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Abstract—In this paper we construct the "blow up” of an  The structure of this paper is as follows:
affine hybrid systemH, i.e., a new affine hybrid systemBI(H) ) ) o ) )
in which H is embedded, that does not exhibit Zeno behavior. Section II: Reviews the definition of an affine hybrid
We show the existence of a bijectionY between periodic system; more details and examples can be found in [1].
orbits and equilibrium points of H and BI(H) that preserves ) ) ) ) ) )
stability; we refer to this property as #-stability equivalence. ~Section lll: Begins by introducing hybrid executions. These
are used to define the important types of equilibrium points
and periodic orbits of an affine hybrid system and discuss

I. INTRODUCTION . . ) . ) -
] ) ) ] ) their stability. This section concludes with the definition of
If H is an affine hybrid system, we introduce its blowﬁ-stability equivalence.

up BI(H) which is also an affine hybrid system. The . .
primary benefit of considering3l(H) is that it is not Section IV:BI(H) is constructed.

Zeno, although its structure suggests many other interestiggsction V: Relationships betwedd and BI(H) are dis-
properties not generally found in affine hybrid systems. "&ussed, the most important being: there is a bijection
order to demonstrate th&t(H) is in some way equivalent ;1 | 5BI(H) that is explicitly computable

to H, &-stability equivalence is introduced. #* is the
set of equilibrium points and periodic orbits B, then two Section VI: The Main Theorem is proven.
affine hybrid system3#l and G are &7-stability equivalent

if there exists a bijection’ : 02 — ¢© such that [l. AFFINE HYBRID SYSTEMS

pe oMis P-stable & T(u) € 0F is 2-stable This section introduces the notion of an affine hybrid

where &7 is stability in the sense of Lyapunov, asymptoticSyStem' An afnn(_a hybrid system COI’]S_IS'[S of the following
ata: a set of discrete states, domains, edges and vector

stability or exponential stability. The purpose of this papeﬁelds. The discrete states provide a way to index the do-

's to prove the following theorem: mains. The domains are affine sets, i.e., sets that are affinely
Main Theorem: The affine hybrid systeni¥ and B1(H) ](c:onstralfned. Tge ed_ge§ prO\r?deda rerl]atmnshlp betwere]_n ;WO
are #-stability equivalent, and1(H) is not Zeno. aces of two omains, each edge has a source which 1S
the face of a domain and a target which is also the face

The importance of the Main Theorem is that rather thaff @ domain. It is required that there exists an affine
attempting to determine whether an affine hybrid Systeﬁqansformatlon between the source and the target of each
is Zeno (which currently is not possible), analysis can b§dg€; thus each edge gives rise to a transition map, which

carried out orBI(H) where there is no Zeno behavior. Ad-Is an affine transformation, from the source of the edge to

ditionally, most analysis on the stability of hybrid SystemsFhe target of the edge. The set of vector fields is a collection
yector fields that are globally Lipschitz.

or even switched systems, assumes that such systems o
not Zeno, cf. [2], [5]-[9]. Because of the Main Theorem, . i i
this assumption automatically holds fBi(H), andBI(H) .2.1 (Discrete states)The set of discrete statesis a
is 2-stability equivalent toH, so the assumption is not finite setQ = {1,...,m}.

restrictive. BI(H) displays additional desirable properties , o

that are not found in general affine hybrid systems. Its 2.2 (Domains): The set 0fdomams.|s the. setD =
structure closely resembles a switched system, implying thafi }ic@, Where eachD; C R™ is ann-dimensional affine
BI(E) might provide a way to apply the analysis carriecdset i-€., a set that is aﬁlnelz constrained. For eachﬂget
out on switched systems to affine hybrid systems; sindf€re exists a matrixi; € R**" and a vector; € R™
there are considerably more results for switched system/ch that
this would be an important connection. In the future, these

and other properties dBl1(H) will be investigated. z€D; < Aiw+a; 20,

*This research is supported by the National Science Foundation (N#here_ ki 'S_ the number ofn — 1 dimensional affine sets
award number CCR-0225610) contained in the boundary d?;; these are called thiaces



of D;. The faces ofD; can be indexed by introducing the In particular, these affine constraints could be the affine

indexing set,
F;, = {].7 ...7]%'}, 1€ Q

The jt* face of D; is denoted byFace;(D;), wherej €
F;. We can pick an indexing of the faces B¥; by letting
Face;(D;) be the affine set determined by t/i& row of
A;. More precisely, if( A;) ;. is thej'" row of 4; and(a;);
is the j*" entry of a;, then

x € Face;(D;)

)
< —(ﬁz)j* )x+< —((;ii)j ) =0 ?

