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Abstract— This paper presents a method for embedded
motor control based upon rapidly exponentially stabilizing
control Lyapunov functions (RES-CLFs) implemented through
Quadratic Programs (QPs). This will give guaranteed ex-
ponential convergence via an optimal nonsmooth nonlinear
embedded level controller that provides the minimal control
effort necessary to achieve the desired convergence in torque.
Utilizing this novel control methodology, we are able to formally
establish that the dynamics of series elastic systems can be
approximated by rigid system models. Importantly, the RES-
CLF based QP is presented in a way that will allow for its real-
time implementation at the embedded level via a closed form
solution to a QP; the end result is a nonlinear optimal controller
able to run at over 5kHz. To demonstrate this, simulation and
experimental results are presented showing the performance of
the embedded controller.

I. INTRODUCTION

Series elastic actuators (SEAs) have the potential to pro-
vide a powerful means for which to achieve torque control
on robotic systems [9], [13], [14], especially in the context
of robotic locomotion [12], [15], [20]. The general premise
of SEAs is that adding a spring between the motor and joint
allows for torque to be measured. Through this measurement,
embedded level controllers can be utilized to track desired
torques being communicated from a controller operating with
only knowledge of the rigid dynamics of the robot. Thus,
the ultimate goal is to decouple the actuator dynamics of
the robot from the rigid body dynamics for the purposes of
pure torque control. Yet this objective is often fraught with
practical issues; namely, robotic systems with SEAs have
higher order dynamics due to the presence of the springs—
these dynamics, even through the use of embedded con-
trollers, cannot be completely decoupled from the idealized
rigid body dynamics for which controllers are designed. The
end result is often either instability or the “detuning” of
embedded level controllers that ultimately prevents the pure
application of torque controllers and, thereby, eliminates the
benefits of SEAs.

As a means to mathematically formulate the goals of SEAs
in robotic systems, the main contribution of this paper is a
novel embedded controller that formally allows for the rigid
body dynamics and the motor dynamics to be decoupled.
This provides further theoretic foundation for achieving the
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Fig. 1. Experimental setup used to test embedded RES-CLF based QPs:
(left) locked output case (right) free output case used for disturbance testing.

benefits of SEAs, especially with regard to torque control,
while ideally circumventing their shortcomings.

Motivated by the classical work of Spong [19] and the
time-scale separation of singularly perturbed systems [11],
we apply the framework of rapidly exponentially stabilizing
control Lyapnov functions (RES-CLFs) [2], [3], at the em-
bedded level, to achieve time-scale separation between the
actuator and rigid body dynamics of the robot. RES-CLFs
have proven effective in the control of robotic systems in the
context of bipedal locomotion [3], [8] due to the fact that
they guarantee exponential convergence at a desired rate of
1
ε > 0, i.e.,

εV̇ (x, u) ≤ −γV (x)

for a RES-CLF V and the proper choice of control input u.
With the observation that ε can be viewed as a time-scaling
factor, τ = t

ε , the existence of a RES-CLF suggests the
ability to create dynamics operating at different time-scales.
Therefore, applying RES-CLFs to the actuator dynamics in
a series elastic robotic system allows for the separation of
the actuator dynamics from the rigid body dynamics.

To formally establish the decoupling afforded by RES-
CLFs, we begin by formulating properties of a specific class
of RES-CLFs applied to rigid body robotic systems (Sect.
III) after introducing the based definitions needed (Sect.
II). These RES-CLFs are then applied to the model of a
series elastic actuator isolated from the rigid body dynamics
of the system in Sect. IV; in particular, the RES-CLF
naturally yields a quadratic program (QP) that minimizes
actuator torque while achieving a desired convergence rate.
Implementing this QP through its closed form solution yields
a nonlinear nonsmooth embedded controller. We return to the



full-order SEA model in Sect. V and, through the separation
of time scales afforded by the RES-CLF based embedded
controller, we establish the main result of this paper: the
dynamics of the full-order SEA model can be effectively
decoupled into a rigid body system and isolated motor
dynamics. In particular, by considering outputs in the joint
coordinates and a RES-CLF controller for the rigid body
dynamics that drives these outputs to zero exponentially,
we prove that the outputs display the same convergence up
to O(ε) for the full-order SEA model with the RES-CLF
embedded motor controller.

