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Abstract— In this paper, we consider an
anthropomorphically-inspired hybrid model of a bipedal
robot with locking knees and feet in order to develop a
control law that results in human-like walking. The presence
of feet results in periods of full actuation and periods of
underactuation during the course of a step. Properties of each
of these phases of walking are utilized in order to achieve
a stable walking gait. In particular, we will show that using
controlled symmetries in the fully-actuated domains coupled
with “partial” controlled symmetries and local ankle control
laws in the underactuated domains yields stable walking; this
result is possible due to the amount of time which the biped
spends in the fully-actuated domains. The paper concludes
with simulation results along with a comparison of these
results to human walking data.

I. INTRODUCTION

Motivated by the desire to obtain anthropomorphic walk-

ing, this paper considers a bipedal robot with locking knees

and feet. Both knees and feet have been studied before but

have not yet been combined into a comprehensive model.

Walking on point feet with knees has been studied from a

variety of perspectives (cf. [3], [4], [11], [14]). As far as

control, the models of [3], [11] either uses underactuated

controllers, which results in unnatural-looking walking, or

assumes full actuation (which allows for the use of controlled

symmetries) which is not realistic as a point-footed model

is necessarily underactuated. Existing research including

feet (e.g., [19]) has shown impressive results; however, the

current models make significant simplifying assumptions; to

name a few: instantaneous double-support phase, foot lands

flat, ignore effects of scuffing. These assumptions simplify

the model but unfortunately reduce the realism.

Given a bipedal robot with knees and feet, there are

discrete events that occur throughout the course of a step (cf.

[20]), e.g., knee-lock, heel-lift, etc. In the paper, we consider

five events of this form resulting in a hybrid model for the

bipedal robot with five discrete domains, each representing

a specific portion of the total gait (cf. [6]); see Fig. 1. For

example, in one domain, we have the stance foot flat on the

ground and the non-stance knee unlocked. The guard for this

domain is knee-lock, which occurs when the non-stance leg

straightens. After this transition, the dynamics change due

the knee being locked and we enter a new discrete domain.

Simulation results will suggest that these events play an

important role in achieving natural-looking walking.

The main goal of this paper is to show that controlled

symmetries (which takes the passive gait of a biped going
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Fig. 1: Graph of system domains

down a slope and “rotates” gravity to obtain walking on

flat ground) can be used to achieve stable walking even in

the presence of underactuation. Of the five domains in our

model, two are fully-actuated and three are underactuated.

We utilize the fact that the biped spends the majority of its

time having full actuation. The idea is that we can achieve

a stable gait by applying controlled symmetries only in the

domains with full actuation; however, the short period of time

spent with underactuation is enough to disrupt the stability of

the system and so we design additional control laws, such as

“partial” controlled symmetries, to carry the system through

the underactuated domains.

Motivated by the desire to achieve an efficient and anthro-

pomorphic gait, we consider a hybrid model with underactu-

ated domains (e.g., heel-lift, or hl in Fig. 1). Transitions into

these domains will not occur with only controlled symmetries

and so we introduce local control laws to effect the necessary

transitions. A natural guard indicating transition in some

cases is a Lagrange multiplier, which specifies the restraining

force preventing a point on the biped from moving (through

the ground). Accordingly, we construct a controller to drive

the Lagrange multiplier to zero, thus driving the system

to the guard. Another side effect of the model is scuffing,

which occurs when the non-stance foot strikes the ground

at the wrong time. Clearly, this would be a problem in a

realistic model and so we introduce a controller to prevent

this phenomenon. Combining the “local” controllers in the

underactuated domains with controlled symmetries in the

fully actuated domains results in stable walking.

To conclude the paper, we discuss the simulation results

of the bipedal model considered. These simulations provides

insight into the gait of the model, and further support

the anthropomorphic nature of the walking through a brief

comparison with human walking. In particular, we describe

the effects of the implemented controllers and explore the

interplay between the dynamics of walking and the control

necessary to achieve a stable gait. Finally, we show numer-

ically that we are able to attain a stable gait, i.e., a locally
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exponentially stable periodic orbit.