This definition can be extended to affine sdbs with
dim(D;) < n in the obvious manner.

2.3 (Edges):For a set/ with U = []""_, U;, denote the
projections on each of the factors bf by «; : U — U;.
Define the set oBdgesas a set

EC{((4,5), (k1)) }i.5)e@xq, (k)eFxF;

satisfying the condition that for eache F, there exists a
mapT,(z) = Rex + pe, With (R, p.) € SE(n), such that

Te(Facem(e)(Dm (e))) = Faceﬁ4(€)(Dﬂ2(€)).
To simplify notation, write
Source(e) = Facer,()(Dx, (o)),
Target(e) = Facem(e)(Dﬂz(e)).

Given an edge: € E, the affine transformatioff,(z) =
Rz + p. from Source(e) to Target(e) is called thetransi-
tion map The set of transition maps is the §et= {T.}.c k-

2.4 (Vector fields):A set of vector fields is a sét =
{Vi}ieq, WhereV; is a Lipschitz vector field olR™. The
flow of V; on D; is denoted byp,(t, z) for x € D;.

Definition 2.1: An affine hybrid system is a tuple

H=(Q,D,EV).

constraints determinin@ource(e) or Target(e) as given
by Equation (1).

A very special class of hybrid systems is the class hybrid
systems in which every transition map is the identity. This
is the class of hybrid systems we will consider in this paper;
hence we make the following assumption.

Assumption 2.1:For the hybrid systent, every transi-
tion map is the identity.

This assumption is not as restrictive as one might think
due to the main theorem of [1]: Every compact hybrid
system isspatially equivalento a hybrid system in which
every transition map is the identity. Extending the results
of this paper to arbitrary hybrid systems through the use of
spatial equivalence will be the topic of future consideration.

I1l. FROM EXECUTIONS TO #-STABILITY
EQUIVALENCE

This section begins with the definition of a hybrid exe-
cution which varies somewhat from the standard definition
(cf. [11],[22]). With this definition the hybrid flow can be
defined; it is analogous to the flow of a dynamical system.
Using this, the important types of equilibrium points and
periodic orbits of hybrid systems are introduced, and the
different forms of stability that these objects can display
are discussed. This section culminates with the definition
of &-stability equivalence. Essentially, two hybrid systems
H andG are &7-stability equivalent if they display the same
gualitative behavior with respect to stability.

3.1 (Hybrid Execution): Let A be a finite or countably
infinite indexing set such that iV = |A| — 1 then A =
{0,1,..., N} if N is finite, andA = Z* = {0,1,...} if
N = co. Also defineA; = {1,...,N} if N is finite and
Ay =7ZF={1,2,..} if N =oo.

A hybrid time sequencis a finite or infinite sequence of
real numbers- = {7;};ca, with

OZTOSTIS...STZ.S...

)

Note 2.1: From this point on, for the sake of brevity, we & hybrid edge sequence = {n;};ca, is a sequence of
will refer to "affine hybrid systems” as "hybrid systems.”edgesn; € E, and asequence of initial conditions a
When dealing with multiple hybrid systems, the supersequence = {{;};ea With §; € R™.
scripts are added to avoid confusion between the hybrid A hybrid executioris a tuplex = (7,7, ¢) satisfying the

systems. For example, two hybrid systefdsand G are
given by the tupledl = (Q®, DE EH VH) and G =
(Q¢, DG, EG, VE).

2.5: If for somee € E, T.(z) = «x, then we say that
the transition map associated with the edgs the identity
map. This implies thaSource(e) = Target(e). Since these
are affine sets, we can define a matdx and vectora,
such that

Aex+a.>0 <& € Source(e) = Target(e)

following conditions:

Forall0<i< N,
Tig1 = min{t > T (pm(m+1)(t —7,&) € 8Dm<m+1)}
§iv1 = Tm+1(807r1(m+1)(ﬂ'+1 —7i,&i)) € Target(nit1),
andmy (n;41) = ma(n;) for 1 <i < N.