To demonstrate the results of the paper, we focus on
evaluating the RES-CLF embedded controller—and its QP
based representation—both in simulation and experimentally
(Sect. VI). In particular, the controller is experimentally
evaluated on a series elastic actuator with a fixed output (see
Fig. 1). The performance of the controller is tested in the
context of tracking a variety of time-based torque signals
for which accurate tracking is observed. Finally, as a means
to approximate the embedded controller performance in the
context of (unknown) rigid body dynamics, external distur-
bances are applied to the joint. Ultimately, the embedded
RES-CLF based QP controller performs well experimentally.

II. RAPIDLY EXPONENTIALLY STABILIZING CONTROL
LYAPUNOV FUNCTIONS

We begin by giving a brief overview of rapidly expo-
nentially stabilizing control Lyapunov functions (CLFs) in
the context of nonlinear systems, which extend classical
notions of CLFs [5], [17], [18] in order to achieve “rapid”
exponential convergence.

Consider an nonlinear affine control systems of the form

ẋ = f(x, z) + g(x, z)u (1)
ż = q(x, z),

where x ∈ X are controlled (or output) states, z ∈ Z are the
uncontrolled states, and U is the set of admissible control
values for u. In addition, we assume that f(0, z) = 0, i.e.,
that the zero dynamics surface Z defined by x = 0 with
dynamics given by ż = q(0, z) is invariant.

In this paper, we will focus on two forms of control
Lyapunov functions: exponentially stabilizing and rapidly
exponentially stabilizing. The interplay between these two
types of CLFs will become clear in the context of time-
scaling as discussed in Sect. V.

Definition 1: A continuously differentiable function V :
X → R is an exponentially stabilizing control Lya-
punov function (ES-CLF) if there exist positive constants
c1, c2, c3 > 0 such that

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2 (2)
inf
u∈U

[LfV (x, z) + LgV (x, z)u+ c3V (x)] ≤ 0 (3)

for all (x, z) ∈ X × Z.
Motivated by the desire to achieve rapid exponential con-

vergence we introduce the following augmented definition.

Definition 2: A continuously differentiable function Vε :
X → R is a rapidly exponentially stabilizing control
Lyapunov function (RES-CLF) [2], [3] if there exist
positive constants c1, c2, c3 > 0 such that for all 0 < ε < 1

c1‖x‖2 ≤ Vε(x) ≤ 1

ε2
c2‖x‖2 (4)

inf
u∈U

[
LfVε(x, z) + LgVε(x, z)u+

1

ε
c3Vε(x)

]
≤ 0 (5)

for all (x, z) ∈ X × Z.
Min-Norm Controller. The existence of a RES-CLF yields
a family of controllers that rapidly exponentially stabilize the
system to the zero dynamics [6], [18]. In particular, we can
consider the control values:

Kε(x, z) = (6)

{u ∈ U : LfVε(x, z) + LgVε(x, z)u+
1

ε
c3Vε(x) ≤ 0},

where L is the Lie derivative [16]. It follows that:

uε(x, z) ∈ Kε(x, z) ⇒ (7)

‖x(t)‖ ≤ 1

ε

√
c2
c1
e−

1
ε
c3
2 t‖x(0)‖.

In addition, this yields specific feedback controllers, e.g., the
min-norm controller:

mε(x, z) = argmin{‖u‖ : u ∈ Kε(x, z)}
= argmin{‖u‖ : ψ0,ε(x) + ψT1,ε(x)u ≤ 0}

where

ψ0,ε(x, z) = LfVε(x, z) +
1

ε
γVε(x, z) (8)

ψ1,ε(x, z) = LgVε(x, z)
T

While controller m(x, z) that minimizes the control effort u
can be stated in closed form as:

m(x, z) =

{
− ψ0,ε(x,z)ψ1,ε(x,z)
ψ1,ε(x,z)Tψ1,ε(x,z)

if ψ0,ε(x, z) > 0

0 if ψ0,ε(x, z) ≤ 0

it is important to note that this closed form solution is the
solution to the quadratic program (QP):

m(x, z) = argmin
u∈U

uTu (9)

s.t. ψ0,ε(x, z) + ψT1,ε(x, z)u ≤ 0 (CLF)

This formulation leads to a new class of controllers based
upon CLF based QPs; these have been applied to locomotion
and manipulation in bipedal robots [4], and have been
utilized to experimentally achieve robotic walking [7], [8].

