
Beyond Zeno: Get on with it! ?

Haiyang Zheng, Edward A. Lee, and Aaron D. Ames

Center for Hybrid and Embedded Software Systems (CHESS)
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, 94720, U.S.A.
hyzheng@eecs.berkeley.edu, eal@eecs.berkeley.edu,

adames@eecs.berkeley.edu

Abstract. In this paper we propose a technique to extend the sim-
ulation of a Zeno hybrid system beyond its Zeno time point. A Zeno
hybrid system model is a hybrid system with an execution that takes
an infinite number of discrete transitions during a finite time interval.
We argue that the presence of Zeno behavior indicates that the hybrid
system model is incomplete by considering some classical Zeno models
that incompletely describe the dynamics of the system being modeled.
This motivates the systematic development of a method for completing
hybrid system models through the introduction of new post-Zeno states,
where the completed hybrid system transitions to these post-Zeno states
at the Zeno time point. In practice, simulating a Zeno hybrid system
is challenging in that simulation effectively halts near the Zeno time
point. Moreover, due to unavoidable numerical errors, it is not practi-
cal to exactly simulate a Zeno hybrid system. Therefore, we propose a
method for constructing approximations of Zeno models by leveraging
the completed hybrid system model. Using these approximation, we can
simulate a Zeno hybrid system model beyond its Zeno point and reveal
the complete dynamics of the system being modeled.

1 Introduction

The dynamics of physical systems at the macro scale level (not considering effects
at the quantum level) are continuous in general. Even in a digital computer that
performs computation in a discrete fashion, its fundamental computing elements
(transistors) have continuous dynamics. Therefore, it is a natural choice to model
the dynamics of physical systems with ordinary differential equations (ODEs)
or partial differential equations (PDEs). However, modeling a physical system
with only continuous dynamics may generate a stiff model, because the system
dynamics might have several time scales of different magnitudes. Simulating such

? This work was supported in part by the Center for Hybrid and Embedded Software
Systems (CHESS) at UC Berkeley, which receives support from the National Science
Foundation (NSF award #CCR-0225610), the State of California Micro Program,
and the following companies: Agilent, DGIST, General Motors, Hewlett Packard,
Infineon, Microsoft, and Toyota.

stiff models in general is difficult in that it takes a lot of computation time to
get a reasonably accurate simulation result.

Hybrid system modeling offers one way to resolve the above problem by in-
troducing abstractions on dynamics. In particular, slow dynamics are modeled
as piecewise constant while fast dynamics are modeled as instantaneous changes,
i.e., discretely. In this way, the remaining dynamics will have time scales of about
the same magnitude and the efficiency of simulation, especially the simulation
speed, is greatly improved. However, special attention must be devoted to hybrid
system models because Zeno hybrid system models may arise from the abstrac-
tions.

An execution of a Zeno hybrid system has an infinite number of discrete
transitions during a finite time interval. The limit of the set of switching time
points of a Zeno execution is called the Zeno time. The states of the model at
the Zeno time point are called the Zeno states. Because each discrete transition
takes a non-zero and finite computation time, the simulation of a Zeno hybrid
system inevitably halts near the Zeno time point.

Some researchers have treated Zeno hybrid system models as over abstrac-
tions of the physical systems and tried to rule them out by developing theories to
detect Zeno models [1,2,3]. However, because of the intrinsic complexity of inter-
actions between continuous and discrete dynamics of hybrid systems, a general
theory, which can give the sufficient and necessary conditions for the existence
of Zeno behaviors of hybrid system models with nontrivial dynamics, is still not
available (and does not appear to be anywhere on the horizon).

Some researchers have tried to extend the simulation of Zeno systems be-
yond the Zeno point by regularizing the original system [4,5] or by using a
sliding mode simulation algorithm [6]. The regularization method requires mod-
ification of the model structure by introducing some lower bound of the interval
between consecutive discrete transitions. However, the newly introduced lower
bound invalidates the abstractions and assumptions of the instantaneity of dis-
crete transitions. Consequently, the simulation performance might suffer from
the resulting stiff models. Furthermore, different behaviors after the Zeno time
may be generated depending on the choices of regularizations. This may not
be desirable because the physical system being modeled typically has a unique
behavior. The sliding mode algorithm tends to be more promising in simulation
efficiency and uniqueness of behaviors, but it only applies to special classes of
hybrid system models.

A new technique to extend simulations beyond the Zeno time point is pre-
sented in [7], where a special class of hybrid systems called Lagrangian hybrid
systems are considered. Rather than using regularizations or a sliding mode al-
gorithm, the dynamics of a Lagrangian hybrid system before and after the Zeno
time point are derived under different constraints. In this paper, we extend the
results in [7] to more general hybrid system models.

Before we get into the details of the algorithm on extending simulation be-
yond Zeno time points, we would like to investigate some classical Zeno hybrid
system models including the bouncing ball model [8] and the water tank model

22 : xex ⋅−=
00 21 ≤∧= xx

01 ≥x

gx

xx

−=
=

2

21

&

&

1q 1e

22 : xex ⋅−=
00 21 ≤∧= xx

01 ≥x

gx

xx

−=
=

2

21

&

&

1q 1e

Fig. 1. A hybrid system model of a
simple bouncing ball.

