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Abstract— This paper introduces a method for approximat-
ing the dynamics of deterministic hybrid systems. Within this
setting, we shall consider jump conditions that are character-
ized by spacial guards. After defining proper penalty functions
along these deterministic guards, corresponding probabilistic
intensities are introduced and the deterministic dynamics are
approximated by the stochastic evolution of a continuous-time
Markov process. We will illustrate how the definition of the
stochastic barriers can avoid ill-posed events such as “grazing,”
and show how the probabilistic guards can be helpful in
addressing the problem of event detection. Furthermore, this
method represents a very general technique for handling
Zeno phenomena; it provides a universal way to regularize
a hybrid system. Simulations will show that the stochastic
approximation of a hybrid system is accurate, while being able
to handle “pathological cases.” Finally, further generalizations
of this approach are motivated and discussed.

I. I NTRODUCTION

Recently, a considerable amount of research has been
directed towards the topic of Stochastic Hybrid Systems
(SHS for short), both in the viewpoint of extending the
theory of deterministic HS (cf. [4] and [11]), as well as
discovering new applications unique to the probabilistic
framework. This, in our view, is due to the increasingly
clear limitations of the deterministic setting. The main
challenge that the HS framework poses—unlike the case
of classical dynamical systems or the relatively simple case
of switched systems1—is the necessity of handling spacial
guards and therefore discrete-time conditions. These jump
conditions often give rise to pathological behaviors, like
“grazing” or Zeno; their presence prevents the possibility
of globally understanding the dynamical properties of a
HS, e.g., determining stability or reachability; moreover,
they heavily influence the continuity of a hybrid trajectory
with respect to its initial condition. The study of Optimal
Control for HS is yet another instance of how challenging
it is to determine the global behavior of such a system
based on its local dynamics. The current state of research
in the “deterministic world” has produced results which are
either applicable to very special cases, or which require
particularly strong conditions on the system’s structure; for
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1In simple terms, we define switched systems a collection of dynamical
systems on the same vector space; the global dynamics jumps between
them with conditions in time, which can be either deterministic or
probabilistic.

example, the fundamental concept of stability for HS has
produced only few results, the most notable of which can
be found in [3] and [12].

The presence of Zeno behavior in hybrid systems pro-
vides another important example of the unique challenges
confronted in the theory of deterministic HS. Qualitatively
speaking, Zenoness describes a condition where the hy-
brid trajectory switches between specific domains infinitely
many times over a finite time interval. It represents a mod-
eling error which sometimes can be avoided by introducing
finite delays in the switches, which in fact means changing
the model itself. In a more simplified setting, that of Affine
HS, some interesting results have been also obtained in [2].

These are just a few examples of the many aspects of
deterministic HS that pose a challenge to their analysis.
On the other hand, approximating a HS with a stochastic
counterpart can give a fresh new perspective to the problem.
In fact, along with being more general than its deterministic
counterpart, it could offer, as we shall hint at, some tools
to look at the global behavior of HS. In the case of Zeno
phenomena for a HS, we shall show that our stochastic ap-
proximation is not Zeno; stochastic approximations provide
a method for universally regularizing a hybrid system, i.e.,
they are a de-abstraction of the hybrid model which could
be of interest to software developers.

The paper will unfold as follows: after introducing the
classical definition of a HS, we will describe how to
substitute its guards with probabilistic barriers. A section
on discrete event handling follows. Then, we shall focus on
Zeno conditions. Simulations will validate our statements.
Conclusions will close out the paper.

II. T HE SETTING

Throughout the paper we shall stick to the classical
framework for deterministic HS [12].

Definition 1: Define ahybrid systemas a tupleH =
(Q,E,D,G,R, F ) where
• Q = {1, ...,m} ⊂ Z is a finite set ofdiscrete states.
• E ⊂ Q × Q is a set ofedgeswhich define relations

between the domains. Fore = (i, j) ∈ E denote the
source ofe by s(e) = i and the target ofe by t(e) = j.

• D = {Di}i∈Q is a set ofdomainswhere Di is a
compact subset ofRn.

• G = {Ge}e∈E is a set ofguards, whereGe ⊆ Ds(e);
we assume that there exists a collection of smooth



functions{ge}e∈E such thatGe = {x : ge(x) = 0};
we also assume thatge(x) ≥ 0 for all x ∈ Ds(e).

