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_Abstract—The reduction of dynamical systems has a rich space. The main result of geometric reduction is that one can
history, with many important applications related to stability,  understand the behavior of the full-order system in terms of
control and verification. Reduction is typically performed in an o pehavior of the reduced system and vice versa [MW74]

“exact” manner—as is the case with mechanical systems with . : w N .
symmetry—which, unfortunately, limits the type of systems to [vdS81], [BKMM96]. While this form of “exact” reduction

which it can be applied. The goal of this paper is to consider a IS Very elegant, the class of systems for which this procedure
more general form of reduction, termed approximate reduction can be applied is actually quite small. This indicates the need
in order to extend the class of systems that can be reduced. for a form of reduction that is applicable to a wider class of
Using notions related to incremental stability, we give conditions systems and, while not being exact, is “close enough.”

on when a dynamical system can be projected to a lower .

dimensional space while providing hard bounds on the induced In system_s theory,_ reduced order modeling has also
errors, i.e., when it is behaviorally similar to a dynamical system been extensively studied under the name of model reduc-
on a lower dimensional space. These concepts are illustrated tion [BDG96], [ASGO00]. Contrary to model reduction where
on a series of examples. approximation is measured usidg norms we are interested

in L* norms. The guarantees provided By°® norms are

I. INTRODUCTION o e
. ) ) ) . more natural when applications to safety verification are of
Modeling is an essential part of many engineering dist iarest

ciplines and often a key ingredient for successful designs. \ye develop our results in the framework of incremental
Although it is widely recognized that models are onlygiapijity and our main result is in the spirit of existing

approximate descriptions of reality, their value lies precisely ity results for cascade systems that proliferate the Input-
on the ability to describe, within certain bounds, the modeleg)_state Stability (ISS) literature.

phenomena. In this paper we consider modeling of closed
loop control systems, i.e., differential equations, with the [l. PRELIMINARIES

purpose of simplifying the analysis of these systems. The A continuous functiony : RY — R, is said to belong to
goal of this paper is to reduce the dimension of the differercjassi if it is strictly increasingy(0) = 0 and~(r) — oo
tial equations being analyzed while providing hard boundgs, — ~. A continuous functions3 : RS x RE — R is
on the introduced errors. One promising application of thesgid to belong to clas&L if, for each fixeds, the map
teChniqueS is to the verification of hybrld SyStemS, which i%(r7 S) be|0ngs to C|as§<00 with respect tor and, for each
currently constrained by the complexity of high dimensionafixed r, the mapf(r, s) is decreasing with respect toand
differential equations. B(r,s) — 0 ass — oc.

Reducing differential equations—and in particular me- For a smooth functionp : R — R™ we denote byl'y
chanical systems—is a subject with a long and rich historyhe tangent map te and by7,¢ the tangent map tp at
The first form of reduction was discovered by Routh in, ¢ R". We will say thaty is a submersion at € R"
the 1890's; over the years, geometric reduction has becomer, ., is surjective and thaf’y is a submersion if it is a
an academic field in it self. One begins with a differentiakypmersion at every € R". When ¢ is a submersion we

equation with certain symmetries, i.e., it is invariant undeyy|l also use the notation kéFy) to denote the distribution:
the action of a Lie group on the phase space. Using these

symmetries, one can reduce the dimensionality of the phase ~ ker(Ty) = {X : R" — R" [ Ty - X (z) = 0}.

space (by “dividing” out by the symmetry group) and define Gjyen 4 point: € R, |z| will denote the usual Euclidean
a corresponding differential equation on this reduced phasgm while I1/]] will denote esssup,c (o | f(£)] for any
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2) Ix(t,z) = X(x(t,z)) forall t € I. Definition 4: The vector field(R™, X) is said to beap-
A control system can be seen as an under-determin@doximatelyr,,-relatedto the vector fieldR™,Y") if there
vector field. exists a clas&, function~ such that the following estimate

