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Summary. Tagged systems provide a denotational semantics for embedded sys-
tems. A heterogeneous network of embedded systems can be modeled mathemati-
cally by a network of tagged systems. Taking the heterogeneous composition of this
network results in a single, homogeneous, tagged system. The question this paper
addresses is: when is semantics (behavior) preserved by composition? To answer this
question, we use the framework of category theory to reason about heterogeneous
system composition and derive results that are as general as possible. In particular,
we define the category of tagged systems, demonstrate that a network of tagged
systems corresponds to a diagram in this category and prove that taking the com-
position of a network of tagged systems is equivalent to taking the limit of this
diagram—thus composition is endowed with a universal property. Using this univer-
sality, we are able to derive verifiable necessary and sufficient conditions on when
composition preserves semantics.

1 Introduction

In an embedded system, different components of the system evolve accord-
ing to processes local to the specific components. Across the entire system,
these typically heterogeneous processes may not be compatible, i.e., answer-
ing questions regarding the concurrency, timing and causality of the entire
system—all of which are vital in the actual physical implementation of the
system—can be challenging even if these questions can be answered for spe-
cific components. Denotational semantics provide a mathematical framework
in which to study the behavior (signals, flows, executions, traces) of embed-
ded systems or networks thereof. This framework is naturally applicable to
the study of heterogeneous networks of embedded systems since signals always
† This research is supported by the National Science Foundation (NSF award num-
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can be compared, regardless of the specific model of computation from which
they were produced.

Tagged systems provide a denotational semantics for heterogeneous mod-
els of computation; they consist of a set of tags (a tag structure), variables
and maps (behaviors) from the set of variables to the set of tags—hence,
tagged systems are a specific case of the tagged signal model (cf. [12]). A
heterogeneous network of embedded systems, e.g., a network consisting of
both synchronous and asynchronous systems, can be modeled by a network
of tagged systems with heterogeneous tag structures communicating through
mediator tagged systems. Benveniste et al. [3], [4] and [5], introduced the no-
tion of tagged systems and dealt with the issues we set forth in this paper;
this work extends and generalizes the ideas introduced in these papers. Of
course, there is a wealth of literature on semantics preservation in heteroge-
neous networks, cf. [6], [7], [13], [14], and [18], the last of which approaches
the problem from a categorical prospective.

A network of tagged systems can be implemented, or deployed, through
heterogeneous parallel composition—obtained by taking the conjunction (in-
tersection) of the behaviors that agree on the mediator tagged systems—which
results in a single, homogeneous, tagged system. Thus, heterogeneous networks
of tagged systems can be homogenized through the operation of composition.
This paper addresses the question:

When is semantics preserved by composition?

That is, when is the homogeneous tagged system obtained by composing a
heterogeneous network of tagged systems semantically identical to the origi-
nal network? Understanding this question is essential to understanding when
networks of (possibly synchronous) embedded systems can be implemented
asynchronously while preserving the semantics of the original system. Since
implementing asynchronous systems is often more efficient (less overhead)
when compared to the implementation of synchronous systems, deriving con-
ditions on when this can be done while simultaneously preserving semantics
would have many important implications.

In this paper, taking a similar approach to Benveniste et al., we address
the issue of semantics preservation. However, we use the formalism of category
theory, i.e., we introduce the category of tagged systems: TagSys to obtain
more general conditions for semantics preservation. We begin by considering a
network of two tagged systems P1 and P2 communicating through a mediator
tagged system M as described by the diagram: P1 → M ← P2. The first
contribution of this paper is that we are able to show that the (classical notion
of) heterogeneous composition of P1 and P2 over M , P1‖M P2, is given by
the pullback (or fibered product) of this diagram:

P1‖M P2 = P1 ×M P2.

The importance of this result is that it implies that composition is endowed
with a universal property; this universal property is fundamental in under-
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standing when semantics is preserved. Consider the case when P1 and P2

have the same semantics, i.e., the same tag structure. Therefore, they always
can communicate through the identity mediator tagged system, I , and the
homogeneous composition of P1 and P2, P1‖P2, is given by the pullback
P1×I P2 of the diagram: P1 → I ←P2. It is possible through this frame-
work to give a precise statement of what it means to preserve semantics by
composition over the mediator tagged system M :

Semantics is preserved by composition if P1‖P2 ≡P1‖M P2.

Through the universality of the pullback, we are able to give verifiable nec-
essary and sufficient conditions on semantics preservation. A corollary of our
result is the sufficient conditions on semantics preservation established by
Benveniste et al..

A network of tagged systems is given by an oriented graph Γ = (Q, E)
together with a set of tagged systems P = {Pq}q∈Q communicating through
a set of mediator tagged systems M = {Me}e∈E ; that is, for every e ∈ E,
there is a diagram in TagSys of the form:

Psource(e)

αe - Me
� α′e Ptarget(e).

Equivalently, a network of tagged systems is given by a functor

P(P,M ,α) : HΓ → TagSys,

where HΓ is a small category of a special form, termed an H-category, and
obtained from Γ . As in the case of a network of two tagged systems, the
heterogeneous composition of a network of tagged systems is given by the
limit (a generalization of the pullback) of this diagram,

‖M P = Lim←−−
HΓ (P(P,M ,α)),

and so composition again is defined by a universal property. If all of the P ′
is

have the same semantics, then we can again consider the identity mediator
I (which in this case is a set), and the homogeneous composition of this
network is given by ‖P = Lim←−−

HΓ (P(P,I ,id)). This formulation allows us to
give a precise statement of when semantics is preserved:

Semantics is preserved by composition if ‖M P ≡ ‖P.

The universality of composition allows us to derive concrete necessary and suf-
ficient conditions on when semantics is preserved, indicating that this frame-
work can produce results on semantics preservation that are both practical
and verifiable.

Although applications are not specifically discussed in this work, it is im-
portant to note that there are many practical implications of the results de-
rived in this paper. Tagged systems were originally developed in order to better
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understand time-trigged architectures (cf. [10]). Therefore, this theory is nat-
urally applicable to such a framework; in fact, Benveniste et al. address locally
time-trigged architectures and globally asynchronous locally synchronous ar-
chitectures in [3], [4] and [5]. Addressing compositionality issues in specific
architectures utilizing the results presented in this paper is a promising area
of future research.

This paper is structured as follows:

Section 2: Tag structures and tagged systems are introduced, along with the
corresponding categories, Tag and TagSys, respectively.

Section 3: Classical heterogeneous composition is reviewed, and it is shown
that composing two tagged systems corresponds to taking the pullback of
a specific diagram in TagSys.

Section 4: The general composite of two tagged systems, communicating
through a mediator tagged system, is defined. The notion of semantics
preservation for simple networks of this form is introduced, and necessary
and sufficient conditions on semantics preservation are derived.

Section 5: Networks of tag structures, tagged systems and behaviors are
defined. It is shown how to associated to these networks a functor and
a small category, i.e., how these networks correspond to diagrams in the
categories Tag, TagSys and Set, respectively.

Section 6: A general method for universally composing networks of tagged
systems is introduced. This is related to the composite of corresponding
networks of tag structures and behaviors.

Section 7: The notion of a semantics preserving deployment of a network
of tagged systems is introduced. Necessary and sufficient conditions on
semantics preservation are derived.

Section 8: Concluding remarks are given.

