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Summary. The purpose of this paper is to apply methods from geometric mechan-
ics to the analysis and control of bipedal robotic walkers. We begin by introducing
a generalization of Routhian reduction, functional Routhian Reduction, which al-
lows for the conserved quantities to be functions of the cyclic variables rather than
constants. Since bipedal robotic walkers are naturally modeled as hybrid systems,
which are inherently nonsmooth, in order to apply this framework to these systems
it is necessary to first extend functional Routhian reduction to a hybrid setting. We
apply this extension, along with potential shaping and controlled symmetries, to
derive a feedback control law that provably results in walking gaits on flat ground
for a three-dimensional bipedal walker given walking gaits in two dimensions.

1 Introduction

Geometric reduction plays an essential role in understanding physical systems
modeled by Lagrangians or Hamiltonians; the simplest being Routhian reduc-
tion first discovered in the 1890’s (cf. [6]). In the case of Routhian reduction,
symmetries in the system are characterized by cyclic variables, which are co-
ordinates of the configuration space that do not appear in the Lagrangian.
Using these symmetries, one can reduce the dimensionality of the phase space
(by “dividing” out by the symmetries) and define a corresponding Lagrangian
on this reduced phase space. The main result of geometric reduction is that we
can understand the behavior of the full-order system in terms of the behavior
of the reduced system and vice versa.

In classical geometric reduction the conserved quantities used to reduce
and reconstruct systems are constants; this indicates that the “cyclic” vari-
ables eliminated when passing to the reduced phase space are typically uncon-
trolled. Yet it is often the case that these variables are the ones of interest—it
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may be desirable to control the cyclic variables while not affecting the reduced
order system. This motivates an extension of Routhian reduction to the case
when the conserved quantities are functions of the cyclic variables instead of
constants.

These concepts motivate our main goal:

Develop a feedback control law that results in walking gaits on flat
ground for a three-dimensional bipedal robotic walker given walking
gaits for a two-dimensional bipedal robotic walker.

In order to achieve this goal, we begin by considering Lagrangians that
are cyclic except for an additional non-cyclic term in the potential energy,
i.e., almost-cyclic Lagrangians. When Routhian reduction is performed with
a function (of a cyclic variable) the result is a Lagrangian on the reduced
phase-space: the functional Routhian. We are able to show that the dynam-
ics of an almost-cyclic Lagrangian satisfying certain initial conditions project
to dynamics of the corresponding functional Routhian, and dynamics of the
functional Routhian can be used to reconstruct dynamics of the full-order
system. In order to use this result to develop control strategies for bipedal
walkers, it first must be generalized to a hybrid setting. That is, after dis-
cussing how to explicitly obtain a hybrid system model of a bipedal walker
(Section 2), we generalize functional Routhian reduction to a hybrid setting
(Section 3), demonstrating that hybrid flows of the reduced and full order
system are related in a way analogous to the continuous result.

We then proceed to consider two-dimensional (2D) bipedal walkers. It is
well-known that 2D bipedal walkers can walk down shallow slopes without ac-
tuation (cf. [7], [3]). [10] used this observation to develop a positional feedback
control strategy that allows for walking on flat ground. In Section 4, we use
these results to obtain a hybrid system, H s

2D, modeling a 2D bipedal robot
that walks on flat ground.

In Section 5 we consider three-dimensional (3D) bipedal walkers. Our main
result is a positional feedback control law that produces walking gaits in three
dimensions. To obtain this controller we shape the potential energy of the La-
grangian describing the dynamics of the 3D bipedal walker so that it becomes
an almost-cyclic Lagrangian, where the cyclic variable is the roll (the unstable
component) of the walker. We are able to control the roll through our choice
of a non-cyclic term in the potential energy. Since the functional Routhian hy-
brid system obtained by reducing this system is H s

2D, by picking the “correct”
function of the roll, we can force the roll to go to zero for certain initial con-
ditions. That is, we obtain a non-trivial set of initial conditions that provably
result in three-dimensional walking.