22 : xex ⋅−=
00 21 <∧= xx

01 ≥x

02

21

=
=

x

xx

&

&

00 21 =∧= xx
gx

xx

−=
=

2

21

&

&

1q

1e
2q

2e

22 : xex ⋅−=
00 21 <∧= xx

01 ≥x

02

21

=
=

x

xx

&

&

00 21 =∧= xx
gx

xx

−=
=

2

21

&

&

1q

1e
2q

2e

Fig. 2. A more complete hybrid sys-
tem model of the bouncing ball.

[4], and show that they do not completely describe the behavior of the original
physical systems.

1.1 Bouncing Ball

Considering a ball bouncing on the ground, where bounces happen instanta-
neously with a restitution coefficient e ∈ [0, 1]. A hybrid system model for this
system is shown in Fig. 1. This model has only one state q1 associated with a
second-order differential equation modeling the continuous dynamics, where the
variables x1 and x2 represent the ball’s position and velocity respectively, and
ẋ1 = x2, ẋ2 = −g. From this one state, there is a transition e1 that goes back to
itself. The transition has a guard expression, x1 = 0 ∧ x2 ≤ 0, and a reset map,
x2 := −e · x2.1

Note that the above guard expression declares that a bounce happens when
the ball touches the ground and its velocity x2 is non-positive, meaning either
it is still or it is moving towards the ground. However, further analysis of the
model reveals that when the following condition holds, x1 = 0∧x2 = 0, meaning
that the ball is at reset on the ground, the supporting force from the ground
cancels out the gravity force. Therefore, the acceleration of the ball should be 0
rather than the acceleration of gravity. Under this circumstance, the ball in fact
has a rather different dynamics given by ẋ1 = x2, ẋ2 = 0.

This suggests that new dynamics might be necessary to describe the model’s
behavior. Consequently, the complete description of the dynamics of the bounc-
ing ball system should include both an extra state associated with the new
dynamics and a transition that drives the model into that state. One design of
such hybrid system models is shown in Fig. 2, where q2 and e2 are the new state
and transition.

1.2 Water Tank

The second model that we will consider is the water tank system consisting of
two tanks. We use x1 and x2 for the water levels, r1 and r2 for the critical water
level thresholds, and v1 and v2 for the constant flow of water out of the tanks.
There is a constant input flow of water w, which goes through a pipe and into
1 Identity reset maps, such as x1 := x1, are not explicitly shown.

0

0

2

1

≥
≥

x

x

22

11

vwx

vx

−=
−=

&

&

22 rx ≤

11 rx ≤

22

11

vx

vwx

−=
−=

&

&

1q
1e

2q2e

0

0

2

1

≥
≥

x

x

22

11

vwx

vx

−=
−=

&

&

22 rx ≤

11 rx ≤

22

11

vx

vwx

−=
−=

&

&

1q
1e

2q2e

Fig. 3. A hybrid system model of a
water tank system.

0

0

2

1

≥
≥

x

x

22

11

vwx

vx

−=
−=

&

&2211 rxrx >∧≤

22

11

2

2

vwx

vwx

−=
−=

&

&

2211 rxrx ≤∧≤
2211 rxrx ≤∧≤

1122 rxrx >∧≤22

11

vx

vwx

−=
−=

&

&

1q
1e

2q2e

3q
3e

4e

0

0

2

1

≥
≥

x

x

22

11

vwx

vx

−=
−=

&

&2211 rxrx >∧≤

22

11

2

2

vwx

vwx

−=
−=

&

&

2211 rxrx ≤∧≤
2211 rxrx ≤∧≤

1122 rxrx >∧≤22

11

vx

vwx

−=
−=

&

&

1q
1e

2q2e

3q
3e

4e

Fig. 4. A more complete hybrid system
model of the water tank system.

either tank at any particular time point. We assume that (v1 +v2) > w, meaning
that the sum of the output flow in both tanks is greater than the input flow.
Therefore, the water levels of both tanks keep dropping. If the water level of any
tank drops below its critical threshold, the input water gets delivered into that
tank. The process of switching the pipe from one tank to the other takes zero
time.

One hybrid system model that describes such system is shown in Fig. 3. This
model has two states q1 and q2 corresponding to the different dynamics of the
system when the input water flows into either of the two tanks. Transitions e1

and e2 specify switching conditions between states.
Note that the guard expressions between those two states are not mutually

exclusive, meaning that the guards x1 ≤ r1 and x2 ≤ r2 may be enabled at the
same time. A trivial example will be that the two tanks have initial water levels
x1 = r1 and x2 = r2. If the two tanks have initial water levels x1 > r1 and
x2 > r2, then the water levels of both tanks will drop and the water pipe will
switch between the two tanks. As more and more water flows out of tanks, we
will see that the frequency of the pipe switching becomes higher and higher. In
the limit, when this frequency reaches infinity, both guards become enabled at
the same time.