2 A Categorical Formulation of Tagged Systems

In this section, we begin by defining the category of tag structures. This defin-
ition is used to understand how to associate a common tag structure to a pair
of tag structures which can communicate through a mediator tag structure.
Later, it will be seen how composing tagged systems mirrors this construction
on tag structures. Before discussing composition, we first must introduce the
category of these systems. This category will be instrumental later in under-
standing how to form the heterogeneous composition of a network of tagged
systems.

Tag structures and the corresponding category. Fundamental to the
notion of tagged systems is the notion of timing. This timing is encoded in a
set of tags; these “tag” the occurrences of events, i.e., they index the events
such that they are (partially) ordered. Hence, a set of tags or a tag structure is
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a partially ordered set T , with the partial order denoted by ≤. The category
of tags, Tag, can be defined as follows:

Objects: Partially ordered sets, i.e., tag structures.
Morphisms: Nondecreasing maps between sets ρ : T → T ′, i.e., if

t ≤ t′ ∈ T then ρ(t) ≤ ρ(t′) ∈ T ′.
Composition: The standard composition of maps between sets.

Clearly, two objects in the category Tag are isomorphic if ρ : T → T ′ is a
bijection: there exists a ρ′ : T ′ → T such that ρ ◦ ρ′ = idT ′ and ρ′ ◦ ρ = idT .
Note also that the terminal objects in the category Tag are just one point sets
Ttriv := {∗} (called asynchronous tag structures), i.e., for all tag structures
T there exists a unique morphism ρ : T → Ttriv defined by ρ(t) ≡ ∗ which
desynchronizes the tag structure. The synchronous tag structure is given by
Tsync = N.

Common tag structures. Tags are fundamental in understanding tagged
systems in that morphisms of tag structures will induce morphisms of tagged
systems. To better understand this, we will discuss an important operation
on tag structures: the pullback (the pullback of elements in a category will be
used extensively in the paper—see [11] for a formal definition). Consider two
tag structures T1 and T2. We would like to find a tag structure that is more
general than T1 and T2 and has morphisms to both of these tag structures,
i.e., we would like to find a common tag structure for these two tag structures.
To do this, first consider the diagram in Tag:

T1
ρ1- T �ρ2 T2, (1)

where T is the mediator tag structure. We know that such a tag structure
always exists since it always can be taken to be Ttriv (although this rarely is
the wisest choice). We define the common tag structure to be the pullback of
this diagram:

T1 ×T T2 = {(t1, t2) ∈ T1 × T2 : ρ1(t1) = ρ(t2)}. (2)

The pullback is the desired common tag structure since it sits in a commuta-
tive diagram of the form:

T1 ×T T2
π2- T2

T1

π1
? ρ1- T

ρ2
?

(3)

Moreover, that fact that the common tag structure is the pullback implies
that for any other tag structure that displays the properties of a common
tag structure, there exists a unique morphism from this tag structure to the
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common tag structure. More precisely, for any tag structure T̃ such that the
following diagram commutes:

T̃

T1 ×T T2
π2

-

∃! -

T2

q2

-

T1

π1
? ρ1-

q
1

-

T

ρ2
?

(4)

there exists a unique morphism from T̃ to T1 ×T T2 also making the diagram
commute. This construction on tag structures both motivates and mirrors
constructions that will be performed throughout this paper on tagged systems.
To demonstrate this we must, as with tag structures, define tagged systems
and the associated category.

Events

t1t2 t4t3 t5 t8t7

σ(1, x)

σ(2, x)

σ(6, x)

Tags (timing)

t6

Fig. 1. A graphical representation of a behavior of a tagged system.

Tagged systems. Following from [3], [4] and [5] (although our notation
slightly deviates from theirs), we define a tagged system. We then proceed to
introduce the category of tagged systems.

Let V be an underlying set of variables and D be the set of values that
these variables can take, i.e., the domain of the variables. A tagged system is
a tuple

P = (V, T , Σ),

where V is a finite subset of the underlying set of variables V, T is a tag
structure, i.e., an object of Tag, and Σ is a set of maps:

σ : N× V → T ×D.

Each of the elements of Σ, i.e., each of the maps σ, are referred to as V -
behaviors (or just behaviors when the variable set is understood). It is required
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that for each v ∈ V , the map δv(n) := π1(σ(n, v)) : N→ T is a morphism in
Tag, that is, nondecreasing (and called a clock in [5]).

Remark 1. In defining the set of behaviors of a tagged system, we made an
explicit choice for the domain of the behaviors: N×V . This choice is motivated
by the fact that the behaviors of a tagged system are signals generated by
a computer, and hence discrete in nature. It is possible to consider other
domains for the behaviors, e.g., R× V , without any significate change to the
theory introduced here. This indicates an interesting extension of this work
to behavioral dynamical system theory (cf. [15, 16, 17]).

The category of tagged systems. We can use the formulation of tagged
systems above in order to define the category of tagged systems, TagSys, as
follows:

Objects: Tagged systems P = (V, T , Σ).
Morphisms: A morphism of tagged systems α : P = (V, T , Σ) →

P ′ = (V ′, T ′, Σ′) is a morphism (in the category of sets) of be-
haviors α : Σ → Σ′.

Composition: The standard composition of maps between sets. In
other words, for α : P →P ′ and α′ : P ′ →P ′′ the composition
of α : Σ → Σ′ and α′ : Σ′ → Σ′′ is given by α′ ◦ α : Σ → Σ′′.

From the definition of morphisms in the category TagSys, it follows that two
tagged systems, P and P ′, are isomorphic, P ∼= P ′, if and only if, to use
the terminology from the literature, the two tagged systems are in bijective
correspondence.

A “forgetfull” functor. By the definition of the category TagSys, there is
a fully faithful functor (cf. [11]):

F : TagSys→ Set,

where Set is the category of sets. This functor is defined on objects and mor-
phisms in TagSys as follows: for every diagram in TagSys of the form:

P = (V, T , Σ) α→P ′ = (V ′, T ′, Σ′),

the functor F is given by:

F
(
P = (V, T , Σ) α→P ′ = (V ′, T ′, Σ′)

)
= Σ

α→ Σ′.

When discussing composition, we often will blur the distinction between the
categories TagSys and Set, i.e., we often will define the composition of a dia-
gram of tagged systems by the behaviors of the composite system, and hence
implicitly view it as an object of Set. In this case, we always will construct
an object in TagSys with behaviors isomorphic to the corresponding object in
Set.
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Induced morphisms of tag systems. Suppose that there is a morphism
of tag structures ρ : T → T ′. Then there exists a tagged system Pρ together
with an induced morphism of tagged systems ( · )ρ : P → Pρ. First, if
P = (V, T , Σ) we define Pρ = (V, T ′, Σρ) where

Σρ := {σρ : N× V → T ′ ×D : σρ(n, v) = (ρ(t), d) iff (t, d) = σ(n, v)
for some σ ∈ Σ}.

That is, Σρ is defined by replacing t with ρ(t) in the codomain of σ. With
this definition of Pρ, we obtain a morphism ( · )ρ : P → Pρ, called the
desynchronization morphism and defined by, for each σ ∈ Σ,

σρ(n, v) = (ρ(t), d) def⇔ σ(n, v) = (t, d).

Note that ( · )ρ is always surjective.

Example 1. Consider the following synchronous tagged systems, P1 and P2,
defined as follows:

P1 := (V1 = {x}, Tsync = N, Σ1 = {σ1}),
P2 := (V2 = {x, y}, Tsync = N, Σ2 = {σ2, σ̃2}),

where

σ1(n, x) := (m(n), ?),

σ2(n, v) :=
{

(m(n), ?) if v = x ∈ V2

(k(n), ?) if v = y ∈ V2
,

σ̃2(n, v) :=
{

(m(n), ?) if v = x ∈ V2

(l(n), ?) if v = y ∈ V2
.

