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Abstract— This paper presents a control law that results in
stable walking for a three-dimensional bipedal robot with a
hip. To obtain this control law, we utilize techniques from
geometric reduction, and specifically a variant of Routhian
reduction termed functional Routhian reduction, to effectively
decouple the dynamics of the three-dimensional biped into its
sagittal and lateral components. Motivated by the decoupling
afforded by functional Routhian reduction, the control law we
present is obtained by combining three separate control laws:
the first shapes the potential energy of the sagittal dynamics of
the biped to obtain stable walking gaits when it is constrained
to the sagittal plane, the second shapes the total energy of the
walker so that functional Routhian reduction can be applied
to decoupling the dynamics of the walker for certain initial
conditions, and the third utilizes an output zeroing controller
to stabilize to the surface defining these initial conditions. We
numerically verify that this method results in stable walking,
and we discuss certain attributes of this walking gait.

I. INTRODUCTION

Bipedal robotic walking has been studied from a variety
of perspectives (see [5], [6], [9] and [10] to name a few),
but in most cases these studies have been limited to two-
dimensional (2D) bipedal robots. There are some limited re-
sults related to three-dimensional (3D) bipeds, an interesting
example of which is given in [4] and [7], but the general
understanding of 3D bipedal walking is still extremely lim-
ited. Motivated by our previous results on hipless 3D bipeds,
which allowed for the extension of 2D walking gaits to
three dimensions through geometric reduction ([1] and [2]),
we advocate a reduction-based approach to hipped bipedal
walking.

The goal of this paper is to design a feedback control
law for a 3D hipped bipedal robot that results in stable
walking. In order to achieve this goal, we attempt to exploit
the natural dynamics of the walker—this amounts to properly
understanding the interplay between the sagittal and lateral
components of bipedal walking. That is, in order to construct
our control law, we must mathematically understand how
to “decouple” the dynamics of a 3D biped into its sagittal
and lateral components, which is done through the use of
geometric reduction. Once it is understood how to appropri-
ately separate the dynamics, we can design a control law for
the 3D biped by combining controllers that (1) stabilize the
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sagittal dynamics, (2) stabilize the lateral dynamics, and (3)
combine these two controllers in the appropriate manner.

Fundamental to understanding the interplay between the
lateral and sagittal dynamics of the considered 3D walker is
a variant of Routhian reduction, termed functional Routhian
reduction; this generalizes our previous functional Routhian
reduction results in [2] to include off-diagonal elements in
the inertia matrix which will occur in hipped bipeds and
bipeds with non-zero link inertias. As with classical reduc-
tion, this form of reduction utilizes symmetries in a system,
in the form of “cyclic” variables, to reduce the dimensionality
of the system. Unlike classical reduction, this is done by
setting the conserved quantities equal to an arbitrary function
of the “cyclic” variables rather than a constant, i.e., there is
a functional conserved quantity. This allows us to “control”
the decoupling effect of geometric reduction through this
function—a fact that will be fundamental in the construction
of our control law.

The main control law presented in this paper is directed
at applying functional Routhian reduction in a meaningful
manner by combining three control laws:

First Control Law: Affects the sagittal dynamics
of the biped by shaping the potential energy so
that the 2D biped, obtained by constraining the 3D
biped to the sagittal plane, has stable walking gaits.

Second Control Law: Shapes the total energy of the
3D biped so that functional Routhian reduction can
be applied; moreover, the reduced system obtained
by applying this form of reduction is exactly the
2D system after applying the first control law.
Therefore, applying functional Routhian reduction
to the 3D biped through the second control law
decouples the sagittal and lateral dynamics, while
allowing us to affect the lateral dynamics through
our specific choice of the functional conserved
quantity, for certain initial conditions.

Third Control Law: Stabilizes to the surface defin-
ing initial conditions for which the decoupling
afforded by the second control law is valid. This
is done by defining an output function that has the
above initial conditions as its zero-level set, and
stabilizing this output to zero through input-output
linearization.

We are able to numerically verify that the control law
presented in this paper results in stable walking, i.e., a locally
exponentially stable periodic orbit. While this is certainly
the most important aspect of this controller, other interesting



behavior occurs as a byproduct of the techniques used to
construct this control law. The most fascinating of these is
that the periodic orbits we obtain are 1-periodic in the sagittal
dynamics (as one would expect), but 2-periodic in the lateral
dynamics (as one would hope); this is a result of the side-
to-side swaying motion of the walker, which is a natural
byproduct of the functional Routhian reduction. This seems
to imply that the techniques we utilize capture a subtle, yet
important, aspect of bipedal walking.

II. BIPEDAL MODEL

Hybrid systems are systems that display both continuous
and discrete behavior and so bipedal walkers are naturally
modeled by systems of this form; the continuous compo-
nent consists of the dynamics dictated by the Lagrangian
modeling this system, and the discrete component consists
of the impact equations which instantaneously change the
velocity of the system when the foot contacts the ground.
This section, therefore, introduces the basic terminology of
hybrid systems and introduces the hybrid model of the biped
considered in this paper.

