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Abstract. Zeno behaviors are one of the (perhaps unintended) features
of many hybrid models of physical systems. They have no counterpart
in traditional dynamical systems or automata theory and yet they have
remained relatively unexplored over the years. In this paper we address
the stability properties of a class of Zeno equilibria, and we introduce
a necessary paradigm shift in the study of hybrid stability. Motivated
by the peculiarities of Zeno equilibria, we consider a form of asymptotic
stability that is global in the continuous state, but local in the discrete
state. We provide sufficient conditions for stability of these equilibria,
resulting in sufficient conditions for the existence of Zeno behavior.

1 Introduction

Hybrid models have been used successfully during the past decade to describe
systems exhibiting both discrete and continuous dynamics, while they have si-
multaneously allowed complex models of continuous systems to be simplified.
We are interested in the rich dynamical behavior of hybrid models of physi-
cal systems. These hybrid models admit a kind of equilibria that is not found in
continuous dynamical systems or in automata theory: Zeno equilibria. Zeno equi-
libria are collections of points which are invariant under the discrete component
of the hybrid dynamics, and which can be stable is many cases of interest.

Mechanical systems undergoing impacts are naturally modeled as hybrid sys-
tems (cf. [1] and [2]). The convergent behavior of these systems is often of
interest—even if this convergence is not to “classical” notions of equilibrium
points. This motivates the study of Zeno equilibria because even if the conver-
gence is not classical, it still is important. For example, simulating trajectories
of these systems is an important component in their analysis, yet this may not
be possible due to the relationship between Zeno equilibria and Zeno behavior.

An equally important reason to address the stability of Zeno equilibria is to
be able to assess the existence of Zeno trajectories. This behavior is infamous in
the hybrid system community for its ability to halt simulations. The only way to
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prevent this undesirable outcome is to give a priori conditions on the existence
of Zeno behavior. This has motivated a profuse study of Zeno hybrid systems
(see [1, 3–8] to name a few) but a concrete notion of convergence (in the sense
of stability) has not yet been introduced. As a result, there is a noticeable lack
of sufficient conditions for the existence of Zeno behavior. We refer the reader
to [3, 7, 8] for a more thorough introduction to Zeno behavior.

Our investigations into the stability of Zeno equilibria are made possible
through a categorical framework for hybrid systems (as first introduced in [9]
and later utilized in [10]). This theory allows “non-hybrid” objects to be gener-
alized to a hybrid setting. Specifically, let T be a category, i.e., a collection of
mathematical objects that share a certain property together with morphisms be-
tween these objects. A hybrid object over this category is a special type of small
category H, termed an H-category, together with a functor (either covariant or
contravariant) S : H → T . Morphisms between objects of T are generalized to a
hybrid setting through the use of natural transformations.

The main contribution of this paper is sufficient conditions for the stability
of Zeno equilibria. As a byproduct, we are able to give sufficient conditions
for the existence of Zeno behavior. The categorical approach to hybrid systems
allows us to decompose the study of stability into two manageable steps. The
first step consists of identifying a sufficiently rich, yet sufficiently simple, class of
hybrid systems embodying the desired stability properties: first quadrant hybrid
systems. The second step is to understand the stability of general hybrid systems
by understanding the relationships between these systems and first quadrant
hybrid systems described by morphisms (in the category of hybrid systems).

2 Classical Stability: A Categorical Approach

In this section we revisit classical stability theory under a categorical light. The
new perspective afforded by category theory is more than a simple exercise in
abstract nonsense because it motivates the development of an analogous stability
theory for hybrid systems and hybrid equilibria to be presented in Sections 4
and 5. We shall work on Dyn, the category of dynamical systems, which has as
objects pairs (M,X), where M is a smooth manifold3 and X : M → TM is a
smooth vector field. The morphisms are smooth maps f : N → M making the
following diagram commutative:

TN
Tf- TM

N

Y
6

f- M

X
6

(1)

The subcategory Interval(Dyn) of Dyn will play an especially important role in the
theory developed in this paper. This subcategory is the full subcategory of Dyn

3 We assume that M is a Riemannian manifold, and so has a metric d(x, y) = ‖x−y‖.
Alternatively, we could assume that M is a subset of Rn.



defined by objects4 (I, d
dt ) with I a subset of R of the form [t, t′], (t, t′], [t, t′), (t, t′)

and {t}, where [t, t′] is a manifold with boundary (and so is (t, t′] and [t, t′)) and
{t} is a zero-dimensional manifold consisting of the single point t (which is
trivially a smooth manifold). The following observation shows the relevance of
Interval(Dyn). A morphism c : (I, d/dt) → (M,X) is a smooth map c : I → M
making diagram (1) commutative and thus satisfying:

ċ(t) = Tc · d
dt

= X ◦ c(t).

