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Abstract— The existence of Zeno behavior in hybrid systems
is related to a certain type of equilibria, termed Zeno equilibria,
that are invariant under the discrete, but not the continuous,
dynamics of a hybrid system. In analogy to the standard
procedure of linearizing a vector field at an equilibrium point to
determine its stability, in this paper we study the local behavior
of a hybrid system near a Zeno equilibrium point by considering
the value of the vector field on each domain at this point, i.e., we
consider constant approximations of nonlinear hybrid systems.
By means of these constant approximations, we are able to
derive conditions that simultaneously imply both the existence
of Zeno behavior and the local exponential stability of a Zeno
equilibrium point. Moreover, since these conditions are in terms
of the value of the vector field on each domain at a point, they
are remarkably easy to verify.

I. INTRODUCTION

Zeno behavior occurs in a hybrid system if an infinite
number of discrete transitions occur in a finite amount of
time—that is if, in the limit, the switching times converge.
Along with the convergence in time which, by definition, is
associated with Zeno behavior, there is also a convergence
in space. This convergence is analogous to the classical
convergence of trajectories to an equilibrium point, except
that the convergence is non-smooth and occurs in finite time.
Therefore, when considering Zeno behavior, it is natural to
consider the corresponding notion of Zeno equilibria—these
are points in the hybrid state space of the hybrid system
that are invariant under the discrete dynamics of the hybrid
system but not under the continuous dynamics.

Linearizing a nonlinear system about an equilibrium point
is a simple and powerful method of determining the stability
of that point. Given the analogue between classical equilibria
and Zeno equilibria, one naturally arrives at the following
question: is there a procedure analogous to linearization that
will allow one to determine the stability of Zeno equilibria?
Due to the intrinsic relationship between Zeno equilibria and
Zeno behavior, the following question also naturally arises: is
there a procedure analogous to linearization that will allow
one to determine the existence of Zeno behavior?

The goal of this paper is provide a procedure for de-
termining both the stability of Zeno equilibria and the
existence of Zeno behavior in a special but illustrative class
of nonlinear hybrid systems: first quadrant hybrid systems.
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As with linearization, this procedure considers the behavior
of the vector fields on the domains of the hybrid system near
the Zeno equilibrium point. Unlike linearization, this local
behavior is encapsulated by the value of these vector fields at
the Zeno equilibrium—which must necessarily be nonzero—
rather than the Jacobian. The main result of this paper
is sufficient conditions for the local exponential stability
of Zeno equilibria and the existence of Zeno behavior in
a class of nonlinear hybrid systems based upon constant
approximations, i.e., the value of the vector field on each
domain at the Zeno equilibrium point.

Despite the simplicity of the sufficient conditions for Zeno
behavior presented in this paper, analyzing Zeno behavior in
hybrid systems is notoriously complex and subtle. For this
reason, there have been attempts to better understand Zeno
behavior by providing necessary conditions (cf. [3], [14]) or
sufficient conditions (cf. [2], [9]) for the existence of this
behavior. Unfortunately, the necessary conditions obtained
to date tend to be extremely conservative and the sufficient
conditions tend to be applicable only to very limited classes
of hybrid systems, e.g., [9] provides sufficient conditions
for Zeno behavior in a class hybrid systems that are, in
important ways, different than the systems considered in this
paper (this results in conditions that are in a much different
spirit than the conditions presented here). Therefore, while
the results presented in this paper are applicable only to a
limited class of nonlinear hybrid systems, they will hopefully
lay the groundwork for better understanding the local nature
of Zeno behavior.

II. FIRST QUADRANT HYBRID SYSTEMS

We begin this section by considering first quadrant hy-
brid systems ([1], [2] and [4]); these are nonlinear, two-
dimensional hybrid systems whose domains and guards dis-
play a very specific structure. The motivation for considering
hybrid systems of this form is that they are simple enough
to be reasoned about yet complex enough to display the type
of interesting behavior that is indicative of hybrid systems.