Definition 2.1: A simple hybrid control system is a tuple

H C = (D,U,G, R, f, g),

where
• D ⊆ Rn is a subset of Rn called the domain,
• U ⊆ Rk is a set of admissible controls,
• G ⊂ D is subset of D called the guard,
• R : G → D is a smooth map called the reset map (or

impact equations),
• (f, g) is a control system, i.e., ẋ = f(x) + g(x)u.
A simple hybrid system1 is a simple hybrid control system

with U = {0}, i.e., a tuple: H = (D,G, R, f), where f is
a vector field on D, i.e., ẋ = f(x).
Hybrid flows. A hybrid flow of a hybrid system H is a
tuple χH = (Λ, I, C), where
• Λ = {0, 1, 2, . . .} ⊆ N is a finite or infinite indexing

set.
• I = {Ii}i∈Λ is a hybrid interval where Ii = [τi, τi+1]

if i, i+1 ∈ Λ and IN−1 = [τN−1, τN ] or [τN−1, τN ) or
[τN−1,∞) if |Λ| = N , N finite. Here, τi, τi+1, τN ∈ R
and τi ≤ τi+1.

• C = {ci}i∈Λ is a collection of integral curves of f , i.e.,
ċi(t) = f(ci(t)) for all i ∈ Λ.

We require that for every i, i + 1 ∈ Λ,

(i) ci(τi+1) ∈ G,
(ii) R(ci(τi+1)) = ci+1(τi+1).

The initial condition for the hybrid flow is c0(τ0).

1It is important to note that simple hybrid systems correspond to systems
with impulsive effects (see [6] and [10]) and vice versa. Specifically to a
simple hybrid system, there is the associated system with impulsive effects
of the form:

Σ :

{
ẋ = f(x) x ∈ D\G

x+ = R(x−) x− ∈ G
.

Hybrid periodic orbits. In the context of bipedal robots, we
are interested in discussing walking gaits and stable walking
gaits—these correspond to periodic orbits and stable periodic
orbits, respectively, of different periods. For example, in the
context of hipped bipedal walking, we will be interested in 2-
periodic orbits due to the natural side-to-side swaying motion
of a 3D bipedal walker.

A hybrid flow χH = (Λ, I, C) of H is k-periodic if
• Λ = N,
• limi→∞ τi = ∞,
• ci(τi) = ci+k(τi+k) for all i ∈ Λ.

A hybrid k-periodic orbit O ⊂ D is a subset of D such that

O =
⋃
i∈N
{ci(t) : t ∈ Ii}

for some k-periodic hybrid flow χH .
As is standard, denote the distance between a point x and a

set Y by d(x, Y ) = infy∈Y ‖x−y‖. A hybrid k-periodic orbit
O is (locally) exponentially stable if there exists constants
M > 0, α > 0 and δ > 0 such that for all hybrid flows χH

with d(c0(τ0),O) < δ,

d(ci(t),O) ≤ Me−α(t−τ0)d(c0(τ0),O)

for all t ∈ Ii and i ∈ Λ.
Poincaré map. In order to establish the stability of k-
periodic orbits, we will use the standard technique of study-
ing the corresponding Poincaré map (cf. [10]). In particular,
taking G to be the Poincaré section, one obtains the Poincaré
map, P : G → G, which is a partial map defined by:

P (z) = c(τ(z)),

where c(t) is the solution to ẋ = f(x) with c(0) = R(z)
and τ(z) is the time-to-impact function (again, see [10]).
In particular, if z∗ is a k-fixed point of P (under suitable
assumptions on z∗, G, and the transversality of O and G)
a k-periodic orbit O with z∗ ∈ O is locally exponentially
stable iff P k is locally exponentially stable (as a discrete-
time dynamical system, zi+1 = P (zi)).

Although it is not possible to explicitly compute the
Poincaré map, one can compute a numerical approximation
of this map through simulation and thereby test its stability
numerically. This gives a concrete method for practically
testing the stability of periodic orbits (see [5] for a nice
tutorial on numerically computing the eigenvalues of the
Poincaré map).
3D biped model. The model of interest is a controlled
bipedal robot with a hip and splayed legs that walks on flat
ground in three dimensions (see Figure 1), from which we
will explicitly construct the hybrid control system:

H C 3D = (D3D, U3D, G3D, R3D, f3D, g3D).

The techniques utilized in the construction of this hybrid
system are explained in further detail in [2].

The configuration space for the 3D biped is taken to be
Q3D = T2 × S1, with coordinates q = (θT , ϕ)T , where
θ = (θns, θs)T is the vector of sagittal-plane variables as in
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Fig. 1. The sagittal and lateral planes of a three-dimensional bipedal robot.

the 2D compass-gait model and ϕ is the lean (or roll) from
vertical; we will work in these coordinates throughout the
course of the paper. Note that the hip width w, leg length l,
and leg splay angle ρ are held constant.

The domain and guard are constructed from the constraint
that the non-stance (swing) foot is not allowed to pass
through the ground, i.e., by utilizing the unilateral constraint
function:

H3D(q) = l(cos(θs)− cos(θns)) cos(ϕ)
−(w + 2l sin(ρ)) sin(ϕ)

which gives the height of the non-stance foot above the
ground. In particular, the domain D3D is given by requiring
that the height of the swing foot always be positive:

D3D =
{(

q
q̇

)
∈ TQ3D : H3D(q) ≥ 0

}
We put no restrictions on the set of admissible controls

except that they can only directly affect the angular acceler-
ations. Therefore, U3D = R3.