• R = {Re}e∈E is a set of reset maps; these are
continuous maps fromGe ⊆ Ds(e) to Re(Ge) ⊆
Dt(e)\Gt(e).

• F = {fi}i∈Q is a set ofvector fieldssuch thatfi

is Lipschitz onRn. The solution to the ODEfi with
initial condition x0 ∈ Di is denoted byxi(t) where
xi(t0) = x0.

A execution2 of the hybrid systemH is a tuple χ =
(τ, ξ, η) where
• τ = {τi}i∈N with τ0 = 0 ≤ τ1 ≤ · · · ≤ τj ≤ · · · is a

hybrid time sequenceor a sequence ofswitching times.
• ξ = {ξi}i∈N with ξi ∈

⋃
i∈Q Di is asequence of initial

conditions3.
• η = {ηi}i∈N with ηi ∈ E is a hybrid edge sequence.

Additionally, we require thatχ = (τ, ξ, η) must satisfy the
condition that fori ∈ N,

ξi = xs(ηi)(τi)
τi+1 = min{t ≥ τi : xs(ηi)(t) ∈ Gηi

}
s(ηi+1) = t(ηi)

ξi+1 = Rηi
(xs(ηi)(τi+1))

We also require thatϕs(ηi)
t−τi

(ξi) ∈ Ds(ηi) for all t ∈
[τi, τi+1]; this is quite a natural assumption. With this
notation, define a functionq : τ → Q by settingq(t) =
s(ηi) if t ∈ [τi, τi+1]; we call this function thediscrete
evolutionof the executionχ.

A key point is the understanding that many of the
subtleties mentioned in the introduction are due to the
presence of the spacial guards; for example, particular con-
figurations of these guards can result in Zeno phenomena;
their combination with the reset maps can be accounted for
the discontinuity of the hybrid trajectories. The first fact is
the main impetus for considering these spacial guards in
more detail and for defining intensity functions based on
them.

A. Defining Transition Intensities

Let us consider a set of state-dependent functions, one
for each guard of every single domain of the deterministic
HS. They are defined on the entirety of the domains:

λ : E ×X → R+
0 ,

(e = (i, j), x) 7→ λij(x)

for i = 1, . . . ,m and j = 1, . . . ,mi, where mi is the
cardinality of the guard set in the domainDi. These
functions are intended to represent jumping intensities at

2Here we are considering onlyinfinite executions since these are the
executions that display Zeno behavior; introducing the definition of a finite
execution would require unnecessary complication. For the more general
definition see [12] or [15].

3The reader should notice that we include the guards in the initial points
set: this is in practice not detrimental for our results.

a specific point in the domain, with respect to one of its
guards. Intuitively, they will be roughly equal to zero inside
a domain, while growing (to infinity) in a neighborhood of
the guard for which they are defined.

The intensity functions are defined so that they account
for both the distance to the guard, and the relative direction
of the trajectory in the domain with the guard. Assume the
domainDi is characterized by two elements: the vector field
fi(x) and the guard functiongij(x):

ẋ = fi(x);
gij(x) ≥ 0.

It is possible to transform the general, possibly nonlinear
guardgij(x) into a linear one by introducing a new variable
z = gij(x)4, and defining the new extended system (cf.
[14]):

ẋ = fi(x),

ż = Lfi
gij(x) =

∂gij(x)
∂x

fi(x);

z ≥ 0.

The term in the second equation is the Lie derivative of
the functiongij along the vector fieldfi. It describes any
trajectory of the vector field from the perspective of a guard.
The last inequality describes the equivalent guard in the
extended domain. Choosing a smallδ > 0, we define the
jump intensityλij(x) as:

λij(x) =
1
‖z‖

ż

‖ż‖+ δ
=

1
‖gij(x)‖

Lfi
gij(x)

‖Lfi
gij(x)‖+ δ

. (1)

The first term is inversely proportional to the distance from
the guard. The second term takes into account the derivative
of the guard along the vector field and, by normalization, is
a number between zero and one; in the case of linear guards,
i.e., guards that are hyperplanes, it can be interpreted as
being proportional to the angle between the vector field
and the guard; it is zero when the vector field is tangent to
the hyperplane, while it is one in the orthogonal case. The
motivation to include the second term comes from the need
to avoidgrazing conditions[5], i.e. flows that osculate the
guard, without actually crossing it (see Fig. 1). The reader
should ponder over the observation that other possible jump
functions could be defined. For instance, the information
coming from higher order Lie derivatives could be exploited
in the definition. In order to avoid deadlocks in limiting
behaviors of the two terms of the product, and to make the
function “steeper”, another definition could be:

