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Abstract. By transferring the theory of hybrid systems to a categorical
framework, it is possible to develop a homology theory for hybrid sys-
tems: hybrid homology. This is achieved by considering the underlying
“space” of a hybrid system—its hybrid space or H-space. The homotopy
colimit can be applied to this H-space to obtain a single topological space;
the hybrid homology of an H-space is the homology of this space. The
result is a spectral sequence converging to the hybrid homology of an
H-space, providing a concrete way to compute this homology. Moreover,
the hybrid homology of the H-space underlying a hybrid system gives
useful information about the behavior of this system: the vanishing of
the first hybrid homology of this H-space—when it is contractible and
finite—implies that this hybrid system is not Zeno.

1 Introduction

In this paper we develop a homology theory for hybrid systems: hybrid homology.
Up to this point, the limited mathematical understanding of hybrid systems has
precluded the development of such a theory. In this paper, a categorical definition
of a hybrid system is given; a hybrid system is essentially a small category H
of a specific form, called an H-small category, together with a functor from
this small category to the category of dynamical systems: SH : H → Dyn. This
definition establishes a strong connection between the area of hybrid systems and
the areas of algebraic topology and category theory. Preexisting mathematical
constructions in these areas can be applied to hybrid systems when they are
viewed from a categorical perspective.

The categorical approach to hybrid systems gives rise to the idea of the
underlying “space” of a hybrid system: its hybrid space or H-space, H. An H-
space is given by an H-small category H and a functor, SH : H → Top, from
this small category to the category of topological spaces. Pairs of this form—
small categories together with functors to the category of topological spaces—
have been well studied (cf. [1],[2],[3]); important preexisting constructions can be
applied to hybrid systems by exploiting this connection. A construction of special
interest is the homotopy colimit which associates to an H-space, H = (H,SH), a
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single topological space, Top(H) := hocolimH(SH), referred to as the underlying
topological space of the H-space H.

The underlying topological space of an H-space allows us to define a homol-
ogy theory of H-spaces simply by considering the homology of this space. This
homology theory is termed hybrid homology and is denoted by HHn(H, A) :=
Hn(Top(H), A); here A is an abelian group. One of the main impetuses for con-
sidering the homotopy colimit is that there is a spectral sequence converging to
the homology of this space (cf. [1]). In the case of hybrid homology, this implies
the existence of the hybrid homology spectral sequence

E2
p,q = Hp(H,Hq(SH, A)) ⇒ HHp+q(H, A),

where Hq(SH, A) is the functor from the small category H to the category of
abelian groups given by composing the homology functor with the functor SH,
and Hp(H,Hq(SH, A)) is the homology of the small category H with coefficients
in the functor Hq(SH, A). In this paper it will be seen that this spectral sequence
gives very concrete ways to compute the hybrid homology of an H-space. Specif-
ically, because of the particular structure of an H-small category, this spectral
sequence reduces to a series of short exact sequences

0 −→ H1(H,Hn−1(SH, A)) −→ HHn(H, A) −→ H0(H,Hn(SH, A)) −→ 0.

In the case when the H-space H is contractible, i.e., when each domain of the
H-space is contractible, the spectral sequences collapses to yield isomorphisms

HHn(H, A) ∼= Hn(H, A),

where Hn(H, A) is the homology of the small category H with coefficients in an
abelian group A. The startling point is that these facts can be used to show that
the hybrid homology of an H-space dictates the type of behavior that a hybrid
system on this H-space can have, especially with regard to Zeno.

Given a (categorical) hybrid system H we can associate to it its underlying
H-space HH , and we are able to show that this space gives useful information
about the hybrid system. By considering the forgetful functor U : Hcat → Grph
from that category of H-small categories to the category of small graphs, we
are able to show that in the case when H is contractible and finite there is an
isomorphism

HHn(H, R) ∼= Hn(U(H), R),

where Hn(U(H), R) is the graph homology of the graph U(H). By considering
the underlying H-space HH of a hybrid system H , this result together with the
results of [4] allows us to show that when HH is contractible and finite

dimR HH1(HH , R) = dimR N (KU(H)) = 0 ⇒ H is not Zeno

where N (KU(H)) is the null space of the incidence matrix KU(H) of the graph
U(H). This final statement seems to imply that the definition of hybrid homology
is the right one because it gives useful information about the hybrid system. The
statement also supports the claim that the theory developed here has useful and
practical implications.
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2 Categorical Hybrid Systems

Up to this point, a hybrid system has been defined to be a tuple which is a col-
lection of spaces subject to certain relations given by maps between these spaces.
A set of vector fields or flows is also included in the definition. To better under-
stand hybrid systems, we consider this collection of spaces and this collection of
flows separately; the former is referred to as a hybrid space or H-space and the
latter is a “flow” on this H-space. The motivation for this is derived from dy-
namical system theory where there is a clear distinction between the “underlying
topological space” of a dynamical system and a flow on that space. Paralleling
dynamical systems, a hybrid system is obtained by adding a collection of flows
to an H-space.