If N is finite, define an additional elementy,; as

follows: if v, (;0)(t = TN, EN) € OD1, () fOr some finite
t > 7y, then define

TN+1 = mln{t > TN 907T2(17N)(t - TN?&N) € 8D7T2(7]N)}7



otherwise setry,; = oo. The elementry,; is the
termination timeof a finite execution.

3.2: Given a hybrid executiory, the mapd : A — Q,
defined byd(i) = w1 (1) If 0 < i < N andd(N) =
ma(ny) if N is finite, is thediscrete state evolutionlt
sometimes is convenient to associate torgne 7 the
corresponding edge il7, therefore if E = {ey,...,ex},
define a map : Ay — {1,...,k} such thaty; = e,;); this
can be thought of as thevolution of edges

3.3: An executiony is called finite if V is finite and
infinite if N = co. Let

S(H) = { Set of executions oH}
So(H) = { Set of finite executions o}
Sw(H) = { Set of infinte executions df}.

An executiony is Zenoif x € S (H) andlim; . 7 =
Too, Wherer,, is a finite real number. A hybrid systeid

for some intege X > 0 (dependent ory) and allp € Z*.
Discrete state periodic orbits can imply the existence of
Zeno executions.

CSPO = Continuous state periodic orbiA sety ¢ DH
(not a point) that is a periodic orbit oFH, i.e., there
exists a finiteT" such that for eaclyy € v, ¢;(pT, &) = &o
for all p € Z.

MSPO = Mixed state periodic orbit A connected
sety C R™ (not a point) such that

U (e (té)  t e RYY,
X € SOO(H)
o €

"y:

where for everyy € So.(H) with & € v, 7 = Rt and

OX(t, &) = X(t+pTY)  X(t)ey VteRT
d(@) = d(i+pKX)  d(i)#d(j) j#i+pK*

is Zeno if there is at least one Zeno execution. There have

been numerous attempts to determine which hybrid systerf® @ real

numbefl’ > 0, an integerKX > 0 (dependent

display Zeno behavior, cf. [4], [6], [12]. When multiple ON X) and allp € Z*.
hybrid executions are being discussed (possibly of different

hybrid systems), we will writelx,pX, NX, AX and 7% to
remove ambiguity.

3.4: Since we are assuming thdt =
e € F, given an executiory =

id for every
(1,m,&) we can define the

It is useful to talk about the set of all equilibrium
points and periodic orbits. Let

oH _ CSEPs , DSPQOs , CSPOs
o andMSPO's of H

hybrid flow of x which is roughly analogous to the flow of If x € &* then . is either a point (in which case it is a

a differential equation. Let

1 Zf tE[TiaTi+1]a 0<1 < NX
aX(t) = 1 if telrn,TN+1), 1= NX, x € So(H)
0 otherwise
and set

TX={teR: aX(t) >0, for some i € AX}.

(2

Define thehybrid flowas
QOX (t7 50)

Za

for t € TX. This implies thatgo(t,fo) = Qax()(t

YPax iy (t — 7i, &),

ZEA 7,

_Tivgi)

whent € [r;,7;41]. Note that hybrid flows are defined

uniquely by an execution.

3.5: Hybrid systems display more types of equilibrium
points and periodic orbits than classical dynamical syste

(cf. [9]). We will consider the following:

CSEP = Continuous state equilibrium pointA point
x* such thatV;H(z*) = 0 for somei € Q.

DSPO = Discrete state periodic orhit A point x*
such that for every executioR € S (H) with § = z*,
7; = 0 for all ¢ € AX and

d(i) = d(i+pKX)  d(i) #d(j) j#i+pK~

A stability property is denoted by? =

CSEP or aDSPO), or it is a set not equal to a point (in
which case it is &SPO or aMSPO ).

3.6: Let Bs(u) be a neighborhood of € 04, i.e., for
all x € Bs(n), ||z — p|| = minye, ||z — ul|| < 4. Consider
the following forms of stability ofyu:

For all y € S(H) with & € Bs(p), p€ 6™ is

LYP = Stable in the sense of Lyapuno¥f there
exists ane > 0 such that for allt € T
leX(t, &) — pll < e
ASY = Asymptotically stabtelf
lim,_ Nt &0) =l — 0.

t—su

EXP = Exponentlally stablelf there exists andv, M > 0

rT%lch that for allt € TX

pll < Me™|go — pll-
LYP, ASY, or EXP.

