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Abstract— In this paper we construct the ”blow up” of an
affine hybrid systemH, i.e., a new affine hybrid systemBl(H)
in which H is embedded, that does not exhibit Zeno behavior.
We show the existence of a bijectionΥ between periodic
orbits and equilibrium points of H and Bl(H) that preserves
stability; we refer to this property as P-stability equivalence.

I. I NTRODUCTION

If H is an affine hybrid system, we introduce its blow
up Bl(H) which is also an affine hybrid system. The
primary benefit of consideringBl(H) is that it is not
Zeno, although its structure suggests many other interesting
properties not generally found in affine hybrid systems. In
order to demonstrate thatBl(H) is in some way equivalent
to H, P-stability equivalence is introduced. IfOH is the
set of equilibrium points and periodic orbits ofH, then two
affine hybrid systemsH andG areP-stability equivalent
if there exists a bijectionΥ : OH → OG such that

µ ∈ OH is P-stable ⇔ Υ(µ) ∈ OG is P-stable

whereP is stability in the sense of Lyapunov, asymptotic
stability or exponential stability. The purpose of this paper
is to prove the following theorem:

Main Theorem: The affine hybrid systemsH andBl(H)
are P-stability equivalent, andBl(H) is not Zeno.

The importance of the Main Theorem is that rather than
attempting to determine whether an affine hybrid system
is Zeno (which currently is not possible), analysis can be
carried out onBl(H) where there is no Zeno behavior. Ad-
ditionally, most analysis on the stability of hybrid systems,
or even switched systems, assumes that such systems are
not Zeno, cf. [2], [5]-[9]. Because of the Main Theorem,
this assumption automatically holds forBl(H), andBl(H)
is P-stability equivalent toH, so the assumption is not
restrictive. Bl(H) displays additional desirable properties
that are not found in general affine hybrid systems. Its
structure closely resembles a switched system, implying that
Bl(H) might provide a way to apply the analysis carried
out on switched systems to affine hybrid systems; since
there are considerably more results for switched systems,
this would be an important connection. In the future, these
and other properties ofBl(H) will be investigated.
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The structure of this paper is as follows:

Section II: Reviews the definition of an affine hybrid
system; more details and examples can be found in [1].

Section III: Begins by introducing hybrid executions. These
are used to define the important types of equilibrium points
and periodic orbits of an affine hybrid system and discuss
their stability. This section concludes with the definition of
P-stability equivalence.

Section IV:Bl(H) is constructed.

Section V: Relationships betweenH and Bl(H) are dis-
cussed, the most important being: there is a bijectionΥ :
OH → OBl(H) that is explicitly computable.

Section VI: The Main Theorem is proven.

II. A FFINE HYBRID SYSTEMS

This section introduces the notion of an affine hybrid
system. An affine hybrid system consists of the following
data: a set of discrete states, domains, edges and vector
fields. The discrete states provide a way to index the do-
mains. The domains are affine sets, i.e., sets that are affinely
constrained. The edges provide a relationship between two
faces of two domains; each edge has a source which is
the face of a domain and a target which is also the face
of a domain. It is required that there exists an affine
transformation between the source and the target of each
edge; thus each edge gives rise to a transition map, which
is an affine transformation, from the source of the edge to
the target of the edge. The set of vector fields is a collection
of vector fields that are globally Lipschitz.

2.1 (Discrete states):The set of discrete statesis a
finite setQ = {1, ..., m}.

2.2 (Domains): The set of domains is the setD =
{Di}i∈Q, where eachDi ⊂ Rn is ann-dimensional affine
set, i.e., a set that is affinely constrained. For each setDi,
there exists a matrixAi ∈ Rki×n and a vectorai ∈ Rki

such that

x ∈ Di ⇔ Aix + ai ≥ 0,

where ki is the number ofn − 1 dimensional affine sets
contained in the boundary ofDi; these are called thefaces



of Di. The faces ofDi can be indexed by introducing the
indexing set,

Fi = {1, ..., ki}, i ∈ Q.

The jth face of Di is denoted byFacej(Di), wherej ∈
Fi. We can pick an indexing of the faces ofDi by letting
Facej(Di) be the affine set determined by thejth row of
Ai. More precisely, if(Ai)j∗ is thejth row of Ai and(ai)j

is the jth entry of ai, then

x ∈ Facej(Di)
m(

Ai

−(Ai)j∗

)
x +

(
ai

−(ai)j

)
≥ 0.

(1)

This definition can be extended to affine setsDi with
dim(Di) ≤ n in the obvious manner.

2.3 (Edges):For a setU with U =
∏n

i=1 Ui, denote the
projections on each of the factors ofU by πi : U → Ui.
Define the set ofedgesas a set

E ⊆ {((i, j), (k, l))}(i,j)∈Q×Q, (k,l)∈Fi×Fj
,

satisfying the condition that for eache ∈ E, there exists a
mapTe(x) = Rex + pe, with (Re, pe) ∈ SE(n), such that

Te(Faceπ3(e)(Dπ1(e))) = Faceπ4(e)(Dπ2(e)).