We can therefore identify a morphism c : (I, d/dt) → (M,X) with a trajectory of
(M,X). Furthermore, the existence of a morphism f : (N,Y ) → (M,X) implies
that for every trajectory c : (I, d/dt) → (N,Y ), the composite f ◦ c : (I, d/dt) →
(M,X) is a trajectory of (M,X). In other words, a morphism f : (N,Y ) →
(M,X) carries trajectories of (N,Y ) into trajectories of (M,X).

Remarkably, stability also can be described through the existence of certain
morphisms. Let us first recall the definition of globally asymptotically stable
equilibria.

Definition 1. Let (M,X) be an object of Dyn. An equilibrium point x∗ ∈ M
of X is said to be globally asymptotically stable when for any morphism c :
([t,∞), d

dt ) → (M,X), for any t1 > t and for any ε > 0 there exists a δ > 0
satisfying:

1. ‖c(t1)− x∗‖ < δ ⇒ ‖c(t2)− x∗‖ < ε ∀t2 ≥ t1 ≥ t,
2. limτ→∞ c(τ) = x∗.

Consider now the full subcategory of Dyn denoted by GasDyn and defined by
objects (R+

0 ,−α) where α is a class K∞ function. Lyapunov’s second method
can then be described as follows:

Theorem 1. Let (M,X) be an object of Dyn. An equilibrium point x∗ ∈ M of
X is globally asymptotically stable if there exists a morphism:

(M,X)
v- (R+

0 ,−α) ∈ GasDyn

in Dyn satisfying:

1. v(x) = 0 implies x = x∗,
2. v : M → R+

0 is a proper (radially unbounded) function.

The previous result suggests that the study of stability properties can be car-
ried out in two steps. In the first step we identify a suitable subcategory having
the desired stability properties. In the case of global asymptotic stability, this
subcategory is GasDyn; for local stability we could consider the full subcategory
defined by objects of the form (R+

0 ,−α) with α a non-negative definite function.

4 We do not consider more general objects of the form (J, g(t)d/dt) with g > 0 since
each such object is isomorphic to (I, d/dt).



The chosen category corresponds in some sense to the simplest possible objects
having the desired stability properties. In the second step we show that existence
of a morphism from a general object (M,X) to an object in the chosen subcat-
egory implies that the desired stability properties also hold in (M,X). This is
precisely the approach we will develop in Sections 4 and 5 for the study of Zeno
equilibria.

3 Categorical Hybrid Systems

This section is devoted to the study of first quadrant hybrid systems, categorical
hybrid systems, and their interplay. We begin by defining a very simple class of
hybrid systems; these systems are easy to understand and analyze, but lack gen-
erality. We then proceed to define general hybrid systems through the framework
of hybrid category theory; these systems are general but difficult to analyze. The
advantage of introducing these two concepts is that not only can they be related
through explicit constructions, but also through the more general framework of
morphisms in the category of hybrid systems. This relationship will be important
in understanding the stability of general hybrid systems.

First Quadrant systems. In order to understand the stability of general
hybrid systems, we must consider a class of hybrid systems analogous to the
objects of GasDyn; these are termed first quadrant hybrid systems. It is not
surprising that these would be chosen as the “canonical” hybrid systems with
which to understand the stability of Zeno equilibria as they already have been
used to derive sufficient conditions for the existence of Zeno behavior in [3].

A first quadrant hybrid system is a tuple:

HFQ = (Γ,D,G,R, F ),

where

– Γ = (Q,E) is an oriented cycle, with

Q = {1, . . . , k}, E = {e1 = (1, 2), e2 = (2, 3), . . . , ek = (k, 1)}.