Here m(n), k(n) and l(n) are any strictly increasing functions with k(n) 6=
l(n), and ? is a (single) arbitrary value in D.

For ρ : Tsync → Ttriv the desyncronization morphism, P1
∼= Pρ

1 because
P1 consists of a single behavior. Since Σ2 = {σ2, σ̃2}, Σρ

2 = {σρ
2 = σ̃ρ

2}, i.e.,
Σρ

2 consists of a single behavior. Therefore, P2 is not in bijective correspon-
dence with Pρ

2

3 Universal Heterogeneous Composition

In this section, we discuss how to take the composition of a “simple” net-
work of embedded systems. Given two tagged systems, P1 and P2, we would
like to form their composition, i.e., a single tagged system obtainable from
these two tagged systems. We begin by reviewing the “standard” definition
of composition, followed by a categorical reformulation of composition. We
demonstrate that the composition of two tagged systems corresponds to the
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pullback of a specific diagram in the category of tagged systems. This will
allow us later to generalize the notion of composition.

Heterogeneous composition. Let P1 = (V1, T1, Σ1) and P2 = (V2, T2, Σ2)
be two tagged systems. Consider a mediator tag structure T between the tag
structures T1 and T2, i.e., there exists a diagram in Tag:

T1
ρ1- T �ρ2 T2

Recall that the common tag structure to T1 and T2 (relative to T ) is given by
the pullback of the above diagram in Tag (the fibered product as defined in
(2)): T1 ×T T2.

We define the parallel composition of P1 and P2 over the mediator tag
structure T by

P1 ‖T P2 := (V1 ∪ V2, T1 ×T T2, Σ1 ∧T Σ2).

This notation for parallel composition is taken from [3]; the morphisms ρ1 and
ρ2 are implicit in this notation. In the above definition, Σ1 ∧T Σ2 is given by
the set of behaviors

σ : N× (V1 ∪ V2)→ (T1 ×T T2)×D

such that the following condition holds: for all (n, v) ∈ N × (V1 ∪ V2), there
exist unique σ1 ∈ Σ1 and σ2 ∈ Σ2 such that3

σ(n, v) = ((t1, t2), d) ⇔

(i) σ1(n, v) = (t1, d) if v ∈ V1

and
(ii) σ2(n, v) = (t2, d) if v ∈ V2

and
(iii) σρ1

1 (n, v) = σρ2
2 (n, v) if v ∈ V1 ∩ V2.

(5)

Since σ is uniquely determined by σ1 and σ2, and vise-versa, we write σ =
σ1 tT σ2. We pick this notation so as to be consistent with the literature,
cf. [3], where a pair (σ1, σ2) ∈ Σ1 × Σ2 is called unifiable when it satisfies
condition (iii), and σ1 tT σ2 is called the unification of σ1 and σ2. We will
always assume that such a pair exists; in this case composition is well-defined
(Σ1 ∧T Σ2 is not the empty set).

Universal heterogeneous composition. The common tag structure for
the composition of two tagged systems is given by the pullback of a certain
diagram. The natural question to ask is: can the composition of two tagged
systems be realized as the pullback of a diagram of tagged systems of the
form:
3 Note that conditions (i) and (ii) imply condition (iii); this follows from the fact

that (t1, t2) ∈ T1 ×T T2, so ρ1(t1) = ρ2(t2) in condition (i) and (ii). Condition
(iii) is stated for the sake of clarity.
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P1
α1- M �α2

P2?

The importance of this question is that if the answer is yes, then the compo-
sition between two heterogeneous tagged systems is universal, i.e., defined by
a universal property. We then can ask when the composition of two tagged
systems is the same as the composition of these tagged systems with different
tag structures, i.e., when semantics is preserved. It is possible to show that
composition is in fact given by a universal property.

In order to define composition universally, we must define the tagged sys-
tem M in the above diagram. In this vein, and using the same notation as
the above paragraph, define

IT := (V1 ∩ V2, T , Σ1 ∨T Σ2), (6)

where T is a mediator tag structure (between T1 and T2) and

Σ1 ∨T Σ2 := {σ : N× (V1 ∩ V2)→ T ×D :
σ = σρi

i |V1∩V2 , for σi ∈ Σi, i = 1 or 2}. (7)

Now for the tagged systems P1 and P2 there exist morphisms

P1
Resρ1

1- IT �Resρ2
2 P2 (8)

defined as follows:

Resρi

i (σi) = σρi

i |V1∩V2 : N× (V1 ∩ V2)→ T ×D

for σi ∈ Σi, i = 1, 2. Clearly, such a morphism always exists.
Note that IT is a mediator tagged system or channel between the tagged

systems P1 and P2; IT “communicates” between P1 and P2. In the case
when T = T1 = T2, I := IT is exactly the identity mediator tagged system
or identity channel introduced in [3].

Theorem 1. Consider two tagged systems P1 = (V1, T1, Σ1) and P2 =
(V2, T2, Σ2) with mediator tag structure T , i.e., suppose that there is a di-
agram in Tag:

T1
ρ1- T �ρ2 T2.

The parallel composition of P1 and P2 over this tag structure, P1 ‖T P2,
is the pullback of the diagram:

P1

Resρ1
1- IT �Resρ2

2 P2

in the category of tagged systems, TagSys.
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Implications of Theorem 1. Before proving Theorem 1, we discuss some
of the implications of this theorem.

If we consider the following diagram in the category of sets, Set:

Σ1
Resρ1

1- Σ1 ∨T Σ2
�Resρ2

2 Σ2 = F
(

P1
Resρ1

1- IT �Resρ2
2 P2

)
,

the pullback of this diagram is given by:

Σ1 ×Σ1∨T Σ2 Σ2 = {(σ1, σ2) ∈ Σ1 ×Σ2 : Resρ1
1 (σ1) = Resρ2

2 (σ2)}.

It is important to note that the pullback of the above diagram (which is an
object in Set) is related to—in fact, isomorphic to—the behavior of the tagged
system P1 ‖T P2. More precisely, for the functor F : TagSys→ Set, we have:

Σ1 ×Σ1∨T Σ2 Σ2
∼= F(P1 ‖T P2) = Σ1 ∨T Σ2. (9)

This observation will allow us later to, justifiably, blur the distinction between
pullbacks (and limits) in the categories TagSys and Set.

In order to produce the bijection given in (9), first note that there are
projections defined by:

πi : Σ1 ∧T Σ2 → Σi (10)

where for each σ1 tT σ2 ∈ Σ1 ∧T Σ2, πi(σ1 tT σ2) := σi for i = 1, 2. Because
of (5), it follows that any element σ ∈ Σ1 ∧T Σ2 can be written as σ =
π1(σ) tT π2(σ).

Theorem 1 implies—by the universality of the pullback—that there is a
bijection:

(π1, π2) : Σ1 ∧T Σ2
∼−→ Σ1 ×Σ1∨T Σ2 Σ2 (11)

σ = σ1 tT σ2 7→ (σ1 = π1(σ), σ2 = π2(σ))

where the inverse of this map is the unification operator:

( · ) tT ( · ) : Σ1 ×Σ1∨T Σ2 Σ2
∼−→ Σ1 ∧T Σ2 (12)

(σ1, σ2) 7→ σ1 tT σ2

This completes the description of the bijection given in (9).