Definition 1: A first quadrant hybrid system, or just FQ
hybrid system, is a tuple:

H = (Γ, D,G,R, F ),

where
• Γ = (Q, E) is a directed cycle graph, with

Q = {q0, . . . , qk−1},
E = {e0 = (q0, q1), e1 = (q1, q2),

. . . , ek−1 = (qk−1, q0)} .



• D = {Dq}q∈Q is a set of domains, where for all q ∈ Q,

Dq = (R+
0 )2 =

{(
x1

x2

)
∈ R2 : x1 ≥ 0 and x2 ≥ 0

}
,

hence the name “first quadrant.”
• G = {Ge}e∈E is a set of guards, where for all e ∈ E

Ge =
{(

x1

x2

)
∈ R2 : x1 = 0 and x2 ≥ 0

}
.

• R = {Re}e∈E is a set of reset maps, where for all
e ∈ E there exists a function re : R+

0 → R+
0 such that

Re(x1, x2) =
(

re(x2)
x1

)
.

• F = {fq}q∈Q is a set of vector fields, where fq is a
Lipschitz vector field on R2.

In this paper, we make the following:

Assumption 1: re = id for all e ∈ E.

This assumption is not very restrictive since one can make
all of the re the identity map by adding extra domains with
corresponding vector fields that mimic the reset maps.

Remark 1: First quadrant hybrid systems are, admittedly,
a very restrictive class of hybrid system; again, the purpose
of studying these systems is to gain an understanding of
Zeno behavior beginning at a simple and fundamental level.
That being said, it is possible to consider higher dimensional
analogues of first quadrant hybrid systems—defined in the
obvious manner—and to extend the conditions presented in
this paper to systems of this form. Moreover, it is possible
to transform a fairly general class of hybrid systems to
these higher dimensional first quadrant hybrid systems by
transferring the nonlinearity of the guards to the dynamics
by appending a state variable as discussed in [8, Eqn. (1)].

Executions. An (infinite1) execution of a hybrid system
H = (Γ, D, G,R, F ) is a tuple χ = (I, d, C) where
• I = {Ii}i∈N where for each i ∈ N, Ii = [τi, τi+1] with

τi ≤ τi+1 ∈ R+
0 . This is the set of the switching times.

• d : N → Q is a map such that for all i, i + 1 ∈ N,
(d(i), d(i + 1)) ∈ E. This is the discrete component of
the execution.

• C = {ci}i∈N is a set such that ċi(t) = fd(i)(ci(t)) for
t ∈ Ii. This is a set of continuous trajectories.

We require that for all i ∈ N,

(i) ci(t) ∈ Dd(i), ∀ t ∈ Ii

(ii) ci(τi+1) ∈ G(d(i),d(i+1))

(iii) ci+1(τi+1) = R(d(i),d(i+1))(ci(τi+1)).
(1)

Note that the continuous initial condition of an execution χ
is, when I0 = [τ0, τ1], given by c0(τ0) ∈ Dd(0). The discrete
initial condition is given by d(0).

The object of study in this paper will be Zeno executions
(cf. [10], [14]), which are defined in the following manner:

1We will consider only infinite executions because of their relevance to
the problem under investigation; see [1] and [14] for the definition of finite
executions.

Definition 2: An execution χ is Zeno if

lim
i→∞

τi =
∞∑

i=0

(τi+1 − τi) = τ∞

for some finite τ∞ ∈ R+
0 .

A hybrid system H is Zeno if there exists a Zeno
execution χ with τi+1 − τi 6= 0 for some i ∈ N.

Remark 2: The motivation for defining Zeno hybrid sys-
tems as in Def. 2 is that all of the hybrid systems considered
in this paper will have an “instantaneously” Zeno execution
with initial condition c0(τ0) = 0, i.e., for this execution
τi+1 = τi = 0 for all i ∈ N. We want to differentiate this
type of Zeno behavior from the more interesting types of
Zeno behavior, e.g., Zeno executions with c0(τ0) 6= 0. In
this case, there must necessarily exist a i ∈ N such that
τi+1 − τi 6= 0. Other representative types of Zeno behavior,
chattering and genuine Zeno, are defined in [1] and [3].