When both guards are enabled, the water tank system will have a different
dynamics. Recall the assumption that the switching speed of the water pipe is
infinitely fast, the pipe should inject water into both tanks at the same time.
In other words, there are virtually two identical pipes injecting water into both
tanks. Also note that the input water flow is a constant and the pipe cannot
hold water, therefore one possible scenario will be that each tank gets half of
the input water. Therefore, at this time point, the whole system will have a
rather different dynamics given by

ẋ1 = w/2− v1, ẋ2 = w/2− v2. (1)

We introduce a new state associated with the above dynamics and complete
the transitions going from the existing states to the newly added state. The new

design of the complete hybrid system model for the water tank system is shown in
Fig. 4, where q3 is the new state, e3 and e4 are the newly added transitions. Note
that for simplicity we allow the water levels to have negative values. Otherwise,
we will need some other discrete states to show that once a tank is empty, it is
always empty.

The hybrid system model in Fig. 4 is similar to the temporal regularization
results proposed in [4]. One of the key differences is that the temporal regular-
ization solution requires the process of switching pipe to take some positive time
ε. The amount of this ε affects the resulting behaviors. In fact, when ε goes to 0,
the temporal regularization result is the same as what we have derived in (1).

In the next section, we will propose a systematical way to complete the spec-
ification of hybrid system models. In particular, we will discuss how to introduce
new states, to modify the existing transitions, and to construct new transitions
to these new states for model behaviors before and after potential Zeno time
points. In Sect. 3, we will develop a feasible simulation algorithm to approx-
imate the exact behaviors of Zeno hybrid system models. Conclusions will be
given in Sect. 4.

2 Completing Hybrid System Models

The purpose of this section is to introduce an algorithm for completing hybrid
system models with the goal of carrying executions past the Zeno point. This
algorithm can be thought of as a combination of the currently known conditions
for the existence (or nonexistence) of Zeno behavior in hybrid systems. Of course,
the characterization of Zeno behavior in the literature is by no means complete,
so we cannot claim that the procedure outlined here is the only way to complete a
hybrid system, nor that the resulting hybrid system is the canonical completed
hybrid system. We only claim that, given the current understanding of Zeno
behavior, this method provides a reasonably satisfying method for completing
hybrid systems. We dedicate the latter half of this section to examples, where
we carry out the completion process.

2.1 Hybrid System Completion

Define a hybrid system as a tuple,

H = (Γ,D, G,R, F),

where

– Γ = (Q,E) is a finite oriented graph, where Q represents the set of discrete
states and E represents the set of edges connecting these states. There are
two maps s : E → Q and t : E → Q, which are the source and target maps
respectively. That is s(e) is the source of the edge e and t(e) is its target.

– D = {Dq ⊆ Rn | q ∈ Q} is a set of domains, one for each state q ∈ Q.
While the hybrid system is in state q, the dynamics of the hybrid system is
a trajectory in Dq.

– G = {Ge ⊆ Ds(e) | e ∈ E} is a set of guards, where Ge is a set associated with
the edge e and determines the switching behavior of the hybrid system at
state s(e). When the trajectory intersects with the guard set Ge, a transition
is triggered and the discrete state of the hybrid system changes to t(e).
Gq =

⋃
s(e)=q Ge is the union of the guards associated with the outgoing

edges from the same state q. We assume that Gq is closed, i.e., that every
Cauchy sequence converges to an element in Gq.

– R = {Re : Ge → Dt(e) | e ∈ E} is a set of reset maps. We write the image of
Re as Re(Ge) ⊆ Dt(e). These reset maps specify the initial continuous states
of trajectories in the target discrete states.

– F = {fq : Dq → Rn | q ∈ Q} is a set of vector fields, which specify the
dynamics of the hybrid system when it is in a discrete state q. We assume
fq is Lipschitz when restricted to Dq.

In this paper, we will not explicitly define hybrid system behavior and Zeno
behavior, as these definitions are well-known and can be found in a number of
references (cf. [1,2,4,9]).

The goal of this section is to complete a hybrid system H , i.e., we want to
form a new hybrid system H in which executions are carried beyond the Zeno
point. We begin by constructing this system theoretically and then discuss how
to implement it practically. The theoretical completion of a hybrid system is
carried out utilizing the following process:

– Augment the graph Γ of H , based on the existence of higher order cycles,
to include post-Zeno states, and edges to these post-Zeno states.

– Specify the domains of the post-Zeno states.
– Specify the guards on the edges to the post-Zeno states.
– Specify the vector fields on the post-Zeno states, based on the vector fields

on the pre-Zeno states.

Before carrying out this process, it is necessary to introduce the notion of
higher order cycles in Γ . We call a finite string consisting of states and edges in
Γ a finite path,

q1
e1−→ q2

e2−→ q3
e3−→ · · · ek−1−→ qk,

with ei ∈ E and qi ∈ Q, s.t., s(ei) = qi and t(ei) = qi+1. We denote such a path
by 〈q1; e1, e2, . . . , ek−1; qk〉.

For simplicity, we only consider paths with distinct edges. We could have
considered paths with repeated edges, but that will result in an unbounded
number of paths, each of which is arbitrarily long. This makes the problem
intractable. The number and length of paths with distinct edges are finite. In
the worst case scenario, the number of paths is |Q| 2 |E|, where |Q| and |E| are
the number of states and edges.