X (t, 0) —

Definition 3.1: Two hybrid systemdd and G are &-
stability equivalentf there exists a bijectiofl : 0H — 0©
such that

wis Z-stable < Y(u) is &-stable



IV. THE BLow UP OF AHYBRID SYSTEM I

In this section the blow up of a hybrid system is defined
constructively. The underlying idea is simple and, as the
name suggests, was originally motivated by the blow up of

A 4

a singular variety in algebraic geometry (more specifically, I
it was originally motivated by the example on page 28 of 0
Hartshorne’sAlgebraic Geometnyj3]). Although a hybrid

systems does not possess the same algebraic structure

an algebraic variety—and so cannot be blown up like ar

algebraic variety—the name "blow up” is given to this
construction since the blow up of a hybrid system eliminates

Zeno just as the blow up of a singular variety eliminates

N

singularities.

4.1 (Construction ofBI(H)): The blow up of a hybrid
systemH is a hybrid system

BI(H) = (QBI(H),DBl(H)’EBl(H)) VBI(H))’
where the individual elements are defined as follows:
QB if QH = {1,...,m} andk = |E¥|, then
QP'M — {1, m+k}.
DB | et g € R™ and)\; be theit" standard basis vector
of R™. If i < m, then DH is determined by the affine

constraintsAf z + af. Define Dfl(H) to be the affine set
given by the affine constraints

Afl 0 afl
0 I ( r ) +1 =) | >o.
0 I 4 \;

be the affine set given by the affine constraints

0 -
T T
0 Aw;(ef‘_u + Aw%@:*_m) N
0 —Am(eg{m) - Aﬂg(e?,m) ( q )
0 I
AH, 0
Ari(et ) T Amer, )
-1
+ 1 > 0
0
at

EB: Again letting {ef, ...,

BI(H
EBIH) _ (F (H)

et} = EH, define

BI(H)
e o

where
P = (mi (), i+ m), (ma(ef), m (),
P = (i 4+ m, ma(eh), (ma(e), ma(el)),

q1

A

BI(H) ,BI(H)

4 1
Cp O 0D

BI(H
BI(H) pBIHD)

»

pBI(H)

L L

(81

eEI(H)
92

Fig. 1. An illustration of the blow up construction; in this case, the blow
up construction applied to the thermostat, cf. Example 4.1.

for 1 <14 < k. By construction it follows that

T e = - =T s = id.
€1 Cok

VBIH): Write # = (x,¢) € R*™™, and define
H
ViBl(H)(f) _ ( Vi Q(x) >

for 1 <i<m, and

0
yBIE) 2y ( >
N R R

for m+1 < i <m+ k. To avoid confusion, let);(¢, z) be
the solution toV;Bl(H) for z € Dfl(H).

Example 4.1 (Thermostat)Consider the hybrid system
referred to as thehermostat T = {QT, DT ET vT}.
Let QT = {1,2}, and DT = DT be given by the affine
constraints

A;rx+a;r=<1l>’£+<(1))207 i=1,2.



We haveET = {eT,eT}, with edgeseT = ((1,2),(1,1)) where
andel = ((2,1),(2,2)); by (1), this implies that

v(z) = (1)
Source(e]) = Target(e]) = {z = 1}, M((2.9) ( x > e
X, = .
Source(ey ) = Target(el) = {z = 0}. ’ Ai
ForvVT = {V;T, V;,r}, Vi¥(z) =1 and V,F (z) = —1. DefineT; = T o 4; this is the desired map froH to

Applying the blow up construction t@, yields B1(T) DPI(H). Note thatD?l(H) = Ty(DP) and T; has a left

(as seen in Figure 1). We ha@P!(T) = {1,2,3,4}, and  inverse given byr,(z, \;) = x.