In this section, we give the classical definition of an H-space and then proceed
to give a categorical definition of an H-space in terms of a small category and a
functor; the advantage of the categorical definition of an H-space is that it is not
only more general but also more concise. We then proceed to give the definition of
a hybrid system utilizing the categorical framework developed—a hybrid system
is also defined by a small category and a functor. These constructions will be
essential in developing a homology theory for hybrid systems, although this seems
to be only the first step in exploring their power.

H-Space. Define a classical H-space (short for classical hybrid space) as a tuple

Hclass = (Q,E,D,G,R)

where

– Q = {1, ...,m} ⊂ Z is a set of discrete states.
– E ⊂ Q×Q is a set of edges which define relations between the domains. For

e = (i, j) ∈ E, we denote the source of e by s(e) = i and the target of e by
t(e) = j.

– D = {Di}i∈Q is a set of domains where Di is a topological space.
– G = {Ge}e∈E is a set of guards, where Ge ⊆ Ds(e) is also a topological space.
– R = {Re}e∈E is a set of reset maps or transition maps; these are continuous

maps from Ge ⊆ Ds(e) to Re(Ge) ⊆ Dt(e).

The subscript “class” indicates that this is a “classical” definition, meaning that
this definition is one of the most commonly used ones (cf. [5]). For a classical H-
space the pair (Q,E) is an oriented graph (technically a pseudograph), so we can
write a classical H-space as a tuple Hclass = (Γ,D,G,R). The graph Γ = (Q,E)
is referred to as the underlying graph of the H-space.

We can demand that the collection of topological spaces D be a collection of
manifolds M = {Mi}i∈Q, that the maps R be a collection of smooth embeddings
RS , and that the set of guards be a set of smooth manifolds, GM , such that
GM

e is an embedded submanifold of Ms(e). In this case we call the H-space
Gclass = (Q,E,M,GM , RS) a smooth classical hybrid space or a smooth classical
H-space or a classical G-space. This more restrictive definition is the starting
point for much of the literature on hybrid systems.

A.D. Ames and S. Sastry
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Example 1. The hybrid system modeling a water tank system (cf. [5] for a com-
plete explanation, although we assume the reader is familiar with this example)
is a classical example of a hybrid system that displays Zeno behavior. Beyond
this observation, we will not discuss the dynamics of this hybrid system as in
this paper we are more interested in its underlying “space”. The hybrid space
for the water tank will be denoted by HW

class = (ΓW ,DW , GW , RW ). It has as its
underlying graph ΓW given by the diagram

1
e1��
e2

2

The other elements of the hybrid system are defined as: DW
1 = DW

2 = {(x1, x2) :
x1, x2 ≥ 0}, GW

e1
= {(x1, 0) : x1 ≥ 0}, GW

e2
= {(0, x2) : x2 ≥ 0}, and

RW
e1

(x1, x2) = RW
e2

(x1, x2) = (x1, x2). We will refer back to this example through-
out this paper in order to illustrate the concepts being introduced.

H-Small Categories. An H-small category is a small category H (cf. [6] for
more information on small categories and category theory in general) satisfying
the following conditions:

1. Every object in H is either the source of a non-identity morphism in H or the
target of a non-identity morphism but never both, i.e., for every diagram

a0
α1� a1

α2� · · · αn� an

in H, all but one morphism must be the identity (the longest chain of com-
posable non-identity morphisms is of length one).

2. If an object in H is the source of a non-identity morphism, then it is the
source of exactly two non-identity morphisms, i.e., for every diagram in H
of the form

either all of the morphisms are the identity or two and only two morphisms
are not the identity.