III. RES-CLF CONSTRUCTIONS

This section considers rigid body dynamics for a robotic
system and, based upon the desire to drive an output function
y → 0, constructs a specific class of RES-CLFs. Importantly,
a majority of this section is devoted to establishing the
properties of this class of RES-CLFs. Of particular note is
the relationship between RES-CLFs and ES-CLFs that can
be established through the use of time-scaling.



Robotic Systems. Let Q be the configuration space of a
robot with n degrees of freedom, i.e., n = dim(Q), with
coordinates q ∈ Q. For the sake of definiteness, it may
be necessary to choose Q to be a subset of the actual
configuration space of the robot so that global coordinates
can be defined1, i.e., such that Q is embeddable in Rn, or
more simply Q ⊂ Rn. Consider the equations of motion
for a robot given in the general form by the Euler-Lagrange
equations:

M(q)q̈ +H(q, q̇) = u, (10)

where M is the inertia matrix, H is a vector containing the
coriolis and gravity terms. Here, for the sake of simplicity,
we assume full actuation and thus consider control inputs
u ∈ Rn. We also assume, as in [19], that the inertia matrix
M(q) is symmetric, positive definite, and both M(q) and
M(q)−1 are uniformly bounded as functions of q ∈ Rn.
Output Dynamics. Consider an output function y : Q →
Rn, and the control objective of driving y(q)→ 0 exponen-
tially. Differentiating y twice yields the output dynamics:

ÿ(q) = Dy(q)q̈ + Ḋy(q, q̇)q̇ (11)

where Dy(q) = ∂y
∂q (q) is the Jacobian of the output y.

Substituting in the dynamics of the robotic system (10)
yields:

ÿ = −DyM
−1H + Ḋy q̇︸ ︷︷ ︸
L2
f (q,q̇)

+DyM
−1︸ ︷︷ ︸

A(q,q̇)

u, (12)

where the dependence on q and q̇ was removed for notational
simplicity. Letting x = (y, ẏ), then (12) can be written in the
general form of (1) as follows:

ẋ =

[
x2

L2
f (x)

]
︸ ︷︷ ︸

f(x)

+

[
0

A(x)

]
︸ ︷︷ ︸

g(x)

u (13)

where L2
f and A can be expressed in terms of the coordi-

nates x due to the standard diffeomorphism [16]. Also note
that, in this case, since we are assuming full-actuation the
zero dynamics in (1) do not exist, leaving only the output
dynamics.

Assume that the decoupling matrix, A, is invertible, i.e.,
that y has (vector) relative degree 2, we can choose the
control law:

u = A−1(−L2
f + µ) = MD−1

y (µ− Ḋy q̇) +H (14)

for some µ ∈ Rn resulting in

ÿ = µ. (15)

This choice of control law allows us to write the output
dynamics (13) as:

ẋ =

[
0 I
0 0

]
︸ ︷︷ ︸

F

x+

[
0
I

]
︸ ︷︷ ︸
G

µ (16)

1Note that at various points we will assume that matrix functions have full
rank; it may be necessary to carefully choose Q to satisfy these conditions.

RES-CLF Construction. With the error dynamics in hand,
in order to construct a RES-CLF, we first consider the
continuous time algebraic Riccati equations (CARE):

FTP + PF − PGGTP +Q = 0 (17)

for any Q = QT > 0 and with solution P = PT > 0. One
can use P to construct a RES-CLF that will stabilize the
dynamics at a user defined rate of 1

ε . In particular, define

Vε(x) = xT IεPIε︸ ︷︷ ︸
Pε

x, with Iε = diag(
1

ε
I, I), (18)

wherein it follows that:

V̇ε(x) = LFVε(x) + LGVε(x)µ

with

LFVε(x) = xT (FTPε + PεF )x (19)
LGVε(x) = 2xTPεG

It follows that, in this case, (6) takes the form:

Kε(x) = (20)

{µ ∈ Rn : LFVε(x) + LGVε(x)µ+
1

ε
γVε(x) ≤ 0}.