Space constraints prevent us from including proofs for the results stated
in this paper; these can be found in [1].
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2 Lagrangian Hybrid Systems

We begin this section by defining (simple) hybrid systems and hybrid flows
(as introduced in [2]); for more on general hybrid systems, see [5] and the
references therein. We then turn our attention to introducing a special class
of hybrid systems that will be important when discussing bipedal robots:
unilaterally constrained Lagrangian hybrid systems. It will be seen that bipedal
robotic walkers are naturally modeled by systems of this form.

Definition 1. A simple hybrid system5 is a tuple:

H = (D,G, R, f),

where

• D is a smooth manifold, called the domain,
• G is an embedded submanifold of D called the guard,
• R : G → D is a smooth map called the reset map (or impact equations),
• f is a vector field or control system (in which case we call H a controlled

hybrid system) on D, i.e., ẋ = f(x) or ẋ = f(x, u), respectively.

Hybrid flows. A hybrid flow (or execution) is a tuple

χH = (Λ, I,C),

where

• Λ = {0, 1, 2, . . .} ⊆ N is a finite or infinite indexing set.
• I = {Ii}i∈Λ is a hybrid interval where Ii = [τi, τi+1] if i, i + 1 ∈ Λ and

IN−1 = [τN−1, τN ] or [τN−1, τN ) or [τN−1,∞) if |Λ| = N , N finite. Here,
τi, τi+1, τN ∈ R and τi ≤ τi+1.

• C = {ci}i∈Λ is a collection of integral curves of f , i.e., ċi(t) = f(ci(t)) for
all i ∈ Λ.

We require that the following conditions hold for every i, i + 1 ∈ Λ,

(i) ci(τi+1) ∈ G,
(ii) R(ci(τi+1)) = ci+1(τi+1).

The initial condition for the hybrid flow is c0(τ0).

Lagrangians. Let Q be a configuration space, assumed to be a smooth
manifold, and TQ the tangent bundle of Q. In this paper, we will consider
Lagrangians L : TQ → R describing mechanical, or robotic, systems; that is,
Lagrangians given in coordinates by:

5 So named because of their simple discrete structure, i.e., a simple hybrid system
has a single domain, guard and reset map.
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L(q, q̇) =
1
2
q̇T M(q)q̇ − V (q), (1)

where M(q) is the inertial matrix, 1
2 q̇T M(q)q̇ is the kinetic energy and V (q)

is the potential energy. In this case, the Euler-Lagrange equations yield the
equations of motion for the system:

M(q)q̈ + C(q, q̇)q̇ + N(q) = 0,

where C(q, q̇) is the Coriolis matrix (cf. [8]) and N(q) = ∂V
∂q (q). The La-

grangian vector field, fL, associated to L takes the familiar form:

(q̇, q̈) = fL(q, q̇) =
(
q̇, M(q)−1(−C(q, q̇)q̇ −N(q))

)
.

Controlled Lagrangians. We will also be interested in controlled La-
grangians. In this case, the equations of motion for the system have the form:

M(q)q̈ + C(q, q̇)q̇ + N(q) = Bu,

where we assume that B is an invertible matrix. The result is a control system
of the form:

(q̇, q̈) = fL(q, q̇, u) =
(
q̇, M(q)−1(−C(q, q̇)q̇ −N(q) + Bu)

)
.

In the future, it will be clear from context whether for a Lagrangian L we are
dealing with a corresponding vector field (q̇, q̈) = fL(q, q̇) or a control system
(q̇, q̈) = fL(q, q̇, u).

Unilateral constraints. It is often the case that the set of admissible con-
straints for a mechanical system is determined by a unilateral constraint func-
tion, which is a smooth function h : Q → R such that h−1(0) is a manifold,
i.e., 0 is a regular value of h. For bipedal walkers this function is the height of
the non-stance (or swing) foot above the ground. In this case, we can explicitly
construct the domain and the guard of a hybrid system:

Dh = {(q, q̇) ∈ TQ : h(q) ≥ 0},
Gh = {(q, q̇) ∈ TQ : h(q) = 0 and dhq q̇ < 0},

where in coordinates dhq =
(

∂h
∂q1

(q) · · · ∂h
∂qn

(q)
)

.