– D = {Di}i∈Q, where for all i ∈ Q,

Di = (R+
0 )2 = {(x1, x2) ∈ R2 : x1 ≥ 0 and x2 ≥ 0}.

– G = {Ge}e∈E , where for all e ∈ E

Ge = {(x1, x2) ∈ R2 : x1 = 0 and x2 ≥ 0}.

– R = {Re}e∈E , where Re : Ge → (R+
0 )2 and for all e ∈ E there exists a

function re : R+
0 → R+

0 with

Re(0, x2) = (re(x2), 0).



– F = {fi}i∈Q, where fi is a Lipshitz vector field on (R+
0 )2.

Before discussing the stability properties of first quadrant hybrid systems,
we need to relate them to more general hybrid systems. This is accomplished
by introducing a categorical framework for hybrid systems. As outlined in the
introduction, a hybrid object over a category is a pair S : H → T. Since we
allow S to be any functor, the main component of the definition is the small
category H which must be an H-category; the special form of this small category
directly reflects its ability to describe “hybrid objects.” Therefore, in order to
define hybrid objects over a category, we must invest a rather sizable amount of
effort in understanding the definition and structure of H-categories.

H-cateogries. We start by defining a specific type of small category termed
an oriented H-category and denoted by H. This is a small category (cf. [11]) in
which every diagram has the form:5

• � • - • � • - • · · · • � • - •

That is, an H-category has as its basic atomic unit a diagram of the form:
• � • - •, and any other diagram in this category must be obtainable
by gluing such atomic units along the target of a morphism (and not the source).
In addition, we require the existence of an orientation on H. Before defining
such an orientation, some additional definitions are needed. Denote by Ob(H)
the objects of H, denote by Mor(H) the morphisms of H, and by Morid� (H) the
set of non-identity morphisms of H. For a morphism α : a→ b in H, its domain
(or source) is denoted by dom(α) = a and its codomain (or target) is denoted by
cod(α) = b. For H-categories, there are two sets of objects that are of particular
interest; these are subsets of the set Ob(H). The first of these is called the edge
set of H, is denoted by Ob(←·→)(H), and is defined to be

Ob(←·→)(H) = {a ∈ Ob(H) : a = dom(α) = dom(β),
α, β ∈ Morid� (H), α 6= β}.

The symbol Ob(←·→)( · ) is used because every object a ∈ Ob(←·→)(H) sits in a
diagram of the form:

cod(αa) = b � αa
dom(αa) = a = dom(βa)

βa - c = cod(βa)

called a bac-diagram. Note that giving all diagrams of this form (of which there
is one for each a ∈ Ob(←·→)(H)) gives all the objects in H, i.e., every object of
H is the target of αa or βa, or their source, for some a ∈ Ob(←·→)(H). More
specifically, we can define the vertex set of H by

Ob(→·←)(H) =
(
Ob(←·→)(H)

)c

where
(
Ob(←·→)(H)

)c is the complement of Ob(←·→)(H) in the set Ob(H).

5 where • denotes an arbitrary object in H and - denotes an arbitrary mor-
phism.



Oriented H-categories. We can orient an H-category by picking a specific
labeling of its morphisms. Specifically, we define an orientation of an H-category
H as a pair of maps (α, β) between sets:

Ob(←·→)(H)
α -

β
- Morid� (H)

such that for every a ∈ Ob(←·→)(H), there is a bac-diagram in H:

b �αa
a

βa- c. (2)

We can form the category of oriented H-categories: Hcat. A morphism be-
tween two oriented H-categories, H and H′ (with orientations (α, β) and (α′, β′),
respectively), is a functor F : H → H′ such that the following diagrams

Ob(←·→)(H)
F- Ob(←·→)(H′) Ob(←·→)(H)

F- Ob(←·→)(H′)

Morid� (H)

α
? F- Morid� (H′)

α′
?

Morid� (H)

β
? F- Morid� (H′)

β′
?

(3)

commute. This requirement implies that, if a ∈ Ob(←·→)(H) with corresponding
bac-diagram (2) in H, there is a corresponding bac-diagram:

F (b) �
F (αa) = α′F (a)

F (a)
F (βa) = β′F (a)- F (c)

where F (a) ∈ Ob(←·→)(H′).