Note that it is easy to verify that, for the dynamics given
in (34) and for Pε defined in (18), V (x) = xTPεx is a
RES-CLF with

c1 = λmin(P ), c2 = λmax(P ), c3 = γ =
λmin(Q)

λmax(P )
. (21)

This can be seen by noting that, from (17) and the form of
F and G that Pε solves the RES-CARE:

FTPε + PεF −
1

ε
PεGG

TPε +
1

ε
IεQIε = 0, (22)

noting that γPε ≤ IεQIε and therefore

inf
µ

[
LFVε(x) + LGVε(x)µ+

1

ε
γVε(x)

]
≤ inf

µ

[
xTPεG(

1

ε
GTPεx+ 2µ)

]
≤ 0 (23)

which can be seen by noting that for µ = − 1
2εG

TPεx

xTPεG(
1

ε
GTPεx+ 2µ) = 0.

These facts allow us to establish the following specific
bounds on the convergence of y:

Lemma 1: For the output dynamics given by (13) and the
RES-CLF Vε(x) = xTPεx, with Pε a solution to the RES-
CARE (22), for any control law

uε(x) = A(x)−1(−L2
f (x) + µε(x))

with µε(x) ∈ Kε(x) Lipschitz continuous, it follows that:∥∥∥∥ y(t)
ẏ(t)

∥∥∥∥ ≤ 1

ε

√
λmax(P )

λmin(P )
e−

1
ε

λmin(Q)

2λmax(P )
t

∥∥∥∥ y(0)
ẏ(0)

∥∥∥∥
Thus the output dynamics are exponentially stable at the
origin.



Relationship with Time-Scaling. The original development
of RES-CLFs was motivated by time-scaling based upon ε
[2]. We will revist this original motivation in the context of
RES-CLFs to establish their relationship with ES-CLFs.

For µε(x) ∈ Kε(x), since Vε is a RES-CLF it implies that

εV̇ε(x, µε(x)) ≤ −γVε(x).

Therefore, choosing the time-scaling τ = 1
ε t we have

d

dτ
Vε(x(τ), µε(x(τ))) ≤ −γVε(x(τ)).

Defining the state variables:

xε := Iεx =

[
1
εy
ẏ

]
(24)

it follows that

Vε(x) = xTε Pxε =: V (xε) (25)

with P the solution to the CARE (17). As a result, it is easy
to verify that

d

dτ
V (xε(τ), εµε(x(τ))) ≤ −γV (xε(τ)). (26)

where, again, µε(x(τ)) ∈ Kε(x(τ)).
This allows us to establish the time-scaling property for

the class of RES-CLFs being considered:
Proposition 1: Vε(x) = xTPεx is a RES-CLF for the

control system (34) if and only if V (xε) = xTε Pxε is a
ES-CLF for the system:

εẋε = Fxε +Gεµ (27)

Moreover,

µ ∈ Kε(x) := {µ ∈ Rn : xTPεG(
1

ε
GTPεx+ 2µ) ≤ 0}

m
εµ ∈ K(xε) := {µ ∈ Rn : xTε PG(GTPxε + 2µ) ≤ 0}.

(28)
Before proving this result we note that the motivation for

considering the set Kε(x) is that, by (23),

Kε(x) ⊂ Kε(x).

Therefore, control values in Kε(x) will still rapidly expo-
nentially stabilize the system (34).

Proof: We begin by noting that, from (23), it follows
that

Kε(x) ⊂ Kε(x).

To establish this result, note that system given in (27) is
obtained by applying the coordinate transformation x 7→ Iεx.
With the time-scaling τ = 1

ε t, it follows from (27) that

dxε
dτ

= Fxε +Gεµ. (29)

Therefore, by the inequality (23), the result follows from (25)
and (26) if (28) holds. In particular, the conditions in Def.
1 will be satisfied with the same values for c1, c2 and c3
stated in (21).