III. ZENO EQUILIBRIA

The stability properties of hybrid systems have been
studied to a much greater degree than Zeno behavior (cf.
[5], [12], [13] and the references therein). Yet Zeno behavior
in hybrid systems is fundamentally related to the stability of
Zeno equilibria in that the absence of such equilibria implies
the absence of Zeno behavior. When studying Zeno behavior,
therefore, it is natural to also study Zeno equilibria and the
stability properties thereof; see [1] and [4] for a definition
of Zeno equilibria for general hybrid systems.

Definition 3: The point x = 0 is a Zeno equilibrium point
of H in Def. 1 if fq(0) 6= 0 for all q ∈ Q.

We now introduce a type of stability that Zeno equilibrium
points can display, termed local exponential stability, that
directly relates to Zeno behavior. We will provide evidence
of this fact in Theorem 3, where the conditions that imply
Zeno behavior are the same conditions that imply the local
exponential stability of Zeno equilibria.

Definition 4: The Zeno equilibrium point x = 0 of H
is locally exponentially stable if for any set {εq}q∈Q with
εq > 0, there exists a δ > 0 such that for every execution χ =
(I, d, C) satisfying ‖c0(τ0)‖ < δ the following conditions
hold:

S1: ‖ci(t)‖ < εd(i) for all t ∈ Ii and i ∈ N.
S2: ‖ci(τi)‖ ≤ M‖c1(τ1)‖γi−1. for all i ∈ N\{0},

where M ≥ 1 and 0 < γ < 1.
Note that S1 guarantees that the continuous portion of

the execution must remain bounded for all time, while S2
guarantees that the discrete portion of the execution must
converge exponentially to the origin. In addition, we utilize
c1(τ1) in condition S2 because this point is necessarily on
the x1 axis, while c0(τ0) is not necessarily on this axis. That
is, S2 enforces exponential stability on a set of points on the
x1-axis.

IV. EXISTENCE OF EVENTS

In this section, we give conditions on the existence of
events on a single domain of H which will be used in the
next section to prove the existence of infinite executions.



Existence of events. Consider the vector field ẋ = fq(x)
for some q ∈ Q. We say that there exists an event for fq

and x0 ∈ Dq if for the solution c(t) of ẋ = fq(x) on [t0, t1]
with c(t0) = x0 the following conditions hold:

E1: There exists a time τ ≤ t1 such that c(τ) ∈ Ge,
with e ∈ E the unique edge such that the source
of e is q.

E2: For all t ∈ [t0, τ ], c(t) ∈ Dq.

The following theorem relates the value of the vector field
at the origin, fq(0), to the existence of events. First, note that
we denote a ball around the origin of radius r by B(r, 0) =
{x ∈ R2 : ‖x‖ ≤ r}, and we denote the ith component of
fq(x) by (fq(x))i, for i = 1, 2.

Theorem 1: There exists an event for ẋ = fq(x) and for
all x0 ∈ Dq ∩B(rq, 0), with rq > 0 sufficiently small, if

(fq(0))1 < 0 < (fq(0))2,

− (fq(0))2
(fq(0))1

< 1.

To prove this theorem, we will need to utilize the classic
bound on the difference between solutions of comparable or-
dinary differential equations, as can be found in [6, Theorem
2.1] and [11, Theorem 3.4].
The solution comparison theorem. Consider the vector
field ẋ = fq(x). A smooth ε-approximate solution to this
vector field on a time interval I = [t0, t1] is a smooth
function ϕ : I → R2 such that:

‖ϕ̇(t)− fq(ϕ(t))‖ ≤ ε

for all t ∈ I . If c(t) is the solution to fq and c(t0) = ϕ(t0),
then for all t ∈ I:

‖ϕ(t)− c(t)‖ ≤ ε

Lq
(eLqt − 1),

where Lq is the Lipschitz constant of fq.
Proof: [of Theorem 1] We will prove the theorem in the

case when x0 = (ρ, 0)T , for 0 ≤ ρ < ρ̃ with ρ̃ > 0, i.e., for
x0 on a subset the x1-axis. It is a simple matter to extend
the arguments used to prove the case when x0 = (ρ, 0)T to
the case when x0 6= (ρ, 0)T by utilizing the continuity of fq;
space constraints prevent the inclusion of these details.