From graphs to H-categories. To every oriented H-category, we can associate
(a possibly infinite) oriented graph, and vice versa. That is, we have functors
(see [12] for the explicit construction of these functors):

Γ : Grph −→ Hcat H : Hcat −→ Grph
Γ 7→ Γ (Γ ) := HΓ H 7→ H(H) := ΓH

where Grph is the category of oriented graphs. The functor Γ is, roughly speak-
ing, defined on every edge ei ∈ E by:

Γ

(
i

ei- j

)
= i �αei ei

βei- j.

The relationship between oriented H-categories and oriented graphs is made
more precise in the following theorem (again, see [12]).

Theorem 2. There is an isomorphism of categories,

Grph ∼= Hcat, (4)

where this isomorphism is given by the functor H : Hcat → Grph with inverse
Γ : Grph → Hcat.



Example 1. For the hybrid system HFQ, and by utilizing (4), we can associate
to the graph Γ a H-category HΓ . Both Γ and the corresponding H-category are
given in the following diagrams:

e1

ek e2

1
e1 - 2 1

�
α e 1

βek -
2

β
e
1 -

� αe2

k

ek-
3

e
2-

k

α
e

k -

3

�
β e

2

... Γ
...

... HΓ

...

i+ 2 i− 1 i+ 2 i− 1

i+ 1 �ei

�ei+
1

i
�e
i−

1

i+ 1 i

ei+1
β e

i+
1
-

αei+1
-

ei−1

�
α

e
i−

1

�
βei−1

ei

α e i
-

�
β

e
i

We now have the necessary framework in which to introduce hybrid objects
over a category.

Definition 2. Let T be a category. Then a hybrid object over T is a pair (H,S),
where H is an H-category and

S : H → T

is a functor (either covariant or contravariant). Given two hybrid objects, (H,S)
and (H′,S′), a morphism between these objects is a functor and a natural trans-
formation (F ,f) : (H,S) → (H′,S′) where F : H → H′ is a morphism in Hcat

and f : S
�−→ S′ ◦ F .

Hybrid Manifolds. An important example of a hybrid object is a hybrid
manifold, defined to be a functor M : HM → Man where HM is an H-category
and Man is the category of smooth manifolds; in this paper, we assume that for
every diagram (2), there is the following diagram:

M b
�Mαa

= iαa⊃ Ma

Mβa- M c

in Man, where Ma ⊆ M b and iαa
is the natural inclusion. If (HN ,N) is another

hybrid manifold, a morphism of hybrid manifolds is a pair (F ,f) : (HN ,N) →
(HM ,M) where F : HN → HM is a morphism in Hcat and f is a natural
transformation: f : N

�−→ M ◦ F .

Example 2. For HFQ, the “hybrid manifold” portion of this hybrid system cor-
responds to the tuple (Γ,D,G,R). To make this explicit, the hybrid manifold
associated to HFQ is given by the pair (HΓ ,M

HFQ) where MHFQ is the functor
defined on each bac-diagram in HΓ to be

MHFQ

(
i � αei ei

βei- i+ 1
)

= Di
� i

⊃ Gei

Rei- Di+1.



Hybrid Systems. A hybrid system is a tuple (HM ,M ,X), where (HM ,M)
is a hybrid manifold and X = {Xb}b∈Ob(→·←)(H) with Xb : M b → TM b a
Lipschitz vector field on M b. With this formulation of hybrid systems (it can
be verified that this definition is consistent with the standard one), we can form
the category of hybrid systems, HySys. The objects are hybrid systems and the
morphisms are pairs (F ,f) : (HN ,N ,Y ) → (HM ,M ,X), where (F ,f) is a
morphism from the hybrid manifold (HN ,N) to the hybrid manifold (HM ,M)
such that there is a commuting diagram for all b ∈ Ob(→·←)(HN )

TN b
Tf b- TMF (b)

N b

Y b
6

f b- MF (b)

XF (b)
6

That is, for all b ∈ Ob(→·←)(HN ), f b : (N b,Y b) → (MF (b),XF (b)) is a mor-
phism in Dyn.

Morphisms of hybrid systems are composed by composing the associated
functor and natural transformation, respectively.