λn
ij(x) =

n

‖z‖n

ż

‖ż‖+ δ
, n > 0. (2)

4If each domain has a different number of guards, it is necessary to
introduce in all of them a number of variables equal to the maximum
cardinality of the set of guards among the domains; possibly some of the
new variables will describe equilibrium surfaces for the extended domain.



ẋ = fi(x)

xi(t)

(x0, t0)
gij(x) = 0

Fig. 1. A grazing condition.

This approach is not new in the literature; the idea of
employing space-dependent rates has been recently used in
[10]. In this particular instance the author provides a specific
intensity function for the “bouncing ball” hybrid system
given by:

λε
11(x) = εe−x/ε,

where ε is a constant parameter that tunes the accuracy
of the approximation; the indices describe the presence of
just one domain and its relative guard. This work did not
provide any hint on how to give these intensity functions
in generality.

B. Jump Intensities as a function of time

Thus far, we have regarded the jump intensities as func-
tions of the state space in each domain. A related idea, that
of defining time-dependent jump conditions, has been used
in the literature for Markov-jump systems [13], as well as,
albeit from another perspective, for continuous-time Markov
Chains [9]. In [6], space-dependent jump intensities are
defined for piecewise-deterministic Markov processes. To
begin with, we regard the execution of a hybrid system as
a stochastic process (jump process) on a probability space
(Ω,F, P). Focusing on a domainDi and considering the
guard associated to the edgee = (i, j), we can think of
these rates as time-dependent functions when we fix an
initial conditionx0 and consider the evolution in time of the
flow of the related vector field from that point:∀t ≥ t0, we
can considerλij(xi(t)). Here the functionxi(t) describes
the solution of the ordinary differential equationẋ = fi(x)
with initial condition xi(t0) = x0.

More generally, consider the collection of domains
{D1, D2, ..., Dm}; we can associate to each guard in each
domain Di which transitions the hybrid system to the
domain Dj for j 6= i, or equivalently to each edgee =
(i, j), a rate λij(xi(t)), ∀t ≥ t0. From this, define an
additional rate which will be related to the length of the
dwelling time within the domainDi:

νi(t) =
∑
j 6=i

λij(xi(t)), ∀i = 1, . . . ,m; ∀t ≥ 0. (3)

Here it is important to mention the possible extensions of
the former quantities to guards that are associated with
reset maps that may force the solution back into the same

domain. In order to maintain the classical properties of the
matrix of jumping rates, it will be necessary to introduce a
dummy copy of each such domain with same vector fields
and guards. We leave to the reader the task of sorting out
this simple subtlety.

Assumeτr is the time of therth jump happening in a
domain, say, the domainDi. Resorting to the theory of
continuous-time Markov chains, we know that the proba-
bility that the first jump happening in domainDi after time
t, starting at timet0, is

Pi(τr > t) = e
∫ t

t0
−νi(s)ds

. (4)

In other words, thePi distribution of τr is exponential
with parameterνi(t). The reader should note the non-
homogeneity of the process. Considering a differential in
time dt, the probability to jump from domainDi to domain
Dj in [t, t + dt) is

P(q(t + dt) = j|q(t) = i; q(s), s < t) =
λij(t)dt + o(dt), j 6= i,

where we have exploited a markovian property for the
processq. Similarly, the probability that in the interval
[t, t + dt) the domainDi would not change is

P(q(t + dt) = i|q(t) = i; q(s), s < t) =
1−

∑
j 6=i λij(t)dt + o(dt) = 1− νi(t)dt + o(dt).

This can actually be inferred directly from (4) by approxi-
mation. At this point the connection between this approach
and the literature on (piecewise) continuous-time Markov
processes and non-homogeneous Poisson processes should
be recognizable.

Remark 1: The reader should note how this approach
handles one of the fundamental intricacies of HS, that is
the relative position and possible intersection between the
guards in each domain. As a matter of fact, if there is
more than one guard per single domain, the jump intensity
functions will be endowed with the property of being
composable.