Definition 2. We say that H = (D,G, R, f) is a unilaterally constrained
Lagrangian hybrid system w.r.t. a Lagrangian L : TQ → R and a unilateral
constraint function h : Q → R if D = Dh, G = Gh and f = fL.

Impact Equations. In order to determine the impact equations (or re-
set map) for the hybrid system H , we typically will utilize an additional
constraint function. A kinematic constraint function is a smooth function
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Υ : Q → Rυ (υ ≥ 1); this function usually describes the position of the
end-effector of a kinematic chain, e.g., in the case of bipedal robots, this is
the position of the swing foot. Using this kinematic constraint function one
obtains a reset map R(q, q̇) = (q, Pq(q̇)), where Pq : TqQ → TqQ with

Pq(q̇) = q̇ −M(q)−1dΥT
q (dΥqM(q)−1dΥT

q )−1dΥq q̇.

This reset map models a perfectly plastic impact without slipping and was
derived using the set-up in [4] together with block-diagonal matrix inversion.

3 Functional Routhian Reduction

In this section, we introduce a variation of classical Routhian reduction termed
functional Routhian reduction. Conditions are given on when this type of
reduction can be performed on continuous and hybrid systems.

Shape space. We begin by considering an abelian Lie group, G, given by:

G = (S1 × S1 × · · · × S1)︸ ︷︷ ︸
m−times

×Rp,

with k = m+p = dim(G); here S1 is the circle. The starting point for classical
Routhian reduction is a configuration space of the form Q = S × G, where
S is called the shape space; we denote an element q ∈ Q by q = (θ, ϕ) where
θ ∈ S and ϕ ∈ G. Note that we have a projection map π : TS × TG → TS
where (θ, θ̇, ϕ, ϕ̇) 7→ (θ, θ̇).

Almost-Cyclic Lagrangians. We will be interested (in the context of
bipedal walking) in Lagrangians of a very special form. We say that a La-
grangian Lλ : TS × TG → R is almost-cyclic if, in coordinates, it has the
form:

Lλ(θ, θ̇, ϕ, ϕ̇) =
1
2

(
θ̇
ϕ̇

)T (
Mθ(θ) 0

0 Mϕ(θ)

) (
θ̇
ϕ̇

)
− Vλ(θ, ϕ), (2)

where
Vλ(θ, ϕ) = Ṽ (θ)− 1

2
λ(ϕ)T M−1

ϕ (θ)λ(ϕ)

for some function λ : G → Rk with a symmetric Jacobian, i.e.,(
∂λ

∂ϕ

)T

=
∂λ

∂ϕ
.

Here Mθ(θ) ∈ Rn×n and Mϕ(θ) ∈ Rk×k are both symmetric positive definite
matrices with n = dim(S).
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Momentum maps. Fundamental to reduction is the notion of a momentum
map J : TQ → Rk, which makes explicit the conserved quantities in the
system. In the framework we are considering here,

J(θ, θ̇, ϕ, ϕ̇) =
∂Lλ

∂ϕ̇
(θ, θ̇, ϕ, ϕ̇) = Mϕ(θ)ϕ̇.

Typically, one sets the momentum map equal to a constant µ ∈ Rk; this defines
the conserved quantities of the system. In our framework, we will breach this
convention and set J equal to a function: this motivates the name functional
Routhian reduction.