The relationship given in (28) is easily established by
noting that, due to the special form of G being considered
(34) it follows that IεG = G and ITε = Iε. Therefore,

xTPεG(
1

ε
GTPεx+ 2µ) ≤ 0

⇔ xTPεG(GTPεx+ 2εµ) ≤ 0

⇔ xT IεPIεG(GT IεPIεx+ 2εµ) ≤ 0

⇔ xTε PG(GTPxε + 2εµ) ≤ 0

as desired.

IV. MOTOR DYNAMICS & CONTROL

Consider a single series elastic actuator with dynamics:

Jθ̈∆ + bθ̇∆ + kθ∆ = τm (30)

Given a desired torque as delivered from a “high-level”
control value, τd (assumed to be constant in this section),
the goal is to drive the measured torque:

τs = kθ∆

obtained from the spring to the desired torque. In other
words, the control objective is:

Drive e := kθ∆ − τd → 0 exponentially. (31)

We will achieve this convergence, in a torque optimal fashion
at a desired exponential rate, with a RES-CLF based QP.

Error Dynamics. With the control objective in hand, we can
write the error dynamics as:

J

k
ë+

b

k
ė+ e+ τd = τm (32)

where ė = kθ̇∆ and ë = kθ̈∆. Picking the feedback control
law:

τm =
J

k
µ+

b

k
ė+ e+ τd (33)

for a secondary controller, µ, implies that

ë = µ

Now, the goal is to design the controller µ that will drive
the error to zero. In particular, we note that, in this case, we
can write the error dynamics, with z = (e, ė)T ∈ R2, as

ż =

[
0 1
0 0

]
︸ ︷︷ ︸

Fm

x+

[
0
1

]
︸ ︷︷ ︸
Gm

µ (34)

Control Law Construction. Utilizing the RES-CLF
Vε(z) = zTPεz, we can convert this RES-CLF back to both
the coordinates of the original system, θ∆ and θ̇∆, along with
converting µ back to a control law in τm.

Since the error coordinates, z = (e, ė)T , are functions of
θ∆, τd and θ̇∆ the CLF conditions become:

ψ0,ε(θ∆, θ̇∆, τd) + ψT1,ε(θ∆, θ̇∆, τd)µ ≤ 0



m(θ∆, θ̇∆, τd) = argmin
τm∈R

τ2
m (Motor QP)

s.t. ψ0,ε(θ∆, θ̇∆, τd) +
k

J
ψT1,ε(θ∆, θ̇∆, τd)

(
τm − bθ̇∆ − kθ∆

)
≤ 0 (CLF Constraint)

for ψ0,ε and ψ1,ε as defined in (8) with LFmVε(θ∆, θ̇∆) and
LGmVε(θ∆, θ̇∆) given in (19). Finally, we can convert this
inequality back to an inequality in τm by noting that:

µ =
k

J

(
τm − bθ̇∆ − kθ∆

)
Therefore, the final form of the CLF constraint, as a function
of the original variables, is:

ψ0,ε(θ∆, θ̇∆, τd)+ψ
T
1,ε(θ∆, θ̇∆, τd)

k

J

(
τm − bθ̇∆ − kθ∆

)
≤ 0

With this constraint, we can consider the min-norm con-
troller, expressed as a QP as given in (Motor QP). Finally,
we can express this controller in closed form by defining:

ψ0,ε(θ∆, θ̇∆, τd) = ψ0,ε(θ∆, θ̇∆, τd) (35)

− k
J
ψT1,ε(θ∆, θ̇∆, τd)

(
bθ̇∆ + kθ∆

)
ψ1,ε(θ∆, θ̇∆, τd) =

k

J
ψT1,ε(θ∆, θ̇∆, τd)

wherein it follows that:

m(z) =

{
− ψ0,ε(z)ψ1,ε(z)

ψ1,ε(z)
Tψ1,ε(z)

if ψ0,ε(z) > 0

0 if ψ0,ε(z) ≤ 0
(36)