We exploit the above comparison theorem by taking
ϕ(t) = fq(0)t + (ρ, 0)T , i.e, the solution to ẋ = fq(0).
By the Lipschitz continuity of fq, we have that

‖ϕ̇(t)− fq(ϕ(t))‖ ≤ Lq‖fq(0)t + (ρ, 0)T ‖.

The first step is to find the values of t such that

‖fq(0)t + (ρ, 0)T ‖ ≤ ρ, (2)

which will ensure that

‖ϕ̇(t)− fq(ϕ(t))‖ ≤ Lqρ. (3)

To check when the inequality in (2) holds, we find the points
where the equality holds, which are

t0 = 0, t1(ρ) = − 2(fq(0))1ρ
(fq(0))21 + (fq(0))22

, (4)

µ
0
ρ

¶

µ
0
0

¶
fq(0)

−Ξq(ρ)(x1 − ρ)

x1

x2

µ
ρ
0

¶

ρ(eLqτ(ρ) − 1)

ϕ(τ(ρ))

c(τ(ρ))

Fig. 1. The error cone around ϕ(t).

and it follows that t1(ρ) is positive for ρ > 0 by the as-
sumption that (fq(0))1 < 0. Therefore, for all t ∈ [0, t1(ρ)],
(2) holds and thus (3) holds. It follows by the solution
comparison theorem that, for all t ∈ [0, t1(ρ)],

‖ϕ(t)− c(t)‖ ≤ ρ(eLqt − 1). (5)

The main observation of this proof is that if there exists
a τ(ρ) ∈ [0, t1(ρ)], which is dependent on ρ, such that

−((fq(0))1τ(ρ) + ρ) = ρ(eLqτ(ρ) − 1), (6)

then there must exist a τ̂(ρ) ≤ τ(ρ) (also dependent on ρ)
such that c(t) has an event at τ̂(ρ) with c(t0) = ϕ(t0) =
(ρ, 0)T , i.e., E1 and E2 are satisfied (see Fig. 1 for a
graphical interpretation).

Condition E1 follows from the fact that at time τ(ρ), the
error ball of radius ρ(eLqτ(ρ) − 1), centered at ϕ(τ(ρ)), has
completely crossed the x2-axis. Since c(τ(ρ)) is contained
in this ball by (5), it must as well have crossed the x2-axis,
and hence there must have been an event.

Condition E2 follows from the fact that, by the continuity
of fq, (fq(ρ, 0))2 > 0 for all ρ > 0 sufficiently small. This,
in turn, implies that there exists a ρc > 0 such that c(t) ∈ Dq

for all t ∈ [0, τ̂(ρ)] for all 0 ≤ ρ < ρc.
To complete the proof, we must establish the existence of

a τ(ρ) ∈ [0, t1(ρ)] satisfying (6). Solving (6) for τ(ρ) yields:

τ(ρ) = − 1
Lq
W
(

Lqρ

(fq(0))1

)
, (7)

where W is the Lambert W function (see [7] and the
references therein). Note that τ(ρ) is well-defined for all
0 ≤ ρ ≤ − (fq(0))1

Lqe . It is easy to verify that that τ(ρ) ≥ 0 for
these values since W(z) ≤ 0 for z ∈ [−1/e, 0]. Also note
that W is a concave function of its arguments, and hence
τ(ρ) is a convex function of ρ.

Now we need to verify for certain values of ρ that τ(ρ) ∈
[0, t1(ρ)]. To find these values of ρ, we begin by solving for
ρ in the following equation: t1(ρ) = τ(ρ), which has two
solutions: ρ0 = 0 and

ρ1 =
((fq(0))21 + (fq(0))22) log

(
(fq(0))21+(fq(0))22

2(fq(0))21

)
2(fq(0))1Lq

.