To simplify notation, write

Source(e) = Faceπ3(e)(Dπ1(e)),
Target(e) = Faceπ4(e)(Dπ2(e)).

Given an edgee ∈ E, the affine transformationTe(x) =
Rex+pe from Source(e) to Target(e) is called thetransi-
tion map. The set of transition maps is the setT = {Te}e∈E .

2.4 (Vector fields):A set of vector fields is a setV =
{Vi}i∈Q, whereVi is a Lipschitz vector field onRn. The
flow of Vi on Di is denoted byϕi(t, x) for x ∈ Di.

Definition 2.1: An affine hybrid system is a tuple

H = (Q,D,E, V ).

Note 2.1: From this point on, for the sake of brevity, we
will refer to ”affine hybrid systems” as ”hybrid systems.”
When dealing with multiple hybrid systems, the super-
scripts are added to avoid confusion between the hybrid
systems. For example, two hybrid systemsH and G are
given by the tuplesH = (QH, DH, EH, V H) and G =
(QG, DG, EG, V G).

2.5: If for some e ∈ E, Te(x) = x, then we say that
the transition map associated with the edgee is the identity
map. This implies thatSource(e) = Target(e). Since these
are affine sets, we can define a matrixAe and vectorae

such that

Aex + ae ≥ 0 ⇔ x ∈ Source(e) = Target(e)

In particular, these affine constraints could be the affine
constraints determiningSource(e) or Target(e) as given
by Equation (1).

A very special class of hybrid systems is the class hybrid
systems in which every transition map is the identity. This
is the class of hybrid systems we will consider in this paper;
hence we make the following assumption.

Assumption 2.1:For the hybrid systemH, every transi-
tion map is the identity.

This assumption is not as restrictive as one might think
due to the main theorem of [1]: Every compact hybrid
system isspatially equivalentto a hybrid system in which
every transition map is the identity. Extending the results
of this paper to arbitrary hybrid systems through the use of
spatial equivalence will be the topic of future consideration.

III. F ROM EXECUTIONS TOP -STABILITY

EQUIVALENCE

This section begins with the definition of a hybrid exe-
cution which varies somewhat from the standard definition
(cf. [11],[12]). With this definition the hybrid flow can be
defined; it is analogous to the flow of a dynamical system.
Using this, the important types of equilibrium points and
periodic orbits of hybrid systems are introduced, and the
different forms of stability that these objects can display
are discussed. This section culminates with the definition
of P-stability equivalence. Essentially, two hybrid systems
H andG areP-stability equivalent if they display the same
qualitative behavior with respect to stability.

3.1 (Hybrid Execution): Let Λ be a finite or countably
infinite indexing set such that ifN = |Λ| − 1 then Λ =
{0, 1, ..., N} if N is finite, andΛ = Z∗ = {0, 1, ...} if
N = ∞. Also defineΛ+ = {1, ..., N} if N is finite and
Λ+ = Z+ = {1, 2, ...} if N = ∞.

A hybrid time sequenceis a finite or infinite sequence of
real numbersτ = {τi}i∈Λ, with

0 = τ0 ≤ τ1 ≤ · · · ≤ τi ≤ · · · ,

a hybrid edge sequenceη = {ηi}i∈Λ+ is a sequence of
edgesηi ∈ E, and asequence of initial conditionsis a
sequenceξ = {ξi}i∈Λ with ξi ∈ Rn.

A hybrid executionis a tupleχ = (τ, η, ξ) satisfying the
following conditions:

For all 0 ≤ i < N ,

τi+1 = min{t ≥ τi : ϕπ1(ηi+1)(t− τi, ξi) ∈ ∂Dπ1(ηi+1)}
ξi+1 = Tηi+1(ϕπ1(ηi+1)(τi+1 − τi, ξi)) ∈ Target(ηi+1),

andπ1(ηi+1) = π2(ηi) for 1 ≤ i < N .
If N is finite, define an additional elementτN+1 as

follows: if ϕπ2(ηN )(t−τN , ξN ) ∈ ∂Dπ2(ηN ) for some finite
t > τN , then define

τN+1 = min{t > τN : ϕπ2(ηN )(t− τN , ξN ) ∈ ∂Dπ2(ηN )},



otherwise setτN+1 = ∞. The elementτN+1 is the
termination timeof a finite execution.

3.2: Given a hybrid executionχ, the mapd : Λ → Q,
defined byd(i) = π1(ηi+1) if 0 ≤ i < N and d(N) =
π2(ηN ) if N is finite, is the discrete state evolution. It
sometimes is convenient to associate to anηi ∈ η the
corresponding edge inE, therefore if E = {e1, ..., ek},
define a mapρ : Λ+ → {1, ..., k} such thatηi = eρ(i); this
can be thought of as theevolution of edges.