Functional Routhians. For an almost-cyclic Lagrangian Lλ as given in (2),
define the corresponding functional Routhian L̃ : TS → R by:

L̃(θ, θ̇) =
[
Lλ(θ, θ̇, ϕ, ϕ̇)− λ(ϕ)T ϕ̇

]∣∣∣
J(θ,θ̇,ϕ,ϕ̇)=λ(ϕ)

Because J(θ, θ̇, ϕ, ϕ̇) = λ(ϕ) implies that ϕ̇ = M−1
ϕ (θ)λ(ϕ), by direct calcula-

tion the functional Routhian is given by:

L̃(θ, θ̇) =
1
2
θ̇T Mθ(θ)θ̇ − Ṽ (θ).

That is, any Lagrangian of the form given in (1) is the functional Routhian
of an almost-cyclic Lagrangian.

We can relate solutions of the Lagrangian vector field f
eL to solutions of

the Lagrangian vector field fLλ
and vice versa (in a way analogous to the

classical Routhian reduction result, see [6]).

Theorem 1. Let Lλ be an almost-cyclic Lagrangian, and L̃ the corresponding
functional Routhian. Then (θ(t), θ̇(t), ϕ(t), ϕ̇(t)) is a solution to the vector field
fLλ

on [t0, tF ] with
ϕ̇(t0) = M−1

ϕ (θ(t0))λ(ϕ(t0)),

if and only if (θ(t), θ̇(t)) is a solution to the vector field f
eL and (ϕ(t), ϕ̇(t))

satisfies:
ϕ̇(t) = M−1

ϕ (θ(t))λ(ϕ(t)).

We now have the necessary material needed to introduce our framework
for hybrid functional Routhian reduction.

Definition 3. If Hλ = (Dh, Gh, R, fLλ
) is a unilaterally constrained La-

grangian hybrid system, Hλ is almost-cyclic if the following conditions hold:

• Q = S ×G,
• h : Q = S ×G → R is cyclic, ∂h

∂ϕ = 0, and so can be viewed as a function
h̃ : S → R,
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• Lλ : TS × TG → R is almost-cyclic,
• πϕ(R(θ, θ̇, ϕ, ϕ̇)) = ϕ, where πϕ is the projection onto the ϕ-component,
• The following diagram commutes:

Rk

Gh
R -

J |Gh
-

Dh

J |Dh

�

Gh̃

π
? R̃ - Dh̃

π
?

for some map R̃ : Gh̃ → Dh̃.

Hybrid functional Routhian. If Hλ = (Dh, Gh, R, fLλ
) is an almost-cyclic

unilaterally constrained Lagrangian hybrid system, we can associate to this
hybrid system a reduced hybrid system, termed a functional Routhian hybrid
system, denoted by H̃ and defined by:

H̃ := (Dh̃, Gh̃, R̃, f
eL).

The following theorem quantifies the relationship between Hλ and H̃ .

Theorem 2. Let Hλ be a cyclic unilaterally constrained Lagrangian hybrid
system, and H̃ the associated functional Routhian hybrid system. Then
χHλ = (Λ, I, {(θi, θ̇i, ϕi, ϕ̇i)}i∈Λ) is a hybrid flow of Hλ with

ϕ̇0(τ0) = M−1
ϕ (θ0(τ0))λ(ϕ0(τ0)),

if and only if χ
fH = (Λ, I, {θi, θ̇i}i∈Λ) is a hybrid flow of H̃ and {(ϕi, ϕ̇i)}i∈Λ

satisfies:

ϕ̇i(t) = M−1
ϕ (θi(t))λ(ϕi(t)), ϕi+1(τi+1) = ϕi(τi+1).

4 Controlled Symmetries Applied to 2D Bipedal Walkers

In this section, we begin by studying the standard model of a two-dimensional
bipedal robotic walker walking down a slope (walkers of this form have been
well-studied by [7] and [3], to name a few). We then use controlled symmetries
to shape the potential energy of the Lagrangian describing this model so that
it can walk stably on flat ground.

2D biped model. We begin by introducing a model describing a controlled
bipedal robot walking in two dimensions down a slope of γ degrees. That is,
we explicitly construct the controlled hybrid system



8 A. D. Ames et al.

l = a+ b

b

a

M

m m

x

y

θs
−θns

γ

Fig. 1. Two-dimensional bipedal robot.