We claim that τ(ρ) ∈ [0, t1(ρ)] for 0 ≤ ρ ≤ ρ1. But this
follows directly from the fact that t1(ρ) is a linear function
of ρ, τ(ρ) is a convex function of ρ and ρ1 satisfies τ(ρ1) =
t1(ρ1). This is equivalent to saying that the curve τ(ρ) lies
below the line t1(ρ) for all values of its argument in the
interval 0 ≤ ρ ≤ ρ1.

As a result of the above arguments, we have established
that for all 0 ≤ ρ < ρ̃ = min{ρc, ρ1}, there exists an event
for all x0 = (ρ, 0)T .

V. EXISTENCE OF EXECUTIONS

In this section, we establish the existence of infinite
executions and demonstrate that these executions display
several important properties.

The “event approximation” function. Consider the error
cone that propagates around the solution of the constant
vector field ẋ = fq(0), starting at (ρ, 0)T with ρ > 0
sufficiently small, according to the error bound in (5) (see
Fig. 1 for a pictorial representation). Under the assumptions
of Theorem 1, we know that there exists an event for the
nonlinear vector field ẋ = fq(x), i.e., a time τ∗ such that
E1 and E2 are satisfied. The goal is to find an upper bound
for (c(τ∗))2 through the error cone obtained from (5).

Let ϕ(t) = fq(0)t + (ρ, 0)T be the solution to ẋ = fq(0)
with initial condition (ρ, 0)T . Define a straight line in the
plane passing through the point (ρ, 0)T and lying tangent to
the circle centered at ϕ(τ(ρ)), where τ(ρ) is given as in (7),
with radius r(ρ) = ρ(eLqτ(ρ) − 1); a visual interpretation
can, again, be found in Fig. 1. This defines a line given by:

x2 = −Ξq(ρ)(x1 − ρ),

where its slope Ξq(ρ) is given, as a function of ρ, by

Ξq(ρ) = (8)

(fq(0))1−(fq(0))2

√
1+

(fq(0))22
(fq(0))21

−(fq(0))1e
W

(
Lqρ

(fq(0))1

)

(fq(0))2+(fq(0))1

√
1+

(fq(0))22
(fq(0))21

−(fq(0))2e
W

(
Lqρ

(fq(0))1

) ,

where, again, W is the Lambert W function.
We term Ξq(ρ) the event approximation function. It has

the following important properties:
Lemma 1: For Ξq(ρ) as defined in (8), if

(fq(0))1 < 0 < (fq(0))2,

− (fq(0))2
(fq(0))1

< 1,

then the following properties hold:
• Ξq(ρ) is continuous and strictly increasing as a function

of ρ for all 0 ≤ ρ ≤ − (fq(0))1
Lqe .

• There exists a ρ̂q > 0 such that

− (fq(0))2
(fq(0))1

≤ Ξq(ρ) < 1 (9)

for all ρ ∈ [0, ρ̂q).
Proof: The continuity of Ξq(ρ) is easy to verify on

the values for which it is defined. Note that the domain
of definition of this function is dictated by the domain of
definition of the Lambert W function.

To verify that Ξq(ρ) is strictly increasing, we consider
its derivative and verify that it is always strictly positive.
By direct calculation, d Ξq

dρ is given as in (10). Now, the
numerator in (10) is clearly negative, so we need to verify
that the denominator is also negative. Since, by assumption,
(fq(0))1 < 0, this amounts to checking that(

1 +W
(

Lqρ

(fq(0))1

))
> 0, ρ ∈

[
0,− (fq(0))1

Lqe

]
.

But this is equivalent to checking that W(z) ≥ −1, z ∈
[−1/e, 0], which follows from the properties of the Lambert
W function.

To prove the final property of Ξq, we note that

Ξq(0) = − (fq(0))2
(fq(0))1

< 1.

Therefore, by the continuity of Ξq, it follows that there exists
a sufficiently small ρ̂q > 0 such that (9) holds for all ρ ∈
[0, ρ̂q).

We now have the necessary framework in which to prove
the main result of this section.