3.3: An executionχ is called finite if N is finite and
infinite if N = ∞. Let

S(H) = { Set of executions ofH}
S0(H) = { Set of finite executions ofH}

S∞(H) = { Set of infinte executions ofH}.
An executionχ is Zeno if χ ∈ S∞(H) and limi→∞ τi =
τ∞, whereτ∞ is a finite real number. A hybrid systemH
is Zeno if there is at least one Zeno execution. There have
been numerous attempts to determine which hybrid systems
display Zeno behavior, cf. [4], [6], [12]. When multiple
hybrid executions are being discussed (possibly of different
hybrid systems), we will writedχ,ρχ, Nχ, Λχ and Tχ to
remove ambiguity.

3.4: Since we are assuming thatTe = id for every
e ∈ E, given an executionχ = (τ, η, ξ) we can define the
hybrid flow of χ which is roughly analogous to the flow of
a differential equation. Let

aχ
i (t) =





1 if t ∈ [τi, τi+1], 0 ≤ i < Nχ

1 if t ∈ [τN , τN+1), i = Nχ, χ ∈ S0(H)
0 otherwise

and set

Tχ = {t ∈ R : aχ
i (t) > 0, for some i ∈ Λχ}.

Define thehybrid flowas

ϕχ(t, ξ0) =
1∑

i∈Λ aχ
i (t)

∑

i∈Λ

aχ
i (t)ϕdχ(i)(t− τi, ξi),

for t ∈ Tχ. This implies thatϕ(t, ξ0) = ϕdχ(i)(t − τi, ξi)
when t ∈ [τi, τi+1]. Note that hybrid flows are defined
uniquely by an execution.

3.5: Hybrid systems display more types of equilibrium
points and periodic orbits than classical dynamical systems
(cf. [9]). We will consider the following:

CSEP = Continuous state equilibrium point: A point
x∗ such thatV H

i (x∗) = 0 for somei ∈ Q.

DSPO = Discrete state periodic orbit: A point x∗

such that for every executionχ ∈ S∞(H) with ξ0 = x∗,
τi = 0 for all i ∈ Λχ and

d(i) = d(i + pKχ) d(i) 6= d(j) j 6= i + pKχ

for some integerKχ > 0 (dependent onχ) and allp ∈ Z∗.
Discrete state periodic orbits can imply the existence of
Zeno executions.

CSPO = Continuous state periodic orbit: A set γ ⊂ DH
i

(not a point) that is a periodic orbit ofV H
i , i.e., there

exists a finiteT such that for eachξ0 ∈ γ, ϕi(pT, ξ0) = ξ0

for all p ∈ Z.

MSPO = Mixed state periodic orbit: A connected
setγ ⊂ Rn (not a point) such that

γ =
⋃

χ ∈ S∞(H)
ξ0 ∈ γ

{ϕχ(t, ξ0) : t ∈ R+},

where for everyχ ∈ S∞(H) with ξ0 ∈ γ, Tχ = R+ and

ϕχ(t, ξ0) = ϕχ(t + pTχ) ϕχ(t) ∈ γ ∀ t ∈ R+

d(i) = d(i + pKχ) d(i) 6= d(j) j 6= i + pKχ

for a real numberTχ > 0, an integerKχ > 0 (dependent
on χ) and allp ∈ Z∗.

It is useful to talk about the set of all equilibrium
points and periodic orbits. Let

OH =
{

CSEP’s , DSPO’s , CSPO’s
andMSPO’s of H

}
.

If µ ∈ OH then µ is either a point (in which case it is a
CSEP or a DSPO ), or it is a set not equal to a point (in
which case it is aCSPO or a MSPO ).

3.6: Let Bδ(µ) be a neighborhood ofµ ∈ OH, i.e., for
all x ∈ Bδ(µ), ‖x − µ‖ = minu∈µ ‖x − u‖ < δ. Consider
the following forms of stability ofµ:

For all χ ∈ S(H) with ξ0 ∈ Bδ(µ), µ ∈ OH is

LYP = Stable in the sense of Lyapunov: If there
exists anε > 0 such that for allt ∈ Tχ

‖ϕχ(t, ξ0)− µ‖ ≤ ε.

ASY = Asymptotically stable: If

lim
t→sup Tχ

‖ϕχ(t, ξ0)− µ‖ → 0.

EXP = Exponentially stable: If there exists andα, M > 0
such that for allt ∈ Tχ

‖ϕχ(t, ξ0)− µ‖ ≤ Me−αt‖ξ0 − µ‖.
A stability property is denoted byP = LYP , ASY, or EXP.

Definition 3.1: Two hybrid systemsH and G are P-
stability equivalentif there exists a bijectionΥ : OH → OG

such that

µ is P-stable ⇔ Υ(µ) is P-stable



IV. T HE BLOW UP OF A HYBRID SYSTEM

In this section the blow up of a hybrid system is defined
constructively. The underlying idea is simple and, as the
name suggests, was originally motivated by the blow up of
a singular variety in algebraic geometry (more specifically,
it was originally motivated by the example on page 28 of
Hartshorne’sAlgebraic Geometry[3]). Although a hybrid
systems does not possess the same algebraic structure of
an algebraic variety–and so cannot be blown up like an
algebraic variety–the name ”blow up” is given to this
construction since the blow up of a hybrid system eliminates
Zeno just as the blow up of a singular variety eliminates
singularities.

