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Abstract— This paper presents a method for achieving stable
periodic walking, consisting of phases of single and double
support, on underactuated walking robots by embedding Spring
Loaded Inverted Pendulum (SLIP) dynamics. Beginning with
a SLIP model, the dynamics are stabilized to a constant
energy level and periodic walking gaits are found; an equality
constraint on torque can be used to shape the dynamics of the
full-order robot to obey the corresponding SLIP dynamics. To
transition these gaits to full-order robotic systems, the essential
elements of SLIP walking gaits, i.e., swing leg touchdown
angle, are utilized to synthesis control Lyapunov functions that
result in inequality constraints in torque. Finally, desired force
interaction with the environment as dictated by SLIP dynamics
are utilized to obtain inequality constraints in the reaction
forces. Combining these equality and inequality constraints
results in a multi-objective quadratic program based controller
that is implemented on a multi-domain hybrid system model
of an underactuated bipedal robot. The end result is stable
periodic walking on the full-order model that shows remarkable
similarity to the SLIP gait from which it was derived.

I. INTRODUCTION

The Spring Loaded Inverted Pendulum (SLIP) model
provides a low-dimensional representation of locomotion
inspired by biological principles [12], [7]. As a result of
this biological motivation, the ability to realize SLIP-like
walking gaits on bipedal robots promises to result in natural,
efficient and robust locomotion. This is evidenced by the
classic work by Raibert on hopping robots [16], which has
since motivated the study of walking and running in robotic
systems with simple SLIP models [2], [18]. Ultimately, the
fundamental limitation in realizing the befits of SLIP inspired
locomotion is the low-dimensional nature of the SLIP model,
and the difficulty of realizing this low-dimensional behavior
on full-order high-dimensional walking robots.

This paper presents a method for realizing SLIP dynamics
directly on full-order underactuated walking robots, modeled
as multi-domain hybrid systems, with the end result being the
automatic synthesis of stable walking gaits that qualitatively
display SLIP-like behavior. This process of embedding SLIP
gaits into full-order robotic systems is inherently difficult
due to the complexity of the multiple control tasks that must
be simultaneously achieved. In particular, the dynamics of
the Center of Mass (CoM) of the full-order system must
be shaped so as to evolve according to the SLIP dynamics.
Additionally, virtual constraints must be synthesized so as
to capture the fundamental assumptions of SLIP walking
gaits, e.g., a specific touch down angle of the swing leg
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Fig. 1: The Spring Loaded Inverted Pendulum Walking Gait.

must be achieved. Finally, the interaction of the robot
with the environment (expressed as reaction forces) must
be controlled directly to obtain SLIP-like behavior. The
difficulty of realizing these ideas on a full-order robot is
that they define a large set of control objectives that are
difficult to simultaneously achieve—especially in the context
of underactuation.

In order to balance the multiple control objectives neces-
sary to achieve SLIP-like locomotion on full-order bipedal
robots, this paper presents a novel control methodology
based upon multi-objective quadratic programs (QP). The
role of QPs in the control of walking robots was first
studied in [3], where a novel class of control Lyapunov
functions (CLFs)—rapidly exponentially stabilizing CLFs—
were introduced and shown to guarantee stable walking gaits.
The fact that CLFs can be naturally realized as controllers
through QPs [9] motivated the use of QPs in the context
of walking robots [10]. These ideas were extended in [6],
[14] to simultaneously achieve multiple control objectives—
expressed through CLFs—together with desired reaction
forces. Motivated by these constructions, all of the salient
elements of SLIP gaits are encoded as equality and inequality
constraints that can be simultaneously achieved via a QP
based controller: the dynamics of the COM are shaped to be
the dynamics of an energy stabilized SLIP model through
equality constraints; virtual constraint based objectives yield
inequality constraints through CLFs; and ground reaction
forces are regulated to agree with the SLIP model via
additional inequality constraints. The end result is a stable
walking gait for an underactuated robot, consisting of phases
of single and double support, that is directly obtained from
an energy stabilized SLIP gait.