The guard G3D is the subset of the domain corresponding
to the set of configurations in which the height of the swing
foot is zero and infinitesimally decreasing. That is,

G3D =
{(

q
q̇

)
∈ TQ3D : H3D(q) = 0,(

∂H3D(q)
∂q

)T

q̇ < 0

}
.

The reset map R3D is given by:

R3D(q, q̇) =


Sθ 0 0 0
0 1 0 0
0 0 Pθ(θ) pθ,ϕ(θ)
0 0 Pϕ,θ(θ) pϕ(θ)




θ
ϕ

θ̇
ϕ̇


where pϕ(θ), Pϕ,θ(θ), pθ,ϕ(θ) and Pθ(θ) are computed
symbolically using Mathematica and the procedures outlined
in [2] and [6]; the length of these equations prevent them
from being included in this paper. Also, note that the signs

of w and ρ are flipped during impact to model the change
in stance leg.

Finally, the dynamics for H C 3D are obtained from the
Euler-Lagrange equations in the standard way. Specifically,
the Lagrangian describing this system is:

L3D(q, q̇) =
1
2
q̇T M3D(q)q̇ − V3D(q),

with

M3D(q) =
(

Mθ(θ) Mϕ,θ(θ)T

Mϕ,θ(θ) mϕ(θ)

)
, (1)

where M3D(q) is the inertial matrix and V3D(q) is the
potential energy (these can be found in Table I). Using the
controlled Euler-Lagrange equations, the dynamics for the
walker are given by:

M3D(q)q̈ + C3D(q, q̇)q̇ + N3D(q) = B3Du,

where C3D(q, q̇) is the Coriolis matrix, N3D = ∂V3D(q)
∂q , and

B3D =
(

Bθ 0
0 1

)
.

In addition, we assume that B3D is invertible. These equa-
tions yield the control system:

f3D(q, q̇) =
(

q̇
M3D(q)−1 (−C3D(q, q̇)q̇ −N3D(q))

)
g3D(q, q̇) =

(
03×3

M3D(q)−1B3D

)
,

where 03×3 is a 3× 3 matrix of zeros.

III. FUNCTIONAL ROUTHIAN REDUCTION

In this section, we introduce a variant of standard Routhian
reduction (see [8] for a detailed introduction, and [3] for
a brief introduction), termed functional Routhian reduction.
This type of geometric reduction allows for one to reduce
the dimensionality of dynamical systems obtained from
“almost-cyclic” Lagrangians. Moreover, considering such
Lagrangians allows one to affect the behavior of the reduced
(“cyclic”) variables. This type of reduction, therefore, will
be fundamental in the construction of our control law.
Almost-Cyclic Lagrangians. Consider the case when the
configuration space Q = S×S1, where S is called the shape
space. We denote an element q ∈ Q by q = (θT , ϕ)T , where
θ ∈ S and ϕ ∈ S1.

In the context of bipedal walking, we are interested in
Lagrangians of a very special form. We say that a Lagrangian
Lλ : TS × TS1 → R is almost-cyclic if, in coordinates, it
has the form:

Lλ(θ, ϕ, θ̇, ϕ̇) = (2)

1
2

(
θ̇T ϕ̇

)
Mλ(θ)

(
θ̇
ϕ̇

)
−Wλ(θ, ϕ, θ̇)− Vλ(θ, ϕ),

where

Mλ(θ) =

(
Mθ(θ) + Mϕ,θ(θ)T Mϕ,θ(θ)

mϕ(θ) Mϕ,θ(θ)T

Mϕ,θ(θ) mϕ(θ)

)
,



Mθ(θ) =

(
l2m
4

(cos(ρ)− 2)2 l2m
2

(cos(ρ)− 2) cos(θs − θns)
l2m
2

(cos(ρ)− 2) cos(θs − θns)
l2

8
(9m + 4M + (m + 4M) cos(2ρ))

)
Sθ =

(
0 1
1 0

)
Vθ(θ) =

gl

2
(m(cos(ρ)− 2) cos(θns) + (2m + (m + 2M) cos(ρ)) cos(θs)) Bθ =

(
−1 0
1 1

)
mϕ(θ) =

1

16
(2l2(19m + 6M) + 4(4m + M)w2 + l(lm(9 cos(2θns) + 16 cos(θns)(cos(θs)(cos(ρ)− 2)− cos(ρ) cos(θns)))

+l(9m + 4M) cos(2θs) + l cos(2ρ)(m cos(2θns)− 18m− 4M + (m + 4M) cos(2θs)) + 16(3m + M)w sin(ρ)))

Mϕ,θ(θ) =
(

1
4
lm(cos(ρ)− 2)(2w + 3l sin(ρ)) sin(θns)

1
4
l(4mw + 6lm sin(ρ) + cos(ρ)(2Mw + l(m + 4M) sin(ρ))) sin(θs)

)
V3D(θ, ϕ) = Vθ(θ) cos(ϕ)−

g

2
(2m + M)(w + 2l sin(ρ)) sin(ϕ)

TABLE I
ADDITIONAL EQUATIONS FOR H C 3D AND H C 2D

Wλ(θ, ϕ, θ̇) =
λ(ϕ)

mϕ(θ)
Mϕ,θ(θ)θ̇,

Vλ(θ, ϕ) = Vfct(θ)−
1
2

λ(ϕ)2

mϕ(θ)
,

for some function λ : S1 → R. Here, for all θ, Mθ(θ) ∈
Rn×n (with n = dim(S)) and mϕ(θ) ∈ R are symmetric
and positive definite.