Theorem 2: Let H = (Γ, D, G,R, F ) be a FQ hybrid
system satisfying

(fq(0))1 < 0 < (fq(0))2,

− (fq(0))2
(fq(0))1

< 1.

for all q ∈ Q. Then for any set {εq}q∈Q with εq > 0, there
exists a δ > 0 such that for all x0 ∈ (R+

0 )2 satisfying

‖x0‖ < δ,

there exists a unique execution χ = (I, d, C) with c0(τ0) =
x0 satisfying the following conditions:

(T1) For all t ∈ Ii and i ∈ N,

‖ci(t)‖ < εd(i).

(T2) For all2 i ∈ N\{0},

‖ci+1(τi+1)‖ ≤

(
i∏

n=1

Ξd(n)(‖c1(τ1)‖)

)
‖c1(τ1)‖.

Proof: Suppose we are given a set {εq}q∈Q with εq >
0. The first step is to construct the δ > 0 to be utilized in
the theorem.

Recall that by Theorem 1, for all q ∈ Q, there exists an
rq > 0 such that there exists an event for ẋ = fq(x) for all
x0 ∈ Dq ∩B(rq, 0). For the sake of definiteness, let c(t;x0)
denote the solution of ẋ = fq(x) with c(0) = x0 and let
τq(x0) denote the time at which the event occurs (as given
in E1 and E2); here we make the dependence of τ on q and
x0 explicit. Let βq be the constant such that

sup
x0∈Dq∩B(βq,0)

max
t∈[0,τq(x0)]

‖c(t;x0)‖ ≤ min
q∈Q

{ρ̂q, rq, εq},

where rq is defined as in Theorem 1 and ρ̂q, q ∈ Q, are
the constants given in Lemma 1. Note that βq is well-
defined since we are considering smooth functions over finite

2Note that ‖ci(τi)‖ = (ci(τi))1.



d Ξq

dρ
=

−Lq((fq(0))21 + (fq(0))22)

√
1 +

(fq(0))22
(fq(0))21

(fq(0))1

(
(fq(0))2 + (fq(0))1

√
1 +

(fq(0))22
(fq(0))21

− (fq(0))2e
W

(
Lqρ

(fq(0))1

))2 (
1 +W

(
Lqρ

(fq(0))1

)) (10)

intervals and clearly 0 < βq ≤ minq∈Q{ρ̂q, rq, εq}. We thus
define

δ = min
q∈Q

{βq},

wherein it follows that δ ≤ minq∈Q{ρ̂q, rq, εq}.
Without loss of generality we will consider executions

with the discrete initial condition d(0) = q0. That is, we
will show the existence of an execution χ = (I, d, C) with
d(i) := qi (mod k), satisfying conditions T1 and T2, through
induction on i ∈ N. Note that for the rest of the proof, we
will let ci(t) denote the solution to ẋ = fd(i)(x).

Let x0 satisfy ‖x0‖ < δ. Picking c0(τ0) = x0, since δ ≤
rq0 it follows that there exists time τ1 such that c0(τ1) ∈
G(q0,q1), i.e., at τ1, c0(τ1) = (0, (c0(τ1))2)T . Moreover, it
follows by the definition of βq0 that ‖c(t)‖ < εq0 for all
t ∈ [τ0, τ1]. Therefore, condition T1 is satisfied for i = 0.
(Note that condition T2 does not depend on c0(τ0), so we
do not need to verify it in the case when i = 0.)

Setting c1(τ1) = ((c0(τ1))2, 0)T , it follows that:

(c1(τ1))1 < ρ̂q1 , ‖c1(τ1)‖ = ‖c0(τ1)‖ < rq1 .

Therefore, by Theorem 1 there exists a time τ2 such that
c1(τ2) ∈ G(q1,q2), i.e., at τ2, c1(τ2) = (0, (c1(τ2))2)T .
Moreover, by construction of the function Ξq1 , it follows
that (c1(τ2))2 is bounded above by the point at which the
line

x2 = −Ξq1((c1(τ1))1)(x1 − (c1(τ1))1)

intersects the x2-axis. That is,

(c1(τ2))2 ≤ Ξq1((c1(τ1))1)(c1(τ1))1 < (c1(τ1))1

by (9) in Lemma 1. Setting c2(τ2) = ((c1(τ2))2, 0)T , it
follows that

‖c2(τ2)‖ ≤ Ξq1(‖c1(τ1)‖)‖c1(τ1)‖.