Existing work on underactuated dynamic robotic loco-
motion has successfully utilized the notion of hybrid zero
dynamics (HZD); this methodology utilizing the hybrid na-



ture of walking robots in order to define virtual constraints
that are invariant through impacts [21], [20]. HZD has been
successfully been applied to a large collection of bipedal
robots to achieve walking on a variety of bipedal robots,
including MABEL [19], AMBER [4], and the robot of
interest in this paper: ATRIAS [17]. Notably, in [13], the
authors utilized HZD and human-inspired control [4] to
achieve SLIP-inspired locomotion on ATRIAS [1]. While
HZD gives formal guarantees on generating stable walking
gaits, it requires a priori nonlinear optimization to find stable
walking gaits; this is time consuming and convergence can
be an issue for complex robots. Methodologies from HZD
were leveraged to obtain results on formally embedding
SLIP dynamics into more complex robots [15] for single-
leg hoppers. Only recently has work considered extending
SLIP gaits directly to full-order robots [11], yet this was
done in the context of full actuation—greatly simplifying
the problem—and the hybrid system model of a bipedal
robot was not considered. Therefore, this work differentiates
itself from existing results in the following notable ways:
underactuation is considered, phases of single and double
support are utilized and modeled via a multi-domain hybrid
system model, and no a priori optimization is needed (as in
the case of HZD) to generate stable periodic gaits.

II. ROBOT MODEL

This section describes the hybrid model of our subject
of interest - ATRIAS - in detail. ATRIAS is a human-
scale, underactuated bipedal robot built at the Oregon State
University Dynamic Robotics Laboratory. Designed to match
key characteristics of the SLIP model, ATRIAS places all
heavy elements, such as actuators, at the torso and drives
lightweight four bar mechanisms on each leg which terminate
in point feet through series compliant actuators. This enables
ATRIAS to achieve agile, efficient and highly dynamic
maneuvers [1]. In this paper, we only consider the rigid part
of the robot assuming the joints are directly controlled.

Hybrid System Model. Due to the two different phases of
SLIP walking gait and the discrete dynamics of the system
at impacts, the mathematical framework of multi-domain
hybrid system is used for this bipedal robot [13]. For walking
with point feet, the hybrid models discrete domains are
limited to only the double and single support phase (see
Fig. 2).

Considering the configuration space given by the gener-
alized coordinates q = {px, py, qT , q1s, q2s, q1ns, q2ns}T ∈
Q ⊂ R2n with n = dim (Q), as shown in Fig. 3 (a), the
formal hybrid model for the two-domain locomotion is given
by the tuple:

H C = (Γ,D,U , S,∆,FG), (1)

where
• Γ = (V,E) is the directed graph specific to this hybrid

system, with vertices V = {ss,ds}, where ss and ds
represent single and double support phases, respectively,
and edges E = {e1 = {ss→ ds}, e2 = {ds→ ss}},

Dss

Sss→ds

Dds

Sds→ss

Fig. 2: The directed graph of single/double support phase.

• D = {Dss,Dds} is a set of two domains,
• U = {Uss,Uds} is a set of admissible controls,
• S = {Sss→ds, Sds→ss} is a set of guards,
• ∆ = {∆ss→ds,∆ds→ss} is a set of reset maps
• FG = {(fss, gss), (fds, gds)} is a control system on

each Dv for v ∈ V .
The two domains {Dss,Dds} are depicted in Fig. 2. The
remainder of this section will be focused on how to construct
the individual elements of the two-domain hybrid system.
Domains and Guards. In the double support domain, the
non-stance foot must remain on the ground. A transition from
double support to single support occurs when the normal
reaction force on the non-stance foot crosses zero, Therefore,
the double support domain and guard is given by:

Dds = {(q, q̇, u) : hns(q) = 0, F yns(q, q̇, u) ≥ 0}, (2)
Sds→ss = {(q, q̇, u) : hns(q) = 0, F yns(q, q̇, u) = 0}, (3)

where F yns is the normal contact force on the non-stance
foot, which will be defined later in the section. Since there
is no impact involved for the transition from double support
to single support, the states of the robot remain the same.
Therefore the reset map from double support to single
support is an identity map: ∆ds→ss = I.