Momentum maps. Fundamental to reduction is the notion
of a momentum map J : TQ → R, which makes explicit
the conserved quantities in the system. In the framework we
are considering here,

J(θ, ϕ, θ̇, ϕ̇) =
∂Lλ

∂ϕ̇
(θ, ϕ, θ̇, ϕ̇) = Mϕ,θ(θ)θ̇ + mϕ(θ)ϕ̇.

In the case of standard Routhian reduction, one sets the
momentum map equal to a constant µ ∈ R; this defines
the conserved quantities of the system. In our framework,
we will breach this convention and set J equal to a function
λ(ϕ): this motivates the name functional Routhian reduction.

Functional Routhians. For an almost-cyclic Lagrangian Lλ

as given in (2), define the corresponding functional Routhian
Lfct : TS → R by:

Lfct(θ, θ̇) =
[
Lλ(θ, ϕ, θ̇, ϕ̇)− λ(ϕ)ϕ̇

]∣∣∣
J(θ,ϕ,θ̇,ϕ̇)=λ(ϕ)

Because J(θ, ϕ, θ̇, ϕ̇) = λ(ϕ) implies that

ϕ̇ =
1

mϕ(θ)
(λ(ϕ)−Mϕ,θ(θ)θ̇), (3)

by direct calculation the functional Routhian is given by:

Lfct(θ, θ̇) =
1
2
θ̇T Mθ(θ)θ̇ − Vfct(θ).

We can relate solutions of the Lagrangian vector field fLfct

to solutions of the Lagrangian vector field fLλ
and vice

versa (in a way analogous to the classical Routhian reduction
result, see [8]). This observation is the main theoretical result
of this paper.

Theorem 1: Let Lλ be an almost-cyclic Lagrangian,
and Lfct the corresponding functional Routhian. Then

(θ(t), ϕ(t), θ̇(t), ϕ̇(t)) is a solution to the vector field fLλ

on [t0, tF ] with

ϕ̇(t0) =
1

mϕ(θ(t0))
(λ(ϕ(t0))−Mϕ,θ(θ(t0))θ̇(t0)), (4)

if and only if (θ(t), θ̇(t)) is a solution to the vector field fLfct

and (ϕ(t), ϕ̇(t)) satisfies:

ϕ̇(t) =
1

mϕ(θ(t))
(λ(ϕ(t))−Mϕ,θ(θ(t))θ̇(t)). (5)

The proof of this theorem is rather long and involved,
so we include it in the Appendix. Note that Theorem 1
is a generalization of the functional reduction theorem first
introduced and utilized in [2].

IV. CONTROL LAW CONSTRUCTION

In this section, we introduce our control law for the 3D
biped introduced in Section II. This control law is obtained
by combining three separate control laws: the first control
law acts on the sagittal dynamics of the walker in a way anal-
ogous to the controlled symmetries control law used for 2D
walkers, the second control law transforms the Lagrangian of
the 3D walker into an almost-cyclic Lagrangian, and the third
control law utilizes zero dynamics techniques to stabilize to
the set of initial conditions specified in Theorem 1. The end
result of combining these control laws is a controller that
results in stable 3D bipedal walking—the specific behavior
obtained through this control law will be discussed in the
next section.
Reduced dynamics controller. The first controller affects
the dynamics of the 3D biped’s sagittal plane by shaping
the potential energy of the Lagrangian describing these
dynamics. The motivation for this control law is the standard
controlled symmetries method of [12] to achieve walking on
flat ground.

We begin by considering the sagittal dynamics of the
3D biped. These dynamics consist of a configuration space
Q2D = T2 with coordinates θ = (θns, θs)T , where θns is the
angle of the non-stance leg from vertical and θs is the angle
of the stance leg from vertical (see Figure 1), together with
a Lagrangian given by:

L2D(θ, θ̇) =
1
2
θ̇T Mθ(θ)θ̇ − Vθ(θ),



where Mθ(θ) and Vθ(θ) are given in Table I.
The dynamics for the planar system are again obtained

from the Euler-Lagrange equations. Specifically, the equa-
tions of motion are given by:

Mθ(θ)θ̈ + Cθ(θ, θ̇)θ̇ + Nθ(θ) = Bθu.

These equations yield the control system (f2D, g2D) as in
the case of the full-order bipedal walker.