V. ROBOTIC SYSTEMS WITH SERIES ELASTIC
ACTUATORS

Utilizing the methods developed thus far, we present the
main result of this paper: the dynamics of the full-order SEA
model can be effectively decoupled into a rigid body system
and isolated motor dynamics. This is achieved through the
time-scale separation implied by the results of Sect. III, and
the observation that the scaling afforded by ε is naturally
amenable to singular perturbation theory.
SEA System Model. We begin by presenting the model for
a robotic system with series elastic actuators [12], [19]. In
particular, we assume dynamics of the form:

M(q)q̈ +H(q, q̇) = k(qm − q) + b(q̇m − q̇),
(37)

Jq̈m + b(q̇m − q̇) + k(qm − q) = um (38)

where q is the joint angle, qm is the motor angle, um torque
input to the motor, k ∈ Rn×n is a diagonal matrix of spring
constants for each series elastic actuator, b ∈ Rn×n is a
diagonal matrix of damping constants for each SEA, and J ∈
Rn×n is a diagonal matrix of motor inertias. Note that, since
k and b are diagonal matrices, we will write their inverse by
“ 1
k ” and “ 1

b ,” respectively, so as to denote the component-
wise inverse of the diagonal elements.

The controller developed in Section IV was specific to
a model which was not influenced by the global dynamics

of the robotic system, in which case θ∆ = (qm)i − (q)i
for i = 1, . . . , n. Similarly, the rigid system model in (10)
assumed no compliance in the system. The remainder of this
section will be devoted to understanding the coupling effects
of these previously decoupled systems in the context of RES-
CLFs.
Application of RES-CLF Motor Controller. Let ud(q, q̇)
be a controller that, when applied to the system

M(q)q̈ +H(q, q̇) = ud(q, q̇) (39)

drives y → 0. For example, ud(q, q̇) can taken to be any
controller in Kε(x) as developed in Sect. III.

Returning to the SEA model, we can write (38) as

Jq̈∆ + bq̇∆ + kq∆ = um − Jq̈

where q∆ = qm − q. Applying the motor controller (33),
in its vector form with τd = ud(q, q̇), and with J , k, and b
replaced by corresponding diagonal matrices with the inertia,
damping and spring constant for each motor, yields:

ë = µ− kq̈

where e = kq∆ − ud(q, q̇). Writing z = (e, ė), we have the
following representation of the motor dynamics:

ż = Fz +Gµ+

[
0
−kq̈

]
with F and G given as in (34). Motivated by the choice
of coordinates in (24), the coordinate transformation z 7→
Iεz =: zε yields the following control system for the motor
dynamics:

εżε = Fzε +Gεµ+ ε

[
0
−kq̈

]
Applying a feedback control law µε(z) ∈ Kε(z) yields the
dynamics:

εżε = Fzε +Gεµε(z) + ε

[
0
−kq̈

]
By (28), this can be equivalently stated as

εżε = Fzε +Gµ(zε) + ε

[
0
−kq̈

]
(40)

for µ(zε) ∈ K(zε). Note that, in this case, the direct mapping
between Kε(z) and K(zε) established in Prop. 1 implies
that, given µε(z) ∈ Kε(z), µ(zε) = εµε(I

−1
ε zε).

Singular Pertubation Perspective. The dynamics given
in (40), coupled with (37), can naturally be viewed as a
multitime-scale system. As a result, this system of equations
in naturally amendable to singular perturbation theory [10],
[11]. In this case, due to the RES-CLF controller applied at



the motor control level, the actuator dynamics of the SEA
are viewed as the fast dynamics while the dynamics of the
robot are the slow dynamics. The goal is to show that this
time-scale separation allows us to approximate (40) and (37)
by the rigid model (39).

Lemma 2: For the system (40) evaluated at ε = 0 implies
that z = 0 and thus kq∆ = ud(q, q̇). Therefore, the quasi-
steady state system is given by:

M(q̄)¨̄q +H(q̄, ˙̄q) = ud(q̄, ˙̄q) (41)

with boundary layer system:
dη

dτ
= Fη +Gµ(η) (42)

for µ(η) ∈ K(η).
Proof: To show the desired result, it is necessary to

establish that ε = 0 implies that z = 0. To see this, we
begin by evaluating (40) at ε = 0 which implies that ė = 0
and µ(zε) = 0. Since µ(zε) ∈ K(zε) this implies that

zTε PGG
TPzε ≤ 0 ⇒ ‖GTPzε‖2 = 0 ⇒ GTPzε = 0.