For the single support domain, the non-stance foot is above
the ground. When the non-stance foot strikes the ground a
guard is reached and the transition to the next domain takes
place. Hence, the single support domain and guard has the
following structure:

Dss = {(q, q̇, u) : hns(q) ≥ 0, F yns(q, q̇, u) = 0}, (4)

Sss→ds = {(q, q̇) : hns(q) = 0, ḣns(q, q̇) < 0}. (5)

Impacts happens when the non-stance foot hits the ground.
The post-impact states, computed in terms of pre-impact
states, are given by:

∆ss→ds(q, q̇) =

[
R∆qq
R∆q̇(q)q̇

]
, (6)

where R is the relabeling matrix required to swap the stance
and non-stance legs after impacts.
Model Dynamics. The dynamics of the system can be ob-
tained from the Eular-Lagrange equation of the “unpinned”
model, so that the holonomic constraints are used to describe
the interaction between the robot and the world for different



domains. Consider the holonomic constraints for a domain
v ∈ V , hv(q) = 0 with hv(q) ∈ Rpv , where pv is the number
of constrained degrees of freedom for this domain. Then the
dynamics of the model can be written as,

D(q)q̈ +H(q, q̇) = Bu+ JTv (q)Fv(q), (7)

where D(q) is the inertia matrix, H(q, q̇) is the vector
containing the Coriolis and gravity terms, B ∈ Rn×m is
the distribution matrix for the actuators u ∈ U ⊂ Rm
where m is the number of actuators in the system, Jv(q)
is the Jacobian of the holonomic constraints for a domain
v ∈ V and Fv(q) ∈ Rpv are the reaction forces due to the
holonomic constraints. For the double support domain, the
reaction forces consist of the horizontal and vertical reaction
forces on both feet, i.e., Fds = (Fs(q), Fns(q)) ∈ R4, and for
the single support domain, the reaction forces only include
the forces on the stance foot, Fss = Fs(q) ∈ R2. For the
constraint forces to be valid, the following constraints need
to be satisfied [14],

J̇v(q, q̇)q̇ + Jv(q)q̈ = 0, (8)
RvFv ≥ 0, (9)

where RvFv corresponds to a set of admissible constraints
that guarantee the physical validity of the model, e.g. positive
normal force and friction. To formulate the above constraints
in the quadratic program, which will be explained in detail
later in the paper, we write (7) as,

D(q)q̈ +H(q, q̇) =
[
B JTv (q)

]︸ ︷︷ ︸
B̄v(q)

[
u
Fv

]
,︸ ︷︷ ︸

ūv

(10)

with ūv ∈ Rm+pv . With x = [q, q̇]T as the states of the
system, the affine control system is defined based on (10),

ẋ = f(x) + gv(x)ūv, (11)

where

f(x) =

[
q̇

−D−1(q)H(q, q̇)

]
, gv(x) =

[
0

D−1(q)B̄v(q)

]
.

III. EMBEDDING OF ES-SLIP DYNAMICS

In this section, we begin by briefly discussing the SLIP
walking model and stable walking gait generation. Then we
present the motivation of the dynamics embedding controller
for the full order dynamics. The remainder of the section
focuses on the derivation of desired reduced order dynamics
by introducing the energy-stabilizing controller.
SLIP Model. The Spring Loaded Inverted Pendulum (SLIP)
model provides a low-dimensional representation of locomo-
tion by utilizing an energy-conserving spring mass model. As
such, it can provide an approach for generating efficient gaits
on bipedal robots [8], [18]. The spring-mass model consists
of a point mass m supported by two massless linear spring
legs with fixed rest length r0 and stiffness k. The spring
forces only act on the mass while in contact with the ground
and cannot apply forces during swing. Letting pcom be the
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Fig. 3: The coordinate configuration of the robot.

position of the point mass with respect to a fixed origin, the
dynamics of the SLIP model is given as follows,

p̈com =
1

m
(FR(r) + FL(r))− g, (12)

where FR and FL are the spring forces of the legs and g is
the gravitational vector.

The SLIP walking model consists of two different dynam-
ical phases: single support and double support, identified by
the contact constraints of the system. A stable walking gait
can be obtained by selecting a proper “touch down” angle,
αTD, as shown in Fig. 1. Since the legs are assumed to be
massless and the only control input does not require any net
actuator work, the system conserves energy. The dynamic
stability of a gait is verified through the Poincaré return map
of the single step. To be dynamically stable, the magnitudes
of all the eigenvalues of the Jacobian matrix of the system
at the Poincaré section must be less than 1.