Although we only consider paths with distinct edges, we do not require a
path to contain distinct states. In particular, if the starting state is the same
as the ending state, such as 〈q1; e1, e2, . . . , ek−1; q1〉, we call such a path a finite

cyclic path. The set of all finite cyclic paths is called the higher order cycles in
Γ and denoted by C. Formally,

C = {〈q; e1, e2, . . . , ek−1; q〉 | ∀i, j, i 6= j ⇒ ei 6= ej , ei, ej ∈ E, q ∈ Q}. (2)

To ease future discussion, we define two operators, πQ and πE , on a cyclic
path c ∈ C, where πQ(c) gives the starting and ending state of the path and
πE(c) gives the first edge appearing in the path. When applied to a path in (2),
πQ(c) = q and πE(c) = e1.

For a cyclic path c ∈ C, where πQ(c) = q and πE(c) = e1, we define the
following map R∗

c : Ge1 → Dq, where Ge1 ⊆ Dq, by

R∗
c = R∗

〈q;e1,e2,...,ek−1;q〉 = Rek−1 ◦Rek−2 ◦ · · · ◦Re2 ◦Re1 .

R∗
c is the composition of the reset maps along the path c. We write the image of

R∗
c as R∗

c(Ge1) ⊆ Dq.
For a cyclic path c ∈ C, where πE(c) = e1, let

Zc = Ge1 ∩R∗
c(Ge1), (3)

then,
R∗

c(z) = z, ∀z ∈ Zc. (4)

Equation (4) states that if a trajectory intersects with the guard set Ge1 at
an element z ∈ Zc, then after a series of reset maps, R∗

c , the initial continuous
state of the new trajectory is again z. Since transitions happen instantaneously,
there will be an infinite number of transitions happening at the same time point.
Therefore, the existence of a nonempty set Zc indicates the possible existence of
Zeno equilibria (cf. [1]). This motivates the construction of the completed hybrid
system based on a subset of cyclic paths, C ′ = {c ∈ C | Zc 6= ∅}.

For a hybrid system H , define the corresponding completed hybrid system
H by

H = (Γ , D,G, R, F),

where

– Γ = (Q,E), where Γ has more discrete states and edges than Γ . The set of
extra states is Q′ = Q\Q, where Q′ is called the set of post-Zeno states. The
set of extra edges is E′ = E \ E. We pick the extra states and edges to be
in bijective correspondence with Q′, i.e., there exist bijections g : Q′ → C ′

and h : E′ → C ′. Consequently, ∀c ∈ C ′, there always exist a unique q ∈ Q′

and a unique e ∈ E′.
We define the source and target maps, s : E → Q and t : E → Q for e ∈ E
by

s(e) =
{

s(e) if e ∈ E
πQ(h(e)) if e ∈ E′ , and t(e) =

{
t(e) if e ∈ E

g−1(h(e)) if e ∈ E′ .

Intuitively, for each cyclic path c ∈ C ′ found in Γ , we can find a new discrete
state q = g−1(c) ∈ Q′ and a new edge e = h−1(c) ∈ E′ that goes from πQ(c)
to q in Γ .

– Define D = D ∪ D′, where D′ is the set of domains of post-Zeno states,
defined as D′ = {D′

q ⊆ Rn | q ∈ Q′}. For each c ∈ C ′, D′
q is defined by

D′
q = Zc, where q = g−1(c) ∈ Q′. (5)

Note that D′
q is not only the domain for post-Zeno state q but also the

guard set that triggers the transition from the pre-Zeno state πQ(c) to the
post-Zeno state q.

– In order to define G, we first modify the guard Ge in G by subtracting Zc

from Ge, where c ∈ C ′ with πQ(c) = s(e). Define, for all e ∈ E,

G̃e = Ge\
⋃

c∈C′ s.t. πQ(c)=s(e)

Zc, (6)

and define, for all e ∈ E′,

G′
e = D′

q, where q = t(e). (7)

Then the complete definition of G is G = {G̃e | e ∈ E} ∪ {G′
e | e ∈ E′}.

– R = {Re : G̃e → Dt(e) | e ∈ E} ∪ {R′
e : G′

e → Dt(e) | e ∈ E′}, where the
reset map R′

e is the identity map.
– F = F ∪ {f ′

q : D′
q → Rn | q ∈ Q′}, where f ′

q is the vector field on D′
q. This

vector field may be application-dependent, but in some circumstances, it can
be obtained from the vector field fq′ on Dq′ , where q′ = πQ(g(q)) ∈ Q.

Upon inspection of the definition of the completed hybrid system, it is evident
that we have explicitly given a method for computing every part of this system
except for the vector fields on the post-Zeno states. We do not claim to have
an explicit method for generally computing f ′

q, because this would depend on
the constraints imposed by D′

q which we do not assume are of any specific form.
However, in some special cases, it is possible to find such a vector field. In the
next subsection, we will demonstrate how to carry out the process of completing
hybrid systems by revisting the examples discussed in Sect. 1.