We can view the dynamics of the 2D subsystem as the
continuous portion of a hybrid system modeling a 2D walker,
i.e., a hybrid control system

H C 2D = (D2D, U2D, G2D, R2D, f2D, g2D)

where

D2D =
{(

θ

θ̇

)
∈ TQ2D : H2D(θ) ≥ 0

}
,

G2D =
{(

θ

θ̇

)
∈ TQ2D : H2D(θ) = 0,(

∂H2D(θ)
∂θ

)T

θ̇ < 0

}
,

with H2D(θ) = cos(θs)− cos(θns), U2D = R2, and

R2D(θ, θ̇) =
(

Sθθ

Pθ(θ)θ̇

)
,

where Sθ and Pθ(θ) are the same as in the 3D bipedal model.
The hybrid control system H C 2D is similar, but not

equivalent, to the typical 2D compass-gait walker (cf. [1],
[2] and [5]), since the splayed legs affect the height of the
planar robot—this observation motivates the control law to
be introduced. That is, we utilize controlled symmetries of
[12] by “rotating the world” via a group action in order to
shape the potential energy of L2D to obtain stable walking
gaits on flat ground for H C 2D.

Consider the group action Ψ : S1 ×Q2D → Q2D denoted
by:

Ψγ(θ) :=
(

θns − γ
θs − γ

)
,

for slope angle γ ∈ S1. Using this, define the following
feedback control law:

u = Kγ
R(θ) = B−1

θ (Nθ(θ)−Nθ(Ψγ(θ))) . (6)

Applying this control law to the control system (f2D, g2D)
yields the dynamical system:

fγ
2D(θ, θ̇) := f2D(θ, θ̇) + g2D(θ, θ̇)Kγ

R(θ).

which is just the vector field associated to the Lagrangian:

Lγ
2D(θ, θ̇) =

1
2
θ̇T Mθ(θ)θ̇ − Vθ(Ψγ(θ)). (7)

As with the standard compass-gait biped, it is easy to
verify that there exists a γ (in fact, a range of γ) such that
the hybrid system

H γ
2D := (D2D, G2D, R2D, fγ

2D)

has a stable walking gait, i.e., a stable hybrid periodic orbit.
Lagrangian shaping controller. The goal of this controller
is to shape both the kinetic and potential energy of L3D so
as to render it “almost-cyclic.”

Consider the following almost-cyclic Lagrangian:

Lγ
α(θ, ϕ, θ̇, ϕ̇) = (8)

1
2

(
θ̇T ϕ̇

)
Mα(θ)

(
θ̇
ϕ̇

)
−Wα(θ, ϕ, θ̇)− V γ

α (θ, ϕ),

where

Mα(θ) =

(
Mθ(θ) + Mϕ,θ(θ)T Mϕ,θ(θ)

mϕ(θ) Mϕ,θ(θ)T

Mϕ,θ(θ) mϕ(θ)

)

Wα(θ, ϕ, θ̇) = − αϕ

mϕ(θ)
Mϕ,θ(θ)θ̇

V γ
α (θ, ϕ) = Vθ(Ψγ(θ))− 1

2
α2ϕ2

mϕ(θ)

with Mϕ,θ(θ), Mθ(θ), and mϕ(θ) as defined in (1) – the last
two are positive definite since M3D(q) > 0. Note that for this
almost-cyclic Lagrangian, we have taken λ(ϕ) = −αϕ and
Vfct(θ) = Vθ(Ψγ(θ)). It follows that the functional Routhian
associated with this cyclic Lagrangian is Lγ

2D as given in (7).
Now we can define a feedback control law that transforms

L3D to Lγ
α. In particular, let

u = Kα,γ
S (q, q̇) := B−1

3D (C3D(q, q̇)q̇ + N3D(q) (9)
+M3D(q)Mα(q)−1(−Cα(q, q̇)q̇ −Nγ

α(q))),

where Cα(q, q̇) is the shaped Coriolis matrix and Nγ
α =

∂V γ
α (q)
∂q . Note that this control law implicitly uses the first

control law. Applying this to the control system (f3D, g3D)
yields the dynamic system:

fα,γ
3D (q, q̇) := f3D(q, q̇) + g3D(q, q̇)Kα,γ

S (q, q̇), (10)

which is just the vector field associated to the Lagrangian Lγ
α.

Moreover, as a result of Theorem 1, we have the following
relationship between the behavior of fα,γ

3D and fγ
2D:

Proposition 4.1: (θ(t), ϕ(t), θ̇(t), ϕ̇(t)) is a solution to
the vector field fα,γ

3D on [t0, tF ] with

ϕ̇(t0) =
−1

mϕ(θ(t0))
(αϕ(t0) + Mϕ,θ(θ(t0))θ̇(t0)), (11)

if and only if (θ(t), θ̇(t)) is a solution to the vector field fγ
2D

and (ϕ(t), ϕ̇(t)) satisfies:

ϕ̇(t) =
−1

mϕ(θ(t))
(αϕ(t) + Mϕ,θ(θ(t))θ̇(t)). (12)

This result implies that for certain initial conditions,
i.e., those satisfying (11), the dynamics of H C 3D can be
effectively decoupled into the sagittal and lateral dynamics
by utilizing the control law Kα,γ

S . Moreover, the lateral
dynamics must satisfy the constraint (12), i.e., they evolve
in a very specific fashion. It will be shown in the simulation
section that this behavior is beneficial, but first we must
discuss how to handle conditions that do not satisfy (11).