Important Objects in H-Small Categories. Let H be an H-small category.
We use Ob(H) to denote the objects of H and Morid/ (H) to denote the non-identity
morphisms of H; all of the morphisms in H are the union of these morphisms
with the identity morphism from each object to itself. For a morphism α : a → b
in H, its source is denoted by s(α) = a and its target is denoted by t(α) = b. For
H-small categories, there are two sets of objects that are of particular interest;
these are subsets of the set Ob(H). The first of these is called the wedge set,
denoted by ∧(H), and defined to be

∧(H) := {a ∈ Ob(H) : a = s(α), a = s(β), α, β ∈ Morid/ (H), α 	= β}.

a0

a1
�

α1

a2
�

α 2

a3

�
α
3

· · · · · · · · ·an

α
n -
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For all a ∈ ∧(H) there are two and only two morphisms (which are not the
identity) α, β ∈ Morid/ (H) such that a = s(α) and a = s(β), so we denote these
morphisms by αa and βa. Conversely, given a morphism γ ∈ H (which is not
the identity), there exists a unique a ∈ ∧(H) such that γ = αa or γ = βa. The
symbol ∧ is used because every object a ∈ ∧(H) sits in a diagram of the form:

Note that giving all diagrams of this form (of which there is one for each a ∈
∧(H)) gives all the objects in H, i.e., every object of H is the target of αa or βa,
or their source, for some a ∈ ∧(H). In particular, we can define ∨(H) = (∧(H))c

where (∧(H))c is the complement of ∧(H) in the set Ob(H).

Definition 1. A categorical H-space is a pair Hcat = (H,SH) where H is an
H-small category and SH : H → Top is a functor such that for every diagram of
the form

A �α
E

β� B

in H in which α and β are not the identity, either SH(α) or SH(β) is an inclusion.

Theorem 1. There is an injective correspondence

{Classical H − spaces, Hclass} −→ {Categorical H − spaces, Hcat}
This is a bijective correspondence if H has a finite number of objects.

Example 2. The categorical hybrid space for the water tank, HW
cat = (HW ,SW

H )
is defined by the following diagram:

Note that the H-small category HW is defined by the diagram on the left together
with the identity morphism on each object, while the functor SW

H is defined by

a = s(αa) = s(βa)

b = t(αa)
�
αa

c = t(βa)

β
a

-

a SWH (a) = GWe1

b

�
α
a

c

β
a

-

SWH- SWH (b) = DW
1

�
S
W

H
(α
a
)
=

id

SWH (c) = DW
2

S W
H

(β
a )

=
id-

d

α
d

-

�
β
d

SWH (d) = GWe2

S
W

H
(α
d
)
=

id
-

�
S W

H

(β
d )

=
id
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the diagram of topological spaces on the right. To complete the description of
the functor SW

H , on identity morphisms SW
H is defined to be the identity map.

Smooth Categorical Hybrid Spaces. We can define a categorical G-space
in a way analogous to the definition of a categorical H-space, i.e., it is a pair
Gcat = (H,TG), where H is an H-small category and TG is a functor TG : H →
Man from H to the category of manifolds, such that the pair (H, I ◦ TG) is also
a categorical H-space; here I : Man → Top is the inclusion functor. With this
definition, Theorem 1 yields the following corollary.

Corollary 1. There is an injective correspondence

{Classical G − spaces, Gclass} −→ {Categorical G − spaces, Gcat}

The Category of Dynamical Systems. We can consider both the category
of dynamical systems and the category of smooth dynamical systems. The cat-
egory of dynamical systems, denoted by Dyn, has as objects dynamical systems
and dynamical subsystems. A dynamical system is a pair (X,ϕ) where X is a
topological space and ϕ is a flow on that topological space—more precisely, this
is a local flow (cf. [7]). A morphism of two dynamical systems α : (X,ϕ) → (Y, ψ)
in this category is defined by a pair α = (h, r) of continuous maps, h : X → Y
and r : R → R, such that the following diagram

X̃ϕ ⊂ X × R
h × r� Ỹψ ⊂ Y × R

X

ϕ
� h � Y

ψ
�

commutes, i.e., h(ϕt(x)) = ψr(t)(h(x)); here X̃ϕ is the maximal flow domain
of the flow ϕ (as defined in [7]). Clearly, from this definition it follows that two
dynamical systems are isomorphic (in the categorical sense) if and only if they are
topologically orbital equivalent. A dynamical subsystem is a pair (U ⊆ X,ϕ|U )
where U is a topological space contained in X and ϕ|U is the restriction of a flow
ϕ on X to U ; we say that this dynamical subsystem is a subsystem of (X,ϕ).
Morphisms dynamical subsystems are defined in a way analogous to the
definition of morphisms of dynamical systems (cf. [8] for a definition).