2.2 Examples

Example 1: Bouncing Ball. We first revisit the bouncing ball example shown
in Fig. 1. Write this example hybrid system as a tuple, H = ((Q, E), D, G,R, F).
We have the discrete state set Q = {q1}, the edge set E = {e1}, the set of
guards G = {Ge1}, where Ge1 = {(x1, x2) ∈ R2 | x1 = 0 ∧ x2 ≤ 0}, and
the set of the reset maps R = {Re1}, where Re1 is defined by Re1(x1, x2) =
(x1,−e · x2), ∀(x1, x2) ∈ Ge1 .

There is only one element, c = 〈q1; e1; q1〉, in the set C of cyclic paths. For
path c, the composition of reset maps along c is R∗

c = Re1 and πE(c) = e1.
Evaluating (3) with the guard Ge1 , we get

Zc = Ge1 ∩Re1(Ge1)
= {(x1, x2) | x1 = 0 ∧ x2 ≤ 0} ∩ {(x1, x2) | x1 = 0 ∧ x2 ≥ 0}
= {(x1, x2) | x1 = 0 ∧ x2 = 0}
= {(0, 0)}.

Since Zc is nonempty, we introduce a new state q2 and a new edge e2 such
that Q = {q1, q2} and E = {e1, e2}. The source and target maps are

s(e) = q1 , ∀e ∈ E , and t(e) =
{

q1 if e = e1

q2 if e = e2
.

The domain for discrete state q2 is D′
q2

= Zc. Then D = D ∪ {D′
q2
}. Since

the set D′
q2

only contains one element, the dynamics (vector fields) of the hybrid
system is trivial, where ẋ1(t) = 0, ẋ2(t) = 0. This simply means that the ball
cannot move at all, which is exactly the same as what we got in the introduction.

We must point out that the domain for a post-Zeno state may contain more
than one element. In this case, the dynamics in general cannot be computed
without a model designer’s expertise. However, in some special cases such as
mechanical systems, the vector fields describe the equations of motion for these
systems. If in addition, the guards are derived from unilateral constraints on
the configuration space, then the vector fields on the post-Zeno states can be
obtained from the vector fields on the pre-Zeno states via holonomic constraints.
In fact, the vector fields on the post-Zeno state of the above example can be
obtained from a hybrid Lagrangian [7]. A detailed explanation of the process for
computing vector fields and more examples can be found in [7].

Note that D′
q2

is also the guard set of e2 that specifies the switching condition
from q1 to q2, meaning G′

e2
= {(x1, x2) ∈ R2 | x1 = 0 ∧ x2 = 0}. Following (6),

we get a modified G̃e1 = {(x1, x2) ∈ R2 | x1 = 0 ∧ x2 < 0}. The set of these two
guard sets gives G = {G̃e1 , G

′
e2
}.

Finally, R = {Re1 , R
′
e2
}, where R′

e2
is just the identity map.

In summary we get the completed hybrid system H = ((Q, E), D,G, R, F),
which is the same as the model shown in Fig. 2.

Example 2: Water Tank. Now let us revisit the water tank example shown in
Fig. 3. Write this example hybrid system as a tuple, H = ((Q, E), D, G,R, F).
We have the discrete state set Q = {q1, q2}, the edge set E = {e1, e2}, the set
of guards G = {Ge1 , Ge2}, where Ge1 = {(x1, x2) ∈ R2 | x2 ≤ r2} and Ge2 =
{(x1, x2) ∈ R2 | x1 ≤ r1}, and the set of the reset maps R = {Re1 , Re2}, where
both reset maps are identity maps.

There are two elements, c1 = 〈q1; e1, e2; q1〉 and c2 = 〈q2; e2, e1; q2〉, in the set
C that contains cyclic paths. For path c1, the composition of reset maps along
c1 is R∗

c1
= Re2 ◦ Re1 and πE(c1) = e1. Evaluating (3) with the guard Ge1 , we

get

Zc1 = Ge1 ∩Re2(Re1(Ge1))
= Ge1 ∩Ge2

= {(x1, x2) | x2 ≤ r2} ∩ {(x1, x2) | x1 ≤ r1}
= {(x1, x2) | x1 ≤ r1 ∧ x2 ≤ r2}.

Similarly, for path c2, we get Zc2 = {(x1, x2) | x1 ≤ r1 ∧ x2 ≤ r2}, which is the
same as Zc1 .

Since both Zc1 and Zc2 are nonempty, we introduce two new states q3 and q4

and two new edges e3 and e4 such that Q = {q1, q2, q3, q4} and E = {e1, e2, e3, e4}.
The source and target maps are

s(e) =
{

q1 if e = e1 ∨ e = e3

q2 if e = e2 ∨ e = e4
, and t(e) =

q2 if e = e1

q1 if e = e2

q3 if e = e3

q4 if e = e4

.

The domain for discrete state q3 is D′
q3

= Zc1 , and the domain for discrete
state q4 is D′

q4
= Zc2 . Then D = D ∪ {D′

q3
, D′

q4
}.