In this paper, we use model parameters that roughly ap-
proximate the low-dimensional dynamics of ATRIAS. Stable
walking gaits for the given parameters are generated by
utilizing the method introduced in [18], and the desired
“touch down” angles are determined correspondingly.
Dynamics Embedding. The motivation of the dynamics em-
bedding controller comes from the input/output linearization
of a nonlinear system. Rather than defining reference trajec-
tories for the system, we can enforce the output dynamics of
the system to be the dynamics of the reduced order model,
such that the former exhibits similar dynamical behavior to
the latter. In particular, to achieve the SLIP dynamics on
ATRIAS, let yc = hc(q) be the CoM position of ATRIAS.
Differentiating it twice yields

ÿc = L2
fhc(q, q̇) + LgLfhc(q, q̇)ūv, (13)

where L represents the Lie derivative. In the context of
feedback linearization, one would pick the output dynamics
ÿc = µc as a stable linear system such that a corresponding



feedback control law drives the outputs to zero. If, instead,
the goal is to drive the output dynamics to a reduced order
nonlinear system, e.g. the SLIP model, picking

µc =
1

m
(FR(q, q̇) + FL(q, q̇))− g, (14)

yields ÿc = p̈com. To achieve this objective, the controller is
required to satisfy the following equality constraint

ASLIPūv = (−L2
fhc(q, q̇) + p̈com), (15)

where ASLIP = LgLfhc(q, q̇) is the decoupling matrix. With
this constraint, the controller renders the output dynamics
exactly as the corresponding SLIP dynamics.
SLIP Dynamics. To achieve the above goal, we need to
explicitly derive the expression for the SLIP dynamics in
terms of ATRIAS’s states. Consider the whole system as
a point mass, m, at its CoM position, and assume virtual
massless spring legs attached to the point mass, as shown
in Fig. 3. We use the polar coordinates for this purpose; let
Xv = (rv, θv, ṙv, θ̇v) be the states of the SLIP model for
domain v ∈ V .

For double support phase, we set the front leg as the
stance leg and consequently the stance toe as the origin of
the coordinates. Then, the desired SLIP dynamics are given
in terms of robot states by,

r̈ds =
k

m
(∆rs + ∆rn cos(θs − θn)) + rsθ̇

2
s − g sin θs, (16)

θ̈ds = −
k
m (∆rn sin(θs − θn)) + 2ṙsθ̇s + g cos θs

rs
, (17)

where ∆rs = (r0− rs), ∆rn = (r0− rn), rs and θs are the
stance virtual leg length and leg angle, and rn and θn are the
non-stance virtual leg length and leg angle respectively, as
shown in Fig. 3 (b). Note that the virtual leg lengths and leg
angles are nonlinear functions of the states (q, q̇) of ATRIAS.

Since only the stance leg forces act on the system for the
single support domain, the terms due to the non-stance leg
spring force will disappear in the dynamics equation. The
governing equations of motion are given as,

r̈ss =
k

m
(∆rs + rsθ̇

2
s − g sin θs), (18)

θ̈ss = − 1

rs
(2ṙsθ̇s + g cos θs). (19)

It is important to note that the above equations are obtained
under the assumption of the energy-conservative SLIP model.
However, for the actual robot model, the total energy of
the system is not constant over a gait, which requires
compensation through the input of energy to stabilize the
system.
Energy-Stabilized Controller. The existence of compliant
legs in the SLIP model ensures the total energy is conserved
throughout the impacts, however, the plastic impacts cause
energy loss in the system. In [11], an energy-stabilizing
controller is introduced to compensate for the energy loss
of the system by adding an additional compensation force
to the SLIP dynamics discussed previously. Let Ed be the

desired energy level and E the actual energy of the reduced
order system, then the compensating forces in the radial and
angular directions are given by,

F rc = −kc
ṙs

ṙ2
s + r2

s θ̇
2
s

∆E, F θc = −kc
rsθ̇s

ṙ2
s + r2

s θ̇
2
s

,∆E.

(20)

where kc > 0 is positive gain and ∆E = E − Ed. Note
that the direction of the compensating force is always in the
opposite direction of the center of mass velocity. Intuitively,
this force is trying to impede the velocity changes due to the
energy loss to stabilize the total energy of the system to the
desired level.

Therefore we modify the desired SLIP dynamics by
adding the following energy-stabilizing controller to obtain
the Energy-Stabilized SLIP (ES-SLIP) dynamics for each
domain v ∈ V :

¨̃rv = r̈v + F rc /m,
¨̃
θv = θ̈v + F θc /m, (21)

where F rc and F θc are the radial and angular direction
components of the Energy-Stabilized force in (20).