Proof (of Theorem 1). From the definition of Σ1 ∧T Σ2 and Σ1 ∨T Σ2, it
follows that the following diagram in Set:

Σ1 ∧T Σ2
π1 - Σ1

Σ2

π2
? Resρ2

2- Σ1 ∨T Σ2

Resρ1
1

?
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commutes, which implies, by the definition of morphisms of tagged systems,
that the following diagram in TagSys:

P1 ‖T P2
π1 - P1

P2

π2
? Resρ2

2 - IT

Resρ1
1

?

commutes. Consider a tagged system Q such that the following diagram com-
mutes:

Q
q1 - P1

P2

q2
? Resρ2

2 - IT

Resρ1
1

?

We can define a morphism γ : Q →P1 ‖T P2 by, for σ ∈ ΣQ,

γ(σ) = q1(σ) tT q1(σ).

It follows that there is a commuting diagram:

Q

P1 ‖T P2
π1

-

γ
-

P1

q1

-

P2

π2
? Resρ2

2 -

q
2

-

IT

Resρ1
1

?

Moreover, by replacing γ with any other morphism making the diagram com-
mute, say γ̃, it follows that for σ ∈ ΣQ

γ̃(σ) = π1(γ̃(σ)) tT π2(γ̃(σ)) = q1(σ) tT q2(σ) = γ(σ).

So γ = γ̃, i.e., γ is unique.

4 Equivalent Deployments of Tagged Systems

Standard composition is just the pullback of a specific diagram in TagSys; this
observation naturally allows us to generalize composition. To perform this
generalization, we introduce the notion of a general mediator tagged system,
M , and define composition to be the pullback of a diagram of the form:

P1
α1- M �α2

P2 (13)



Heterogeneous Networks of Embedded Systems 13

in TagSys. This process will be instrumental later in understanding how to
take the composition of more general networks of embedded systems.

We conclude this section by reviewing the definition of semantics preser-
vation and giving necessary and sufficient conditions on when semantics is
preserved. We apply these results to the special case of semantics preserva-
tion through desyncronization.

Composition through mediation. Given the results of Theorem 1, we can
develop a more intuitive notation for composition. Specifically, if T is the me-
diator tag structure, then we write P1 ‖T P2 = P1‖IT P2 (in the case when
T1 = T2 = T and ρ1 = ρ2 = id in (1), we just write P1‖P2 := P1‖I P2). The
mathematical reason for this is that P1‖IT P2 is (isomorphic to) P1×IT P2,
i.e., the pullback of the diagram given in (8). The philosophical motivation
for this notation is that the composition of P1 and P2 can be taken over
general mediator tagged systems. In other words, the parallel composition of
P1 and P2 over a general mediator tagged system M , denoted by P1‖M P2,
is defined to be the pullback of the diagram given in (13):

P1‖M P2 := P1 ×M P2.

This implies that if ΣM is the set of behaviors of M , then the set of behaviors
for P1‖M P2 is isomorphic to:

Σ1 ×ΣM Σ2 = {(σ1, σ2) ∈ Σ1 ×Σ2 : α1(σ1) = α2(σ2)}. (14)

The explicit construction of P1‖M P2 as a tagged system is not especially
relevant, as we are interested only in its set of behaviors which must be isomor-
phic to the set of behaviors given in (14). That being said, this construction
is a special case of a more general construction (given in Section 6) for which
the construction of the tagged system is carried out. We only note that there
are bijections

( · ) tM ( · ) : Σ1 ×ΣM Σ2
∼−→ ΣP1‖M P2 (15)

(π1, π2) : ΣP1‖M P2

∼−→ Σ1 ×ΣM Σ2 (16)

which are generalizations of the unification and projection maps given in (12)
and (11), respectively.

Specification vs. deployment. Consider two tagged systems P1 and P2

with a mediator tag structure T . As in [4] (although with some generalization,
since P1 and P2 are not assumed to have the same tag structure), we define
the following semantics:

Specification Semantics: P1‖IT P2

Deployment Semantics: P1‖M P2

for some mediator tagged system M . The natural question to ask is when
are the specification semantics and the deployment semantics “equivalent.”
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Formally, and following from [4], we define a mediator M to be semantics
preserving with respect to IT , denoted by

P1‖M P2 ≡P1‖IT P2 (17)

if for all (σ1, σ2) ∈ Σ1 ×Σ2,

∃ σ′ ∈ ΣP1‖M P2 s.t. π1(σ′) = σ1 and π2(σ′) = σ2

m
∃ σ ∈ ΣP1‖IT P2 s.t. π1(σ) = σ1 and π2(σ) = σ2.

(18)

Utilizing Theorem 1, we have the following necessary and sufficient conditions
on semantics preservation.

Theorem 2. For two tagged systems P1 and P2,

P1‖M P2 ≡P1‖IT P2,

if and only if for all (σ1, σ2) ∈ Σ1 ×Σ2:

α1(σ1) = α2(σ2) ⇔ Resρ1
1 (σ1) = Resρ2

2 (σ2)

Proof. (Sufficiency:) If

(σ1, σ2) ∈ Σ1 ×Σ2 s.t. α1(σ1) = α2(σ2)

by (14)⇒ (σ1, σ2) ∈ Σ1 ×ΣM Σ2
by (15)⇒ σ1 tM σ2 ∈ ΣP1‖M P2 where

π1(σ1 tM σ2) = σ1 and π2(σ1 tM σ2) = σ2
by (18)⇒ ∃ σ ∈ ΣP1‖IT P2 s.t. π1(σ) = σ1 and π2(σ) = σ2

by (16)⇒ (σ1, σ2) ∈ Σ1 ×ΣIT
Σ2

by (14)⇒ Resρ1
1 (σ1) = Resρ2

2 (σ2).

The converse direction proceeds in the same manner: if

(σ1, σ2) ∈ Σ1 ×Σ2 s.t. Resρ1
1 (σ1) = Resρ2

2 (σ2) ⇒ α1(σ1) = α2(σ2),

by (14), (15), (16), and (18).
(Necessity:) We have the following implications:

∃ σ′ ∈ ΣP1‖M P2 s.t. π1(σ′) = σ1 and π2(σ′) = σ2

by (16)⇒ (σ1, σ2) ∈ Σ1 ×ΣM Σ2
by (14)⇒ α1(σ1) = α2(σ2)
⇒ Resρ1

1 (σ1) = Resρ2
2 (σ2)

by (14)⇒ (σ1, σ2) ∈ Σ1 ×ΣIT
Σ2

by (15)⇒ σ1 tIT σ2 ∈ ΣP1‖IT P2 and
π1(σ1 tIT σ2) = σ1 and π2(σ1 tIT σ2) = σ2.
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Therefore σ1tIT σ2 is the element of ΣP1‖IT P2 such that π1(σ1tIT σ2) = σ1

and π2(σ1 tIT σ2) = σ2, as desired.
The other direction follows in the same way:

∃ σ ∈ ΣP1‖IT P2 s.t. π1(σ) = σ1 and π2(σ) = σ2

⇒ σ1 tM σ2 ∈ ΣP1‖M P2 and
π1(σ1 tM σ2) = σ1 and π2(σ1 tM σ2) = σ2,

by (14), (15) and (16).

To demonstrate the power of Theorem 2, we prove the following theorem,
which is a generalization of one of the two main theorems of [3]. Moveover, we
show that the theorem in [3] is a corollary of this theorem; thus, our results
are more general. First, we review the general set-up for this theorem.