III. STOCHASTIC APPROXIMATIONS FOREVENT

DETECTION

Numerical simulation is an important tool for the analysis
of HS; nevertheless, it is well known that it is rather brittle
with respect to initial conditions. Small changes in the initial
condition of a hybrid trajectory do not necessarily result in
small changes in its final position. Moreover, the possible
failure to detect an event that happens for the actual solution
by considering the evolution of the numerical trajectory
may result in dynamics that are qualitatively different from
those of the actual trajectory. Some notorious examples of
mishandled events are summarized in Fig. 2.

The simulation process heavily relies on approximation
techniques for integrating the vector fields on each domain.
In this work we claim that, given a numerical technique to



Fig. 2. In some cases the event is either not detected or even wrongly
spotted. The shaded regions are not parts of the domain and their marked
margin represents the guard.

integrate the ODE’s in each domain, the stochastic approxi-
mation of the guard functions can be an effective framework
for handling discrete events. This claim is supported by the
observation that the stochastic guard functions represent a
special kind of “barrier functions” that can be related to the
flow of the system. As described in the first section of the
paper, we can make the jump condition depend on the actual
magnitude of the function given in Eqn. (1), rather than on
the simple examination of the value of the guardg(x(t));
it should be clear how the former condition is stronger and
more discriminative than the latter. Moreover, as already
pointed out, the barrier functions are endowed with a term
that prevent discrete switching in case when the trajectory
is parallel to the guard—this prevents grazing.

Additionally, in order to avoid the necessity of setting
the integration step-size a priori, we propose a dynamic
refinement of it, depending on the value of the stochastic
boundary. Similar in concept as what was suggested in
[8], this idea can be implemented on a variable-step-size
integration method.

Consider the solutionx(t) to the differential equatioṅx =
f(x) with x(t0) = x0. Assume it is approximated at the
discrete time sequence{tk}l

k=0, for tk ≥ tk−1, as x̂k =
x̂(tk). The value of the vector field at that time is then
fk = f(x̂k) ∀k = 1, . . . ,m. The time step used in the
numerical integration is defined ashk = tk−tk−1. A simple
integration scheme that employsm past values of the vector
fields can be described by the following difference equation

xk+1 = xk + hk+1

m∑
j=1

βjfk−j+1,

where the coefficientsβi are functions of them previous
steps and can be determined through evaluation. As in [8],
assume that the step numberk lies in the continuum,k ∈
R+

0 , and time to be a function of it,t = t(k). The stochastic
guard function relating to the functiong(x) can then be
described along a trajectory byλ[g(x(t))] = λ{g[x(t(k))]}.
The step size of the integration method can be regarded as
h(k) = dt

dk ; we should keep in mind that we can control it.
Then, we can look at how the barrier function varies with
respect to the (continuous) step number:

dλ

dk
=

∂λ

∂g

∂g

∂x

∂x

∂t

∂t

∂k
=

∂λ

∂g
Lfg(x)h(k) = Lfλ(x)h(k).

(5)
Now, if we regard the termh(k) as a control input, we can
choose its shape, in order to obtain the desired dynamics.
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Fig. 3. Event detection; the continuous straight line represents the guard;
the other continuous curve depicts the deterministic trajectory, to which
a classical event detection method is applied. The crosses tell where the
integration points fall in the stochastic framework.

More precisely, if we make it a nonlinear function of the
state and the barrier function as follows

h(k) =
α

(Lfλ(x))λ(x)
, α > 0, (6)

then we get

dλ(k)
dk

=
α

λ(k)
; λ(0) = λ0.

The solution of this differential equation tells us that if
the of the vector field approaches the guard, the boundary
function λ(x) diverges; moreover, in this instance the step
size is dynamically decreased to zero. In other words, the
closer we get to the guard, the more precise the integration
step will be and we will “force” the integration of the
differential equation to detect the event before crossing the
guard.

We present the results of two simulations. The first one
(see Fig. 3), shows how the stochastic approximation pre-
cisely detects the crossing, as compared to the deterministic
numerical method. In this instance the vector field is a
circular one, rotating clockwise. The guard is represented
by the line, slanted atπ/4 degrees.

The second simulation, which can be seen in Fig. 4,
shows how, given a numerical solution that actually grazes
the guard, the stochastic approximation finely avoids to
detect the event. Again, in this example the vector field
rotates clockwise, while the guard is slanted at−π/4
degrees.