It is possible to easily implement this type of dynamics on
fully-actuated robots. However, in the case of underactuated
robots, it is unable to track the dynamics of ES-SLIP model
precisely due to the underactuation. It is also important to
note that the ES-SLIP dynamics only determine the motion
of the CoM position. Therefore, additional control objectives
must be determined in addition to the dynamics embedding
controller.

IV. TORSO AND NON-STANCE LEG CONTROL

In order to fully regulate the motion of the robot, we
also need to determine additional control tasks, such as the
torso and non-stance leg motion. We begin by introducing
additional control tasks for the system in general, then
specifying tasks for each domain independently.
RES-CLF Construction. For each domain, v ∈ V , we
consider the outputs yv : Q → Rn` , where n` is the
number of outputs of the system, with the objective of driving
yv(q) → 0. Since the outputs being considered are only
functions of the configuration of the robot, differentiating
the outputs twice yields,

ÿv = L2
fy(q, q̇)︸ ︷︷ ︸
(L2
f )v

+LgLfy(q, q̇)︸ ︷︷ ︸
Av

ūv. (22)

Assume that the decoupling matrix, Av , is invertible, i.e.,
that yv has (vector) relative degree two, then we may produce
a feedback control law,

ūv = A−1
v

(
−(L2

f )v + µv
)
, (23)

that realizes ÿv = µv . Next, one chooses µv so that the
resulting output dynamics are stable. Letting ηv = (yv, ẏv) ∈
R2n` , we choose the linear output dynamics as,

η̇v =

[
0 I
0 0

]
︸ ︷︷ ︸

Fv

ηv +

[
0
I

]
︸ ︷︷ ︸
Gv

µv. (24)



Then in the context of this control system, we can consider
the continuous time algebraic Riccati equations (CARE):

FTv Pv + PvFv − PvGvGTv Pv +Qv = 0, (25)

for Qv = QTv > 0 with solution Pv = PTv > 0. One can use
Pv to construct a RES-CLF that can be used to exponentially
stabilize the output dynamics at a user defined rate of 1

ε (see
[5], [3]). In particular, define

V εv (ηv) = ηTv I
εPvI

ε︸ ︷︷ ︸
P εv

ηv, with Iε = diag(
1

ε
I, I), (26)

wherein it follows that:

V̇ εv (ηv) = LFvV εv (ηv) + LGvV εv (ηv)µv,

with

LFvV εv (ηv) = ηTv (FTv P
ε
v + P εvFv)ηv, (27)

LGvV εv (ηv) = 2ηTv P
ε
vGv.

With the goal of exponentially stabilizing the ηv to zero,
we wish to find µv such that,

LFvV εv (ηv) + LGvV εv (ηv)µv ≤ −
γ

ε
V εv (ηv),

for some γ > 0. In particular, it allows for specific feedback
controllers, e.g., the min-norm controller, which can be stated
as the closed form solutions to the quadratic program (QP).
See [6], [3] for the further information.

Recalling that Avūv = −(L2
f )v + µv , it follows that:

µTv µv = ūTvATvAvūv + 2(L2
f )TvAvūv + (L2

f )Tv (L2
f )v,

which allows for reformulating the QP problem back in
term of ūv instead of µ, such that additional constraints
on torques or reaction forces can be directly implemented
in the formulation. To achieve an optimal control law, we
can relax the CLF constraints and penalize this relaxation.
In particular, we consider the following modified CLF-based
QP in terms of ūv and a relaxation factor δv:

argmin
(ūv,δv)∈Rm+pv+1

pvδ
2
v + ūTvATvAvūv + 2(L2

f )TvAvūv (28)

s.t ÃCLF
v (q, q̇)ūv ≤ b̃CLF

v (q, q̇) + δv (CLF)

where,

ÃCLF
v (q, q̇) :=LGvV εv (q, q̇)Av(q, q̇), (29)

b̃CLF
v (q, q̇) :=− γ

ε
V εv (q, q̇)− LFvV εv (q, q̇)

− LGvV εv (q, q̇)(L2
f )v,

and pv > 0 is a large positive constant that penalize
violations of the CLF constraint. Note that, we use the fact
that ηv is a function of the system states (q, q̇), so the QP
can be expressed in the term of system states.