Zero dynamics controller. The decoupling effect of Propo-
sition 4.1 can only be enjoyed when (11) is satisfied. Since
most initial conditions will not satisfy this constraint, we will
use the classical method of output linearization in non-linear
systems to stabilize to the surface defined by this constraint
(see [11] for the continuous case and [6], [10] for the hybrid
analogue).

Before introducing the third control law, we define a new
hybrid control system that implicitly utilizes the first two
control laws. Specifically, let

H C α,γ
3D = (D3D, R, G3D, R3D, fα,γ

3D , gα,γ
3D )

where D3D, G3D and R3D are defined as for H C 3D. The
control system (fα,γ

3D , gα,γ
3D ) is given by applying the control

law
u = Kα,γ

S (q, q̇) +
(

0 0 1
)T

v

to the control system (f3D, g3D), where v ∈ R. In particular,
fα,γ
3D is given as in (10) and

gα,γ
3D (q, q̇) =

(
0 0 1

)T
g3D(q, q̇).

Motivated by our desire to satisfy (11), let

h(q, q̇) := ϕ̇ +
1

mϕ(θ)
(αϕ + Mϕ,θ(θ)θ̇).

The main idea in the construction of the third control law is
that we would like to drive h(q, q̇) to zero, i.e., we would
like to drive the system to the surface

Z =
{(

q
q̇

)
∈ TQ3D : h(q, q̇) = 0

}
.

With this in mind, and motivated by the standard method
for driving an output function to zero in a nonlinear control
system, we define the following feedback control law:

v = Kε,α,γ
Z (q, q̇)

:=
−1

Lgα,γ
3D

h(q, q̇)

(
Lfα,γ

3D
h(q, q̇) +

1
ε
h(q, q̇)

)
,

where Lgα,γ
3D

h(q, q̇) is the Lie derivative of h with respect to
gα,γ
3D and Lfα,γ

3D
h(q, q̇) is the Lie derivative of h with respect

to fα,γ
3D . Note that we know Kε,α,γ

Z is well-defined since

Lgα,γ
3D

h(q, q̇) =
1

mϕ(θ)
,

and mϕ(θ) > 0 by the positive definiteness of M3D(θ).
Utilizing the feedback control law Kε,α,γ

Z , we obtain a
new hybrid system:

H ε,α,γ
3D := (D3D, G3D, R3D, f ε,α,γ

3D ),

where

f ε,α,γ
3D (q, q̇) := fα,γ

3D (q, q̇) + gα,γ
3D (q, q̇)Kε,α,γ

3D (q, q̇).

Note that ε, α and γ can be thought of as control gains, as
long as they are chosen so that ε > 0, α > 0, and γ such
that H γ

2D has a stable periodic orbit. We now proceed to
examine the behavior of H ε,α,γ

3D .
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Fig. 2. A walking gait for the 3D biped.

V. SIMULATION RESULTS & CONCLUDING REMARKS

The main result of this paper is that the control law
presented in the previous section results in stable hipped 3D
bipedal walking—this will be demonstrated numerically.

The bipedal model of interest has hip width w = 0.1, leg
length l = 1, and leg splay angle ρ = 0.0188. The control
gains for Kε,α,γ

Z are chosen to be ε = 1
5 (to provide for

sufficiently-fast convergence to Z), α = 10 (to maintain a
dynamic upright posture) and γ = π/50 (so that the 2D
system has a stable walking gait). It will be seen that the
biped will naturally sway from side-to-side, so we first search
for a 2-periodic orbit O3D, or a 2-periodic fixed point of the
Poincaré map, which one can verify is given by:


θ∗

ϕ∗

θ̇∗

ϕ̇∗

 ≈


0.2885
−0.2877
−0.0034
−1.9708
−1.5986
0.0360

 .

Therefore, it only remains to check that this two-periodic
orbit is stable. This is done by numerically computing the
eigenvalues of the Poincaré map. The magnitudes of these
eigenvalues are given by: 0.2918, 0.2918, 0.2961, 0.0082,
0.0001, 0.0217. Therefore, we have numerically verified that
O3D is a locally exponentially stable 2-periodic orbit; the
2-periodic orbit can be seen in Figure 3 and the walking gait
corresponding to the orbit can be seen in Figure 2. We will
briefly discuss the attributes of this gait.

We begin by noting that analytically proving the stability
of this walking gait does not currently seem possible, or
is extremely difficult. This is a common occurrence when
studying bipedal walkers, although there has been some
success in the case of hipless 3D bipedal robots—given 2D
walking gaits, the stability of 3D walking gaits can be proven
analytically using hybrid block-diagonal functional Routhian
reduction and hybrid zero dynamics (cf. [1]). While the
aforementioned method is very similar to the one proposed
in this paper, adding a hip to the biped prevents the straight-
forward extension of these ideas—the necessary condition
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Fig. 3. A stable 3D limit cycle of the biped (left), and a zoomed view of the lateral-plane (ϕ,ϕ̇) limit cycle (right).

that the conserved momentum quantity holds through the
impact equations, i.e. h(q, q̇) = h(R3D(q, q̇)), is violated.
Consequently, there is not a hybrid-invariant surface Z by
which the hybrid zero dynamics theorem of [10] can be
applied.