Therefore, we have established condition T2 in the case when
i = 1.

In addition, by the construction of Ξq1 and the arguments
utilized in Theorem 1, it follows that for all t ∈ [τ1, τ2]

c1(t) ∈
{
x ∈ (R+

0 )2 :
x2 ≤ −Ξq1((c1(τ1))1)(x1 − (c1(τ1))1)} .

Therefore, for all t ∈ [τ1, τ2],

‖c1(t)‖ ≤ ‖c1(τ1)‖ = ‖c0(τ1)‖ < εq1 ,

by the definition of βq0 . Thus, T1 is satisfied for i = 1.
Now, by way of induction, suppose that:
• There exists an interval Ii−1 = [τi−1, τi] such that (i),

(ii) and (iii) in (1) are satisfied.
• For all t ∈ Ii, ‖ci−1(t)‖ ≤ εd(i−1).

• ‖ci(τi)‖ ≤
(∏i−1

n=1 Ξd(n)(‖c1(τ1)‖)
)
‖c1(τ1)‖.

Take ci(τi) = ((ci−1(τi))2, 0)T . Since, by (9),

‖ci(τi)‖ ≤

(
i−1∏
n=1

Ξd(n)((c1(τ1))1)

)
(c1(τ1))1

< ‖c1(τ1)‖ = ‖c0(τ1)‖
< rd(i),

it follows from Theorem 1 that there exists a time
τi+1 such that ci(τi+1) ∈ G(d(i),d(i+1)), or ci(τi+1) =
(0, (ci(τi+1))2)T . Moreover, (ci(τi+1))2 is bounded above
by the point at which the line

x2 = −Ξd(i)((ci(τi))1)(x1 − (ci(τi))1)

intersects the x2-axis. In particular, by the properties of Ξd(i)

stated in Lemma 1, it follows that ‖ci(τi)‖ < ‖c1(τ1)‖ so

‖ci+1(τi+1)‖
≤ Ξd(i)(‖ci(τi)‖)‖ci(τi)‖

≤ Ξd(i) (‖c1(τ1)‖)

(
i−1∏
n=1

Ξd(n)(‖c1(τ1)‖)

)
‖c1(τ1)‖

=

(
i∏

n=1

Ξd(n)(‖c1(τ1)‖)

)
‖c1(τ1)‖.

Therefore, we have established condition T2 by induction.
Finally, again by the construction of Ξd(i) and the argu-

ments utilized in Theorem 1, it follows that

ci(t) ∈
{
x ∈ (R+

0 )2 :
x2 ≤ −Ξd(i)((ci(τi))1)(x1 − (ci(τi))1)

}
.

for all t ∈ Ii = [τi, τi+1]. Therefore, for all t ∈ Ii,

‖ci(t)‖ ≤ ‖ci(τi)‖ < ‖c1(τ1)‖ = ‖c0(τ0)‖ < εd(i)

by the properties of βq0 . Thus, we have established the
existence of an infinite execution with properties T1 and T2.

VI. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF
ZENO BEHAVIOR & THE STABILITY OF ZENO EQUILIBRIA

In this section, we present sufficient conditions for the
existence of Zeno behavior in a hybrid system based upon
the value of the vector field in each domain at the Zeno
equilibrium point. In addition, we demonstrate that the
same conditions that imply Zeno behavior imply the local
exponential stability of the Zeno equilibria z = 0. This is
the main result of this paper.



Theorem 3: Let H = (Γ, D, G,R, F ) be a FQ hybrid
system. If for all q ∈ Q,

(fq(0))1 < 0 < (fq(0))2,

− (fq(0))2
(fq(0))1

< 1,

then
• H is Zeno.
• The Zeno equilibria z = 0 is locally exponentially

stable.

Proof: For the sake of simplicity (and due to space
constraints), we will prove the theorem in the case when
Q = {q} and E = {e = (q, q)}, i.e., in the case when there
is a single domain and edge. The same general reasoning
can be applied to arbitrary directed cycles.