Note that the motivation for the techniques introduced

in this paper draw from many sources in the literature,

and especially work related to passive dynamic walking,

controlled symmetries, and bipeds with feet. Passive dynamic

walking has been studied in [4], [8], [10], [13], [14] and

[18], where it was shown that a biped can walk down a

slope without actuation. Controlled symmetries has been

well-studied (e.g. [3]), where gaits obtained from passive

models were made to walk on flat ground using actuation.

Walking with feet has not been extensively studied yet work

has been done in [5], [7], [9] and [19]. This work has shown

that using feet can increase the efficiency of walking and can

yield a more-natural-looking gait.

II. HYBRID SYSTEMS AND CONSTRAINTS

Hybrid systems are systems that display both continuous

and discrete behavior and so bipedal walkers are naturally

modeled by systems of this form; the continuous component

consists of the dynamics dictated by Lagrangians modeling

mechanical systems in different domains and the discrete

component consists of the impact equations which instan-

taneously change the velocity of the system when a knee

locks or when a toe or heel contacts the ground. This

section introduces the basic terminology of hybrid systems

and introduces the hybrid model of the biped considered in

this paper.

Definition 1: A non-autonomous hybrid control system is

a tuple

H C = (Γ, D, U, G, R, FG),

where

• Γ = (V,E) is an oriented graph, i.e., V and E are a

set of vertices and edges, respectively, and there exists

a source function sor : E → V and a target function

tar : E → V which associate to an edge its source and

target, respectively.

• D = {Dv}v∈V is a set of domains, where Dv ⊆ R
nv ×

R
kv is a smooth submanifold of R

nv × R
kv (with R

kv

representing control inputs and/or time),

• U = {Uv}v∈V , where Uv ⊂ R
kv is a set of admissible

controls,

• G = {Ge}e∈E is a set of guards, where Ge ⊆ Dsor(e),

• R = {Re}e∈E is a set of reset maps, where Re : Ge →
Dtar(e) is a smooth map,

• FG = {(fv, gv)}v∈E , where (fv, gv) is a control

system on Dv , i.e., ẋ = fv(x, t) + gv(x)u for x ∈ Dv

and u ∈ Uv .

A hybrid system H = (Γ, D, G, R, F ) is a hybrid control

system with U = {0}, in which case F = {fv}v∈E with ẋ =
fv(x, t). An autonomous hybrid system is a hybrid system

with Dv ⊆ R
n and ẋ = fv(x).

Remark 1: We allow for non-autonomous hybrid systems

because some of our control laws will depend on time.

Poincaré Map. Solutions to hybrid systems, or hybrid flows
or hybrid executions, are defined in the traditional manner

(see [12]). A solution to a hybrid system is k-periodic if it

returns to the same point after passing through the domain

in which it is contained k times. (In the process it may pass

through an arbitrary number of other domains of the hybrid

system.) One can consider the local exponential stability of

k-periodic solutions in the obvious way (see [2] for this

definition in the case of a hybrid system with one domain).

One can associate to a k-periodic solution of a hybrid system

a Poincaré map, and the stability of the k-periodic solution

can be determined by considering the stability of the Poincaré

map. Finally, the stability can be determined numerically

using approximations of the Jacobian of the Poincaré map

(see [15] and [17]). This is how we will determine that the

periodic orbit for the 2D biped in this paper is stable.

Lagrangians. Let Q ⊆ R
n be the configuration space of a

mechanical system. We will consider Lagrangians L : TQ →
R modeling mechanical systems; that is, Lagrangians given

in coordinates by

L(q, q̇) =
1
2
q̇T M(q)q̇ − V (q), (1)

where 1
2 q̇T M(q)q̇ is the kinetic energy and V (q) is the

potential energy. We also consider external forces in the

forms of non-conservative forces (due to viscous rotational

damping at the ankles), Fnc = F q̇, and control inputs, which

sometimes take the form u = K(q, q̇, t), both of which are

smooth through a given domain.