H γ
2D = (Dγ

2D, Gγ
2D, R2D, f2D).

describing this system.
The configuration space for the 2D biped is Q2D = T2, the two-dimensional

torus, and the Lagrangian describing this system is:

L2D(θ, θ̇) =
1
2
θ̇T M2D(θ)θ̇ − V2D(θ),

where θ = (θns, θs)T . Table 1 gives M2D(θ) and V2D(θ).
Using the controlled Euler-Lagrange equations, the dynamics for the

walker are given by:

M2D(θ)θ̈ + C2D(θ, θ̇)θ̇ + N2D(θ) = B2Du.

These equations yield the control system: (θ̇, θ̈) = f2D(θ, θ̇, u) := fL2D(θ, θ̇, u).
We construct Dγ

2D and Gγ
2D by applying the methods outlined in Section 2

to the unilateral constraint function: hγ
2D(θ) = cos(θs)− cos(θns) + (sin(θs)−

sin(θns)) tan(γ), which gives the height of the foot of the walker above the
slope with normalized unit leg length.

Finally, the reset map R2D is given by:

R2D(θ, θ̇) =
(
S2Dθ, P2D(θ)θ̇

)
,

where S2D and P2D(θ) are given in Table 1. Note that this reset map was
computed using the methods outlined in Section 2 coupled with the condition
that the stance foot is fixed (see [4] for more details).

Setting the control u = 0 yields the standard model of a 2D passive bipedal
robot walking down a slope. For such a model, it has been well-established
(for example, in [3]) that for certain γ, H γ

2D has a walking gait. For the rest
of the paper we pick, once and for all, such a γ.
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Controlled Symmetries. Controlled symmetries were introduced in [9] and
later in [10] in order to shape the potential of bipedal robotic walkers to allow
for stable walking on flat ground based on stable walking down a slope. We
will briefly apply the results of this work to derive a feedback control law that
yields a hybrid system, H s

2D, with stable walking gaits on flat ground.
The main idea of [10] is that inherent symmetries in H γ

2D can be used to
“rotate the world” (via a group action) to allow for walking on flat ground.
Specifically, we have a group action Φ : S1 ×Q2D → Q2D denoted by:

Φ(γ, θ) := (θns − γ, θs − γ)T ,

for γ ∈ S1. Using this, define the following feedback control law:

u = Kγ
2D(θ) := B−1

2D

∂

∂θ
(V2D(θ)− V2D(Φ(γ, θ))) .

Applying this control law to the control system (q̇, q̈) = f2D(θ, θ̇, u) yields the
dynamical system:

(θ̇, θ̈) = fγ
2D(θ, θ̇) := f2D(θ, θ̇, Kγ

2D(θ))

which is just the vector field associated to the Lagrangian

Lγ
2D(θ, θ̇) =

1
2
θ̇T M2D(θ)θ̇ − V γ

2D(θ),

where V γ
2D(θ) := V2D(Φ(γ, θ)). That is, fγ

2D = fLγ
2D

.
Now define, for some γ that results in stable passive walking for H γ

2D,

H s
2D := (D0

2D, G0
2D, R2D, fγ

2D),

which is a unilaterally constrained Lagrangian hybrid system. In particular,
it is related to H γ

2D as follows:

Theorem 3 ([10]). χH s
2D = (Λ, I, {(Φ(γ, θi), θ̇i)}i∈Λ) is a hybrid flow of H s

2D

if χH γ
2D = (Λ, I, {(θi, θ̇i)}i∈Λ) is a hybrid flow of H γ

2D.

The importance of this theorem lies in the fact that it implies that if H γ
2D

walks (stably) on a slope, then H s
2D walks (stably) on flat ground.