Desynchronization. Consider the case when P1 and P2 have the same
tag structure, i.e., T1 = T2 = T . Consider a mediator tag structure T ′ of T ,
i.e., suppose there exists a diagram in Tag:

T
ρ- T ′ �ρ

T .

In this case, we ask when the mediator tagged system IT ′ is semantics pre-
serving, i.e., when

P1‖P2 ≡P1‖IT ′P2. (19)

A very important example of when this framework is useful is in the desyn-
chronization of tagged systems; in this case T ′ = Ttriv = {∗}, and P1‖IT ′P2

is the desynchronization of P1 and P2.
Using the notation of this paragraph, we have the following theorem and

its corollary.

Theorem 3. IT ′ is semantics preserving w.r.t. I , P1‖IT ′P2 ≡ P1‖P2,
if and only if for all (σ1, σ2) ∈ Σ1 ×Σ2:

σρ
1 |V1∩V2 = σρ

2 |V1∩V2 ⇒ σ1|V1∩V2 = σ2|V1∩V2 .

Proof. Note that by the definition of the desynchronization morphism ( · )ρ

(and the fact that it is always surjective), it follows that

σ1|V1∩V2 = σ2|V1∩V2 ⇒ σρ
1 |V1∩V2 = σρ

2 |V1∩V2 .

Therefore, this result is a corollary of Theorem 2.

Corollary 1. If Pρ
i is in bijection with Pi for i = 1, 2 and (P1‖P2)ρ =

Pρ
1‖P

ρ
2 , then P1‖IT ′P2 ≡P1‖P2 (IT ′ is semantics preserving w.r.t. I ).
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Proof. We need only show that the suppositions of the theorem imply for all
(σ1, σ2) ∈ Σ1 ×Σ2

σρ
1 |V1∩V2 = σρ

2 |V1∩V2 ⇒ σ1|V1∩V2 = σ2|V1∩V2 .

The result then follows from Theorem 3.
To see that the desired implication holds, note that we have the following

chain of implications:

σρ
1 |V1∩V2 = σρ

2 |V1∩V2

⇒ (σ1, σ2) ∈ Σ1 ×ΣIT ′
Σ2
∼= ΣP1‖IT ′

P2

⇒ (σρ
1 , σρ

2) ∈ Σρ
1 ×ΣIT ′

Σρ
2
∼= ΣPρ

1‖P
ρ
2

⇒ σρ
1 tIT ′ σρ

2 ∈ Σρ
P1‖P2

(since (P1‖P2)ρ = Pρ
1‖P

ρ
2 )

⇒ ∃ σ̃ ∈ ΣP1‖P2 s.t. σ̃ρ = σρ
1 tIT ′ σρ

2 .

Setting σ̃i = πi(σ̃), the last of these implications implies that (σ̃ρ
1 , σ̃ρ

2) =
(σρ

1 , σρ
2) ∈ Σρ

1 ×ΣIT ′
Σρ

2 . Now, the fact that Pρ
i is in bijection with Pi for

i = 1, 2 implies that σ̃i = σi, or:

(σ1, σ2) = (σ̃1, σ̃2) ∈ Σ1 ×ΣIT
Σ2 ⇒ σ1|V1∩V2 = σ2|V1∩V2 .

Example 2. We would like to know semantics is preserved by desynchroniza-
tion for the tagged systems given in Example 1, i.e., for ρ : Tsync → Ttriv the
desyncronization morphism, is P1‖P2 ≡P1‖ITtriv

P2?
First we apply the necessary and sufficient conditions given in Theorem 3.

Since V1 ∩ V2 = {x},

σρ
1(n, x) = σρ

2(n, x) ⇒ σ1(n, x) = σ2(n, x)
σρ

1(n, x) = σ̃ρ
2(n, x) ⇒ σ1(n, x) = σ̃2(n, x)

because σ1(n, x) = σ2(n, x) and σ1(n, x) = σ̃2(n, x). Therefore, semantics is
preserved.

Note that Corollary 1 would not tell us whether semantics is preserved,
because P2 is not in bijective correspondence with Pρ

2 , and so the conditions
of the corollary do not hold. This demonstrates that Theorem 3 is a stronger
result than Corollary 1.

5 Networks of Tagged Systems

In this section, we introduce the notion of a network of tag structures, tagged
systems and behaviors. Moreover, we are able to show that these objects
correspond to diagrams in Tag, TagSys and Set, respectively. This observation
will be fundamental in defining composition for these networks.
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Networks of tag structures. We begin by defining a network of tag struc-
tures as in [4] (although we state the definition in a slightly different manner).
A network of tag structures is defined to be a tuple

(Γ, T ,S, ρ),

where

• Γ is an oriented graph with Q the set of vertices and E the set of edges;
for e = (i, j) ∈ E, denote the source of e by s(e) = i and the target of e
by t(e) = j.

• T = {Tq}q∈Q is a set of tag structures.
• S = {Se}e∈E is a set of mediator tag structures, mediating between Ts(e)

and Tt(e).
• ρ = {(ρe, ρ

′
e)}e∈E is a set of pairs of morphisms in Tag, such that for every

e ∈ E, there is the following diagram in Tag:

Ts(e)

ρe- Se
�ρ′e Tt(e).

Networks of tagged systems are defined in an analogous manner.

Networks of tagged systems. A network of tagged systems is defined to
be a tuple

(Γ, P,M , α),

where

• Γ is an oriented graph.
• P = {Pq}q∈Q is a set of tag structures.
• M = {Me}e∈E is a set of mediator tagged systems, mediating between

Ps(e) and Pt(e).
• α = {(αe, α

′
e)}e∈E is a set of pairs of morphisms in TagSys, such that for

every e ∈ E, there is the following diagram in TagSys:

Ps(e)

αe- Me
�α
′
e Pt(e).

Suppose we have a network of tag structures (Γ, T ,S, ρ) and a collection of
tagged systems P = {Pq}q∈Q such that Pq has tag structure Tq. Then
we can associate to this set of tagged systems a network of tagged systems,
(Γ,P,IS ,Resρ) with:

IS = {ISe}e∈e, Resρ = {(Resρe

s(e),Resρ′e
t(e))}e∈E

where ISe is defined as in (6), and Resρe

s(e) and Resρ′e
t(e) are defined as in (8),

i.e., there is a diagram in TagSys of the form:

Ps(e)

Resρe

s(e)- ISe
�
Resρ′e

t(e)
Pt(e).
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for every e ∈ E.

Networks of behaviors. We can define a network of behaviors from the
network of tagged systems, (Γ, P,M , α), as a tuple:

(Γ,ΣP , ΣM , α),

where

• Γ is an oriented graph.
• ΣP = {ΣPq}q∈Q, where ΣPq is the set of behaviors for Pq.
• ΣM = {ΣMe}e∈E , where ΣMe is the set of behaviors for Me.
• α = {(αe, α

′
e)}e∈E is a set of pairs of morphisms in Set, such that for every

e ∈ E, there is the following diagram in Set:

ΣPs(e)

αe- ΣMe
�α
′
e ΣPt(e) .

The association of a network of behaviors from a network of tagged systems
can be viewed categorically. For the network of tagged systems (Γ,P,M , α),
the functor F : TagSys → Set yields the corresponding network of behaviors
(Γ,ΣP , ΣM , α) because

ΣP = {ΣPq
}q∈Q = {F(Pq)}q∈Q

ΣM = {ΣMe
}e∈E = {F(Me)}e∈E

More generally,

ΣPs(e)

αe- ΣMe
�α
′
e ΣPt(e) = F

(
Ps(e)

αe- Me
�α
′
e Pt(e)

)
for every e ∈ E.