4.1 (Construction ofBl(H)): The blow up of a hybrid
systemH is a hybrid system

Bl(H) = (QBl(H), DBl(H), EBl(H), V Bl(H)),

where the individual elements are defined as follows:

QBl(H): If QH = {1, ..., m} andk = |EH|, then

QBl(H) = {1, ...,m + k}.

DBl(H): Let q ∈ Rm andλi be theith standard basis vector
of Rm. If i ≤ m, then DH

i is determined by the affine
constraintsAH

i x + aH
i . DefineD

Bl(H)
i to be the affine set

given by the affine constraints



AH
i 0
0 I
0 −I




(
x
q

)
+




aH
i

−λi

λi


 ≥ 0.

By indexing the elements ofEH such that{eH
1 , ..., eH

k } =
EH, for i ∈ {m + 1, ...,m + k}, we can defineDBl(H)

i to
be the affine set given by the affine constraints



0 −I
0 λT

π1(eHi−m)
+ λT

π2(eHi−m)

0 −λT
π1(eHi−m)

− λT
π2(eHi−m)

0 I
AH

eHi−m
0




(
x
q

)

+




λπ1(eHi−m) + λπ2(eHi−m)

−1
1
0

aH
eHi−m




≥ 0.

EBl(H): Again letting{eH
1 , ..., eH

k } = EH, define

EBl(H) = {eBl(H)
1 , ..., e

Bl(H)
2k },

where

e
Bl(H)
i = ((π1(eH

i ), i + m), (π3(eH
i ), π1(eH

i )),

e
Bl(H)
i+k = ((i + m,π2(eH

i )), (π2(eH
i ), π4(eH

i )),

Fig. 1. An illustration of the blow up construction; in this case, the blow
up construction applied to the thermostat, cf. Example 4.1.

for 1 ≤ i ≤ k. By construction it follows that

T
e
Bl(H)
1

= · · · = T
e
Bl(H)
2k

= id.

V Bl(H): Write x̃ = (x, q) ∈ Rn+m, and define

V
Bl(H)
i (x̃) =

(
V H

i (x)
0

)

for 1 ≤ i ≤ m, and

V
Bl(H)
i (x̃) =

(
0

λπ2(eHi−m) − λπ1(eHi−m)

)

for m+1 ≤ i ≤ m+ k. To avoid confusion, letψi(t, x̃) be
the solution toV Bl(H)

i for x̃ ∈ D
Bl(H)
i .

Example 4.1 (Thermostat):Consider the hybrid system
referred to as thethermostat, T = {QT, DT, ET, V T}.
Let QT = {1, 2}, and DT

1 = DT
2 be given by the affine

constraints

AT
i x + aT

i =
( −1

1

)
x +

(
1
0

)
≥ 0, i = 1, 2.



We haveET = {eT
1 , eT

2 }, with edgeseT
1 = ((1, 2), (1, 1))

andeT
2 = ((2, 1), (2, 2)); by (1), this implies that

Source(eT
1 ) = Target(eT

1 ) = {x = 1},
Source(eT

2 ) = Target(eT
2 ) = {x = 0}.

For V T = {V T
1 , V T

2 }, V T
1 (x) = 1 andV T

2 (x) = −1.
Applying the blow up construction toT, yields Bl(T)

(as seen in Figure 1). We haveQBl(T) = {1, 2, 3, 4}, and

D
Bl(T)
1 = {x ∈ [0, 1], q1 = 1, q2 = 0},

D
Bl(T)
2 = {x ∈ [0, 1], q1 = 0, q2 = 1},

D
Bl(T)
3 = {x = 1, q1 + q2 = 1, q1, q2 ≥ 0},

D
Bl(T)
4 = {x = 0, q1 + q2 = 1, q1, q2 ≥ 0}.

The construction also yields the edges

e
Bl(T)
1 = ((1, 3), (1, 1)), e

Bl(T)
3 = ((3, 2), (2, 1)),

e
Bl(T)
2 = ((2, 4), (2, 2)), e

Bl(T)
4 = ((4, 1), (1, 2)).

Applying (1) to the affine constraints determiningD
Bl(T)
i as

given by the blow up construction (which we do not state
due to space constraints) implies that the transition maps
are the identity. Finally, there are the vector fields

V
Bl(T)
1 (x̃) =

(
1
0
0

)
, V

Bl(T)
3 (x̃) =

(
0
−1
1

)
,

V
Bl(T)
2 (x̃) =

( −1
0
0

)
, V

Bl(T)
4 (x̃) =

(
0
1
−1

)
.