By the CARE (17) this in turn would imply that

zTε (FTP + PF )zε = −zTε Qzε
which only holds if zε = 0 or if F is stable. Since F
has eigenvalues on the imaginary axis, i.e., the Lyapunov
equation does not have a solution, we therefore have that
zε = 0. Finally, since ė = 0, multiplying εzε is independent
of ε, can thus be evaluated at ε = 0, and therefore implies
that e = 0, or kq∆ = ud(q, q̇). Thus (41) is established.
Finally, (42) follows from (40) with the change of variables
η = zε together with the quasi-steady state conditions.

Therefore, we have established that the quasi-steady state
dynamics of the system are just the rigid body dynamics (39)
for which ud was originally designed to stabilize.
Main result. Utilizing the result of singular pertubation
analysis applied to the SEA model, we can now establish
the main result of this paper. In particular, we will show that
the choice of embedded level controller implies that, for ε
sufficiently small, the dynamics of the SEA model can be
approximated by the rigid model.

Theorem 1: Consider the model of a SEA system given
in (37) and (38). For

ud(q, q̇) = A(q, q̇)−1(−L2
f (q, q̇) + µε(x)) (43)

um(z, ud(q, q̇)) =
J

k
µε(z) +

[
1 b

k

]
z + ud(q, q̇) (44)

with µε(x) ∈ Kε(x) twice differentiable and µε(z) ∈ Kε(z)
Lipschitz continuous, it follows that there exists an ε∗ > 0
such that∥∥∥∥ y(t)

ẏ(t)

∥∥∥∥ ≤ 1

ε

√
λmax(P )

λmin(P )
e−

1
ε

λmin(Q)

2λmax(P )
t

∥∥∥∥ y(0)
ẏ(0)

∥∥∥∥+O(ε)

for all 0 ≤ ε ≤ ε∗ and P satisfying (17).
Proof: This result follows from the application of

Tikhonov’s theorem [10], [11] coupled with Lemma 1 and
Lemma 2.
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Fig. 2. The step response of the controller is optimal and meets the
convergence constraints. The output of the controller is nonsmooth and zero
when the dynamics of the system are already converging and require no
control effort. The convergence rate of this simulation is 1

ε
= 1100.

VI. RESULTS: SIMULATION AND EXPERIMENTAL

We conclude the paper with simulation and experimental
results demonstrating the performance of the quadratic pro-
gram based embedded controller. Importantly, we are able
to demonstrate through hardware tests (see Fig. 1 and the
corresponding video at [1]) that the proposed controller is
able to accurately track a variety of torque signals, even in
the presence of unknown disturbances.

Implementation. From a practical implementation perspec-
tive, it is useful to have a simple closed form expression
for the control law (36); this will allow the controller to run
in real-time at an embedded control level. Because of the
simple form of Fm and Gm in (34), it can be verified that
the solution to the CARE (17), with Q = I , is given by:

P =

[ √
3 1

1
√

3

]
, ⇒ Pε =

[
1
ε2

√
3 1

ε
1
ε

√
3

]
(45)

This allows for the direct calculation of Vε as:

Vε(θ∆, θ̇∆, τd) = (46)
√

3
1

ε2
(τd − kθ∆) 2 + 2

1

ε
k (−τd + kθ∆) θ̇∆ +

√
3k2θ̇2

∆



With these constructions, it is easy to explicitly calculate
LFmVε and LGmVε in (19). This allows for the direct
calculation of ψ0,ε and ψ1,ε in (8) with γ given in (45) and
Vε given in (46), which in turn allows for the final closed
form expression of ψ0,ε and ψ1,ε as given in (35). This yields
the final form of the controller as given in (36).

It is important to note that in (46), the desired torque is
viewed as a constant. This simplification was chosen for
initial implementation to observe exponential convergence
of the step response. In order to track more complex desired
signals, the derivative of desired torque would necessarily be
added to the controller; the ability of the torque controller to
achieve accurate tracking of signals and disturbances in the
experiments can be attributed to the fast control loop rate of
the embedded system.