Similarly, we can define the category Sdyn of smooth dynamical systems
whose objects are smooth dynamical systems and smooth dynamical subsys-
tems.1 A smooth dynamical system is a pair (M,V ) where M is a manifold and
V is a vector field on that manifold (both of which are smooth). A morphism
between smooth dynamical systems α = (f, F ) : (M,V ) → (N,W ) is given by
smooth maps, f : M → N and F : TM → TN , such that the diagram

1 This definition is a generalization of the one given in [9], although there it was defined
as the category of dynamical systems and not smooth dynamical systems.

of
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M
f� N

TM

V
� F� TN

W
�

commutes, and for each p ∈ M the restriction of F to the fiber TpM , F |TpM :
TpM → Tf(p)N , is linear. In the case when F is the pushforward of f , i.e.,
F = f∗, this definition implies that V and W are f -related (cf. [7]). A smooth
dynamical subsystem is a pair (S ⊆ M,V |S) where S is an embedded sub-
manifold of M and V |S is the restriction of a vector field V on M to S, and
hence a vector field along S. As in the case of dynamical systems, morphisms of
smooth dynamical subsystems are given in a way analogous to the definition of
morphisms of dynamical systems (cf. [8] for a definition).

Note that there is a projection functor PTop : Dyn → Top from the category
of dynamical systems to the category of topological spaces given by PTop(X,ϕ) =
X on objects and PTop(h, r) = h on morphisms. Similarly, we have a projection
functor from the category Sdyn to the category Man, PMan : Sdyn → Man
defined in an analogous way.

Hybrid Systems. With the definitions of dynamical systems and smooth dy-
namical systems in hand, we can define hybrid systems. A classical hybrid system
is a tuple Hclass = (Hclass, Φ) = (Q,E,D,G,R,Φ) where Hclass is a classical H-
space and Φ = {ϕi}i∈Q where ϕi is a flow on the topological space Di, i.e.,
(Di, ϕi) is a dynamical system for each i ∈ Q.

Similarly, we can define smooth classical hybrid systems as pairs Gclass =
(Gclass, V ) = (Q,E,M,GM , RS , V ) where Gclass is a classical G-space and V =
{Vi}i∈Q where Vi is a smooth vector field on the manifold Mi, i.e., (Mi, Vi) is a
smooth dynamical system for each i ∈ Q.

Definition 2. A categorical hybrid system is a pair Hcat = (H,SH ) where
H is an H-small category and SH : H → Dyn is a functor such that the pair
(H,PTop ◦ SH ) is a categorical H-space. The H-space

HH = (H,PTop ◦ SH ) := (H,SH
H )

is referred to as the underlying H-space of the hybrid system Hcat.

Theorem 2. If for each e ∈ E there exists a morphism of dynamical sub
systems

αe : (Ge ⊆ Ds(e), ϕs(e)|Ge
) → (Re(Ge) ⊆ Dt(e), ϕt(e)|Re(Ge)),

then there is an injective correspondence

{Classical Hybrid Systems, Hclass} −→ {Categorical Hybrid Systems, Hcat}.

-
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Smooth Categorical Hybrid Systems. As in the case of categorical hybrid
systems, we can define a smooth categorical hybrid system. A smooth categorical
hybrid system is a pair Gcat = (H,TG ) where H is an H-small category and
TG : H → Sdyn is a functor such that the pair (H,PMan ◦ TG ) is a categorical
G-space. As before, the underlying G-space of a smooth hybrid system Gcat is
given by

GG = (H,PMan ◦ TG ) := (H,TG
G ).

With this notation there is the following corollary of Theorem 2.

Corollary 2. If for each edge e ∈ E there exists a morphism of smooth dynam-
ical subsystems

αe : (Ge ⊆ Ms(e), Vs(e)|Ge
) → (Re(Ge) ⊆ Mt(e), Vt(e)|Re(Ge)),

then there is an injective correspondence

{Smooth Classical Hybrid Systems, Gclass}
↓

{Smooth Categorical Hybrid Systems, Gcat}.

Remark 1. Because of Theorem 1 and 2, we use H and H to denote categorical
hybrid spaces and hybrid systems, respectively, and simply refer to them as
hybrid spaces and hybrid systems. Similarly, because of Corollary 1 and 2 we
use G and G to denote smooth categorical hybrid spaces and systems; we simply
refer to them as smooth hybrid spaces and systems.