As we pointed out earlier in the previous example, in order to derive the
dynamics for post-Zeno states, a careful analysis has to be performed by model
designers, and the resulting dynamics may not be unique. For example, one might
think that 3/4 of the input flow goes into the first tank and the rest goes into the
second tank. This dynamics is different from what we had in the introduction
section. We do not (in fact, we cannot) determine which result is better.

Note that D′
q3

is also the guard set of e3 that specifies the switching condition
from q1 to q3, meaning G′

e3
= {(x1, x2) ∈ R2 | x1 ≤ r1 ∧ x2 ≤ r2}. Following

(6), we get a modified G̃e1 = {(x1, x2) ∈ R2 | x1 ≤ r1 ∧ x2 > r2}. Similarly,
we get G′

e4
= {(x1, x2) ∈ R2 | x1 ≤ r1 ∧ x2 ≤ r2}, and a modified G̃e2 =

{(x1, x2) ∈ R2 | x2 ≤ r2 ∧ x1 > r1}. The set of these two guard sets gives
G = {G̃e1 , G̃e2 , G

′
e3

, G′
e4
}.

Finally, R = {Re1 , Re2 , R
′
e3

, R′
e4
}, where all reset maps are identity maps.

In summary we get the completed hybrid system H = ((Q, E), D,G, R, F),
which is slightly different from the model shown in Fig. 4 in that H contains 4
discrete states. However, if we choose the same dynamics such as (1) for discrete
states q3 and q4, then q3 and q4 are the same. Thus we get a model with the
same dynamics as that of the model in Fig. 4.

3 Approximate Simulation

In [10], we proposed an operational semantics for simulating hybrid system mod-
els. The key idea of the operational semantics is to treat a complete simulation as
a sequence of unit executions, where a unit execution consists of two phases. The
discrete phase of execution handles all discrete events at the same time point, and
the continuous phase resolves the continuum between two consecutive discrete
events.

When simulating a Zeno hybrid system model, we meet more challenging
practical issues. The first difficulty is that before the Zeno time point, there
will be an infinite number of discrete transitions (events). A discrete phase of
execution needs to be performed for each time point when a discrete event occurs,
which takes a non-zero time. So it is impossible to handle all discrete transitions
in a finite time interval. In other words, the simulation gets stuck near the Zeno
time point. The second difficulty is caused by numerical errors, which make it

impractical to get an exact simulation. We will first elaborate on the second
issue, and then we will come back to the first issue in subsection 3.3.

3.1 Numerical Errors

There are two sources of numerical errors: round-off error and truncation error2.
Round-off error arises from using a finite number of bits in a computer to rep-
resent a real value. We denote this kind of difference as η. Then we can say that
each integration operation will incur a round-off error of order η, denoted as
O(η). Round-off error accumulates. Suppose we integrate with a fixed step-size
solver with a integration step size as h. In order to simulate over a unit time
interval, we need h−1 integration steps, then the total round-off error is O(η/h).
Clearly, the bigger the step size, the fewer integration steps, the smaller the total
round-off error. Similar results can be drawn for variable step-size solvers.

Truncation error comes from the integration algorithms used by practical
ODE solvers. For example, an nth-order explicit Runge-Kutta method, which is
derived to match the first n+1 terms of Taylor’s expansion, has a local truncation
error of O(hn+1) and an accumulated truncation error of O(hn). Note that both
truncation errors decrease as h decreases. Ideally we will get no truncation errors
as h → 0.

The total numerical error ε for an ODE solver using an nth-order explicit
Runge-Kutta method is the sum of the round-off error and truncation error,

ε ∼ η/h + hn. (8)

We can see that with a big integration step size h, the total error is dominated
by truncation error, whereas round-off error dominates with a small step size.
Therefore, although it is desirable to choose a small step size to reduce truncation
error, the accuracy of a calculation result may not be increased due to the
accumulation of round-off error. If we take the derivative of (8) with respect to
h, then we get that when h ∼ η1/(n+1) the total error ε reaches its minimum
O(ηn/(n+1)) . Therefore, in practice, we need to set a lower bound for both
the integration step size and error tolerance (or value resolution) of integration
results. We denote them as h0 and ε0 respectively, where

h0 ∼ η1/(n+1), ε0 ∼ ηn/(n+1).

For a good simulation, accuracy is one concern and efficiency is another
objective. Efficiency for numerical integration is usually measured in terms of
computation time or the number of computing operations. Using a big integra-
tion step size is an effective way to improve efficiency but with the penalty of loss
of accuracy. So there is a trade-off. Furthermore, step sizes have upper bounds
that are enforced by the consistency, convergence, and stability requirements
2 We will not give a thorough discussion of numerical errors, which have been exten-

sively studied, e.g. in [11]. We would rather briefly review and explain the important
trade-offs when choosing integration step sizes.

when deploying practical integration methods on concrete ODEs [11]. Therefore,
most practical adaptive ODE solvers embed a mechanism inside the integration
process to adjust the step size according to the changing speed (derivative) of in-
tegration results, so that efficiency gets improved while maintaining the required
accuracy at the same time.

In summary, a practical ODE solver usually specifies a minimum integration
step size h0, some small error tolerance ε0, and an algorithm to adapt step size
to meet requirements on both efficiency and accuracy.