With these forces in mind and motivated by the derivation

in [16] (§6.1.2), the Euler-Lagrange equations can be written

M(q)q̈ + C(q, q̇)q̇ + N(q) = F q̇ + Bu, (2)

with M(q) the manipulator inertia matrix, C(q, q̇) the matrix

of centripetal and Coriolis terms, N(q) = ∂V (q)
∂q containing

terms related to gravitational potential, F a constant matrix

of damping coefficients, and B a linear transformation with

which converts control inputs from relative to absolute co-

ordinates. Using (2), we define the control system:

fL(q, q̇) =
(

q̇
M−1(q)(F q̇ − C(q, q̇)q̇ − N(q))

)

gL(q) =
(

0n×k

M−1(q)B

)
, (3)

where 0n×k is a zero matrix with k the number of inputs.

Unilateral Constraints. For the hybrid model that will be

considered, certain domains and guards are obtained from

unilateral constraints.

Definition 2: A unilateral constraint is defined to be a

tuple h = (Q, L, h), where

• Q is the configuration space (usually assumed to be

identical to R
n),

• L : TQ → R is a hyperregular Lagrangian,

• h : Q → R provides a unilateral constraint on the

configuration space; we assume that the zero level set

h−1(0) is a smooth manifold.

Given a unilateral constraint h there is an associated guard,

reset map and vector field. Using h(q), we define the domain
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and guard respectively as

Dh = {(q, q̇) ∈ TQ : h(q) ≥ 0}, (4)

Gh = {(q, q̇) ∈ TQ : h(q) = 0 and dqh(q)q̇ < 0},

where dqh(q) =
(

∂h(q)
∂q

)T

.

Holonomic constraints. On certain domains of the model

we will consider domains, guards and vector fields obtained

from holonomic constraints.

Definition 3: A holonomic constraint is defined to be a

tuple η = (Q, L, η), where

• Q is the configuration space (usually assumed to be

identical to R
n),

• L : TQ → R is a hyperregular Lagrangian,

• η : Q → R
c provides holonomic constraints on the

configuration space; we assume that the zero level set

η−1(0) is a smooth manifold.

We impose the holonomic constraint using a Lagrange

multiplier. Differentiating the constraints η(q) we obtain

A(q)q̇ = 0 with A(q) = dqη(q). Following the derivation

in [16] (§6.1.2), we write the Euler-Lagrange equations as

M(q)q̈ + C(q, q̇)q̇ + N(q) + A(q)T λη(q, q̇, u) (5)

= F q̇ + Bu

where λη : TQ × R
k → R

c is the Lagrange multiplier.

To find an explicit definition for λη(q, q̇, u), we first

differentiate the constraint equation: A(q)q̈ + Ȧ(q)q̇ = 0.
Using this with (5), we can write the Lagrange multiplier as

λη(q, q̇, u) = (6)

(A(q)M−1(q)AT (q))−1(A(q)M−1(q)(F q̇ + Bu

−C(q, q̇)q̇ − N(q)) + Ȧ(q, q̇)q̇).

The value of the Lagrange multiplier is the force required

to impose the holonomic constraint. With this in mind and

having derived an expression for λη(q, q̇, u), we can now

define the domain and guard respectively as

Dη = {(q, q̇, u) ∈ TQ × R
k : λη(q, q̇, u) ≥ 0}, (7)

Gη = {(q, q̇, u) ∈ TQ × R
k : λη(q, q̇, u) = 0

and dqλη(q, q̇, u)q̇ < 0},
where dqλη(q, q̇, u) is the Jacobian. We then use (5) and (6)

to define the control system:

fλ(q, q̇) = (q̇T , (8)

[M−1(q)((I − AT (q)Ξ(q)A(q)M−1)(F q̇ −
C(q, q̇)q̇ − N(q)) − AT (q)Ξ(q)Ȧ(q)q̇)]T )T

gλ(q) =
(0m×n, [M−1(q)(I − AT (q)Ξ(q)A(q)M−1(q))B]T )T

with Ξ(q) = (A(q)M−1(q)AT (q))−1. This vector field

has augmented dynamics which constrain the system by

enforcing the holonomic constraints,
dh(q)

dt = A(q)q̇ = 0.