H-cateogries. The goal is to define a network of tagged systems as a diagram
in TagSys; to do this, we must first define a specific type of small category
termed an H-category4 and denoted by H. This is a small category in which
every diagram has the form:5

• - • � • - • � • · · · • - • � •

That is, an H-category has as its basic atomic unit a diagram of the form:
• - • � •, and any other diagram in this category must be obtain-
able by gluing such atomic units along the source of a morphism (and not the
target). More formally, a small category, H, is an H-category if it satisfies the
following two axioms:
4 The category H considered here actually is the opposite category to a H-small

category, as defined in [1]. The surprising thing about this is that these categories
were considered in the context of hybrid systems; this suggests some interesting
relationships between hybrid and embedded systems.

5 where • denotes an arbitrary object in H and - denotes an arbitrary
morphism.
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1. Every object in H is either the source of a non-identity morphism in H
or the target of a non-identity morphism, but never both; i.e., for every
diagram

• - • - • · · · • - •

in H, all but one morphism must be the identity (the longest chain of
composable non-identity morphisms is of length one).

2. If an object in H is the target of a non-identity morphism, then it is the
target of exactly two non-identity morphisms, i.e., for every diagram in H
of the form

•

•

-

•

-

•

-

· · · · · · · · ·•
�

either all of the morphisms are the identity or two and only two morphisms
are not the identity.

More on H-categories can be found in [2] (where the H-categories defined in
[2] are the opposite categories to the ones considered in this paper).

We can associate to an oriented graph Γ an H-category HΓ by, for every
edge in e ∈ E, defining the following diagram

s(e) - e � t(e)

in HΓ . Of course, the identity morphisms must be added to each object in HΓ

in order to complete the definition. More generally, the category of (oriented)
H-categories can be formed, Hcat, and it can be demonstrated (cf. [2]) that
this category is isomorphic to the category of graphs: Hcat ∼= Grph.

Example 3. The following diagram shows an oriented cycle graph, Γ = Ck,
and the associated H-category HCk

:

e1

ek e2

1
e1 - 2 1

-

�

2

�

-

k

e k-
3

e
2-

k

�

3

-

... Ck

...
... HCk

...

i + 2 i− 1 i + 2 i− 1

i + 1 �ei

�ei+
1

i
�e i−

1

i + 1 i

ei+1

��
ei−1

-

-

ei

�

-
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Diagrams as functors. A diagram in a category is just a collection of objects
together with a collection of morphisms between these objects. Equivalently, a
diagram in a category can be viewed as a functor from a small category to this
category. This motivates an equivalent, arguably more simple and certainly
more abstract, definition of a network of tag structures and a network of
tagged systems.

We define a network of tag structures and a network of tagged systems to
be functors:

T : H→ Tag, P : H→ TagSys,

where H is an H-category. For example, if H is given by the diagram: • −→
• ←− •, then the network of tag structures given in (1) and the network of
tagged systems given in (13) are defined, respectively, by the functors:

T(• −→ • ←− •) =
(
T1

ρ1- T �ρ2 T2
)

, (20)

P(• −→ • ←− •) =
(

P1
α1- M �α2

P2

)
. (21)

More generally, we can associate to a network of tag structures (Γ, T ,S, ρ)
and a network of tagged systems (Γ,P,M , α) functors:

T(T ,S,ρ) : HΓ → Tag, P(P,M ,α) : HΓ → TagSys,

where HΓ is the H-category associated with Γ , and T(T ,S,ρ) and P(P,M ,α)

are defined by:

T(T ,S,ρ) (s(e) - e � t(e)) :=
(
Ts(e)

ρe- Se
�ρ′e Tt(e)

)
, (22)

P(P,M ,α) (s(e) - e � t(e)) :=
(

Ps(e)

αe- Me
�α
′
e Pt(e)

)
, (23)

for every e ∈ E.
If (Γ,P,M , α) is a network of tagged systems, and (Γ,ΣP , ΣM , α) is the

associated network of behaviors, then there is a functor

S(ΣP ,ΣM ,α) : HΓ → Set,

where HΓ is the H-category associated with Γ , and S(ΣP ,ΣM ,α) is defined to
be the composite:

HΓ

P(P,M ,α)- TagSys
F - Set .

In other words, S(ΣP ,ΣM ,α) is defined by:

S(ΣP ,ΣM ,α) (s(e) - e � t(e)) :=
(

ΣPs(e)

αe- ΣMe
�α
′
e ΣPt(e)

)
,

= F
(

Ps(e)

αe- Me
�α
′
e Pt(e)

)
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for every e ∈ E.

Example 4. Continuing Example 3, an example of a network of tagged systems
associated to the H-category HCk

is given in the following diagram:

Me1

Mek
Me2

P1

α e 1
-

�
α ′

ek

P2

�
α ′e

1

αe2
-

Pk

�
α

e
k

P3

α
′ e 2
-

P(HCk
) =

...
...

Pi+2 Pi−1

Pi+1 Pi

Mei+1

�α
′ e i+

1

�αei+1

Mei−1

α
e

i−
1
-α ′

ei−1
-

Mei

�
α e i

α ′e
i -

6 Universally Composing Networks of Tagged Systems

In this section, we give a categorical formulation for composition. Since a
network is just a diagram, the composition of a network is the limit of this di-
agram. To illustrate this concept, we first consider a network of tag structures
and demonstrate how the taking the composition of this network is consistent
with the notion of a common tag structure as first introduced in Section 2. We
then discuss how these ideas can be generalized to networks of tagged systems.
Finally, we explicitly relate the composite of a network of tagged systems with
the composite of a network of behaviors. This relationship will be important
when attempting to prove results relating to semantics preservation.

Composing networks of tag structures. Recall that for two tag struc-
tures, T1 and T2, communicating through a mediator tag structure, T , we
obtained a single, common, tag structure that was unique up to isomorphism;
the common tag structure, T1 ×T T2, was the pullback of the diagram given
in (1). But the pullback is just a special case of the limit (or inverse limit or
projective limit; see [11] for more details) of a functor, i.e.,

T1 ×T T2 = Lim←−−
(•−→•←−•)(T) = Lim←−−

(•−→•←−•)
(
T1

ρ1- T �ρ2 T2
)

,

where T : (• −→ • ←− •)→ Tag is defined as in (20).
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Therefore, we can define a tag structure common to an entire network
of tag structures by taking the limit of the corresponding diagram in Tag
describing this network. If (Γ, T ,S, ρ) is a network of tag structures and

T(T ,S,ρ) : HΓ → Tag

is the corresponding functor and H-category, we define the common tag struc-
ture to be Lim←−−

HΓ (T(T ,S,ρ)), which because of the special structure of an H-
category is given by:

Lim←−−
HΓ (T(T ,S,ρ)) =

(tq)q∈Q ∈
∏
q∈Q

Tq : ρe(ts(e)) = ρ′e(tt(e)), ∀ e ∈ E

 ,

which corresponds to the common tag structure defined in [4]. By the proper-
ties of the limit, we know that this is in fact the desired common tag structure
since for every e ∈ E, we have a diagram of the form

Lim←−−
HΓ (T(T ,S,ρ))

πt(e)- Tt(e)

Ts(e)

πs(e)
? ρe- Se

ρ′e
?

which is a direct generalization of (3). Moreover, the limit is universal in the
same sense as (4).