The Categorical Framework for Hybrid Systems. To conclude this sec-
tion, we note that the categorical framework introduced here gives a unifying
framework for all of the definitions introduced here. More specifically, fixing
an H-small category H, an H-space, G-space, hybrid system or smooth hybrid
system is just given by the following functors

H
SH→ Top, H

TG→ Man, H
SH→ Dyn, H

TG→ Sdyn,

respectively. Namely, all that changes is the functor and the target category.
Here the H-small category can be thought of as the “discrete” component of
the hybrid system and the functor can be thought of as the “continuous” com-
ponent. This general framework indicates that in studying hybrid systems, one
need only consider functors from small categories to other categories. Note that
this categorical notion of hybrid systems, hybrid spaces, et cetera, makes easy
work of defining the category of hybrid systems and hybrid spaces. Studying
the properties of these categories would seem to be a promising area of future
research in hybrid systems.
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3 Hybrid Homology

In this section, a homology theory for hybrid systems is developed. Recall from
Section 2 that every hybrid system has an underlying “space,” termed an H-
space. With every H-space, we can associate a single topological space through
the use of the homotopy colimit; the homology of this space is defined to be the
hybrid homology of an H-space. Fortunately, there is a spectral sequence con-
verging to the hybrid homology of an H-space. It will be seen that this spectral
sequence implies a series of short exact sequences computing the hybrid homol-
ogy in terms of the homology of a small category with coefficients in a certain
functor. In the case when the H-space is contractible, the hybrid homology of
this H-space is just the homology of a certain small category with coefficients in
an abelian group.

The Homotopy Colimit. Let C be a small category and F : C → Top a
functor from this category to the category of topological spaces. There are two
well known ways to associate to such a pair a single topological space. The first,
and more obvious way, is through a construction known as the colimit. This is
defined as

colimC(F) =

∐
a∈Ob(C) F(a)

x ∼ F(α)(x)
, α ∈ Morid/ (C).

This construction has been used in the past in hybrid systems, namely in [5],
although it was not recognized that this was actually the colimit as the categor-
ical definition of hybrid systems was not available in that paper; the hybrifold
was defined as colimH(S) for an H-space H = (H,S) (for the rest of the paper we
drop the “H” subscript, i.e., we take S = SH). The key point is that although
this construction is the obvious way of associating a single space to a hybrid
system, it does not seem to be the “correct” one. There are many ways to justify
this statement. In the context of algebraic topology, it has been known for a long
time that the colimit does not possess desirable properties with respect to homo-
topies of spaces. A more subtle argument follows by considering the homology of
these spaces; the colimit does not seem to encode the correct information about
the behavior of hybrid systems—namely, with respect to Zeno. This problem is
rooted in the fact that the colimit “forgets” about the information encoded in
the edges of a hybrid system.

There is another, albeit more complicated, way of associating a single topolog-
ical space to a hybrid system—through the homotopy colimit. This construction
seems to encode the correct information about the hybrid system, both with re-
spect to homotopies (cf. [1],[3]) and with respect to homology. For this reason we
focus on the homotopy colimit. For simplicity, we will not introduce the defini-
tion of the homotopy colimit but refer the interested reader to [1] for a complete
tutorial on homotopy colimits. The pertinent point regarding homotopy colimits
is the simple form that they take when considering H-spaces.

A.D. Ames and S. Sastry
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Fig. 1. The colimit and homotopy colimit of the water tank hybrid space

Theorem 3. For an H-space H = (H,S),

hocolimH(S) =

(∐
b∈∨(H) S(b)

)



(∐
a∈∧(H) (S(a) × I)

)
(x, 0) ∼ S(αa)(x), (x, 1) ∼ S(βa)(x)

.

Example 3. For the water tank hybrid space HW = (HW ,SW ), the colimit is
homotopic to the (2-dimensional) cone, while the homotopy colimit is homotopic
to the punctured cone (see Figure 1). It will be seen that the “hole” in this cone
is a warning that the hybrid system may be Zeno, i.e., if the hole was not present,
the hybrid system could not be Zeno—the topology of this space dictates the
types of behavior this hybrid system can display.

The Underlying Topological Space of an H-Space. Since the homotopy
colimit is a single topological space, we can define the underlying topological
space of an H-space as

Top(H) := hocolimH(S)

and we can consider the homology of this space. More explicitly, this gives a
definition of hybrid homology—the homology of an H-space. The authors believe
that this space will prove useful for other constructions on hybrid systems.

Definition 3. The homology of an H-space H = (H,S), denoted by HHi(H, A)
and termed the hybrid homology of H with coefficients in an abelian group A, is
defined to be

HHi(H, A) := Hi(Top(H), A) = Hi(hocolimH(S), A).

The Homotopy Colimit Spectral Sequence. One of the important benefits
of considering homotopy colimits is the homotopy colimit spectral sequence (cf.
[1]) that relates the homology of the homotopy colimit to that of the homology
of the underlying small category with coefficients in a functor. Note that there is
not a similar spectral sequence for the colimit; this alone motivates the use of the
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homotopy colimit. Specifically, for a small category C and functor F : C → Top,
there is a spectral sequence

E2
p,q = Hp(C,Hq(F, A)) ⇒ Hp+q(hocolimC(F), A).