Example 3. The categorical hybrid system associated to HFQ is given by

(HΓ ,M
HFQ ,XHFQ),

where (HΓ ,M
HFQ) is the hybrid manifold defined in the previous example and

XHFQ = {fi}i∈Ob(→·←)(HΓ )=Q.

Hybrid intervals. As with the continuous case discussed in Section 2, we need
to introduce a notion of intervals for hybrid systems. Let Λ = {0, 1, 2, . . .} ⊆ N
be a finite or infinite indexing set, from which we can associate a graph ΓΛ =
(QΛ, EΛ), where QΛ = Λ and EΛ is the set of pairs ηj+1 = (j, j + 1) such that
j, j + 1 ∈ Λ. From this graph we obtain an H-category HΓΛ

via (4); this implies
that every bac-diagram in this H-category must have the form:

j − 1 �αj
ηj = (j − 1, j)

βj - j, (5)

and so we denote by 0 the object of HΓΛ
corresponding to the vertex 0 ∈ QΛ = Λ.

Define Interval(Hcat) to be the subcategory of Hcat consisting of all H-categories
obtained from graphs of this form. A hybrid interval now can be defined as a
pair:

I : HI → Interval(Dyn),

where HI is an object of Interval(Hcat), and we assume that for every bac-
diagram in HI , there exist (switching times) τj−1, τj , τj+1 ∈ R ∪ {∞}, with
τj−1 ≤ τj ≤ τj+1 such that:

Ij−1 = [τj−1, τj ] �
Iαj

= ι
⊃ Iηj

= {τj} ⊂
Iβj

= ι
- Ij = [τj , τj+1] or [τj , τj+1).



We also suppose that I0 = [0, τ1] or [0, τ1).

Trajectories of hybrid systems. The importance of hybrid intervals is that,
like classical intervals, they can be used to define trajectories of hybrid systems
(which correspond to the classical notion of an execution for a hybrid system).
The interval category of HySys, denoted by Interval(HySys), is the full subcate-
gory of HySys with objects consisting of hybrid systems of the form (HI , I,d/dt)
where (HI , I) is a hybrid interval and d/dtj = d/dt for all j ∈ Λ = Ob(→·←)(HI).

Definition 3. A trajectory of a hybrid system (HM ,M ,X) is a morphism
(C, c) in HySys:

(C, c) : (HI , I,d/dt) → (HM ,M ,X),

where (HI , I,d/dt) is an object of Interval(HySys). In particular, this implies
that ċj(t) = XC(j)(cj(t)) for every object j ∈ Λ = Ob(→·←)(HI).

Note that the functor C corresponds to the “discrete” portion of the trajec-
tory, while the natural transformation c corresponds to the “continuous” portion.
The discrete initial condition is given by C(0) and the continuous initial con-
dition is given by c0(0) ∈ MC(0), i.e., the initial condition to the trajectory is
(c0(0),C(0)).

Example 4. To better understand the categorical formulation of trajectories, we
enumerate the consequences of Definition 3 for first quadrant hybrid systems.
Let

(C, c) : (HI , I,d/dt) → (HΓ ,M
HFQ ,XHFQ)

be a trajectory of the hybrid system (HΓ ,M
HFQ ,XHFQ). Since c is a natural

transformation, we have a commuting diagram:

Ij−1 = [τj−1, τj ] �
Iαj

= ι
⊃ Iηj

= {τj} ⊂
Iβj

= ι
- Ij = [τj , τj+1] or [τj , τj+1)

DC(j−1)

cj−1

?
� ι

⊃ GC(ηj)

cηj

? RC(βj) - DC(j)

cj

?

This in turn implies that a trajectory must satisfy the following conditions:

cj−1(τj) ∈ GC(ηj), RC(βj)(cj−1(τj)) = cj(τj),

which are the standard requirements on a trajectory.

We end this section by noting that, as with the continuous case, if (F ,f) :
(HN ,N ,Y ) → (HM ,M ,X) is a morphism of hybrid systems, and (C, c) :
(HI , I,d/dt) → (HN ,N ,Y ) is a trajectory of (HN ,N ,Y ), then

(F ◦C,f • c) : (HI , I,d/dt) → (HM ,M ,X)

is a trajectory of (HM ,M ,X).