Composing networks of tagged systems. As with networks of tag struc-
tures, we can consider the limit of a network of tagged systems (when viewed
as a diagram)—this is the heterogeneous composition of the network. This is
justified by the discussion in Section 4, where the composition of a network
of two tagged systems, P1 and P2, was defined to be the pullback of these
systems over the mediator tagged system, M :

P1‖M P2 = Lim←−−
(•−→•←−•)(P) = Lim←−−

(•−→•←−•)
(

P1
α1- M �α2

P2

)
,

where P : (• −→ • ←− •)→ Tag is defined as in (20).
This indicates a general, and universal, way of taking the composition of

a network of tagged systems: through the limit. Consider a network of tagged
systems (Γ,P,M , α), with the tagged systems Pq and Me given by

Pq = (Vq, Tq, Σq), q ∈ Q,

Me = (Ve,Se, Σe), e ∈ E.

For the corresponding functor and H-category:

P(P,M ,α) : HΓ → TagSys
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denote the heterogeneous composition of (Γ,P,M , α) by ‖M P (to be con-
sistent with the notation of [4]) and define it by (unlike [4])

‖M P := Lim←−−
HΓ (P(P,M ,α)) =

 ⋃
q∈Q

Vq,
∏
q∈Q

Tq, Σ‖M P

 , (24)

where Σ‖M P is the set of behaviors

σ : N×
⋃
q∈Q

Vq →
∏
q∈Q

Tq ×D

σ(n, v) 7→ ((tq)q∈Q, d)

such that the following conditions hold: for all (n, v) ∈ N ×
⋃

q∈Q Vq, there
exists unique (σq)q∈Q ∈

∏
q∈Q Σq such that6 for all e ∈ E

σ(n, v) = ((tq)q∈Q, d) ⇔

(i′) σs(e)(n, v) = (ts(e), d) if v ∈ Vs(e)

and
(ii′) σt(e)(n, v) = (tt(e), d) if v ∈ Vt(e)

and
(iii′) αe(σs(e))(n, w) = α′e(σt(e))(n, w)

∀ w ∈ Ve.

(25)

Because σ ∈ Σ‖M P is uniquely determined by (σq)q∈Q ∈
∏

q∈Q Σq satisfying
the right-hand side of (25), we write

σ =
⊔
M

(σq)q∈Q ∈ Σ‖M P

for the corresponding element on the left-hand side of (25), and call it the
unification of (σq)q∈Q ∈

∏
q∈Q Σq. Conversely, every element of Σ‖M P can be

written as the unification of an element of
∏

q∈Q Σq, so there are projection
maps πq, q ∈ Q, given by

πq : Σ‖M P → Σq

σ =
⊔
M

(σq)q∈Q 7→ σq = πq(σ).

We can obtain a better understanding of the behaviors of the tagged sys-
tem ‖M P by considering the associated network of behaviors.

Composing networks of behaviors. Let (Γ,P,M , α) be a network of
tagged systems, (Γ,ΣP , ΣM , α) the associated network of behaviors, and

S(ΣP ,ΣM ,α) = F ◦P(P,M ,α) : HΓ → Set,

6 Unlike (5), the third condition stated here is no longer redundant.
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the associated functor and H-category. Because of the special structure of an
H-category, we can explicitly compute the limit of the functor S(ΣP ,ΣM ,α); it
is given by

Lim←−−
HΓ (S(ΣP ,ΣM ,α)) = (26)(σq)q∈Q ∈

∏
q∈Q

Σq : αe(σs(e)) = α′e(σt(e)), ∀ e ∈ E

 .

Now, there is a bijection:

Σ‖M P
∼= Lim←−−

HΓ (S(ΣP ,ΣM ,α)). (27)

The map from Σ‖M P to Lim←−−
HΓ (S(ΣP ,ΣM ,α)) is given by

(πq)q∈Q : Σ‖M P
∼−→ Lim←−−

HΓ (S(ΣP ,ΣM ,α)) (28)

σ 7→ (πq(σ))q∈Q.

The inverse of this map is given by the unification operator generalized to the
network case. That is⊔

M

( · ) : Lim←−−
HΓ (S(ΣP ,ΣM ,α))

∼−→ Σ‖M P (29)

(σq)q∈Q 7→ σ =
⊔
M

(σq)q∈Q,

where σ is given as in the left-hand side of equation (25), which is well de-
fined because of the definition of Lim←−−

HΓ (S(ΣP ,ΣM ,α)), i.e., because an element
(σq)q∈Q ∈ Lim←−−

HΓ (S(ΣP ,ΣM ,α)) automatically satisfies the right-hand side of
(25) by (26).

Composition over identity mediator tagged systems. An especially
interesting case is when the network of tagged systems is obtained from a
network of tag structures (Γ, T ,S, ρ), i.e., the network of tagged systems is
given by (Γ,P,IS ,Resρ). Here we explicitly carry out the construction of
‖ISP, and demonstrate how this yields the correct definition of ‖ISP so as
to be consistent with [4].

If Pq = (Vq, Tq, Σq) for all q ∈ Q, then

‖ISP = Lim←−−
HΓ (P(P,IS ,Resρ)) =

 ⋃
q∈Q

Vq,Lim←−−
HΓ (T(T ,S,ρ)), Σ‖ISP

 ,

where Σ‖ISP is defined in the same way as Σ‖M P with the appropriate
modifications, i.e., Σ‖ISP is the set of behaviors
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σ : N×
⋃
q∈Q

Vq → Lim←−−
HΓ (T(T ,S,ρ))×D ⊂

∏
q∈Q

Tq ×D

σ(n, v) 7→ ((tq)q∈Q, d) ,

such that the following conditions hold: for all (n, v) ∈ N ×
⋃

q∈Q Vq, there
exists unique (σq)q∈Q ∈

∏
q∈Q Σq such that7 for all e ∈ E

σ(n, v) = ((tq)q∈Q, d) ⇔

(i′′) σs(e)(n, v) = (ts(e), d) if v ∈ Vs(e)

and
(ii′′) σt(e)(n, v) = (tt(e), d) if v ∈ Vt(e)

and
(iii′′) σρe

s(e)|Vs(e)∩Vt(e) = σ
ρ′e
t(e)|Vs(e)∩Vt(e) .

(30)

Note that the fact that σ ∈ Σ‖ISP takes values in Lim←−−
HΓ (T(T ,S,ρ)), rather

than
∏

q∈Q Tq, is exactly because of condition (iii′′).
The conditions given in (30) demonstrate that our definition of Σ‖ISP is

consistent with the one given in [4] (although our definition of Σ‖M P is more
general that anything defined in that paper). Moreover, (26), (27) and (30)
imply that we have the following bijection

Σ‖ISP
∼= Lim←−−

HΓ (S(ΣP ,ΣIS ,Resρ)) (31)

=

(σq)q∈Q ∈
∏
q∈Q

Σq : σρe

s(e)|Vs(e)∩Vt(e) = σ
ρ′e
t(e)|Vs(e)∩Vt(e) , ∀ e ∈ E


as defined in (28) and (29). Here

S(ΣP ,ΣIS ,Resρ) = F ◦P(P,IS ,Resρ) : HΓ → Set

is the functor corresponding to the network of behaviors (Γ,ΣP , ΣIS ,Resρ)
obtained from the network of tagged systems (Γ, P,IS ,Resρ).

7 Semantics Preserving Deployments of Networks

Using the framework established in this paper, we are able to introduce a
general notion of semantics preservation. After this concept is introduced,
we state the main result of this work: necessary and sufficient conditions for
semantics preservation. We conclude this section by applying this result to
the specific case of network desyncronization.