Simulation Results. The controller (36), representing the
closed form solution of (Motor QP), was implemented in
simulation and a step response was conducted to observe
the behavior of the controller. Data regarding output torque,
motor torque effort (τm) and the convergence conditions used
in the min-norm controller were collected to demonstrate the
effects of a nonlinear control system achieving its control
objective on a modeled series elastic actuator.

By simulating a step response, the nonlinearity of the
controller can be observed. In Fig. 2 it can be noted that
the slope of the torque is smooth and converges on on
the control objective, i.e., the desired torque. The motor
control effort is nonsmooth and has several intervals where
no control effort is exerted. These intervals correspond with
areas where the natural dynamics of the system achieve the
desired convergence of Vε, i.e., intervals where V̇ε ≤ − 1

εγVε
without the need to exert control effort. Thus, the controller
utilizes the natural dynamics of the system to realize the
control objective.

Experimental Results. The controller was tested experi-
mentally on a SEA through the setup shown in Fig. 1;
in particular, it was implemented on an embedded motor
driver at a control rate of 5kHz, necessarily using the closed
form solution of the QP. Because the implementation of the
controller in hardware is subject to additional constraints,
the simulation was altered by adding saturation after the QP
calculated its requested effort. This directly corresponds to
current limits, and therefore motor torque limits, that exist
on the motor driver hardware used in the experiments.

For the first set of tests, the series elastic actuator output
was fixed, which allows easier system identification and
modeling of the parameters that are used in the closed
form representation of the QP. With the output fixed, a step
response for several different values of ε was measured and
can be seen in Fig. 3 with the modified simulation results.
The output of the controller, τm was also measured at the
embedded level by collecting motor current data. Smooth
convergence to the control objective can be seen in Fig. 3.
More importantly, this coincides with periods where the mea-
sured output of the motor controller is zero, confirming the
nonsmooth embedded controller is behaving at the embedded
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Fig. 3. Experimental step response with 1
ε

= 1100, 900, and 700.
Simulation (blue) is set to saturate at the approximate value based upon
observed hardware limits and compared against experimental data (red).
The hardware exhibits the same behavior as simulation, i.e., it does not exert
control effort when the system dynamics meet the convergence constraint
(CLF Constraint).

level similarly to the simulation—according to (Motor QP),
no control effort will be exerted if the convergence rate
is satisfied passively. This demonstrates the torque optimal
nature of the RES-CLF based QP controller.

For robotic systems, it is also important for an actuator to
track nontrivial torque trajectories. To understand the perfor-
mance of the controller, sine, chirp, and square wave signals
were provided to the embedded controller. Fig. 4 shows
the torque controller was able to accurately and consistently
track its objective with minimal error on different time scales.

To further characterize the performance of the controller,
the actuator was freed and a 10lbs weight was attached to
the joint output via a 1ft link (this setup is demonstrated
in the left picture in Fig. 1). The dynamics of the weight
at the output were unmodeled and therefore can be treated
as a disturbance; this tests the robustness of the controller
in achieving its objective without the need for additional
modeling and/or calculations that cannot be performed at
the embedded level. The top plot of Fig. 5 shows that torque
tracking of a sine wave in this scenario—the results indicate
that minimal tracking error is achieved.

The ability of the controller to reject unknown joint
disturbances is also necessary for implementation in a robotic
system operating in uncertain environments. The middle and
bottom plots of Fig. 5 show the ability for the controller
to track a torque trajectory and a steady state torque while
a human actively perturbed the output link of the actuator.
The controller exhibited error of less than 0.2 Nm through-
out operation, more often reducing tracking error to below
0.1 Nm despite active disturbances to the output. A video
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Fig. 4. Torque tracking of nontrivial signals yields only small amounts
of error. Chirp signals were tested through 20 Hz with no deterioration of
torque tracking ability. This set of experiments was conducted while the
actuators output was locked. For all plots, 1

ε
= 900.

demonstrating the ability of QP based embedded controller to
simultaneously reject unmodeled dynamics (a 10lbs weight
positioned 1ft from the joint) and human-interaction can be
found at [1].
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