Note that this example illustrates some of the additional
desirable properties thatBl(H) can possess. In particular,
while T is not a switched system (because the interiors
of the domains overlap and so the history of the system is
needed for analysis), the blow up ofT is a switched system
(since the interiors of the domains do not overlap and so
the history of the system is not needed for analysis).

V. RELATIONSHIPS BETWEENH AND Bl(H)

In this section, several relationships betweenH and
Bl(H) are established. These are important in that they
show that in some sense the qualitative behavior ofH and
Bl(H) are the same. More specifically, it is shown that there
is an injective map fromS(H) to S(Bl(H)) and it is given
explicitly. This is used to establish a bijection betweenOH

andOBl(H) which is again given explicitly. The constructive
nature of the proofs of the propositions in the section is
essential for the proof ofP-stability equivalence carried
out in the following section.

5.1: To determine a map betweenDH
i and D

Bl(H)
i

consider the maps

DH
i

ιi−→
∐

i∈QH

DH
i

Γ−→
⋃

i∈QH

D
Bl(H)
i

where

ιi(x) = (x, i)

Γ((x, i)) =
(

x
λi

)
∈ Rn+m.

Define Γi = Γ ◦ ιi; this is the desired map fromDH
i to

D
Bl(H)
i . Note thatDBl(H)

i = Γi(DH
i ) and Γi has a left

inverse given byπx(x, λi) = x.

Proposition 5.1: There exists an injective map

Ξ : S(H) −→ S(Bl(H))

with a closed form solution.

Proof: Let χ = (τ, η, ξ) ∈ S(H) and denote the image
of Ξ by

Ξ(χ) = (Ξ1(τ), Ξ2(η),Ξ3(ξ)).

Let dχ and ρχ be the discrete state evolution and the
evolution of edges for the executionχ: see Paragraph 3.2.
Now let

ΛΞ(χ) =
{ {0, 1, ..., 2Nχ} if χ ∈ S0(H)

Λχ otherwise

and define the mapΞ as:

Ξ1(τ)i =

{
τ i

2
+ i

2 if i even
τ i+1

2
+ i−1

2 if i odd

Ξ2(η)i =





e
Bl(H)

ρχ( i
2 )+k

if i even

e
Bl(H)

ρχ( i+1
2 )

if i odd

Ξ3(ξ)i =

{
Γdχ( i

2 )(ξ i
2
) if i even

Γdχ( i−1
2 )(ξ i+1

2
) if i odd

where

e
Bl(H)

ρχ( i
2 )+k

= ((ρ
χ
(

i

2
) + m, π2(η i

2
)), (π2(η i

2
), π4(η i

2
)))

e
Bl(H)

ρχ( i+1
2 )

= ((π1(η i+1
2

), ρ
χ
(
i + 1

2
) + m), (π3(η i+1

2
), π1(η i+1

2
))).

The associated discrete state evolution and the evolution
of edges forΞ are given by

dΞ(χ)(i) =
{

dχ( i
2 ) if i even

ρχ( i−1
2 ) + m if i odd

ρΞ(χ)(i) =
{

ρχ( i
2 ) + k if i even

ρχ( i+1
2 ) if i odd

To verify injectivity, a left inverse is need. Let̃χ = (τ̃ , η̃, ξ̃)
be a hybrid execution ofBl(H). Let

ΛΩ(χ̃) =





{0, 1, ..., N χ̃

2 } if
χ̃ ∈ S0(Bl(H)) &

N χ̃ is even

{0, 1, ..., N χ̃−1
2 } if

χ̃ ∈ S0(Bl(H)) &
N χ̃ is odd

Λχ̃ otherwise



and defineΩ by Ω(χ̃) = (Ω1(τ̃), Ω2(η̃),Ω3(ξ̃)), where

Ω1(τ̃)i = τ̃2i − i

Ω2(η̃)i = ((π1(η̃2i−1), π2(η̃2i)), (π3(η̃2i−1), π4(η̃2i−1)))
Ω3(ξ̃)i = πx(ξ̃2i).

It can be verified easily thatτi = Ω1(Ξ1(τ))i, ηi =
Ω2(Ξ2(η))i and ξi = Ω3(Ξ3(ξ))i, thereforeΩ ◦ Ξ = id,
andΩ is the desired left inverse toΞ.

Corollary 5.1: There is a bijection of sets

S∞(H) ←→
S∞(Bl(H))

‖{
χ̃ ∈ S∞(Bl(H)) with

ξ̃0 ∈ D
Bl(H)
i for i ∈ QH

}

Proof: It only needs to be verified thatΩ is right the
inverse toΞ when restricted toS∞(Bl(H)). This can be
verified by using the properties inherent toBl(H) due to
its construction; space constraints require omission of the
details.