Here A is an abelian group and Hq(F, A) : C → Ab is the functor from the small
category to the category of abelian groups obtained by composing the homology
functor Hq(−, A) : Top → Ab with F. The homology Hp(C,Hq(F, A)) is the
homology of the small category C with coefficients in the functor Hq(F, A). For
a review of this homology theory, we refer the reader to [1], [10] and [11].

In the case of an H-space H = (H,S) this spectral sequence gives us impor-
tant information about the underlying topological space of the hybrid system,
Top(H). In this case the spectral sequence becomes

E2
p,q = Hp(H,Hq(S, A)) ⇒ HHp+q(H, A),

and we refer to this spectral sequence as the hybrid homology spectral sequence.
Because H is an H-small category, and by definition the longest chain of com-
posable non-identity morphisms is of length one, for any functor L : H → Ab,

Hn(H,L) = 0,

for n ≥ 2. This implies that the spectral sequence will simplify even further into
a set of short exact sequences.

Short Exact Sequences from a Spectral Sequence. Suppose that there is
a spectral sequence E2

p,q ⇒ Hp+q. If E2
p,q = 0 except when p = 0, 1 then there

are short exact sequences

0 −→ E2
1,n−1 −→ Hn −→ E2

0,n −→ 0

for all n ≥ 0 (cf. [12]). Because Hn(H,L) = 0 for n ≥ 2 and any functor L : H →
Ab, for the hybrid homology spectral sequence E2

p,q = Hp(H,Hq(S, A)) = 0 for
p 	= 0, 1. Therefore, we have established the following important theorem.

Theorem 4. For an H-space H = (H,S) and an abelian group A, there are
short exact sequences

0 −→ H1(H,Hn−1(S, A)) −→ HHn(H, A) −→ H0(H,Hn(S, A)) −→ 0.

Collapsing Spectral Sequences. For a spectral sequence E2
p,q ⇒ Hp+q, if

E2
p,q = 0 except when q = 0, then the spectral sequence is said to collapse. In

this case there is an isomorphism Hn
∼= E2

n,0. This isomorphism will yield the
theorem shown below, which will be used in the following section to establish a
very concrete method for computing the hybrid homology of an H-space in the
case when the hybrid homology spectral sequence collapses. This will happen for
a special class of hybrid systems, as given in the following definition.

A.D. Ames and S. Sastry
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Definition 4. The H-space H = (H,S) is contractible if S(a) is contractible
for every a ∈ Ob(H) and S(α) ∼ id for every α ∈ Morid/ (H) (here ∼ denotes
homotopic). We say that H is finite if H has a finite number of objects and
hence a finite number of morphisms. The H-space H is connected if Top(H) is
connected.

Theorem 5. If the H-space H = (H,S) is contractible, then

HHi(H, A) ∼= Hi(H, A)

for an abelian group A. It follows that HHn(H, A) = 0 for n ≥ 2.

4 Morse Theory and the Euler Characteristic of H

It is interesting to note that we can define the Euler characteristic for an H-space
H. Moreover, it will be seen that the Euler characteristic of an H-space can be
expressed as a combination of the Euler characteristics of individual topological
spaces in the hybrid space. As an application, a Morse theory type of theorem
can be established for hybrid systems in a very special case.

The Euler Characteristic. Let F be a field. Since Top(H) is a topological
space, we can define the Euler characteristic of the hybrid homology of an H-
space in the usual fashion. If dimF HHi(H, F) is finite and nonzero for only a
finite number of i′s (here the dimension of HHi(H, F) is its dimension as a vector
space over F), then the Euler characteristic of H with coefficients in a field F is
given by

χ(H, F) =
∞∑

i=0

(−1)i dimF HHi(H, F).

The Euler characteristic also can be defined when considering HHi(H); since
this is not a vector space, the Euler characteristic is defined using the rank of an
abelian group. For an abelian group A, define its rank (over Z) by rankZ(A) =
dimQ (A ⊗Z Q). In this case the Euler characteristic is defined to be

χ(H) =
∞∑

i=0

(−1)irankZHHi(H) =
∞∑

i=0

(−1)i dimQ HHi(H) ⊗Z Q,

where, again, for this to be well–defined, HHi(H) ⊗Z Q must be a finite dimen-
sional vector space and nonzero for only a finite number of i′s.

The main theorem of this section is that the Euler characteristic of an ar-
bitrary H-space can be computed in terms of the Euler characteristic of the
topological spaces that determine the H-space, i.e., the topological space S(a)
for a ∈ Ob(H). This theorem yields a corollary that allows for the easy compu-
tation of the Euler characteristic in a special case.
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Theorem 6. For an H-space H = (H,S),

χ(H, F) =
∑

a∈Ob(H)

χ(S(a), F) −
∑

α∈Morid/ (H)

χ(S(s(α)), F).

