2

β(e
1 )
-

4
α(

e 2
)

-
�

β(e
2 )

4.2: A categorical H-space,HCat, is a defined by

HCat = (H,S),

whereH is a specific type of small category (for example, as
given in the above construction) called an H-small category
andS is a functor fromH to Top. For the actual definitions
of H andS see [1]; space does not allow a review of all of
these constructions. This paper emphasizes the relationship
between the underlying graphΓ of a hybrid systemH and
the small categoryH, which can be established without
introducing the complete construction.

4.3: We can outline some of the important results that
are obtained by considering categorical H-spaces instead
of H-spaces (summarizing the results of [1]). The first
necessary fact is that whenH is a H-small category with a
finite number of objects, there is a bijective correspondence:

{H− spaces, H} ←→ {categorical H− spaces, HCat}

and in fact there is an explicit way of constructing a
categorical H-space from an H-space.

The second important fact is that by considering cat-
egorical H-spaces as opposed to H-spaces, it is possible
to associate toH a single topological space, called the
underlying topological spaceof H, denoted byTop(HCat)
and given by the homotopy colimit:

Top(HCat) := hocolimH(S).

Given this, a homology theory for hybrid systems
can be created, calledhybrid homology, denoted by
HHn(HCat, A), and given by

HHn(HCat, A) := Hn(Top(HCat), A),

whereHn(Top(HCat), A) is the homology ofTop(HCat)
as a topological space with coefficients in an abelian group
A. Fortunately, the hybrid homology can be computed very

hocolim

Bouncing
Ball
Hybrid
Space
HB

Fig. 1. The underlying topological space of the bouncing ball.

easily in a quite general case (which will be our focus
here). WhenTop(HCat) is domain contractible, i.e., when
the domainsDi are contractible for eachi ∈ Q and the
reset mapsRe are homotopic to the identity map for each
e ∈ E,

HHn(HCat, A) ∼= Hn(H, A),

whereHn(H, A) is the homology of the small categoryH.
The key point is that, in the case of an H-small category,
the homology of the small categoryH is equivalent to the
homology ofH when it is viewed as a graph, i.e., it is the
homology ofHΓ as constructed above. Equally important
is the fact that we will prove here: the graph homology of
H–which is the graph homology ofHΓ–is isomorphic to the
graph homology ofΓ. This provides support for the thesis
given in the introduction.

Theorem 1: If H is a hybrid system such that its under-
lying topological space,Top(HCat), is domain contractible,
then

HHn(HCat, R) ∼= Hn(H, R) ∼= Hn(HΓ, R) ∼= Hn(Γ, R).

hereHi(H, R) is the homology of the small categoryH and
Hn(HΓ, R) is the homology of the graphHΓ.

Example 4.2: For the bouncing ball hybrid system,HB ,
the underlying topological space is homotopic to the punc-
tured cone (see Fig. 1). The hole in this cone is the warning
that this hybrid system may be Zeno; it forces the first
homology of this space to be nontrivial.

V. A HOMOLOGY-BASED MEASURE OF
ZENONESS

Given a hybrid systemH, we can define a notion of how
far that hybrid system is from being non-Zeno based on
considering the graphΓ underlyingH. To be more explicit,
this distance can be defined to be the minimum number of
edges ofΓ that need to be deleted such that the resulting
hybrid system is not Zeno; in some sense this measures
the likelihood that a Zeno execution will occur. We will
make this definition more explicit, but first we need a little
notation.

5.1: If Ẽ ⊆ E, then defineΓ\Ẽ := (Q,E\Ẽ).
Let H(Γ\Ẽ) be the hybrid system with underlying graph



Γ\Ẽ obtained by settingG(Γ\Ẽ) = G\{Ge}e∈ eE and
R(Γ\Ẽ) = R\{Re}e∈ eE .

Using this we can define the distance ofH from being
non-Zeno,d(H,Z ), by

d(H,Z ) := min{|Ẽ| : Ẽ ⊆ E and H(Γ\Ẽ) is not Zeno},

It is clear from this definition thatd(H,Z ) = 0 implies
that H is not Zeno becausẽE = ∅ is the empty set
and H(Γ\∅) = H. Clearly, in order to define such a
metric, we would need to have a necessary and sufficient
condition for a hybrid system not to be Zeno. Since this
presently is not available, the best we can hope for is
to find bounds ond(H,Z ). In fact, giving a method for
detecting the Zenoness or non-Zenoness of a hybrid system
is equivalent to giving upper bounds ond(H,Z ); the
tighter the bounds, the better the method. The key point
is that just by considering the graph underlying the hybrid
system, it is possible to obtain an upper bound on this
distance.