DM = e el01], @ =1, ¢ =0}, Proposition 5.1: There exists an injective map
D: T el =0 w1 = S(H) — S(BIT)
D%I(T) = =l ate=1 0620 with a closed form solutian
Dy = {z=0, a+q=1, ¢1,92 > 0}.
The construction also yields the edges o EF;);OOf3 Letx = (7,7,£) € S(H) and denote the image
= ((1,3), (L), e =((3,2),(2,1), 2(0) = (E1(), Z2(n), Zs(©))-

BI(T) _ BI(T) _
€2 =((2.4),(2,2)), €4 =((4.1),(1,2)). Let dx and pX be the discrete state evolution and the

Applying (1) to the affine constraints determiniﬂgBl(T) as €volution of edges for the execution see Paragraph 3.2.

given by the blow up construction (which we do not statdVoW et
due to space constraints) implies that the transition maps AEQO — { {0,1,...,2NX} if x € So(H)

are the identity. Finally, there are the vector fields AX otherwise
1 0 and define the mag as:
W@ = o), wP@=| 1), ,
0 1 - - Tit 3 if 1 even
: . 2ur) = T + 5 if iodd
szBl(T) (.’Z‘) _ ( 0 )7 V4B1(T) (;E) - ( 1 > eBi((I_i'I;Jrk ’Lf 1 even
0 -1 Ea(n)i = 'BIH)

Note that this example illustrates some of the additional
desirable properties th&l(H) can possess. In particular, _ Poxy(€s) if 1even
while T is not a switched system (because the interiors Z3(8)i = :

of the domains overlap and so the history of the system is
needed for analysis), the blow up Bfis a switched system where
(since the interiors of the domains do not overlap and s@:im)

= ((px(%) +m,m2(n)), (r2(ni), ma(ni)))
2 2

the history of the system is not needed for analysis). PX()t -~ H
S)lc((l_liirTl) = ((Wl(ﬂq,-gl)wx(z 3 )+m)7(7f3(77i42-1)77f1(7771-§ )))-
V. RELATIONSHIPS BETWEENH AND BI(H) The associated discrete state evolution and the evolution

In this section, several relationships betweHh and ©f edges for= are given by

BI(H) are established. These are important in that they =(0) 1 dx(%) if 1ieven
show that in some sense the qualitative behavioHadnd A=) = { px(i;)2+ m if iodd
BI(H) are the same. More specifically, it is shown that there X I bt

is an injective map frons(H) to S(BI(H)) and it is given p=(G) = { p iﬁz) i if ieven
explicitly. This is used to establish a bijection betweeH P55 if iodd

and 6™ which is again given explicitly. The constructive To verify injectivity, a left inverse is need. Let = (7,1, €)
nature of the proofs of the propositions in the section ige a hybrid execution oBl(H). Let

essential for the proof of”-stability equivalence carried ~
out in the following section. 0,1,., %1 5 X eﬁg(Bl(H)) &
e is even
5.1: To determine a map betweeR and DFI(H) %)
consider the maps A ) o

pE - [ b2+ | D™ .
ieQH icQH AX otherwise

X € S0(BI(H)) &

L S S N is odd




and defineQ by Q() = (Q1(7), Qa(77), Q3(£)), where Now if v is aMSPO of H, the claim is that

KX
MW7) = Foi—i (
_ _ N 5 . T(y) = ccl{T ax(i—1y (&), Tax(iy (&)}
Qa(n)i = ((m1(f2i-1), m2(712:)), (w3 (72i—1), Ta(72i-1))) Xegm) z:LJl
~ ~ with £g € v
93(5)1 = 7T.’E(£2i)' KX ’
It can be verified easily that; = Q(Z:(7));, m = UUO{FdX(l )(@axpy(t = 7,6i)) + [T“T”l]})
Q2(Z2(n)); and & = Q3(23(€))s, thereforeQ o = = id, '
and ) is the desired left inverse 8. m is a bijection, where "ccl” is the convex closure. Setting
Y ! =mn,, clearly Y1 o T = id.
Corollary 5.1: There is a bijection of sets To verify thatYoY ! = id, lety be aMSPO of BI(H)
with 5 ¢ UiEQBl(H)\QH D?I(H). Consider an executiop €
Soo(]3|'|1(H)) S (BI(H)) with ¢X(t,{y) C 4. By Corollary 5.1 there
S..(H } . exists ax with x = Z(x) and KX = 2KX. Referring to
H) — X € Soo(BI(H)) with Paragraph 5.2 there are the following relations
& € D?I(H) fori € Q¥