3.2 Computation Difficulties

It is well-known that numerical integration in general can only deliver an ap-
proximation to the exact solution of an initial value ODE. However, the distance
of the approximation from the exact solution is controllable for certain kinds of
vector fields. For example, if a vector field satisfies a Lipschitz condition along
the time interval where it is defined, we can constrain the integration results to
reside within a neighborhood of the exact solution by introducing more bits for
representing values to get better precision and integrating with a small step size.

The same difficulties that arise in numerical integration also appear in event
detection. A few algorithms have been developed to solve this problem [12,13,14].
However, there is still a fundamental unsolvable difficulty: we can only get the
simulation time close to the time point where an event occurs, but we are not
assured of being able to determine that point precisely.

Simulating a Zeno hybrid system poses another fundamental difficulty. We
will first explain it through a simple continuous-time example with dynamics

ẋ(t) = 1/(t− 1), x(0) = 0, t ∈ [0, 2]. (9)

We can analytically find the solution for this example, x(t) = ln |t−1|. However,
getting the same result through simulation is difficult. Suppose the simulation
starts with t = 0. As t approaches 1, the derivative ẋ(t) keeps decreasing without
bound. To satisfy the convergence and stability requirements, the step size h has
to be decreased. When the step size becomes smaller than h0, round-off error is
not neglectable any more and the simulation results become unreliable. Trying to
reduce the step size further doesn’t help, because the disturbance from round-off
error will dominate.

A similar problem arises when simulating Zeno hybrid system models. Re-
call that Zeno executions have an infinite number of discrete events (transitions)
before reaching the Zeno time point, and the time intervals between two con-
secutive transitions shrink to 0. When the time interval becomes less than h0,
round-off errors again dominate.

In summary, it is impractical to precisely simulate the behavior of a Zeno
model. Therefore, similar to numerical integration, we need to develop a compu-
tationally feasible way to approximate the exact model behavior. The objective
is to give a close approximation under the limits enforced by numerical errors.
We will do this in the next subsection.

3.3 Approximating Zeno Behaviors

In Sect. 2, we have described how to specify the behaviors of a Zeno hybrid
system before and after the Zeno time point and how to develop transitions
from pre-Zeno states to post-Zeno states. The construction procedure works for
guards which are arbitrary sets. However, assuming that each guard is the sub-
levelset of a function (or collection of functions) simplifies the framework for
studying transitions to post-Zeno states. Therefore, we assume that a transition
going from a pre-Zeno state to a post-Zeno state has a guard expression of form,

Gec
= {x ∈ Rn | gec

(x) ≤ 0}, (10)

for every c ∈ C, where ec = h−1(c) and gec : Rn → Rk. Furthermore, we assume
that gec

(x) is continuously differentiable.
In this section, we will develop an algorithm such that the complete model

behavior can be simulated. As the previous subsection pointed out, we can only
approximate the model behaviors before the Zeno time point. Therefore, the
first issue is to be able to tell how close the simulation results are to the exact
solutions before the Zeno time point. This will decide when the transitions from
pre-Zeno states to post-Zeno states are taken. The second issue is how to estab-
lish the initial conditions of the dynamics after the Zeno time point from the
approximated simulation results.

Issue 1: Relaxing Guard Expressions. To solve the first issue, we first relax
the guard conditions defining the transitions from the pre-Zeno states to the
post-Zeno states; if the current states fall into a neighborhood of the Zeno states
(the states at the Zeno time point), the guard is enabled and transition is taken.
Note that when the transition is taken, the system has a new dynamics and the
rest of the events before the Zeno time point, which are infinite in number, are
discarded. Therefore the computation before the approximated Zeno time point
can be finished in finite time.

A practical problem now is to define a good neighborhood such that the
approximation is “close enough” to the exact Zeno behavior. We propose two
criteria. The first criterion is based on the error tolerance ε0

3. We rewrite (10)
as

Gε0
ec

= {x ∈ Rn | gec(x) ≤ ε0}, (11)

meaning if x(t) is the solution of ẋ = fq(x) with q = s(ec), and if the evaluation
result of gec

(x(t)) falls inside [0, ε0], the simulation results of x(t) will be thought
as close enough to the exact solution at the Zeno time point, and the transition
will be taken. In fact, because ε0 is the smallest amount that can be reliably
distinguished, any value in [0, ε0] will be treated the same.

The second criterion is based on the minimum step size h0. Suppose the
evaluation result of gec

(x(t)) is outside of the range [0, ε0]. If it takes less than
h0 time for the dynamics to drive the value of gec

(x(t)) down to 0, then we

3 If gec(x) is a vector valued function, then ε0 is a vector with ε0 as the elements.

will treat the current states as close enough to the Zeno states. This criterion
prevents the numerical integration from failing with a step size smaller than h0,
which may be caused by some rapidly changing dynamics, such as those in (9).