IV. H ANDLING DETERMINISTIC ZENO DYNAMICS

Hybrid Systems pose a problem which is unknown in
the simpler setting of dynamical systems, that of Zeno
dynamics. In simple terms, Zeno dynamics describe the
condition when, in a finite time interval, the hybrid trajec-
tory jumps between specific domains infinitely many times.
More precisely, consider the following definition.

Definition 2: A hybrid systemH is Zeno if for some
executionχ of H there exists a finite constantτ∞ (called
the Zeno time) such thatlimi→∞ τi =

∑∞
i=0(τi+1 − τi) =

τ∞. the executionχ is called a Zeno execution.
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Fig. 4. In the case of grazing, the stochastic approximation perfectly
matches the numerical solution (curved lines) and does not detect the event
determined by the presence of the guard (straight line).

The definition of a Zeno execution results in two quali-
tatively different types of Zeno behavior. They are defined
as follows: for an executionχ that is Zeno,χ is

Chattering Zeno: If there exists a finiteC such
that τi+1 − τi = 0 for all i ≥ C.

Genuinely Zeno: If τi+1 − τi > 0 for all i ∈ N.

The difference between these is especially prevalent in their
detection and elimination. Genuinely Zeno executions are
much more complicated in their behavior. This paper will
focus on genuine Zeno. There have been many attempts
to handle the Zeno behavior in a deterministic setting by
either changing the original model [15] with the addition of
some delays, or looking at it within a simpler setting [2].
Hespanha, [10], first suggested that, in a very special case,
a stochastic sequence of approximated HS could effectivly
handle Zeno behavior.

The definition of our probabilistic barriers have this
property in a general case, given some additional structural
assumptions. Frist, the reader should note that:

Remark 2: The definition of the ratesλij(x),∀i, j, im-
plies their measurability∀x ∈ Di.

Moreover, we shall assume the following:

Assumption 1: The jumping ratesλij are locally inte-
grable,∀i, j. A sufficient condition would be, for example,
their boundedness.

Remark 3: The local integrability condition, while it
may appear restrictive from a theoretical point of view, is
always valid when a real simulation of the HS is preformed.

The following holds:

Theorem 1: Let H be a hybrid system andS be its
stochastic approximation. The set of trajectories ofS that
are Zeno has measure zero. In other terms,S is Zeno with
probability zero.

Proof: Consider a hybrid time stochastic sequenceτ̃ =
{τ̃i}i∈N. Reason by contradiction: assume the SHSS is

Zeno. Then, with probability one, there would exist a finite
constantτ̃∞ < ∞ such thatlimi→∞ τ̃i =

∑∞
i=0(τ̃i+1 −

τ̃i) = τ̃∞. Assume for the moment that,∀i ∈ Q, νi(t) =
ν(t),∀t ≥ t0. Considering a single time interval[τ̃i, τ̃i+1)
and a random variableJ that is the time at which a discrete
event occurs. The probability that the jump happens inside
this interval is

P(J ∈ [τ̃i+1, τ̃i)) = 1− e
−

∫ τ̃i+1
τ̃i

ν(s)ds
.

Exploiting the assumption of local integrability and ob-
serving that the interval is always finite, the probability of
the previous event is always less than one. Therefore, by
construction the SHSS cannot be Zeno in probability.

Let us show now that the probability of this event to hap-
pen is actually zero. Given a stochastic Zeno time sequence
τ̃ = {τ̃i}i∈N, identify with it the infinite subsequence that
contains jumps at each subinterval:τ̃∗ = {τ̃∗i }i∈Λ⊆N. Call
τ̃∗c = {τ̃∗ci }i∈N\Λ the complement of̃τ∗ in τ̃ . It is again
a subsequence, possibly infinite, and contains no jumps in
all of its subintervals. The probability that̃τ exists is then

P(τ̃ exists)

=
∏

i∈N\Λ

e
−

∫ τ̃∗c
i+1

τ̃∗c
i

ν(s)ds ∏
i∈Λ

(1− e
−

∫ τ̃∗i+1
τ̃∗

i
ν(s)ds

)

= e
−

∑
i∈N\Λ

∫ τ̃∗c
i+1

τ̃∗c
i

ν(s)ds ∏
i∈Λ

(1− e
−

∫ τ̃∗i+1
τ̃∗

i
ν(s)ds

).