We begin by proving that H is Zeno. Let ρ̃q be the
constant given in Theorem 1, let ρ̂q be the constant given
in Lemma 1 and let εq = min{ρ̂q, ρ̃q} be the constant
considered in the statement of Theorem 2. Then there exists a
ρ > 0 such that there exists an execution χ = (I, d, C) with
c0(τ0) = (ρ, 0)T (here d(i) ≡ q). Moreover, by Theorem 2,
‖ci(t)‖ < εq = ρ̃q implies that ‖ci(τi)‖ < ρ̃q and

‖ci+1(τi+1)‖ ≤

(
i∏

n=0

Ξq(ρ)

)
ρ = Ξq(ρ)i+1ρ

where here, ‖c0(τ0)‖ = ρ and we utilize ‖c0(τ0)‖ rather than
‖c1(τ1)‖ because c0(τ0) is on the x1-axis.

Now, since ‖ci(τi)‖ < ρ̃q and, by the same arguments
utilized in Theorem 1, there exists a ∆τ̂i such that

−((fq(0))1∆τ̂i + ‖ci(τi)‖) = ‖ci(τi)‖(eLq∆τ̂i − 1),

therefore,

τi+1 − τi ≤ ∆τ̂i = − 1
Lq
W
(

Lq‖ci(τi)‖
(fq(0))1

)
.

The Lambert W function satisfies the important inequality
(cf. [7]) W (z) ≤ z for all z ∈ [−1/e,∞). Therefore,

∞∑
i=0

τi+1 − τi ≤
∞∑

i=0

∆τ̂i

=
∞∑

i=0

− 1
Lq
W
(

Lq‖ci(τi)‖
(fq(0))1

)
≤

∞∑
i=0

−‖ci(τi)‖
(fq(0))1

≤ − 1
(fq(0))1

∞∑
i=0

Ξq(ρ)iρ

= − ρ

(fq(0))1(1− Ξq(ρ))

since Ξq(ρ) < 1 by Lemma 1 because ‖c0(τ0)‖ = ρ < εq ≤
ρ̂q. Therefore, the execution χ is Zeno, and so H is Zeno.

Now, we will prove that z = 0 is a locally exponentially
stable Zeno equilibrium. Let εq > 0 be given. By Theorem 2,
there exists a δ > 0 such that for all x0 satisfying ‖x0‖ < δ
there exists an execution χ = (I, d, C) such that c0(τ0) =
x0 satisfying the properties given in Theorem 2. In fact, by

construction, it follows that every execution χ = (I, d, C)
satisfying ‖c0(τ0)‖ < δ must satisfy the properties given in
Theorem 2. We have thus already established S1 and need
only show that, for every such execution, S2 is satisfied.

Consider an execution χ = (I, d, C) satisfying ‖c0(τ0)‖ <
δ. By the properties of Ξq given in Lemma 1, we have that,
for all i ∈ N\{0},

‖ci+1(τi+1)‖ ≤ Ξq(‖ci(τi)‖)‖ci(τi)‖

as was utilized in the proof of Theorem 2. If we, therefore,
consider the one-dimensional discrete time system:

zi+1 = g(zi) := Ξq(zi)zi

we have that ‖ci(τi)‖ ≤ zi−1 when z0 = ‖c1(τ1)‖ by the
properties of Ξq given in Lemma 1. Moreover, by (8) and
the fact that W (0) = 0 (cf. [7]), the Jacobian of g at 0 is
given by:

∂g(z)
∂z

∣∣∣∣
z=0

= Ξq(0) = − (fq(0))2
(fq(0))1

< 1.

Therefore, there exist M ≥ 1 and 0 < γ < 1 such that
zi ≤ M |z0|γi for |z0| sufficiently small. It follows that when
z0 = ‖c1(τ1)‖, for all i ∈ N\{0},

‖ci(τi)‖ ≤ zi−1 ≤ M |z0|γi−1 = M‖c1(τ1)‖γi−1

as desired.
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