Definition 2: A control systemis a triple (R”,R™ F) holds:
where F' is a smooth mapF' : R” x R™ — R™. A smooth
curvexy (-, z) : I — R™, defined on an open subskbf R |7 0 %(t, ) = y(t, T ()] < (|70 (2))). ©)
including the origin, is said to be a trajectory @", R"™, F)) Note that whenX andY arem,,-related we have:
if there exists a smooth curve : I — R™ such that the
following two conditions hold:
1) xu(0,2) = ; which implies (3). Definition 4 can thus be seen as a
2) %xu(t,:z:) = F(xq(t,z),u(t)) for almost allt € I. generalization of exact reduction captured by Definition 3.
Although the bound on the gap between the projection
1. EXACT REDUCTION of the original trajectoryx and the trajectoryy of the
For some dynamical systems described by a vector fielghproximate reduced system is a functionzofin concrete
X onR" it is possible to replac& by a vector fieldY” de- applications the initial conditions are typically restricted to a
scribing the dynamics of the system on a lower dimension@lbunded set of interest. The following result has interesting
space,R™, while retaining much of the information iX.  implications in these situations.
When this is the case we say th#t can be reduced t&'". Proposition 3: If (R™, X) is approximatelyr,,-related to
This idea of (exact) reduction is captured by the notion ofR™, Y") then for any compact sef’ C R" there exists a

p-related vector fields. § > 0 such that for all: € C the following estimate holds:
Definition 3: Let ¢ : R — R™ be a smooth map. The

vector field(R™, X) is said to bep-relatedto the vector field [T 0 X(t, ) — y(t, Tm(2))| < 0. (4)
(R™,Y) if: Proof: Let 6 = max,cc y(|mr(2)|). The scalars is

To-X=Yoop. (1) well defined sincey(|m(-)|) is a continuous map and is
The following proposition, proved in [AMR88], character- compact. u

izes p-related vector fields in terms of their trajectories. ~ From a practical point of view, approximate reduction is
Proposition 1: The vector field (R”,X) is ¢-related only a useful concept if it admits characterizations that are

to the vector field (R™,Y), for some smooth map simple to check. In order to derive such characterizations we

|7Tm o X(tvx) - y(t,mn(x))| =0,

¢ R" — R™, iff: need to review several notions of incremental stability.
pox(t,x) =yt o(x)), (2) A. Incremental stability

wherex(t, z) andy(t, y) are the trajectories of vector fields In this subsection we review two notions of incremental

X andY, respectively. stability which will be fundamental in proving the main

For p-related vector fields, we can replace the study ofontribution of this paper. We follow [BMOO] and [Ang02].
trajectoriesx(-, z) with the study of trajectories (-, p(z)) Definition 5: A control systemR", R™, ") is said to be
living on the lower dimension spad™. In particular, formal incrementally uniformly bounded-input-bounded-state stable
verification of X can be performed o’ whenever the (IUBIBSS)if there exist two clas(. functionsy; and~,
relevant sets describing the verification problem can also tséich that for eachr;, z, € R™ and for each pair of smooth
reduced taR™. curvesu;,u, : I — R™ the following estimate holds:

If a vector field and a submersiamare given we can use
the following result, proved in [MSVS85], to determine the
existence ofp-related vector fields.

» : o ) . foralltel.
nProquLmon 2: Let (R, X) _be a vector _f|eld andp ., In general it is difficult to establish IUBIBSS directly. A
R* — R™ a smooth submersion. There exists a vector fleI(sjufficient condition is given by the existence of an IUBIBSS
(R™,Y) that is -related to(R™, X) iff: 9 y

Lyapunov function. Note however that IUBIBSS only implies
[ker(T'v), X] C ker(Tp). the existence of a IUBIBSS Lyapunov function with very
In an attempt to enlarge the class of vector fields that cameak regularity conditions [BMOQ].
be reduced we introduce, in the next section, an approximateDefinition 6: A C' function V : R® x R* — Rar is
notion of reduction. said to be alUBIBSS Lyapunov functiofor control system

V. APPROXIMATE REDUCTION (R™,R™, F) if there exist & > 0 and classK,, functions
' a, @, andy such that:

The generalization of Definition 3 proposed in this section 1) For|oy — | > €
requires a decomposition &" of the formR™ = R™ x R, T d2l =

[Xu, (t, 1) — Xu, (t, 72)| < y1(l71 — 22]) + 72([[ur — uz||)

®)

Associated with this decomposition are the canonical pro- a(|z — z2]) < V(z,20) < a2y — 22));
jections 1,, : R* — R™ andm, : R* — RF taking N
R" >z = (y,2z) € R™ x R* to 7,,, () = y and my(2) = 2, 2) p(r) zr+&forreRg;

respectively. 3) |oy —xo| > p(luy —uz|) = V<O.



