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Abstract. This paper addresses the problem of estimating human body
dynamics from 3-D visual data. That is, our goal is to estimate the state
of the system, joint angle trajectories and velocities, and the control
required to produce the observed motion from indirect noisy measure-
ments of the joint angles. For a two-link chain in the human body, we
show how two independent spherical pendulums can be composed to
create a behaviorally equivalent double spherical pendulum. Therefore,
the estimation problem can be solved in parallel for the low-dimensional
spherical pendulum systems and the composition result can be used to
arrive at estimates for the higher dimensional double spherical pendulum
system. We demonstrate our methods on motion capture data of human
arm motion.

1 Introduction and Related Work

The analysis of human motion is motivated by applications such as classification
of motion, analysis of motion in activities such as sports and dance, anima-
tion and biologically inspired robotic design. Our goal is to extract, from noisy
visual observations, a physically meaningful mid-level representation of motion—
namely, the joint angle trajectories, angular velocities and joint torques for an
assumed nonlinear model. Higher level descriptions, such as motion categories,
can be constructed over this representation by using discrete state variables
to represent the specific categories. A similar approach was taken in [1] and [2],
where switching linear dynamical systems were used for action recognition. Since
nonlinear state estimations methods usually scale poorly as the state dimension
increases, we propose a more scalable approach to solving the estimation prob-
lem. Our approach is based on composing estimates for a set of low dimension
systems to create a behaviorally equivalent higher dimension system of interest.
The paper is organized as follows: Sec. 2 presents our approach and in Sec. 3 we
present our results on human arm motion.



Fig. 1. Equivalent models for the human arm

2 Composition-based Estimation

The human body can be modeled as a set of rigid links connected by joints. The
motion of any open chain of links in the human body is described by a set of
nonlinear differential equations [3] of the form

M(r,λ)︸ ︷︷ ︸
mass matrix

r̈ + C(r, ṙ, λ)︸ ︷︷ ︸
coriolis matrix

ṙ + N(r,λ)︸ ︷︷ ︸
gravity

= τ (t)︸︷︷︸
torques

, (1)

where r(t) is the vector of joint angles and λ denotes the model parameters.
We assume that entire mass of a limb is concentrated at its center of mass and
model any open chain of links as a series of connected spherical pendulums. The
model parameters are designed using anthorpometric data available in [4]. Given
observations of the form y(t) = r(t) + η(t), where the statistics of the additive
noise η(t) are known, the goal is to estimate the joint angle trajectories r(t),
angular velocities ṙ(t) and the required torques τ (t).

Different dynamical models could produce a given set of joint angle tracjec-
tories r(t). These dynamical models are equivalent with respect to the obser-
vations. We refer to the joint angle trajectories as the behavior of the system
and use the notation B(Ψ |λ, τ ) , r to denote that the behavior of the sys-
tem Ψ = (M,C, N) (see (1)), with parameters λ and torques τ (t) is r(t). For
instance, consider the joint angle trajectories of a two-link chain such as the
human arm—this data could be produced by two independent spherical pendu-
lums actuated by appropriate torques or, equivalently, by an actuated double
spherical pendulum.

We now present our composition result for the 2-link case.

Theorem 1. Let Ψs1 and Ψs2 denote two spherical pendulum models and let Ψd

denote a double spherical pendulum model. Then

B(Ψd|λd, τ d ) , rd =
[

rs1

rs2

]
,

[B(Ψs1|λs1, τ s1 )
B(Ψs2|λs2, τ s2 )

]
(2)



C12 = µ




( cθ2 sθ1 − cφ cθ1 sθ2)θ̇2 sφ cθ1 cθ2 θ̇2 − cφ cθ1 sθ2 φ̇2

+ sφ cθ1 cθ2 φ̇2

sφ sθ1 sθ2 θ̇2 + cφ cθ2 sθ1 φ̇2 cφ cθ2 sθ1 θ̇2 + µ sφ sθ1 sθ2 φ̇2




C21 = µ




( cθ1 sθ2 − cφ cθ2 sθ1)θ̇1 − sφ cθ1 cθ2 θ̇1 − cφ cθ2 sθ1 φ̇1

− sφ cθ1 cθ2 φ̇1

− sφ sθ1 sθ2 θ̇1 + cφ cθ1 sθ2 φ̇1 cφ cθ1 sθ2 θ̇1 − sφ sθ1 sθ2 φ̇1




M12 = µ

[
cφ cθ1 cθ2 + sθ1 sθ2 sφ cθ1 sθ2

− sφ cθ2 sθ1 cφ sθ2 sθ1

]

Table 1. The matrices M12, C12 and C21, with µ = m2l2L, sφ = sin(φ1 − φ2), cθ1 =
cos θ1, et cetera.

for λd, λs1 and λs2 satisfying:

λd = (m1, l1, L, m2, l2),
λs1 =

(
(m1l1+m2L)2

m1l21+m2L2 ,
m1l21+m2L2

m1l1+m2L

)
, λs2 = (m2, l2) ,

(3)

and for τ d, τ s1 and τ s2 satisfying:

τ d =
[

τ s1 + M12(rs1, rs2) r̈s2 + C12(rs1, rs2, ṙs2) ṙs2

τ s2 + MT
12(rs1, rs2) r̈s1 + C21(rs2, rs1, ṙs1) ṙs1

]
, (4)

with M12, C12 and C21 as given in Table 1.

As a result of this theorem, spherical pendulum models with parameters λs1

and λs2 can be used to obtain estimates of upper and lower angle trajectories,
velocities and the torques τ s1(t) and τ s2(t), respectively. The composition rela-
tion (4) can then be used to arrive at an estimate of the torques τ d(t) required
for an equivalent double spherical pendulum model. The estimation of the inde-
pendent spherical pendulum models is done using an auxiliary particle filter [5].
The control utilized in the particle filter is designed to mimic a controller that
feedback-linearizes and uses Linear-Quadratic optimal control [6] to track the ob-
servations. This structure also provides us with angular acceleration estimates
which are used in the composition.

3 Results

We tested our approach on motion capture data from the Carnegie Mellon mo-
tion capture database. The motion capture data consisted of human arm motion
sampled at 120 Hz. The joint angles extracted from the motion capture data
were used as the ground truth reference. Gaussian noise was added to the data
to simulate noisy observations. The standard deviation of the observation noise
was fixed at 0.2σ, where σ is the standard deviation of the reference. An auxil-
iary particle filter with 1000 particles was used for the estimation. The results
for one action are presented in Figs. 2-4.
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Fig. 2. Double Spherical Pendulum Torques τd for Arm. est-torques estimated by
composition, opt-torques applied by an optimal controller that tracks the reference,
inv -torques obtained by differentiating clean reference and plugging into equations of
motion
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Fig. 3. Estimation of Upper Arm
Angles
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Fig. 4. Estimation of Lower Arm
Angles
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