{vX(t.&) - t € RT}
Proof: It only needs to be verified tha&? is right the x
inverse to= when restricted taS.,(BI(H)). This can be = U{wdi(i) (t —71,&) - t € [71, Tiga]}
verified by using the properties inherent B(H) due to '
its construction; space constraints require omission of the

details. [ ] = U{wdi(m‘—l)(t — Foi1,€9i-1)  t € [Foii1, i)}
5.2: The case given in Corollary 5.1 will be of the most . L
interest. Fory € S (BI(H)) and fory such thaty = =(x) U U{ﬂ’di(zi) (t = 725, &2i) © € € [T2i, Taiga]}
we can writeyX as Ki:O
o 1 ) . = J{0 =t +Ri1)Tax-1)(&)
V(1 60) = = | D a3, (DYaxan (t — o i) i=1
Dieax @ (1) \jex +(t — F2i)Taxi) (&) : t € [Fai1, T2i] }
+ Z a;(i,l(t)'l/]di(%_l)(t - %Qifl,ggifl) U U{Fdx (pdx(z 7:21’751’)) 1t e [7:2:’; 7-2i+1]}
ey KX
Where = UCCI{F(IX(Z 1) (61) 1—‘dX (5%)}
i=1
Yax(2i) (t = T2i,&2i) = Lax (i) (0ax ) (= 726, &) U U{Fdx (ax ) (t — 76,&)) : t € [Ti, i)}

wdi(m‘—l)(t — Toi1, 5%71) =(1-t+ 7:21;1)Fdx(i71)(€i)
+(t = 720)Tax)(&)  Now 7, (%) is aMSPO of H, and we have

Proposition 5.2: There are the following bijections: 5= U {9X(t, &) : t € RT}
X € Soo(BI(H))
{CSEPs of H} «— {CSEPs of BI(H) } with S0 €5 o
= U {vX(t, &) 1t € RT}
{CSPOs of H} «— {CSPOs of BI(H) } % € S (BIE)
with €y €
. KX
MSPO's of Bl with
{DSPOs of H} «— - (H )DBI(H) = U (U cel{Tax(i—1)(&)s Tax(iy (&)}
7= UzEQBl(‘”\QH X € Seo(H)  \i=1
&0 € T (7)
. KX
MSPO’s of BI(H) with
{MSPO's of H} «— . (H) BI(H) U U{Fdx(i)(@dx(i)(t —7i,&)) it € [Tuﬁﬂ]})
Y SZ UieQBl(l'U\QH D; i=0
= ToX'(9).

Proof: The first and second bijections are clear. First
let us verify the fourth bijection. which proves the fourth bijection.



To prove the third bijection, let* be aDSPO . The Theorem 1: BI(H) has no Zeno executions.
claim is that
Proof: Suppose thaBl(H) had a Zeno executiofl €

KX
Y(z*) = U U cel{Taxi_1y(@*), Taxay (%)} Sso (BI(H)); without loss of generality lef € S..(BI(H)).
X € Soo(H) =1 Then x = Z(x) for some executiony of H. We are
with £o = o assuming thag is Zeno, scE(7); < B for some intege3
is bijective. It will be seen that this is a special case of thand alli ¢ A=), But
fourth bijection. _ 2B +2
Let ¥ be a MSPO of BI(H) with 54 C 2(T)2B+2 = T2ng2 + >B+1>8B
BI(H . . .
Uiegman\gu D; (H) " Again consider an execution which gives a contradiction. -

X € S(BI(H)) with ¢X(t,§) C #; in this case
& € 8D?1(H) and&p = gz (o) () for 2™ = m,(7) (which Theorem 2: H and BI(H) are &7-stability equivalent.
is a single point becausg is connected). By referring to

the construction oBI(H) and Paragraph 5.2 Proof: First consider the case when is a CSEP

- BI(H) or CSPQ. By Proposition 5.2,Y(u) is also aCSEP or a

Vaxn(t—Pu&) ¢ DI, CSPO. If i c DY for i € QY then T(x) c D'
i€QPIIF\QH (note that this does not include the degenerate case where

if ¢ % 7o, T2s41. Thereforefs; = 72;41. By Corollary 5.1, p = DE . but the proof of this case is clear). Now piék
X = Z(x) and for thisy, 72; = 7; = Tit1 = T2i41. This  such thatBs(u) € DH and Bs(Y (1)) C Dfl(H). There is

gives an obvious bijection
{Cax(iy (ax )t = 75,&)) = t € [7i, Tiga]} { x € S(H) with } PN { x € S(BI(H)) with }
= {Tax(i) (&)} € ccl{Tangi—1)(&), Tax iy ()} o € Bs(u) & € Bs(T(w))