Corollary 3. For an H-space H = (H,S),

χ(H) =
∑

a∈Ob(H)

χ(S(a)) −
∑

α∈Morid/ (H)

χ(S(s(α))).

If H is contractible and finite then for an arbitrary field F

χ(H) = χ(H, F) = |Ob(H)| − |Morid/ (H)|
where |Ob(H)| is the number of objects of H and |Morid/ (H)| is the number of
(non-identity) morphisms.

Morse Theory. The Euler characteristic is important because it relates the
homology of a space with the behavior of flows on that space. It is possible
to give a “Morse type theorem” for hybrid homology by considering the Morse
theory of a smooth dynamical system.

Let (M,V ) be a smooth dynamical system as defined in Section 2. Assume
that M is a boundaryless compact n-dimensional manifold and that V has only
isolated singularities (equilibrium points). If Index(V ) is the index of V , then
the Poincaré-Hopf theorem states that

Index(V ) = χ(M).

Similarly, if f is a Morse function on M , and C(f)k is the number of critical
points of index k, then the Morse theorem says that

χ(M) =
n∑

k=0

(−1)k C(f)k.

We will not review these definitions and constructions in this paper (for a com-
plete review, the reader is referred to [13] and [14]). The important point is that
it is possible to relate these results in smooth manifold theory to hybrid systems.

Now consider a smooth hybrid system G = (H,TG ) where TG : H → Sdyn
and its corresponding underlying G-space GG = (H,P◦TG ) := (H,TG

G ). Assume
that for each object a ∈ Ob(H), TG (a) = (M(a),Xa) where M(a) is a smooth
manifold and Xa is a vector field on that manifold (this functor sends objects
in H to the subcategory of Sdyn whose objects are smooth dynamical systems),
and that M(a) is compact and boundaryless for every a ∈ Ob(H). In this case
call G a smooth compact boundaryless hybrid system.

Note that there is an embedding E : Gspc → Hspc from the category of
G-spaces, Gspc, to the category of H-spaces, Hspc (cf. [8]). The underlying topo-
logical space of a smooth hybrid system is defined by Top(G) := Top(E(G)), and
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we can consider the homology of these spaces, i.e., HHi(G, A) := HHi(E(G), A).
Note that in general Top(G) is not a smooth manifold, or even a manifold at
all. The amazing thing is that, regardless of this, it still is possible to obtain a
Morse type theorem for hybrid systems of this form, i.e., we have the following
corollary of Theorem 6.

Corollary 4. Let G be a smooth compact boundaryless hybrid system and GG

its underlying G-space. If n(a) = dim(M(a)), then

χ(GG ) =
∑

a∈Ob(H)

Index(Xa) −
∑

α∈Morid/ (H)

Index(Xs(α))

=
∑

a∈Ob(H)

n(a)∑
k=0

(−1)kC(fa)k −
∑

α∈Morid/ (H)

n(s(α))∑
k=0

(−1)kC(fs(α))k

where fa is a Morse function of M(a) for each a ∈ Ob(H).

Remark 2. It would be desirable to determine a Morse type theorem involving
only the topological space Top(G), but this does not seem possible (at least in
any generality) because, as mentioned before, Top(G) is not a smooth manifold
and will almost never be one—or even homeomorphic to one. Generalizations of
this theorem seem most promising in the context of Conley index theory since
those results are based on topological spaces and flows on those spaces.

5 Characterization of Zeno Behavior Through Hybrid
Homology

In this section we show that the hybrid homology of an H-space in some ways
dictates the type of behavior that a hybrid system can have on this H-space. This
result also will be related to the homology of the graph Γ that a hybrid system
has as its basic indexing set. Namely, we will show that in the case when the
H-space underlying a hybrid system is contractible, the vanishing of the hybrid
homology in nonzero degrees implies that there are no Zeno executions. We will
not review the definition of a hybrid system, or executions of hybrid systems;
for a review of these definitions in the context of homology we refer the reader
to [4]. Note that examples can also be found in this paper.