5 Functional Routhian Reduction Applied to 3D Bipedal
Walkers

In this section we construct a control law that results in stable walking for a
simple model of a 3D bipedal robotic walker. In order to achieve this goal, we
shape the potential energy of this model via feedback control so that when
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Additional equations for H2D:

M2D(θ) =

 
l2m
4

− l2m cos(θs−θns)
2

− l2m cos(θs−θns)
2

l2m
4

+ l2(m + M)

!
S2D =

�
0 1
1 0

�

V2D(θ) =
1

2
gl((3m + 2M) cos(θs)−m cos(θns)) B2D =

�
−1 0
1 1

�

P2D(θ) =
1

−3m− 4M + 2m cos(2(θs − θns))�
2m cos(θns − θs) m− 4(m + M) cos(2(θns − θs))

m −2(m + 2M) cos(θns − θs)

�

Additional equations for H3D:

m3D(θ) =
1

8
(l2(6m + 4M) + l2(m cos(2θns)−

8m cos(θns) cos(θs) + (5m + 4M) cos(2θs))

V3D(θ, ϕ) = V2D(θ) cos(ϕ)

p3D(θ) =
−m cos(2θns) + 8(m + M) cos(θns) cos(θs)−m(2 + cos(2θs))

6m + 4M + (5m + 4M) cos(2θns)− 8m cos(θns) cos(θs) + m cos(2θs)

Table 1. Additional equations for H2D and H3D

hybrid functional Routhian reduction is carried out, the result is the 2D walker
H s

2D introduced in the previous section. We utilize Theorem 2 to demonstrate
that this implies that the 3D walker has a walking gait on flat ground (in three
dimensions). This is the main contribution of this work.

3D biped model. We now introduce the model describing a controlled
bipedal robot walking in three dimensions on flat ground, i.e., we will explicitly
construct the controlled hybrid system describing this system:

H3D = (D3D, G3D, R3D, f3D).

The configuration space for the 3D biped is Q3D = T2 × S and the La-
grangian describing this system is given by:

L3D(θ, θ̇, ϕ, ϕ̇) =
1
2

(
θ̇
ϕ̇

)T (
M2D(θ) 0

0 m3D(θ)

) (
θ̇
ϕ̇

)
− V3D(θ, ϕ),

where m3D(θ) is given in the Table 1. Note that, referring to the notation
introduced in Section 3, Mθ(θ) = M2D(θ) and Mϕ(θ) = m3D(θ). Also note
that L3D is nearly cyclic; it is only the potential energy that prevents its
cyclicity. This will motivate the use of a control law that shapes this potential
energy.

Using the controlled Euler-Lagrange equations, the dynamics for the
walker are given by:
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l = a+ b

b

a

M

m m

y

z

x

−θnsθs

θ

x0

z0

−ϕ

ϕ

Fig. 2. Three-dimensional bipedal robot.

M3D(q)q̈ + C3D(q, q̇)q̇ + N3D(q) = B3Du,

with q = (θ, ϕ) and

B3D =
(

B2D 0
0 1

)
.

These equations yield the control system: (q̇, q̈) = f3D(q, q̇, u) := fL3D(q, q̇, u).
We construct D3D and G3D by applying the methods outlined in Section

2 to the unilateral constraint function

h3D(θ, ϕ) = h0
2D(θ) = cos(θs)− cos(θns).

This function gives the normalized height of the foot of the walker above flat
ground with the implicit assumption that ϕ ∈ (−π/2, π/2) (which allows us to
disregard the scaling factor cos(ϕ) that would have been present). The result
is that h3D is cyclic.

Finally, the reset map R3D is given by:

R3D(θ, θ̇, ϕ, ϕ̇) =
(
S2Dθ, P2D(θ)θ̇, ϕ, p3D(θ)ϕ̇

)
where p3D(θ) is given in Table 1. Note that this map was again computed
using the methods outlined in Section 2 coupled with the condition that the
stance foot is fixed.