4 Stability of Zeno Equilibria

The purpose of this section is to study the stability of a type of equilibria that
is unique to hybrid systems: Zeno equilibria. The uniqueness of these equilibria
necessitates a paradigm shift in the current notions of stability, i.e., we must
introduce a type of stability that is both local and global in nature and, therefore,
has no direct analogue in continuous and discrete systems. The main result of
this section is sufficient conditions for the stability of Zeno equilibria in first
quadrant hybrid systems.

It is important to note that we do not claim that Zeno equilibria are the most
general form of equilibria corresponding to Zeno behavior. We do claim that the
type of Zeno equilibria considered are general enough to cover a wide range of
interesting (and somewhat peculiar) behavior, while being specific enough to
allow for analysis.

Definition 4. Let (HM ,M ,X) be a hybrid system. A Zeno equilibria (HΓ
M ,z)

is a H-subcategory HΓ
M of HM obtained from a cycle Γ together with a set z =

{za}a∈Ob(HΓ
M

) such that

– za ∈ Ma for all a ∈ Ob(HΓ
M ),

– zb = Mγ(za) for all γ : a→ b in HΓ
M ,

– Xa(za) 6= 0 for all a ∈ Ob(HΓ
M ).

Another interpretation of Zeno equilibria. There is a more categorical
definition of a Zeno equilibria. Starting with the one point set ∗, we obtain a
hybrid manifold (HΓ

M ,4(∗)) where 4(∗) : HΓ
M → Man with 4 the diagonal

functor. Denoting by Inc : HΓ
M → HM the inclusion functor, a Zeno equilibria

is a morphism of hybrid manifolds:

(Inc,z) : (HΓ
M ,4(∗)) → (HM ,M)

such that Xa(za) 6= 0; in this case (and by slight abuse of notation) za(∗) := za.

Example 5. For the hybrid system HFQ, and since we are assuming the under-
lying graph to be a cycle, the conditions expressed in Definition 4 imply that a
set z = {z1, . . . ,zk} is a Zeno equilibria if for all i = 1, . . . , k, zi ∈ Gei

and

Rei−1 ◦ · · · ◦Re1 ◦Rek
◦ · · · ◦Rei

(zi) = zi. (6)

Because of the special structure of HFQ, (6) holds iff zi = 0 for all i. That is,
the only Zeno equilibria of HFQ is the singleton set z = {0}.

Induced hybrid subsystems. Let (HM ,M ,X) be a hybrid system, HΓ
M be

an H-subcategory of HM , and Inc : HΓ
M → HM be the inclusion functor. In this

case, there is a hybrid subsystem (HΓ
M ,MΓ ,XΓ ) of (HM ,M ,X) corresponding

to this inclusion, i.e., there is an inclusion in HySys:

(Inc, id) : (HΓ
M ,MΓ ,XΓ ) ↪→ (HM ,M ,X)

where id is the identity natural transformation.



Region of Stability

,→

Fig. 1. A graphical representation of the “local” nature of relatively globally asymp-
totically stable Zeno equilibria

Definition 5. A Zeno equilibria (HΓ
M ,z) of (HM ,M ,X) is globally asymptoti-

cally stable relative to (HΓ
M ,MΓ ,XΓ ) if the inclusion Inc : HΓ

M → HM satisfies:
for all b ∈ Ob(→·←)(HΓ

M ),

cod(αa1) = Inc(b) = cod(αa2) ⇒ a1 = a2,

and for every trajectory:

(C, c) : (HI , I,d/dt) → (HΓ
M ,MΓ ,XΓ ),

with Λ = N, and for any εC(j) there exists δC(i) such that:

1. If ‖ci(τi)− zC(i)‖ < δC(i) for i = 0, 1, . . . , k ∈ Q then

‖cj(t)− zC(j)‖ < εC(j)

with j ∈ Λ and t ∈ Ij = [τj , τj+1].
2. For all a ∈ Ob(→·←)(HΓ

M )

lim
j→∞

C(j)=a

cj(τj) = za, lim
j→∞

C(j)=a

cj(τj+1) = za.