The end result of solving this QP is the optimal control
law that guarantees exponential convergence of the control
objective yv → 0 if δv ≡ 0. In the case of sufficiently small
δv , we still achieve exponential convergence of the outputs,

which motivates the minimization of δv in the cost of the
QP.
Outputs Definition. With the construction of RES-CLF in
hand, now we specify the outputs for each domain indepen-
dently.

Double Support Domain. Since both the stance and non-
stance legs are constrained during the double support domain,
we only consider the torso angle θT in addition to the
dynamics embedding controller. In particular, the outputs for
the double support domain are defined as the error between
the actual outputs and desired outputs,

yds = θT − yH(t, αtorso), (30)

where θT = qT as shown in Fig. 3(b). The desired outputs
are characterized by a smooth function, called the canonical
walking function, defined to be the time solution to a mass-
spring-damper system,

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5. (31)

Note that the justification of this function form can be found
in [4]. αtorso is the corresponding parameters vector of the
torso output.

Single Support Domain. The robot becomes an underac-
tuated system in the single support domain, which increases
the difficulty of determining the control task for this domain.
First, to move the non-stance leg forward during stance,
we need at least two outputs related to the non-stance leg
to be defined. Also, ATRIAS has a relatively heavy torso,
therefore the torso angle has to be considered in the outputs
to stabilize the system effectively. Since the system has
only four actuators, we have to loosen the requirement for
dynamics embedding, which we will present in detail in
Sect. V. Picking the nonlinear virtual leg length and leg
angle (rn, θn) (see Fig. 3(b)) that represent the motion of
the non-stance leg, the outputs for the single support domain
are defined as,

yss =

 θT (q)
rn(q)
θn(q)


︸ ︷︷ ︸

yass

−

 yH(t, αtorso)
yH(t, αrn)
yH(t, αθn)


︸ ︷︷ ︸

ydss

, (32)

where αrn and αθn are the parameter vectors of the non-
stance leg outputs. To ensure a feasible walking gait, those
parameters are chosen such that the touch-down angle re-
quirement from the SLIP gait is achieved. Also αtorso are
picked with the goal of keeping the torso angle at almost a
constant value.

With the definition of the outputs for each domain, the
corresponding RES-CLF constraints for each domain can be
constructed from (29) to formulate the objective of the torso
and non-stance leg control in quadratic program discussed
in the next section.

V. MAIN CONTROL LAW

In this section, we present a multi-objective quadratic
program based control law which simultaneously embeds



the ES-SLIP dynamics into the full-order robot system
and achieves convergence of the additional control objec-
tives. Control values are obtained through the solution of a
quadratic program with linear constraints. Specifically, we
use the ES-SLIP embedding equation from Sect. III and the
RES-CLF convergence inequality from Sect. IV to construct
constraints which are affine in ūv . Within this framework,
we also include constraints on the full order robot dynamics,
such as ground reaction force constraints and actuator torque
limits.

The main objective of the proposed controller is to drive
the low-dimensional representation computed on the full-
order dynamics to be as close to the ES-SLIP behavior as
possible. To realize this goal, three sub-objectives must be
met: the dynamics of the full-order robot’s CoM must match
those of the ES-SLIP, the domain switches must occur at the
same state, and the swing-leg outputs must match. These
three objectives are encoded into the proposed controller
through linear constraints on ūv .
SLIP Dynamics Constraints. For the double support do-
main, we can fully embed the ES-SLIP dynamics on the full
order system, due to the fully actuated case. To achieve the
ES-SLIP dynamics on the full robot dynamics, define the
following equality constraints:

ASLIP
ds (q, q̇) := LgLfhc(q, q̇), (33)

bSLIP
ds (q, q̇) := ÿcds − L2

fhc(q, q̇)), (34)

where ÿcds := (¨̃rds,
¨̃
θds) are the dynamics of the ES-SLIP

model as defined in (21) in the case of v = ds. and
hc(q, q̇) := (rs, θs) is the CoM position of ATRIAS in polar
coordinates.