The Homology of a Graph. Recall that it is possible to define the homology of
an oriented graph Γ = (Q,E) with coefficients in the real numbers: Hi(Γ, R). The
important point about the homology of a graph is that it is easy to compute—
one need only compute the null space of the incidence matrix of the graph. For
the graph Γ , the incidence matrix, denoted by KΓ , is a |Q| × |E| matrix given
by

KΓ =
(
λt(e1) − λs(e1) · · · λt(e|E|) − λs(e|E|)

)
where E = {e1, . . . , e|E|} and λi is the ith standard basis vector for R|Q|.
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It is easy to show (for a proof see [4]) that, if N (KΓ ) is the null space of KΓ ,
then

H0(Γ, R) ∼= R|Q|−|E|+dimR N (KΓ ), H1(Γ, R) ∼= RdimR N (KΓ )

and Hn(Γ, R) = 0 for n ≥ 2. This implies that the Euler characteristic of Γ is
given by

χ(Γ ) = dimR(H0(Γ, R)) − dimR(H1(Γ, R)) = |Q| − |E|.
A Forgetful Functor. Given a small category C, we can “forget” about some
of its structure in order to obtain a graph; in other words, there is a forgetful
functor U : Cat → Grph where Cat is the category of small categories and
Grph is the category of small graphs. If C is a small category, then the graph
U(C) is obtained by forgetting about which arrows are composites and which are
identities; every functor F : C → C′ is also a morphism U(F) : U(C) → U(C′) of
graphs. For more details see [6].

It easily can be seen that the category Hcat of all H-small categories is a
full subcategory of the category Cat (cf. [8]). If I : Hcat → Cat is the inclusion
functor, then we have a functor from Hcat to Grph given by the composition

Hcat
I−→ Cat

U−→ Grph.

By abuse of notation, we will denote the composition of these two functors by
U as well, i.e., U : Hcat → Grph. This functor is important in that it relates the
hybrid homology of an H-space to the homology of a graph.

Theorem 7. Let H = (H,S) be a finite and contractible H-space, then

HHn(H, R) ∼= Hn(U(H), R)

where Hn(U(H), R) is the graph homology of the graph U(H).

An important corollary of this theorem is that it gives a very easy and con-
crete way to compute the hybrid homology of a contractible and finite H-space.

Corollary 5. Let KU(H) be the incidence matrix of the graph U(H), then if H

is contractible and finite

HH0(H, R) ∼= R|Ob(H)|−|Morid/ (H)|+dimR N (KU(H)), HH1(H, R) ∼= RdimR N (KU(H))

and HHn(H, R) = 0 for n ≥ 2.

Homological Relationships with Classical H-Spaces. If H = (H,S) is the
(categorical) H-space, obtained from the classical H-space Hclass = (Γ,D,G,R)
via the correspondence given in Theorem 1, or vise versa, then we can relate
these two “spaces” via homology—at least in the case when H is contractible and
finite. This relationship is given in the following proposition. This proposition
supports the claim that the definition of a categorical H-space is the right one
because it says that when the domains of the hybrid system are contractible the
hybrid homology of an H-space is isomorphic to the graph homology.
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Proposition 1. Let H = (H,S) be the finite H-space obtained from the classical
H-space Hclass = (Γ,D,G,R). If H is contractible, then

HHn(H, R) ∼= Hn(Γ, R)

and it follows that χ(H) = χ(Γ ).

A rather startling point is that the underlying H-space of a hybrid system—
more specifically its homology—in some way dictates the behavior that this
hybrid system can display (for a complete discussion on this, as well examples
and a review of Zeno behavior, see [4]). Even more importantly, the type of
behavior that the homology of an H-space “notices” is exactly the behavior that
is central, and unique, to hybrid systems: Zeno behavior. This point is made
more clear in the following theorem:

Theorem 8. Let HH = (H,SH ) := (H,PTop ◦ SH ) be the underlying H-space
of the hybrid system H = (H,SH ). If HH is contractible and finite, then

dimR HH1(HH , R) = dimR N (KU(H)) = 0 ⇒ H is not Zeno.

If HH is connected, it implies that dimR HH0(HH , R) = 1, and so we have
the following corollary to this theorem which is in a form more reminiscent of
“Morse-type” theorems.

Corollary 6. If HH is connected, contractible and finite, then

χ(HH ) = |Ob(H)| − |Morid/ (H)| = 1 ⇒ H is not Zeno.

In many ways, this theorem (and its corollary) is more of a “Morse-type”
theorem than Theorem 4. The hope is, through the use of the categorical frame-
work for hybrid systems introduced here, to incorporate the dynamics of a hybrid
system into the above theorems in order to obtain tighter algebraic theorems on
the nonexistence of Zeno.

Example 4. For the water tank hybrid space HW , using Proposition 1, it is easy
to see that HH1(HW , R) ∼= HH0(HW , R) ∼= R. So we cannot say that the water
tank is not Zeno, which is good because it is Zeno.
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