We first get a linear approximation to function gec(x(t)) around t0 (cf.
[12],[14]),

gec(x(t0 + h)) = gec(x(t0)) +
∂gec(x)

∂x
· fq(x) |x=x(t0) ·h + O(h2), (12)

where h is the integration step size. Because we are interested in the model’s
behavior when h is close to h0, where h is very small, we can discard the O(h2)
term in (12). We are interested in how long it takes for the value of function
gec(x(t0)) to go to 0, so we calculate the required step size by solving (12),

h = − gec
(x(t0))

∂gec (x)
∂x · fq(x) |x=x(t0)

. (13)

Now we say that if h < h0, the states are close enough to the Zeno point. So we
rewrite the boolean expression (10) as

Gh0
ec

=

{
x ∈ Rn | − gec

(x)
∂gec (x)

∂x · fq(x)
≤ h0

}
. (14)

In the end, we give a complete approximated guard expression of the transi-
tion ec from a pre-Zeno state to a post-Zeno state:

Gapprox
ec

= Gε0
ec
∪Gh0

ec
.

This means that if either guard expression in (11) and (14) evaluates to be
true, the transition will be taken. Performing this process on each guard in
the set {Gec

| c ∈ C} we obtain the set {Gapprox
ec

| c ∈ C}. Note that to
ensure deterministic transitions, we also subtract the same set from the original
guard sets defined in (6). Replacing the guard expressions given in Sect. 2 with
these approximated ones, we obtain an approximation to the completed hybrid
system H , H

approx
. This is the completed hybrid system that is implemented

for simulation.

Issue 2: Reinitialization. The other issue is how to reinitialize the initial con-
tinuous states of the new dynamics defined in a post-Zeno state. Theoretically,
these initial continuous states are just the states at the Zeno time point, meaning
that they satisfy the guard expression in (10). This is guaranteed by the identity
reset maps associated with the transitions.

In some circumstances, like the examples discussed in this paper, the initial
continuous states can be explicitly and precisely calculated. However, in general,
if there are more variables involved in guard expressions than the constraints
enforced by guard expressions, we cannot resolve all initial states. In this case,
we have to use the simulation results as part of the initial states. Clearly, since
in simulation we do not actually reach the Zeno time point, the initial states are
just approximations. Consequently, the simulation of the dynamics of post-Zeno
states will be approximation too.

4 Conclusions

We have introduced a systematic method for completing hybrid systems through
the introduction of new post-Zeno states and transitions to these states at the
Zeno point. We have developed a way to approximate model behaviors at Zeno
points such that the simulation does not halt nor break down. With these solu-
tions, we can simulate a Zeno hybrid system model beyond its Zeno point and
reveal its dynamics completely. In the end, we want to thank the anonymous
reviewers for their valuable and constructive comments.

References

1. Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. Int. J.
Robust and Nonlinear Control 11(2) (2001) 435–451

2. Ames, A.D., Sastry, S.: Sufficient conditions for the existence of zeno behavior.
44th IEEE Conference on Decision and Control and European Control Conference
ECC (2005)

3. Ames, A.D., Tabuada, P., Sastry, S.: (On the stability of Zeno equilibria) To
appear in Hybrid Systems: Computation and Control, 2006.

4. Johansson, K.H., Lygeros, J., Sastry, S., Egerstedt, M.: Simulation of zeno hybrid
automata. In: Proceedings of the 38th IEEE Conference on Decision and Control,
Phoenix, AZ (1999)

5. Ames, A.D., Sastry, S.: Blowing up affine hybrid systems. 43rd IEEE Conference
on Decision and Control (2004)

6. Mosterman, P.: An overview of hybrid simulation phenomena and their support
by simulation packages. In Varager, F., Schuppen, J.H.v., eds.: Hybrid Systems:
Computation and Control (HSCC). Volume LNCS 1569., Springer-Verlag (1999)
165–177

7. Ames, A.D., Zheng, H., Gregg, R.D., Sastry, S.: Is there life after zeno? taking
executions past the breaking (zeno) point. In: Sumbitted to the 2006 American
Control Conference. (2006)

8. van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Sys-
tems. Lecture Notes in Control and Information Sciences 251. Springer-Verlag
(2000)

9. Lygeros, J.: Lecture Notes on Hybrid Systems. ENSIETA 2-6/2/2004 (2004)
10. Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. In Morari, M.,

Thiele, L., eds.: Hybrid Systems: Computation and Control (HSCC). Volume LNCS
3414., Zurich, Switzerland, Springer-Verlag (2005) 25–53

11. Burden, R.L., Faires, J.D.: Numerical analysis, 7th ed. Brroks/Cole (2001)
12. Shampine, L.F., Gladwell, I., Brankin, R.W.: Reliable solution of special event

location problems for odes. ACM Trans. Math. Softw. 17(1) (1991) 11–25
13. Park, T., Barton, P.I.: State event location in differential-algebraic models. ACM

Transactions on Modeling and Computer Simulation (TOMACS) 6(2) (1996) 137–
165

14. Esposito, J.M., Kumar, V., Pappas, G.J.: Accurate event detection for simulating
hybrid systems. In: Hybrid Systems: Computation and Control (HSCC). Volume
LNCS 2034., London, UK, Springer-Verlag (2001) 204–217

	Beyond Zeno: Get on with it!
	 Haiyang Zheng (University of California, Berkeley), Edward A. Lee (University of California, Berkeley), Aaron D. Ames (University of California, Berkeley)