We say that a Zeno equilibria (HΓ
M ,z) of (HM ,M ,X) is globally asymptoti-

cally stable if it is globally asymptotically stable relative to (HΓ
M ,MΓ ,XΓ ) and

(HM ,M ,X) = (HΓ
M ,MΓ ,XΓ ).

The definition of relative global asymptotic stability implicitly makes some
very subtle points. The first is that this type of stability is both local and global
in nature—hence the use of the words “global” and “relative” in the definition.
While for traditional dynamical systems this would seem contradictory, the com-
plexity of hybrid systems requires us to view stability in a much different light,
i.e., we must expand the paradigm for stability.



To better explain the mixed global and local nature of relatively globally
asymptotically stable Zeno equilibria, we note that the term “global” is used
because the hybrid subsystem (HΓ

M ,MΓ ,XΓ ) is globally stable to the Zeno
equilibria; this also motivates the use of the word “relative” as (HM ,M ,X) is
stable relative to a hybrid subsystem. Finally, the local nature of this form of
stability is in the discrete portion of the hybrid system, rather than the contin-
uous one. That is, the H-subcategory HΓ

M can be thought of as a neighborhood
inside the H-category (see Fig. 1, where the H-categories HΓ

M and HM are rep-
resented by graphs in order to make their orientations explicit). The condition
on the inclusion functor given in the definition is a condition that all edges (or
morphisms) are pointing into the neighborhood.

Definition 6. A trajectory of a hybrid system (HM ,M ,X):

(C, c) : (HI , I,d/dt) → (HM ,M ,X)

is Zeno if Λ = Ob(→·←)(HI) = N and

lim
j→∞

τj = τ∞

for a finite τ∞.

Zeno equilibria are intimately related to Zeno behavior for first quadrant
hybrid systems.

Proposition 1. If a first quadrant hybrid system HFQ is globally asymptotically
stable at the Zeno equilibria z = {0}, then every trajectory with Λ = N is Zeno.

Conditions for the stability of HFQ. In order to give conditions on the sta-
bility of Zeno equilibria, it is necessary to give conditions on both the continuous
and discrete portions of the hybrid system. That is, the conditions on stability
will relate to three aspects of the behavior of the hybrid system: the continuous
portion, the existence of events and the discrete portion.

Continuous conditions: For all i ∈ Q,
(I) fi(x) 6= 0 for all x ∈ (R+

0 )2.
(II) There exists a function vi : (R+

0 )2 → R+
0 of class K∞ along each

ray emanating from the origin in Di and dvi(x)fi(x) ≤ 0 for all
x ∈ (R+

0 )2.
Event conditions: For all i ∈ Q,
(III) (fi(x1, 0))2 ≥ 0.

Now consider the map ψi defined by requiring that:

ψi(x) = y if (0, y) = v−1
i (vi(x, 0)) ∩ {x1 = 0 and x2 ≥ 0}

which is well-defined by condition (II). Using ψi we introduce the function Pi :
R+

0 → R+
0 given by:

Pi(x) = rei−1 ◦ ψi−1 ◦ · · · ◦ re1 ◦ ψe1 ◦ rek
◦ ψek

◦ · · · ◦ re1 ◦ ψ1(x).

The map Pi can be thought of as both a Poincaré map or a discrete Lyapunov
function depending on the perspective taken. The final conditions are given by:



Discrete conditions: For all i ∈ Q and e ∈ E,
(IV) re is order preserving.
(V) There exists a class K∞ function α such that Pi(x)−x ≤ −α(x).

Theorem 3. A first quadrant hybrid system HFQ is globally asymptotically sta-
ble at the Zeno equilibria z = {0} if conditions (I)− (V) hold.

Corollary 1. If HFQ is a first quadrant hybrid system satisfying conditions
(I) − (V), then there exist trajectories with Λ = N and every such trajectory is
Zeno.

Note that the condition that Λ = N in Proposition 1 and Corollary 1 is due
to the fact that there always are trajectories with finite indexing set Λ, e.g., any
trajectory with Λ = N has “sub-trajectories” with finite indexing sets. These
trajectories are trivially non-Zeno, so we necessarily rule them out.