Network specification vs. network deployment. Generalizing the notion
of specification vs. deployment given in Section 4, we define the following
semantics (using the notation of the previous paragraph):
7 Like (5) and unlike (25), the third condition stated here is again redundant be-

cause we are taking Lim←−−
HΓ (T(T ,S,ρ)) as our tag structure.
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Network Specification Semantics: ‖ISP
Network Deployment Semantics: ‖M P

The set of mediator tagged systems M is said to be semantics preserving with
respect to IS , denoted by

‖M P ≡ ‖ISP

if for all (σq)q∈Q ∈
∏

q∈Q Σq

∃ σ′ ∈ Σ‖M P s.t. πq(σ′) = σq ∀ q ∈ Q
m

∃ σ ∈ Σ‖ISP s.t. πq(σ) = σq ∀ q ∈ Q.
(32)

We now are able to generalize the results given in Theorem 2 on semantics
preservation to the networks of tagged systems case.

Theorem 4. For the networks, (Γ, P,M , α) and (Γ,P,IS ,Resρ),

‖M P ≡ ‖ISP

if and only if for all (σq)q∈Q ∈
∏

q∈Q Σq and all e ∈ E:

αe(σs(e)) = α′e(σt(e)) ⇔ Resρe

s(e)(σs(e)) = Resρ′e
t(e)(σt(e)).

Proof. (Sufficiency:) If

(σq)q∈Q ∈
∏
q∈Q

Σq s.t. αe(σs(e)) = α′e(σt(e)) ∀ e ∈ E

by (26)⇒ (σq)q∈Q ∈ Lim←−−
HΓ (S(ΣP ,ΣM ,α))

by (29)⇒
⊔

M (σq)q∈Q ∈ Σ‖M P where
πq (

⊔
M (σq)q∈Q) = σq ∀ q ∈ Q

by (32)⇒ ∃ σ ∈ Σ‖ISP s.t. πq(σ) = σq ∀ q ∈ Q
by (28)⇒ (σq)q∈Q ∈ Lim←−−

HΓ (S(ΣP ,ΣIS ,Resρ))
by (31)⇒ Resρe

s(e)(σs(e)) = Resρ′e
t(e)(σt(e)) ∀ e ∈ E.

The converse direction proceeds in the same manner: if

(σq)q∈Q ∈
∏
q∈Q

Σq s.t. Resρe

s(e)(σs(e)) = Resρ′e
t(e)(σt(e)) ∀ e ∈ E

by (29)⇒
⊔

IS
(σq)q∈Q ∈ Σ‖ISP where

πq

(⊔
IS

(σq)q∈Q

)
= σq ∀ q ∈ Q

by (32)⇒ ∃ σ′ ∈ Σ‖M P s.t. πq(σ′) = σq ∀ q ∈ Q
by (28)⇒ (σq)q∈Q ∈ Lim←−−

HΓ (S(ΣP ,ΣM ,α))
by (26)⇒ αe(σs(e)) = α′e(σt(e)) ∀ e ∈ E.
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(Necessity:) We have the following implications:

∃ σ′ ∈ Σ‖M P s.t. πq(σ′) = σq ∀ q ∈ Q

by (28)⇒ (σq)q∈Q ∈ Lim←−−
HΓ (S(ΣP ,ΣM ,α))

by (26)⇒ αe(σs(e)) = α′e(σt(e)) ∀ e ∈ E

⇒ Resρe

s(e)(σs(e)) = Resρ′e
t(e)(σt(e)) ∀ e ∈ E

by (29)⇒
⊔

IS
(σq)q∈Q ∈ Σ‖ISP and

πq

(⊔
IS

(σq)q∈Q

)
= σq ∀ q ∈ Q.

Therefore
⊔

IS
(σq)q∈Q is the element of Σ‖ISP such that πq

(⊔
IS

(σq)q∈Q

)
=

σq for all q ∈ Q.
The other direction follows in the same way:

∃ σ ∈ Σ‖ISP s.t. πq(σ) = σq ∀ q ∈ Q

⇒
⊔

M (σq)q∈Q ∈ Σ‖M P and
πq (

⊔
M (σq)q∈Q) = σq ∀ q ∈ Q,

by (26), (28) and (29), so
⊔

M (σq)q∈Q is the element of Σ‖M P such that
πq (

⊔
M (σq)q∈Q) = σq for all q ∈ Q.

Network desyncronization. Let T and T ′ be two tag structures and
ρ : T → T ′ be a morphism between these tag structures. By slight abuse
of notation, let (Γ, T , T ′, ρ) denote the network of tag structures such that
Tq = T for all q ∈ Q and T ′e = T ′, ρe = ρ′e = ρ for all e ∈ E; denote the
corresponding network of tagged systems by (Γ,P,IT ′ ,Resρ). Similarly, let
(Γ, T , T , id) denote the network of tag structures with Ts(e) = Tt(e) = Te = T
for all e ∈ E, and with all morphisms of tag structures being the identity; de-
note the corresponding network of tagged systems by (Γ,P,I ,Resid). There-
fore, this network consists of a set of tagged systems, all with the same tag
structure, communicating through the identity tagged system. A special case
in which this framework in interesting is when T ′ = Ttriv = {∗}; in this case
(Γ, P,IT ′ ,Resρ) is the desynchronization of (Γ, P,I ,Resid).

Utilizing the notation of Section 6, and generalizing the discussion on
desynchronization given in this Section 4, we are interested in when

‖P := Lim←−−
HΓ (P(T ,T ,id)) ≡ Lim←−−

HΓ (P(T ,T ′,ρ)) =: ‖IT ′P.

In other words, we would like to know when IT ′ is semantics preserving. The
following corollary (of Theorem 4) says that this happens exactly when every
element of IT ′ is semantics preserving.



28 A. D. Ames et al.

Corollary 2. IT ′ is semantics preserving, ‖P ≡ ‖IT ′P, if and only if for
all (σq)q∈Q ∈

∏
q∈Q Σq and all e ∈ E:

σρ
s(e)|Vs(e)∩Vt(e) = σρ

t(e)|Vs(e)∩Vt(e) ⇒ σs(e)|Vs(e)∩Vt(e) = σt(e)|Vs(e)∩Vt(e) .

8 Conclusion

We have presented a categorical approach to the analysis of heterogeneous
composition of tagged systems. This approach has allowed us to derive nec-
essary and sufficient conditions for semantics preservation in a heterogeneous
network of tagged systems. This result can be considered a generalization of
the approach of Benveniste et al. who introduced the notion of tagged sys-
tems and their heterogeneous composition and derived sufficient conditions
for semantics preservation.

The main theoretical tool utilized in this paper has been used in hybrid
systems [1]. This is not surprising as hybrid systems are a special case of het-
erogeneous systems. To make this slightly more specific, a hybrid object over
a category T is defined to be a functor S : H→ T, where T is any category. A
network of tagged systems is just a hybrid object over the category TagSys,
and a hybrid system is a hybrid object over the category Dyn. Therefore, if
general results can be obtained for hybrid objects over categories (such as
bisimulation relations, cf. [9]) then they can be applied to networks of em-
bedded systems. Conversely, the intuition gained in this paper on composing
networks of tagged systems indicates a possible way of composing networks
of dynamical systems: hybrid systems.

Acknowledgement. The authors are indebted to Alessandro Pinto for his
invaluable feedback. The second author is indebted to Albert Benveniste,
Benoit Caillaud, Luca Carloni and Paul Caspi for the many discussions and
the work that led to the definition of tagged systems and the issue of semantics
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