As discussed in the previous section, the requirement for
the dynamics embedding must be degraded for the single
support domain for underactuated robots. Inspired by the fact
that the spring force due to deflection of stance leg length is
the only force, aside from gravity, acting on the CoM in the
SLIP model, we proposed an alternative partial embedding
controller in this paper. More specifically, instead of tracking
the CoM acceleration in both direction, we only require to
track the acceleration in the radial, i.e., virtual leg length
direction. Therefore, for the single support domain, define
the partial dynamics embedding constraints as follows:

ASLIP
ss (q, q̇) := LgLfrs(q, q̇), (35)

bSLIP
ss (q, q̇) := ¨̃rss − L2

frs(q, q̇)), (36)

where ¨̃rss is given in (21) in the case of v = ss.
Reaction Force Matching Constraints. During the double
support phase, additional constraints are needed to ensure
that the reaction forces on the two legs are closer to the
corresponding forces of SLIP model, such that the full order
model has a similar transition from double support to single
support as the SLIP model. Exactly matching the reaction
forces on both legs will over constrain the QP due to the
difference between the full order model and the reduced
order model. Hence we only constrain the reaction forces on

the non-stance leg, which determines the switching behavior
of ATRIAS. Letting nσ be the number of forces needed to
match, which in this case nσ = 2, we define the following
inequality constraints,

|Fns − F SLIP
ns | ≤ σ,

where F SLIP
ns ∈ Rnσ is the equivalent spring force of the

non-stance leg of the SLIP model computed in the term of
system state. With the goal of minimizing the σ, we add it
in the cost function of the QP, and define,

ASLIP
F (q, q̇) :=

[
0nσ×(1+m+pds−nσ) Inσ×nσ
0nσ×(1+m+pds−nσ) −Inσ×nσ

]
, (37)

bSLIP
F (q, q̇) :=

[
F SLIP
ns

−F SLIP
ns

]
. (38)

Full Robot Model Constraints. In addition to realizing ES-
SLIP behavior in the full-order robot dynamics, the control
values obtained through the quadratic program must also
be in the set of admissible control, as determined by the
full-order robot model. As in [6], we define the following
constraints to enforce control input admissibility for each
domain v ∈ V .

Torque Constraints. To ensure that the solution to the
quadratic program is within the feasible limits of the robot
hardware, define the following torque constraints:

Aτv(q, q̇) =

[
Im×m 0m×pv
−Im×m 0m×pv

]
, bτv(q, q̇) =

[
τmax1m
−τmin1m

]
.

Reaction-Force Constraints. To ensure the admissibility of
the reaction forces, such as the positive normal force and no-
slipping condition, define the following constraints based on
(9):

AFv (q, q̇) =
[
0pv×m −Rv

]
, bFv (q, q̇) = 0pv . (39)

Holonomic (Ground-Contact) Constraints. To keep the
feet pinned, define the following equality constraints fol-
lowed by (8):

AeqFv (q, q̇) = Jv(q)D(q)−1B̄v(q), (40)
beqFv (q, q̇) = Jv(q)D(q)−1H(q, q̇)− J̇v(q, q̇)q̇.

Quadratic Program Formulation. With the discussion
above in hand, now we present the main result of the paper.
The CLF-based QP for each domain is formulated explicitly
formulated as follows:

Double-Support QP. Let (ū∗ds, δ
∗
ds, σ

∗) ∈ Rnds with nds =
1+m+pds+nσ , the final form of QP problem for the double
support domain is given as,

argmin
(ūds,δds,σ)∈Rnds

pdsδ
2
ds + ūTdsATdsAdsūds + 2(L2

f )Tds + pσσ
2

(DS-QP)

s.t. ASLIP
ds (q, q̇)ūds = bSLIP

ds (q, q̇) (SLIP)

ASLIP
F (q, q̇)ūds ≤ bSLIP

F (q, q̇) + σ (SLIP-Force)

ÃCLF
ds (q, q̇)ūds ≤ b̃CLF

ds (q, q̇) + δds (RES-CLF)

AFds(q, q̇)ūds ≤ bFds(q, q̇) (Contact Forces)
Aτds(q, q̇)ūds ≤ bτds(q, q̇) (Torque)

AeqFds(q, q̇)ūds = beqFds(q, q̇) (Constraints)
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ẏ
(m

/s
)

 

 

ATRIAS SLIP

Fig. 4: The phase portrait comparison of the CoM the
equilibrium SLIP gait and the ATRIAS walking gait.

where pσ > 0 is a large positive constant that penalize
violations of the SLIP force constraints.