The control law presented in this paper was designed to
be robust to the perturbations of h that occur through the
impacts. In particular, at every impact the zero dynamics
controller will correct the introduced error e(q, q̇) = h(q, q̇)−
h(R3D(q, q̇)), driving h(q, q̇) to zero so that the conditions of
Proposition 4.1 are satisfied. When this error is introduced,
the decoupling of the 2D limit cycle is violated until the
zero dynamics correct to the conserved quantity. This de-
coupling perturbs the 2D limit cycle, but we argue that for
sufficiently small ε (and thus sufficiently fast convergence
to the conserved quantity surface), the perturbation will be
within the 2D cycle’s basin of attraction after every step.
This argument is supported by the numerical analysis of the
periodic orbit.

Aside from the robustness introduced through the zero
dynamics controller, the Lagrangian shaping controller and
the corresponding reduced dynamics controller also have an
interesting effect on the behavior of the biped. The first is
that the sagittal component of the 2-periodic orbit (see Figure
3) looks very similar to the standard compass-gait biped’s
periodic orbit. This indicates that although the system does
not evolve on the surface Z where the sagittal and lateral dy-
namics are decoupled, it stays “close enough” to this surface
so as to effectively decouple the dynamics. As a byproduct
of this effective decoupling, the ϕ-ϕ̇ dynamics essentially
evolve according to (12). This results in a limit cycle in the
lateral plane (see Figure 3), i.e., the biped naturally sways
from side-to-side. This is especially interesting since this
swaying motion was not enforced, but naturally occurred as
a result of the functional Routhian reduction procedure.

We conclude by noting that the proposed control method
effectively requires the same sagittal actuation as controlled
symmetries alone. The lateral actuation is of a similar

magnitude as that in the sagittal plane. Moreover, as the
legs are splayed further inwards, the induced sway lessens
and the lateral torque decreases. Therefore, our simulation
results suggest that a hipped, point-footed bipedal robot can
efficiently walk in three dimensions, especially when the legs
are appropriately splayed to bring the centers of mass closer
to the middle of the robot.
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mining exponentially stable periodic orbits in systems with impulse
effects: Application to bipedal robots,” in 44th IEEE Conference on
Decision and Control and European Control Conference, Seville,
Spain, 2005.

[11] S. Sastry, Nonlinear Systems: Analysis, Stability and Control.
Springer-Verlag, 1999.

[12] M. W. Spong and F. Bullo, “Controlled symmetries and passive
walking,” IEEE Transactions on Automatic Control, vol. 50, no. 7,
pp. 1025–1031, 2005.



d

dt

∂Rem

∂θ̇i

= θ̈T Mϕ,θ(θ)T Mϕ,θ(θ)

mϕ(θ)
ei + θ̇T

d
dt

(Mϕ,θ(θ))T Mϕ,θ(θ)

mϕ(θ)
ei + θ̇T

Mϕ,θ(θ)T d
dt

(Mϕ,θ(θ))

mϕ(θ)
ei −

d

dt
(mϕ(θ))θ̇T Mϕ,θ(θ)T Mϕ,θ(θ)

mϕ(θ)2
ei

+ϕ̈Mϕ,θ(θ)ei + ϕ̇
d

dt
(Mϕ,θ(θ))ei +

λ(ϕ) d
dt

(mϕ(θ))

mϕ(θ)2
Mϕ,θ(θ)ei −

d
dt

(λ(ϕ))

mϕ(θ)
Mϕ,θ(θ)ei −

λ(ϕ)

mϕ(θ)

d

dt
(Mϕ,θ(θ))ei (13)

∂Rem

∂θi
= 2θ̇T

∂
∂θi

(Mϕ,θ(θ))T Mϕ,θ(θ)

2mϕ(θ)
θ̇ − θ̇T

∂
∂θi

(mϕ(θ))Mϕ,θ(θ)T Mϕ,θ(θ)

2mϕ(θ)2
θ̇ +

1

2

∂

∂θi
(mϕ(θ))ϕ̇2 + ϕ̇

∂

∂θi
(Mϕ,θ(θ))θ̇ (14)

+

∂
∂θi

(mϕ(θ))λ(ϕ)

mϕ(θ)2
Mϕ,θ(θ)θ̇ −

λ(ϕ)

mϕ(θ)

∂

∂θi
(Mϕ,θ(θ))θ̇ −

1

2

∂
∂θi

(mϕ(θ))λ(ϕ)2

mϕ(θ)2

d

dt

∂Rem

∂ϕ̇
=

d

dt
(Mϕ,θ(θ))θ̇ + Mϕ,θ(θ)θ̈ + mϕ(θ)ϕ̈ +

d

dt
(mϕ(θ))ϕ̇ (15)

∂Rem

∂ϕ
= −

∂
∂ϕ

(λ(ϕ))

mϕ(θ)
Mϕ,θ(θ)θ̇ +

λ(ϕ) ∂
∂ϕ

(λ(ϕ))

mϕ(θ)
(16)

APPENDIX

In this appendix, we prove Theorem 1. It is, therefore,
necessary to investigate the Euler-Lagrange equations of Lλ

and how they relate to the Euler-Lagrange equations of Lfct.
First note that we can write

Lλ(θ, ϕ, θ̇, ϕ̇) = Lfct(θ, θ̇) + Rem(θ, ϕ, θ̇, ϕ̇)

where

Rem =
1
2
θ̇T Mϕ,θ(θ)T Mϕ,θ(θ)

mϕ(θ)
θ̇ +

1
2
mϕ(θ)ϕ̇2

+ϕ̇Mϕ,θ(θ)θ̇ −
λ(ϕ)

mϕ(θ)
Mϕ,θ(θ)θ̇ +

1
2

λ(ϕ)2

mϕ(θ)
.