Recall the assumption that the functionν(s) is measurable.
The first term is always less than one (being equal to one
only in case of an infinite sequence with infinite cumulative
length, which we exclude by assumption). The second term
will instead always be equal to zero. In case of Chattering
Zeno, the reason for this is trivial. In case of Genuine Zeno,
this will also be the case, as the probability is a product
of terms less than one decreasing to zero. All in all, the
stochastic hybrid time sequence is Zeno on a measure zero
set.

If, in general,νi(t) 6= νj(t), for somei, j ∈ Q, then
take ν(t) = supi∈Q νi(t) < ∞,∀t ≥ t0. Then, the two
probabilities above expressed in the general case will be
respectively upper bounded by those defined throughν(t).
Thus, also in the general case, Zeno has probability zero to
occur for the SHSS .

Building upon the above theorem, we introduce the
following fact:

Corollary 1: Let H be a hybrid system andS be its
stochastic approximation. For any initial point in timet0 ≥
0 and initial conditionx0 ∈ Di, i ∈ 1, 2, . . . ,m, the hybrid
trajectory of the SHSS is globally defined∀t ≥ t0.

Proof: We assume that the condition of existence
and uniqueness for the hybrid trajectories are satisfied by
the definition of the HSH ; we implicitly rule out the
possibility ofblocking conditions, that is the stopping of the
trajectory because some terms required for its realization are
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Fig. 5. Three dimensional view of the two water tanks hybrid system.
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Fig. 6. Top view of the two water tanks hybrid system. We have
first simulated this system with the classical deterministic event detection
software. After approximating it via the stochastic barrier functions, we
have run the simulations with increasing precision.

missing. Moreover, excluding a priori any Zeno behavior, as
from the above Theorem, we get to the desired statement.

At this point an example is in order; we worked out
a simulation for the well knowntwo water tanks hybrid
system(cf. [15]). In this instance, two tanks which present
some outflow are filled up with a single hose, which is
forced to switch into any one tank which level goes below
a certain fixed one. The classical deterministic mathematical
model of this HS does not account for delays in the physical
switch from one tank to the other tank. This fact accounts
for the existance of Zeno behavior. More specifically, this
happen in the case when the inflow is less than or equal to
the sum of the two outflows. In this case, it is possible to
calculate explicitly the exact value of time when this occurs
(Zeno time). In Fig. 5, we plotted first a 3D simulation
of this system—under conditions that force the system to
be Zeno—with the classic deterministic event detection. As
expected, the trajectory gets stuck near the Zeno time.

In the series of plots in Fig. 6, we instead show how
the stochastic approximation is able to detect the discrete
event with as much accuracy than the deterministic case.
However, unlike this case, the trajectories are defined for
any time; in other words, there is no Zeno time, and the
simulation does not stop. In this figure, we have increased
the accuracy via a multiplicative parameter in the definition
of the barrier function.

V. FUTURE DIRECTIONS

The idea of approximating the structure (and thus the
dynamics) of a deterministic HS with some stochastic
correspondent has far more general consequences than the
simple avoidance of Zeno behavior. Handling a probabilistic
HS would enable to perform robust analysis on the original

HS. Furthermore, some properties for the original HS may
be checked “in probability,” rather than in a “worst-case”
fashion. Currently, this research is directed towards under-
standing how the stochastic framework for hybrid systems
can be exploited to understand the behavior of the original
HS, e.g., stability (cf. [1]) and optimal control.

VI. CONCLUSIONS

In this work we have proposed a new way to approximate
deterministic hybrid systems by substituting their spacial
guards, which define the discrete switching conditions, with
probabilistic barrier functions. This way, we consider the
original HS as a non-homogeneous Markov jump system.
The barrier functions are viewed as switching rates in space,
but can also be regarded as jump intensities in time along
trajectories of the system. We showed how these barriers
can be assist in understanding discrete events, with no
drawbacks compared the known deterministic methods; the
integration step in a simulation can be dynamically changed
and adapted, depending on the relative position to the
guard, in order to precisely detect the event. Furthermore,
we showed how to approximately handle Zeno conditions
through this stochastic framework. We provided motiva-
tional and applicative simulations showing the features of
the methodology, and reflected on the generality of the
possible extensions.
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