5.2: The case given in Corollary 5.1 will be of the most
interest. For̃χ ∈ S∞(Bl(H)) and forχ such that̃χ = Ξ(χ)
we can writeψχ̃ as

ψχ̃(t, ξ̃0) =
1∑

i∈Λχ̃ aχ̃
i (t)

( ∑

i∈Λχ̃

aχ̃
2i(t)ψdχ̃(2i)(t− τ̃2i, ξ̃2i)

+
∑

i∈Λχ̃
+

aχ̃
2i−1(t)ψdχ̃(2i−1)(t− τ̃2i−1, ξ̃2i−1)




where

ψdχ̃(2i)(t− τ̃2i, ξ̃2i) = Γdχ(i)(ϕdχ(i)(t− τ̃2i, ξi))

ψdχ̃(2i−1)(t− τ̃2i−1, ξ̃2i−1) = (1− t + τ̃2i−1)Γdχ(i−1)(ξi)
+(t− τ̃2i)Γdχ(i)(ξi)

Proposition 5.2: There are the following bijections:

{CSEP’s of H} ←→ { CSEP’s of Bl(H) }

{CSPO’s of H} ←→ { CSPO’s of Bl(H) }

{DSPO’s of H} ←→
{

MSPO’s of Bl(H) with

γ̃ ⊆ ⋃
i∈QBl(H)\QH D

Bl(H)
i

}

{MSPO’s of H} ←→
{

MSPO’s of Bl(H) with

γ̃ *
⋃

i∈QBl(H)\QH D
Bl(H)
i

}

Proof: The first and second bijections are clear. First
let us verify the fourth bijection.

Now if γ is a MSPO of H, the claim is that

Υ(γ) =
⋃

χ ∈ S∞(H)
with ξ0 ∈ γ

(
Kχ⋃

i=1

ccl{Γdχ(i−1)(ξi), Γdχ(i)(ξi)}

∪
Kχ⋃

i=0

{Γdχ(i)(ϕdχ(i)(t− τi, ξi)) : t ∈ [τi, τi+1]}
)

is a bijection, where ”ccl” is the convex closure. Setting
Υ−1 = πx, clearly Υ−1 ◦Υ = id.

To verify thatΥ◦Υ−1 = id, let γ̃ be aMSPO of Bl(H)
with γ̃ *

⋃
i∈QBl(H)\QH D

Bl(H)
i . Consider an executioñχ ∈

S∞(Bl(H)) with ψχ̃(t, ξ̃0) ⊆ γ̃. By Corollary 5.1 there
exists aχ with χ̃ = Ξ(χ) and Kχ̃ = 2Kχ. Referring to
Paragraph 5.2 there are the following relations

{ψχ̃(t, ξ̃0) : t ∈ R+}

=
Kχ̃⋃

i=0

{ψdχ̃(i)(t− τ̃i, ξ̃i) : t ∈ [τ̃i, τ̃i+1]}

=
Kχ⋃

i=1

{ψdχ̃(2i−1)(t− τ̃2i−1, ξ̃2i−1) : t ∈ [τ̃2i−1, τ̃2i]}

∪
Kχ⋃

i=0

{ψdχ̃(2i)(t− τ̃2i, ξ̃2i) : t ∈ [τ̃2i, τ̃2i+1]}

=
Kχ⋃

i=1

{
(1− t + τ̃2i−1)Γdχ(i−1)(ξi)

+(t− τ̃2i)Γdχ(i)(ξi) : t ∈ [τ̃2i−1, τ̃2i]
}

∪
Kχ⋃

i=0

{Γdχ(i)(ϕdχ(i)(t− τ̃2i, ξi)) : t ∈ [τ̃2i, τ̃2i+1]}

=
Kχ⋃

i=1

ccl{Γdχ(i−1)(ξi),Γdχ(i)(ξi)}

∪
Kχ⋃

i=0

{Γdχ(i)(ϕdχ(i)(t− τi, ξi)) : t ∈ [τi, τi+1]}.

Now πx(γ̃) is a MSPO of H, and we have

γ̃ =
⋃

χ̃ ∈ S∞(Bl(H))
with ξ̃0 ∈ γ̃

{ψχ̃(t, ξ̃0) : t ∈ R+}

=
⋃

χ̃ ∈ S∞(Bl(H))
with ξ̃0 ∈ γ̃

{ψχ̃(t, ξ̃0) : t ∈ R+}

=
⋃

χ ∈ S∞(H)
ξ0 ∈ πx(γ̃)

(
Kχ⋃

i=1

ccl{Γdχ(i−1)(ξi), Γdχ(i)(ξi)}

∪
Kχ⋃

i=0

{Γdχ(i)(ϕdχ(i)(t− τi, ξi)) : t ∈ [τi, τi+1]}
)

= Υ ◦Υ−1(γ̃).

which proves the fourth bijection.



To prove the third bijection, letx∗ be a DSPO . The
claim is that

Υ(x∗) =
⋃

χ ∈ S∞(H)
with ξ0 = x∗

Kχ⋃

i=1

ccl{Γdχ(i−1)(x∗), Γdχ(i)(x∗)}

is bijective. It will be seen that this is a special case of the
fourth bijection.