5 Hybrid Stability: A Categorical Approach

Building upon the results of the previous section, we are able to derive sufficient
conditions for the stability of general hybrid systems. Mirroring the continuous
case, we simply find a morphism to the “simplest stable object,” i.e., a first
quadrant hybrid system.

Theorem 4. A Zeno equilibria (HΓ ,z) of (HM ,M ,X) is globally asymptoti-
cally stable relative to (HΓ ,M

Γ ,XΓ ) if there exists a morphism of hybrid sys-
tems:

(HΓ ,M
Γ ,XΓ )

(V ,v)- (HSFQ,MSFQ,XSFQ)

where (HSFQ,MSFQ,XSFQ) is the object of HySys corresponding to a stable
first quadrant hybrid system, and for all a ∈ Ob(HΓ ) the following holds:

1. va(x) = 0 implies x = za,
2. va is a proper (radially unbounded) function.

Furthermore, there exist trajectories

(HI , I,d/dt)
(C,c)- (HΓ ,M

Γ ,XΓ )

with Λ = Ob(→·←)(HI) = N and every such trajectory is Zeno.

Example 6. The bouncing ball is the classical example of a hybrid system that
is Zeno (cf. [6]). Although it is possible to show that the bouncing ball is Zeno
by explicitly solving for the vector fields, we will demonstrate that it is Zeno by
applying our results on the stability of Zeno equilibria. In order to do so, we can
view the classical model of a bouncing ball as a first quadrant hybrid system by
adding an additional discrete mode; we then will apply Theorem 3.
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Fig. 2. (Left) Vector fields for the modified bouncing ball hybrid system. (Right) Level
sets of the Lyapunov functions on each domain.

The classical hybrid model for the bouncing ball has ({q}, {e = (q, q)}) as its
graph. The domain is given by the set of positive positions:

Dq = {(x1, x2) ∈ R2 : x1 ≥ 0}

and the guard is given by the ground together with the condition that the velocity
is not positive:

Ge = {(x1, x2) ∈ R2 : x1 = 0 and x2 ≤ 0}.

The equations of motion for the bouncing ball are given by the Hamiltonian

H(x1, x2) =
1
2
x2

2 +mgx1,

where x1 is the position of the ball and x2 is its velocity; here we have assumed
that the mass of the ball is m = 1 for simplicity. This can be used (see [2]) to
define both the vector field on Dq and the reset map Re : Ge → Dq:

fq(x1, x2) =
(
x2

−g

)
, Re(x1, x2) =

(
x1

−ex2

)
,

where 0 ≤ e ≤ 1 is the coefficient of restitution.
The bouncing ball can be viewed as a first quadrant hybrid system HB =

(Γ,D,G,R, F ) by dividing the original domain into two components, and chang-
ing the vector fields accordingly. We first define

Γ = ({1, 2}, {e1 = (1, 2), e2 = (2, 1)}).

Since it is a first quadrant hybrid system, the domains and guards are given as
in Section 3. The domain D1 is obtained from the top half of the original domain
for the bouncing ball by reflecting it around the line x1 = x2. The domain D2

is obtained from the bottom half of the original domain by reflecting it around
the line x2 = 0. This implies that the reset maps are given by:

Re1(x1, x2) = (x2, x1), Re2(x1, x2) = (ex2, x1).



Finally, the transformed vector fields are given by

f1(x1, x2) =
(
−g
x1

)
, f2(x1, x2) =

(
−x2

g

)
as pictured in Fig. 2.

To verify that HB is globally asymptotically stable at the Zeno point z = {0},
and hence Zeno by Proposition 1, we need only show that conditions (I)−(V) are
satisfied. It is easy to see that conditions (I) and (III) are satisfied. Since re1(x) =
x and re2(x) = ex, condition (IV) holds. We use the original Hamiltonian,
suitably transformed, for the Lyapunov type functions given in (II), i.e., we
pick:

v1(x1, x2) =
1
2
x2

1 + gx2, v2(x1, x2) =
1
2
x2

2 + gx1.

It is easy to see that these functions meet the specifications given in (II); some
of the level sets of these functions can be seen in Fig. 2. Note that the level
sets on one domain increase, but this is compensated for by the decreasing level
sets on the other domain. Finally, condition (V) is satisfied when e < 1 since
P1(x) = P2(x) = ex.
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