Control law construction. We now proceed to construct a feedback con-
trol law for H3D that makes this hybrid system an almost-cyclic unilaterally
constrained Lagrangian hybrid system, H α

3D. We will then demonstrate, using
Theorem 2, that H α

3D has a walking gait by relating it to H s
2D.
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Define the feedback control law parameterized by α ∈ R:

u = Kα
3D(q)

:= B−1
3D

∂

∂q

(
V3D(q)− V γ

2D(θ) +
1
2

α2ϕ2

m3D(θ)

)
Applying this control law to the control system (q̇, q̈) = f3D(q, q̇, u) yields the
dynamical system:

(q̇, q̈) = fα
3D(q, q̇) := f3D(q, q̇, Kα

3D(q)),

which is just the vector field associated to the almost-cyclic Lagrangian

Lα
3D(θ, θ̇, ϕ, ϕ̇) =

1
2

(
θ̇
ϕ̇

)T (
M2D(θ) 0

0 m3D(θ)

) (
θ̇
ϕ̇

)
− V α

3D(θ, ϕ),

where

V α
3D(θ, ϕ) = V γ

2D(θ)− 1
2

α2ϕ2

m3D(θ)
.

That is, fα
3D = fLα

3D
.

Let
H α

3D := (D3D, G3D, R3D, fα
3D),

which is a unilaterally constrained Lagrangian hybrid system.

Applying hybrid functional Routhian reduction. Using the methods
outlined in Section 3, there is a momentum map J3D : TQ3D → R given by:

J3D(θ, θ̇, ϕ, ϕ̇) = m3D(θ)ϕ̇.

Setting J3D(θ, θ̇, ϕ, ϕ̇) = λ(ϕ) = −αϕ implies that

ϕ̇ = − αϕ

m3D(θ)
.

The importance of H α
3D is illustrated by:

Proposition 1. H α
3D is an almost-cyclic unilaterally constrained Lagrangian

hybrid system. Moreover, the following diagram commutes:

Rk

G3D
R3D -

J3D|G3D
-

D3D

J3D|D3D

�

G2D

π
? R2D - D2D

π
?

Therefore, H s
2D is the functional Routhian hybrid system associated with H α

3D.
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This result allows us to prove—using Theorem 2—that the control law
used to construct H α

3D in fact results in walking in three dimensions.

Theorem 4. χH α
3D = (Λ, I, {(θi, θ̇i, ϕi, ϕ̇i)}i∈Λ) is a hybrid flow of H α

3D with

ϕ̇0(τ0) = − αϕ0(τ0)
m3D(θ0(τ0))

, (3)

if and only if χH s
2D = (Λ, I, {θi, θ̇i}i∈Λ) is a hybrid flow of H s

2D and {(ϕi, ϕ̇i)}i∈Λ

satisfies:

ϕ̇i(t) = − αϕi(t)
m3D(θi(t))

, ϕi+1(τi+1) = ϕi(τi+1). (4)

To better understand the implications of Theorem 4, suppose that χH α
3D =

(Λ, I, {(θi, θ̇i, ϕi, ϕ̇i)}i∈Λ) is a hybrid flow of H α
3D. If this hybrid flow has an

initial condition satisfying (3) with α > 0 and the corresponding hybrid flow,
χH s

2D = (Λ, I, {θi, θ̇i}i∈Λ), of H s
2D is a walking gait in 2D:

Λ = N, lim
i→∞

τi = ∞, θi(τi) = θi+1(τi+1),

then the result is walking in three dimensions. This follows from the fact that
θ and θ̇ will have the same behavior over time for the full-order system—the
bipedal robot will walk. Moreover, since Theorem 4 implies that (4) holds,
the walker stabilizes to the “upright” position. That is, the roll ϕ will tend to
zero as time goes to infinity since (4) essentially defines a stable linear system
ϕ̇ = −αϕ (because m3D(θi(t)) > 0 and α > 0), which controls the behavior
of ϕ when (3) is satisfied. This convergence can be seen in Fig. 3 along with
a walking gait of the 3D walker.
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