A stronger notion than IUBIBSS is incremental input-to-to get:
state stability.
Definition 7: A control system(R",R™, F) is said to (7m0 (2, 2) = y (¢, 7o (2))]
be incrementally input-to-state stable (IISB)there exist a = [Yrpox(t,e) (& T (2)) — Yo, T ()]
classXL function 3 and a classK,, function v such that [Yvi (6T () — yo(t, T ()]
for eachz,,2, € R™ and for each pair of smooth curves Yo([v1]]) = Y2 (||7k 0 x(-, 2)|).

ui,uy : I — R™ the following estimate holds:
But it follows from fiber stability of X with respect toR*
|%uy (1, 21) = Xu, (£, 22)| < B(lv1r — @2, t) +y([lur —ugf])  that
(6) [mx 0 x(- @) || < y(|mi(2)])-

Sinceg is a decreasing function afwe immediately see
that (6) implies (5) withyy (r) = B(r,0) and s (r) = y(r),
r € Ry. Once again, 1SS is implied by the existence of an  |m, o x(t,z) — y(t, mm(2))| < 72 0 v(|7k(2)]),
IISS Lyapunov function. See [Ang02] for a converse resu
when the inputs take values in a compact set.

Definition 8: A C! function V' : R® x R* — R is
said to be arlSS Lyapunov functiofor the control system
(R™,R™, F) if there exist classK,, functionsa, @, «, and

IN

We thus have:

I\5\/hich concludes the proof sinego~ is a classk, function.
[ |
Theorem 1 shows that sufficient conditions for approxi-
mate reduction can be given in terms of ISS-like Lyapunov
functions and how reduced system can be constructed. Before

p such that: illustrating Theorem 1 with several examples in the next

1) a(lzr — z2]) < V(z1,22) < a(lzg — 22|); section we present an important corollary.

2) |lz1—x2| > p(lur —u2]) =V < —a(|rr —x2). Corollary 1: Let (R, X) and (R™,Y) be vector fields

_ _ - satisfying the assumptions of Theorem 1. Then, for any

B. Fiberwise stability compact setC’ C R”™ there exists & > 0 such that for

In addition to incremental stability we will also need a@ny = € C andy € m,,(C) the following estimate holds:
notion of partial stability. [t 0 x(t,2) — y(t,y)| < 6

Definition 9: A vector field (R", X) is said to befiber- Proof: Using the same proof as for Theorem 1, except

wise stable with respect t&* if there exists a clas¥(.. picking y; = 7, (2) andy, = v, it follows that:
function v such that the following estimate holds:
)| < (o)) [T o x(t,2) — y(t, y)| < 1 (|mm(2) — yl) +v(|me(2)]).-
Te(x(, < v(|mr(x)]). . . .
Fiberwise stability can be checked with the help of theThe boundy is now given by:
following result. 6= (v (Imm(z) = yl) +y(Ime(2)]))
Lemma 1: A vector field(R™, X) is fiberwise stable with

respect tdR” if there exist twoX ., functions,« anda@, and Which is well defined sinc€’ x m,,,(C) is compact. =
a functionV : R® — R such that: This result has important consequences for verification.

_ Given a set of initial condition C R™, the set of points
1 < < . ; . " .
2; %(\gko(:v)l) < Vie) s allm(@)D). reachable under trajectories Bf from initial conditions in
- S can be over-approximated by enclosingiagletrajectory
of Y, starting atany point in .S, by a tube of radius.

max
(#,9)EC X7 (C)

C. Existence of approximate reductions

In this subsection we prove the main result providing suffi- V. EXAMPLES
cient conditions for the existence of approximate reductions. In this section, we consider examples that illustrate the
Theorem 1: Let(R", X) be a fiberwise stable vector field usefulness of approximate reduction.