Single-Support QP. Let (ū∗ss, δ
∗
ss) ∈ Rnss with nss = 1 +

m+pss, the final form of QP problem for the double support
domain is given as,

argmin
(ūss,δss)∈Rnss

pssδ
2
ss + ūTssATssAssūss + 2(L2

f )Tss

(SS-QP)

s.t. ASLIP
ss (q, q̇)ūss = bSLIP

ss (q, q̇) (SLIP)

ÃCLF
ss (q, q̇)ūss ≤ b̃CLF

ss (q, q̇) + δss (RES-CLF)

AFss(q, q̇)ūss ≤ bFss(q, q̇) (Contact Forces)
Aτss(q, q̇)ūss ≤ bτss(q, q̇) (Torque)

AeqFss(q, q̇)ūss = beqFss(q, q̇) (Constraints)

We can apply the feedback control law ūds and ūss
subtracted from the result of (DS-QP) and (SS-QP) to the
hybrid control system (11), to get a set of feedback vector
fields F = {f̄ds, f̄ss}, which yields the closed form hybrid
system:

H = (Γ,D, S,∆,F), (41)

where Γ,D,S and ∆ are defined as for H C in (1).

VI. SIMULATION RESULTS

In this section we present the simulation results on
ATRIAS to demonstrate the effectiveness of the control law
obtained from Sect. V. We compare the resulting dynamical
behaviors of ATRIAS with the ones of the SLIP model.
The convergence and existence of the limit cycles show the
stability of the control system with the proposed control law.
Dynamic Matching Behavior. To show the analog between
the SLIP dynamics and ATRIAS’s’ dynamics, we perform a
simulation of the full order system starting from the same
post impact states as the equilibrium SLIP gait. Fig. 4 shows
the phase portrait comparison of the CoM dynamics between
both the full and reduced order system. The triangle point
indicates the initial condition of both systems. As shown in
the figure, the dynamics of ATRIAS exactly follow the ones
of the SLIP model during the first double support domain,
then deviate from the SLIP dynamics when switched to the
single support domain, and converged to limit cycles that are
different from the SLIP gait limit cycles. That is because we
only apply partial embedding of the dynamics. Albeit, the
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Fig. 5: Comparison of the ground reaction force along the
leg length direction between the ideal SLIP gait and the full-
order robotic model.
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Fig. 8: Limit cycle and Energy convergence of the stable
walking gait of four steps obtained in the full order model.

ATRIAS gait dynamics are not exactly matching the SLIP
gait dynamics, they exhibit very similar behaviors as to the
SLIP gait. The comparisons of CoM positions and velocities
between stable ATRIAS gait and equilibrium gait over four
steps in Fig. 7 show such similarities very clearly.

Aside from the dynamics, the proposed constraints in (37)
also ensure that reaction forces on the non-stance foot match
the ones of SLIP spring forces, as shown in Fig. 5. Note
that the plots are shown in terms of the right and left leg,
instead of stance/non-stance legs. The gray areas in the plots
indicate the regions where the constraints are imposed. It is
also interesting to notice that the reaction forces on the other
foot are also very close to the virtual spring forces, despite
no explicit constraints are imposed on them.

System Stability. As we noticed in Fig. 4, the CoM states
converge to limit cycles after approximately 8 steps. The
stability of the control system is further verified with the
existence of the limit cycles. Fig. 8a shows the limit cycles
of the full order system. The simulation results show that the
system states converge to the limit cycles exponentially. The
energy of the full order system also is stabilized with the use
of ES-SLIP. However, the total energy is not conservative as
compared to the SLIP model for the same reason that we
only enforce partial dynamics on the full order system in the
context of underactuated robots, as shown in Fig. 8b. The
energy slightly deviates from the desired energy level during
the single support, but still exponentially converges to the
desired level in the double support domain.

A numerical verification using the Poincaré return map is



Fig. 6: The walking gait snapshot of ATRIAS over one step.
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Fig. 7: Comparison of CoM position and velocity of stable walking gait vs equilibrium SLIP gait.

also performed, with the pre-impact instant as the Poincaré
section of the system. The maximum eigenvalue of linearized
dynamics at the Poincaré section is about λmax ≈ 0.71 < 1,
which shows the stability of the resulting walking gait. The
snapshots of one stable walking gait is shown in Fig. 6.
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