Combining this bijection with the formula foX () given

Now sincer,(¥) = z* (again becausé is connected) and . .
z m(7) = = (ag ¢ ) in the proof of Proposition 5.2,

& €7, & = mp(€9;) = x*. Therefore,

~ % & X t» o) — T = X tv - )
5= U (X, &) 1 t e RTY [ (2, &o) (W = [leX(¢, &) — pll
X € Soo (BI(HD) which implies £2-stability equivalence.
with & € 7 . Now consider the case whereis aDSPO or aMSPO,;
- . ' N in this caseY(u) is given in the proof of Proposition
- GEJ(H) (_UlCCI{FdW‘l)(&)’Fdx(”(gz)} 5.2. Without loss of generality, only the executions in
Yoo S = Soo(H) and S (Bl(H)) need be considered. For every
KX X € S»(BI(H)), x = E(x). By Paragraph 5.2, fot ¢
U U{Fdx(i)(@dx(i)(f —75,&)) it € [ﬁﬂ'i-s—ﬂ}) [T2i, T2i+1)s
1=0 ~ ~
o lo¥ (¢ &) — T() )
= U U cel{Tax(i—1)(z"), Lax(iy(z™) } = |[Yas (2i) (t — T2i, 2i) — L(w)||
X E SoolE) i=1 = [T ax (o) (@ax () (t = T2i, &) = T(w)|| ()
= ToY'(H). = [leax(i)(t — 72, &) — |
This completes the proof. n = |[paxqy(t —7i —i,&) — |

and fort € [Fo;_1, 721,

452, 0) — Y ~
= |[Yag(2i—1)(t — Tai—1,&2i-1) — L(p)]]

Proposition 5.3: There is a bijection

Yo" — oBH),

Proof: This follows from Proposition 5.2 and from = (1=t 4+ T2im1)Tax(i-1) (&) ®3)
the fact thatBI(H) has noDSPOs . [ +(t = F2i)Taxiy (&) — L)l
= [[& — pll-
VI. IMPORTANT PROPERTIES OFBI(H) Conversely, fory € So.(H), and ¥ € S (BI(H)) such

In this section we prove the main results of this paper. Th&@at x = Q(x), for ¢ € [r;, 7441],
proofs of these theorems rely heavily on the construction X (8, &) — |
of BI(H) and the propositions established in the previous e
section, e.g., the proof th&1(H) has no Zeno executions = llpax(i (t = 76 &) — (4)
essentially follows from the construction 8i(H). = ||tz (20)(t — T3 + 1, 2i) — T ()|



To show &2-stability equivalence, it must be shown that It can be verified thatt > 0, 5; < «, and for allt > 7;,
pis P-stable & Y(u)is Z-stable et < Bt < eht

for # = LYP, ASY, or EXP. Throughout the rest From this the result follows since far € [7;, 72i41], by
of the proof, let Bs(x) and Bs(Y(un)) be sufficiently (2),
small neighborhoods such that,(Bs(Y(x))) = Bs(u),

X(t,&) — T
and consider onlyy € S..(H) with & € Bs(u) and [ (¢ &0) = T ()]

X € S (BI(H)) with & € Bs(T(1)). = leax(t =7 =i &) — ]
< Mem*Dlgy — p|
Z = LYP: (&) Follows from (2), (3) and (4). < MePit €0 — p|

7[375 It _
2 = ASY: It suffices to show that < Mem7H[§o = T ()|

and for allt € [Fo;_1, 724,

1% (. €0) = ()l

lim; oo (|0 (73, &0) — pf| — O

lim; o0 19X (7, &0) — T ()| — 0 = [|€2 — T(0)|
(=) Because < Me P76 — Y ()|
z z < Me P& -1 .
1E2imr = ()| = 12 — TG0 = & — il < Memligo =X ()
it follows that Therefore,
, - PX(t, &) — T(w)|| < Me P& — T(w)|, teTX
i (5o £0) — TG0 ¥ (¢ &) = T()] 1o =Xl
11— 00 ~ .
= lim [[¢*(T2i—1,80) — T(w)|
11— 00
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