5.2: A cycle, or circuit, in Γ is a sequence of vertices
q1, . . . , qk ∈ Q, qi 6= qj , and edges between these vertices
e1, . . . , ek ∈ E such that

{e1} = {q1, q2}, {e2} = {q2, q3}, . . . , {ek} = {qk, q1}.

Here{e} indicates that the orientation of the edge should be
disregarded, i.e., ife = (qi, qj), {e} = {qi, qj} = {qj , qi}.
Let Γ` denote the subgraph ofΓ formed by this cycle.

We can consider the set of all cycles£ defined by

£ = {cycles Γ` ⊆ Γ}.

The important fact that will be needed about the homology
of Γ is its relationship to£, which is the following:

dimR(H1(Γ, R)) = |£| = # of cycles in Γ.

This fact was first discovered by Kirchhoff [5]. Morover,
the number of Kirchhoff’s independent current and voltage
laws are|Q| − dimR(H0(Γ, R)) and dimR(H1(Γ, R)), re-
spectively (cf. [6]). It is now possible to show the following
proposition.

Proposition 5.1: Let Γ be the graph underlying the hy-
brid systemH, then

dimR(H1(Γ, R)) = dimR(N (K)) = 0
⇓

H is not Zeno

whereK is the incidence matrix associated withΓ.

Using this we can establish the following theorem and
its corollary.

Theorem 2: Let Γ be the graph underlying the hybrid
systemH, then

d(H,Z ) ≤ dimR(H1(Γ, R)) = dimR(N (K))

whereK is the incidence matrix associated withΓ.

Corollary 5.1: If Γ is connected then

d(H,Z ) ≤ 1− χ(Γ) = 1− |Q|+ |E|.

Example 5.1: Since dim(H1(ΓB , R)) = 1, we cannot
conclude thatΓB is not Zeno; this is a good thing since
it is Zeno. Similarly,dim(H1(ΓS , R)) = 1 so the same
conclusion follows. We know thatd(H,Z ) = 1, so it is
possible to delete one edge and have a non-Zeno system.
This is exactly the hybrid systemH−

S ; in this case it is
possible to delete the edge and not change the qualita-
tive behavior of the system. We also know that because
dim(H1(Γ−S , R)) = 0, H−

S is not Zeno. A general way of
determining when it is possible to remove edges from the
underlying graph of the hybrid system in order to remove
Zenoness, while simultaneously not changing the qualitative
behavior of the hybrid system, is not known; this is the
subject of further research.

VI. CONCLUSION

In this paper, we have shown how to associate to every
hybrid system—more specifically, to every hybrid space—a
single topological space. Through homology, we were able
to relate this space to the underlying graph of a hybrid
system; since the homology of a graph is computable via
its incidence matrix, this gives a concrete way of comput-
ing the homology of this space. The main result of this
paper is that this homology and, more generally, this space
gives useful information about the behavior of the hybrid
system—especially with respect to Zeno. The distance of a
hybrid system from being non-Zeno was defined, and we
demonstrated that this distance is bounded above by the first
homology of the underlying graph of a hybrid system—
hence, the first homology of the underlying topological
space of a hybrid system. Therefore, a hybrid system is
not Zeno if the first homology of its underlying graph is
trivial. This statement, coupled with the other results of this
paper, supports the main thesis of this paper: the underlying
topological space of a hybrid system is almostnevertrivial
and, in the case when it is trivial, it excludes the most
interesting behavior that hybrid systems display: Zenoness.

REFERENCES

[1] A. D. Ames and S. Sastry, “A homology theory for hybrid systems:
Hybrid homology,” in HSCC, ser. LNCS, M. Morari and L. Thiele,
Eds., vol. 3414. Springer Verlag, 2005, pp. 86–102.

[2] S. Simic, K. H. Johansson, S. Sastry, and J. Lygeros, “Towards a
geometric theory of hybrid systems,” inHSCC, ser. LNCS, B. Krogh
and N. Lynch, Eds., vol. 1790. Springer Verlag, 2000, pp. 421–436.

[3] J. Zhang, K. H. Johansson, J. Lygeros, and S. Sastry, “Zeno hybrid
systems,”Int. J. Robust and Nonlinear Control, vol. 11, no. 2, pp.
435–451, 2001.

[4] C. A. Weibel, An Introduction to Homological Algebra. Cambridge
University Press, 1994.
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