with respect taR* and letF' = Tr,, - X : R x RF — R™, Example 1: As a first example we consider the ball

viewed as a control system with state spR&e, be IUBIBSS. in a rotating hoop with friction, as described in Chapter

Then, the vector fieldR™,Y) defined by: 2 of [MR99]. For this example, there are the following
parameters:

Y(y) = Tiy,2)Tm - X(y,0) = F(y,0) m = mass of the ball

is approximatelyr,,-related to(R"™, X). R Radius of the hoop,

Proof: _By assumptionY (y) = T(, .)mm - X(y,0) is g acceleration due to gravity,
IUBIBSS with respect taR* so that we have: .
p = friction constant for the ball.

i (6 91) = yva (6 92)] < 7llyn = gal) +22(llvi = vall). The equations of motion are given by:

= —ﬁw—l—f2 sin 6 cos 6 — gsinQ
m R

= w @)

In particular we can take o
Y1 =Yz = T(x), vi=mox(,z), vo=0, 0
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Fig. 1. A trajectory of the full order system (red) vs. a trajectory for
the reduced system (blue) faR = 5,10,20,40 (from top to bottom,
respectively).
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wheref is the angular position of the ball andis its angular
velocity.

If 7, : R — R is the projectionr, (w,f) = w, then
according to Proposition 2 there exists no vector figlen
R which is 7,-related toX (as defined by (7)). However,
we will show thatY (w) = T{,, g7, - X (w, 0) is approximate
m,-related toX.

First, we use:

V= %mR%;Q +mgR(1 — cosf) — %mR2§2 sin? 0

as a Lyapunov function to show that (7) is stable. Note that
V(w,8) = 0for (w,0) = (0,0) andV (w, ) > 0 for (w, d) #
(0,0) provided thatR¢? < g. Computing the time derivative
of V' we obtain:

V = —uR*W? <0,

thus showing stability of (7). We now consider a compact set
C invariant under the dynamics and restrict our analysis to
initial conditions in this set. Such a set can be constructed,
for example, by taking{z € R? | V(z) < ¢} for some
positive constant. Note that stability of (7) implies fiberwise
stability onC sincer,,(C) is compact.

To apply Theorem 1 we only need to show that:
Tiwo)Tw - X(w,0) = —%w +&%sinfcos b — %sin@

is IUBIBSS onC with 4 seen as an input. We will conclude
IUBIBSS by proving the stronger property of 1I1SS. Consider
the function:

1
U = 5(&)1 —WQ)Q.

Its time derivative is given by:

U = (w1 — wa) —%(wl—w2)+§2sin91c0501

f% sin 6y — 52 sin 6 cos 65 + % sin 92}

< —ﬂ(wl —wo)? + |wy — w2|‘§2 sin 01 cos 61
m
—% sin @, — &2 sin 6y cos By + %Sin(%’
< _%(Wl —ws)? + w1 — wa| L[ — b5
= —%(wl — wy)? 8)
+( — %(wl — WQ)2 + |w1 — (.d2‘L|91 — 92|)7

where the second inequality follows from the fact that
£2sinf cos — & sind is a smooth function defined on the
convex compact sety(C') and is thus globally Lipschitz on
m(C) (since its derivative is continuous and thus bounded
on my(C)) with Lipschitz constanf.. We now note that the
condition:

2mL
|w1 —w2| > 7/}/ ‘91 - 02|

makes the second term in (8) negative from which we
conclude the following implication:

2mL .
|w1 —w2| > 7|91 —92| — U < —L(wl —w2)2
W 2m



to reduceX to R? by eliminating thef andw variables and
thus obtainingY” defined by:

(i) — Y(x,v)

= T(;C,G,v,w)ﬂ—(x,v) : X(l‘, Oa v, 0)
v
—(dv+kz) )

The objective is now to show thaX and Y are approx-
imately m(, ,y-related. In particular, note that the reduced
system,Y, is linear while the full-order systemy, is very
nonlinear. This will be discussed in more detail after proving
Fig. 2. A graphical representation of the pendulum on a cart mounted fh1at they are in fact approximately related.
a spring. Stability of X, and in particular fiberwise stability, can
be proven as in the previous example by noting tRais
Hamiltonian ford = b = 0 and using the Hamiltonian as a
showing that/ is an 1ISS Lyapunov function. We can thusLyapunov functionV”. Consider now the control system:
reduce (7) to:

. [ F((z,v),(0,w) = Tmga)-X(z,0,0,w) (20)
w=——Ww. 1

m = — (me2 sinf — kx
Projected trajectories of the full-order system as compared M +msin0 b
with trajectories of the reduced system can be seen in Figure +mgsin 6 cos @ — dv + — cos 9)
1; herey = m =1 and¢ = 0.1. Note that ask — oo, the
reduced system converges to the full-order system (or théth ¢ andw regarded as inputs. To show thiatis [UBIBSS
full-order system effectively becomes decoupled). we first rewrite (10) in the form:

Example 2: We now consider a pendulum attached to a F (@), (6,w)) =

cart with is mounted to a spring (see Figure 2). For this VIO a

example, there are the following parameters: 7 ~1F - (me2 sin@ — kx — dv — mRw cos 9)
M = mass of the cart, and consider the following 1ISS candidate Lyapunov func-
m = mass of the pendulum, tion:
R = length of the rod, 1 5 1 9
U= —-— (21 — Z(vg — )
k‘ _ spring stiffness, 2(m 4 M) (xl SCQ) + 2(7-)1 1)2)
g = acceleration due to gravity, Its time derivative is given by:
d = friction constant for the cart, d , mR .
b = friction constant for the pendulum. v = T+ M(Ul —v2)” + m+ M (W1 sin 6
. 2 . .
The equations of motion are given by: —wy cos 0y — wj sin by + w cos 92) (v1 = va).
- Using an argument similar to the one used for the previous
i — w example, we conclude that:
v = 7M—|—msin29<me sin @ + mgsin 6 cos 6 lug — vg] > y 101, w1, @1) — (02, w2, @2)|,
b
—kx — dv + 7 08 9) with L the Lipschitz constant of the function?siné —
1 w cos §, implying:
w = — (—meQSinecosﬁ
R(M + msin® 0) 7 < 9
—(m+ M)gsind + kx cos 6 + dv cos 6 __2(m+M)(U1_U2) ’
—(1+ M)%w) (9) thus showing thak is IISS and in particular also IUBIBSS.
m

That is, we have established th&tandY are approximately
wherez is the position of the carty its velocity, 6 is the =, . -related.

angular position of the pendulum andits angular velocity. In order to illustrate some of the interesting implications of
If T(z0): R* — R? is the projectionr, ,y(x,0,v,w) =  approximate reduction, we will compare the reduced system,
(z,v) and X is the vector field as defined in (9), the goal isY, and the full-order systeni, in the case whe® = m =
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Fig. 3. A projected trajectory of the full-order system (red) and a trajectory for the reduced system (bldey fo001,0.01,0.1,1 (from left to right

and top to bottom, respectively).

k=b=1and M = 2. It follows that the equations of [Ang02]
motion for the reduced system are given by the linear system:

()-(4 ()

so we can completely characterize the dynamics of tHBDG96]
reduced system: every solution spirals into the origin. This

D. Angeli. A lyapunov approach to incremental stability prop-
erties. IEEE Transactions on Automatic Contret7(3):410—
421, 2002.

A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey
of model reduction methods for large-scale syste@sntem-
porary Mathematics280:193-219, 2000.

C. L. Beck, J. Doyle, and K. Glover. Model reduction of
multidimensional and uncertain system&EEE Transactions

on Automatic Contrql41(10):1466-1477, 1996.

is in stark contrast to the dynamics &f (see (9)) which are |Bkmmas] A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden, and R. Murray.

very complex. The fact thak and Y are approximately
related, and more specifically Theorem 1, allows us tPBMOO]
understand the dynamics &f through the simple dynamics

of Y. To be more specific, because the distance between
the projected trajectories ok and the trajectories ot

is bounded, we know that the projected trajectoriesXof
will “essentially” be spirals. Moreover, the friction constant
d will directly affect the rate of convergence of these spiralgMSVS85]
Examples of this can be seen in Figure 3 wherie varied vmw74]
to affect the convergence of the reduced system, and hence

the full order system.

[MR99]
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