Let γ̃ be a MSPO of Bl(H) with γ̃ ⊆⋃
i∈QBl(H)\QH D

Bl(H)
i . Again consider an execution

χ̃ ∈ S∞(Bl(H)) with ψχ̃(t, ξ̃0) ⊆ γ̃; in this case
ξ̃0 ∈ ∂D

Bl(H)
i and ξ̃0 = Γdχ̃(0)(x∗) for x∗ = πx(γ̃) (which

is a single point becausẽγ is connected). By referring to
the construction ofBl(H) and Paragraph 5.2

ψdχ̃(2i)(t− τ̃2i, ξ̃2i) /∈
⋃

i∈QBl(H)\QH

D
Bl(H)
i ,

if t 6= τ̃2i, τ̃2i+1. Therefore,τ̃2i = τ̃2i+1. By Corollary 5.1,
χ̃ = Ξ(χ) and for thisχ, τ̃2i = τi = τi+1 = τ̃2i+1. This
gives

{Γdχ(i)(ϕdχ(i)(t− τi, ξi)) : t ∈ [τi, τi+1]}
= {Γdχ(i)(ξi)} ∈ ccl{Γdχ(i−1)(ξi), Γdχ(i)(ξi)}.

Now sinceπx(γ̃) = x∗ (again becausẽγ is connected) and
ξ̃i ∈ γ̃, ξi = πx(ξ̃2i) = x∗. Therefore,

γ̃ =
⋃

χ̃ ∈ S∞(Bl(H))
with ξ̃0 ∈ γ̃

{ψχ̃(t, ξ̃0) : t ∈ R+}

=
⋃

χ ∈ S∞(H)
ξ0 = x∗

(
Kχ⋃

i=1

ccl{Γdχ(i−1)(ξi), Γdχ(i)(ξi)}

∪
Kχ⋃

i=0

{Γdχ(i)(ϕdχ(i)(t− τi, ξi)) : t ∈ [τi, τi+1]}
)

=
⋃

χ ∈ S∞(H)
ξ0 = x∗

Kχ⋃

i=1

ccl{Γdχ(i−1)(x∗),Γdχ(i)(x∗)}

= Υ ◦Υ−1(γ̃).

This completes the proof.

Proposition 5.3: There is a bijection

Υ : OH −→ OBl(H).

Proof: This follows from Proposition 5.2 and from
the fact thatBl(H) has noDSPO’s .

VI. I MPORTANT PROPERTIES OFBl(H)

In this section we prove the main results of this paper. The
proofs of these theorems rely heavily on the construction
of Bl(H) and the propositions established in the previous
section, e.g., the proof thatBl(H) has no Zeno executions
essentially follows from the construction ofBl(H).

Theorem 1: Bl(H) has no Zeno executions.

Proof: Suppose thatBl(H) had a Zeno executioñχ ∈
S∞(Bl(H)); without loss of generality let̃χ ∈ S∞(Bl(H)).
Then χ̃ = Ξ(χ) for some executionχ of H. We are
assuming that̃χ is Zeno, soΞ(τ)i ≤ B for some integerB
and all i ∈ ΛΞ(χ). But

Ξ(τ)2B+2 = τ 2B+2
2

+
2B + 2

2
≥ B + 1 > B

which gives a contradiction.

Theorem 2: H and Bl(H) are P-stability equivalent.

Proof: First consider the case whenµ is a CSEP
or CSPO. By Proposition 5.2,Υ(µ) is also aCSEP or a
CSPO. If µ ⊂ DH

i for i ∈ QH, then Υ(µ) ⊂ D
Bl(H)
i

(note that this does not include the degenerate case where
µ = DH

i , but the proof of this case is clear). Now pickδ
such thatBδ(µ) ⊂ DH

i andBδ(Υ(µ)) ⊂ D
Bl(H)
i . There is

an obvious bijection
{

χ ∈ S(H) with
ξ0 ∈ Bδ(µ)

}
←→

{
χ ∈ S(Bl(H)) with

ξ̃0 ∈ Bδ(Υ(µ))

}

Combining this bijection with the formula forΥ(µ) given
in the proof of Proposition 5.2,

‖ψχ̃(t, ξ̃0)−Υ(µ)‖ = ‖ϕχ(t, ξ0)− µ‖,
which impliesP-stability equivalence.

Now consider the case whereµ is a DSPO or a MSPO;
in this caseΥ(µ) is given in the proof of Proposition
5.2. Without loss of generality, only the executions in
S∞(H) and S∞(Bl(H)) need be considered. For every
χ̃ ∈ S∞(Bl(H)), χ̃ = Ξ(χ). By Paragraph 5.2, fort ∈
[τ̃2i, τ̃2i+1],

‖ψχ̃(t, ξ̃0)−Υ(µ)‖
= ‖ψdχ̃(2i)(t− τ̃2i, ξ̃2i)−Υ(µ)‖
= ‖Γdχ(i)(ϕdχ(i)(t− τ̃2i, ξi))−Υ(µ)‖ (2)

= ‖ϕdχ(i)(t− τ̃2i, ξi)− µ‖
= ‖ϕdχ(i)(t− τi − i, ξi)− µ‖

and for t ∈ [τ̃2i−1, τ̃2i],

‖ψχ̃(t, ξ̃0)−Υ(µ)‖
= ‖ψdχ̃(2i−1)(t− τ̃2i−1, ξ̃2i−1)−Υ(µ)‖
= ‖(1− t + τ̃2i−1)Γdχ(i−1)(ξi) (3)

+(t− τ̃2i)Γdχ(i)(ξi)−Υ(µ)‖
= ‖ξi − µ‖.