Therefore,
d

dt

∂Lλ

∂θ̇i

− ∂Lλ

∂θi
=

d

dt

∂Lfct

∂θ̇i

− ∂Lfct

∂θi
(17)

+
d

dt

∂Rem
∂θ̇i

− ∂Rem
∂θi

d

dt

∂Lλ

∂ϕ̇
− ∂Lλ

∂ϕ
=

d

dt

∂Rem
∂ϕ̇

− ∂Rem
∂ϕ

(18)

where i = 1, . . . , n = dim(S).
By direct calculation, the various derivatives of Rem are

given as in (13), (14), (15) and (16), where in these equations,
ei is the ith standard basis vector for Rn. The goal is to show
that the Euler-Lagrange equations for Rem are satisfied when
the functional conserved quantity given in (3) is satisfied.

Note that for ϕ̇ satisfying (3), it follows that:

ϕ̈ =
d
dt (mϕ(θ))
mϕ(θ)2

Mϕ,θ(θ)θ̇ −
d
dt (mϕ(θ))
mϕ(θ)2

λ(ϕ) (19)

+
d
dt (λ(ϕ))
mϕ(θ)

−
d
dt (Mϕ,θ(θ))

mϕ(θ)
θ̇ − Mϕ,θ(θ)

mϕ(θ)
θ̈.

Moreover, substituting (3) and (19) into (13), it is easy to
verify that:

d

dt

∂Rem
∂θ̇i

∣∣∣∣
J(θ,ϕ,θ̇,ϕ̇)=λ(ϕ)

= 0,

and substituting (3) into (14) yields:

∂Rem
∂θi

∣∣∣∣
J(θ,ϕ,θ̇,ϕ̇)=λ(ϕ)

= 0.

Therefore,[
d

dt

∂Rem
∂θ̇i

− ∂Rem
∂θi

]∣∣∣∣
J(θ,ϕ,θ̇,ϕ̇)=λ(ϕ)

= 0, (20)

for i = 1, . . . , n.
Now, we clearly have that

d

dt
(λ(ϕ)) =

∂

∂ϕ
(λ(ϕ))ϕ̇ =

∂Rem
∂ϕ

(21)

for ϕ̇ satisfying (3). Therefore, substituting (3), (19) and (21)
into (15) and (16), it is easy to verify that:[

d

dt

∂Rem
∂ϕ̇

− ∂Rem
∂ϕ

]∣∣∣∣
J(θ,ϕ,θ̇,ϕ̇)=λ(ϕ)

= 0. (22)

We now have the framework in which to prove Theorem 1.
Proof: [of Theorem 1] (⇒) Let (θ(t), ϕ(t), θ̇(t), ϕ̇(t)) be

a flow of the vector field fLλ
on [t0, tF ] with ϕ̇(t0) satisfying

(4) and let (θ(t), θ̇(t)) be a flow of the vector field fLfct on
[t0, tF ] with θ(t0) = θ(t0) and θ̇(t0) = θ̇(t0). In addition,
let ϕ(t) be a curve satisfying

ϕ(t0) = ϕ(t0),

ϕ̇(t) =
1

mϕ(θ(t))
(λ(ϕ(t))−Mϕ,θ(θ(t))θ̇(t)).

By (17), (18), (20) and (22), it follows that the curve
(θ(t), ϕ(t), θ̇(t), ϕ̇(t)) satisfies the Euler-Lagrange equations
for Lλ, and is thus a flow of the vector field fLλ

on [t0, tF ].
By the uniqueness of solutions to fLλ

, it follows that

(θ(t), ϕ(t), θ̇(t), ϕ̇(t)) = (θ(t), ϕ(t), θ̇(t), ϕ̇(t))

since these curves have the same initial condition. Therefore,
(θ(t), θ̇(t)) is a flow of the vector field fLfct on [t0, tF ] and
ϕ̇(t) satisfies (5).

(⇐) Let (θ(t), θ̇(t)) be a flow of the vector field fLfct on
[t0, tF ] and (ϕ(t), ϕ̇(t)) a pair satisfying (5). Therefore, by
(17), (18), (20) and (22), it follows that the Euler-Lagrange
equations for Lλ are satisfied since the curve (θ(t), θ̇(t))
satisfies the Euler-Lagrange equations for Lfct by definition.
Therefore, (θ(t), ϕ(t), θ̇(t), ϕ̇(t)) is a solution to fLλ

on
[t0, tF ] satisfying (4).