Conversely, forχ ∈ S∞(H), and χ̃ ∈ S∞(Bl(H)) such
that χ = Ω(χ̃), for t ∈ [τi, τi+1],

‖ϕχ(t, ξi)− µ‖
= ‖ϕdχ(i)(t− τi, ξi)− µ‖ (4)

= ‖ψdχ̃(2i)(t− τi + i, ξ̃2i)−Υ(µ)‖.



To showP-stability equivalence, it must be shown that

µ is P-stable ⇔ Υ(µ) is P-stable

for P = LYP , ASY, or EXP. Throughout the rest
of the proof, let Bδ(µ) and Bδ(Υ(µ)) be sufficiently
small neighborhoods such thatπx(Bδ(Υ(µ))) = Bδ(µ),
and consider onlyχ ∈ S∞(H) with ξ0 ∈ Bδ(µ) and
χ̃ ∈ S∞(Bl(H)) with ξ̃0 ∈ Bδ(Υ(µ)).

P = LYP : (⇔) Follows from (2), (3) and (4).

P = ASY: It suffices to show that

limi→∞ ‖ϕχ(τi, ξ0)− µ‖ → 0
m

limi→∞ ‖ψχ̃(τ̃i, ξ̃0)−Υ(µ)‖ → 0

(⇒) Because

‖ξ̃2i−1 −Υ(µ)‖ = ‖ξ̃2i −Υ(µ)‖ = ‖ξi − µ‖,
it follows that

lim
i→∞

‖ψχ̃(τ̃2i, ξ0)−Υ(µ)‖
= lim

i→∞
‖ψχ̃(τ̃2i−1, ξ0)−Υ(µ)‖

= lim
i→∞

‖ξi − µ‖
= lim

i→∞
‖ϕχ(τi, ξ0)− µ‖ → 0,

which implies the result.

(⇐) lim
i→∞

‖ϕχ(τi, ξ0)− µ‖ = lim
i→∞

‖ξi − µ‖
= lim

i→∞
‖ξ̃2i −Υ(µ)‖

= lim
i→∞

‖ψχ̃(τ̃2i, ξ̃0)−Υ(µ)‖ → 0.

P = EXP: (⇐) Suppose that

‖ψχ̃(t, ξ̃0)−Υ(µ)‖ ≤ Me−αt‖ξ̃0 −Υ(µ)‖, t ∈ Tχ̃.

Then for all t ∈ [τi, τi+1],

‖ϕdχ(i)(t− τi, ξi)− µ‖
= ‖ψdχ̃(2i)(t− τi + i, ξ̃2i)−Υ(µ)‖
≤ Me−α(t+i)‖ξ̃0 −Υ(µ)‖
≤ Me−αt‖ξ0 − µ‖.

(⇒) Suppose that

‖ϕχ(t, ξ0)− µ‖ ≤ Me−αt‖ξ0 − µ‖, t ∈ Tχ,

and define

β = min
i∈Λχ

βi,

βi =
− log ‖ϕχ(τi,ξ0)−µ‖

M‖ξ0−µ‖
i− 1

α log ‖ϕχ(τi,ξ0)−µ‖
M‖ξ0−µ‖

.

It can be verified thatβ > 0, βi ≤ α, and for allt ≥ τ̃2i,

e−α(t−i) ≤ e−βit ≤ e−βt.

From this the result follows since fort ∈ [τ̃2i, τ̃2i+1], by
(2),

‖ψχ̃(t, ξ̃0)−Υ(µ)‖
= ‖ϕdχ(i)(t− τi − i, ξi)− µ‖
≤ Me−α(t−i)‖ξ0 − µ‖
≤ Me−βit‖ξ0 − µ‖
≤ Me−βt‖ξ̃0 −Υ(µ)‖

and for all t ∈ [τ̃2i−1, τ̃2i],

‖ψχ̃(t, ξ̃0)−Υ(µ)‖
= ‖ξ̃2i −Υ(µ)‖
≤ Me−βτ̃2i‖ξ̃0 −Υ(µ)‖
≤ Me−βt‖ξ̃0 −Υ(µ)‖.

Therefore,

‖ψχ̃(t, ξ̃0)−Υ(µ)‖ ≤ Me−βt‖ξ̃0 −Υ(µ)‖, t ∈ Tχ̃.
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