Kinematic constraints. In order to derive the impact

equations, we consider:

Definition 4: A kinematic constraint is defined to be a

tuple κ = (Qs, Qt, M, κ, ι, J), where

• Qs is the configuration space of the source domain

(usually assumed to be R
dim Qs ),

• Qt is the configuration space of the target domain

(usually assumed to be R
dim Qt),

• M : Qs ∪ J−1(Qt) → R
s×s is a manipulator inertia

matrix (with s = dim(Qs ∪ J−1(Qt))),
• κ : Qs ∪ J−1(Qt) → R

d is a smooth function which

typically describes the position of the end-effector of a

kinematic chain,

• ι : Qs → Qs ∪ J−1(Qt) is an embedding with

pushforward ι∗ : TQs → T (Qs ∪ J−1(Qt)),
• J is an invertible binary matrix to relabel coordinates.

Note that κ is a vector valued function of d constraints

which will contain the unilateral constraint, h, if present,

and may contain certain holonomic constraints from η, if

present. Also note, there is a canonical projection π : Qs ∪
J−1(Qt) → J−1(Qt) that induces a map π∗ : T (Qs ∪
J−1(Qt)) → T (J−1(Qt)), which is the pushforward.

Impact equations. The discrete jumps in the considered hy-

brid system result from rigid plastic impacts. These impacts

can be modeled as impulses at specific locations (cf. [11]).

Let κ = (Qs, Qt, M, κ, ι, J) be a kinematic constraint and

let the coordinates of the embedded space Qs ∪J−1(Qt) be

represented by q. Then define a map P : T (Qs∪J−1(Qt)) →
Tq(Qs ∪ J−1(Qt)) describing the velocities after impact

given by1

P (q, q̇) = q̇ − (9)

M−1(q)ET (q)(E(q)M−1(q)ET (q))−1E(q)q̇

where E(q) = ∂κ(q)
∂q . Finally, define the reset map R :

TQs → TQt given by

R(qs, q̇s) =
(

J 0
0 J

)
π∗

(
ι(qs)

P (ι∗(qs, q̇s))

)
. (10)

III. BIPEDAL MODEL

This section introduces the hybrid model of bipedal robot

with knees and feet. Due to space constraints, the M,C, N
matrices have been omitted but can be found at [21].

Discrete structure. We define the hybrid control system:

H C = (Γ, D, U, G, R, FG)

with Γ the oriented graph of the system given as

Γ = ({kl , hl , hs, ts, tl}, {ekl = (kl , hl), ehl = (hl , hs),
ehs = (hs, ts), ets = (ts, tl), etl = (tl , kl)})

and D,U, G, R, FG as defined in Definition 1. The specific

elements of these sets will be given throughout this section.

There are five discrete states which loop back on each other

as shown in Fig. 1. Note that for this hybrid system a

temporal order of events is assumed.

1The velocities before and after impact are sometimes written as q−
and q+. For notational conciseness, we choose to write the post-impact
velocities as a map.
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Fig. 2: Biped configurations

Domain 1 (kl): The stance foot is flat on the ground and the

non-stance knee is unlocked. The configuration is shown in

Fig. 2(a). The admissible control is Ukl = R
4 and the guard

is knee-lock, which occurs when the knee becomes straight

and locks. (This would be realized as a physical lock.) We

define the unilateral constraint

hkl = (Qkl , Lkl , hkl)

where Qkl = R
4 is the configuration space with coordinates

qkl = (θst , θnst , θnsc , θnsf )T , Lkl(qkl) = 1
2 q̇T

klMkl(qkl)q̇kl −
Vkl(qkl) is the Lagrangian modeling the system, and

hkl(qkl) = θnsc − θnst is the relative angle of the non-stance

knee. Using hkl , the domain and guard are then given in (4).

We define the kinematic constraint

κkl = (Qkl , Qhl , Mkl , κkl , ιkl , Jkl)

with Qhl introduced in the next domain, κkl(qkl) = hkl(qkl),
ιkl : Qkl → Qkl ∪ J−1

kl (Qhl) the embedding given by

(θst , θnst , θnsc , θnsf ) �→ (−π

2
, θst , θnst , θnsc , θnsf )

and Jkl = I . The reset map is then given by (10). Finally,

the control system is given in (3).

Domain 2 (hl): Both knees are locked and the stance foot is

flat on the ground. The configuration is shown in Fig. 2(b).

The admissible control is Uhl = R
3 and the guard is heel-lift.

Therefore, we define the holonomic constraint

ηhl = (Qhl , Lhl , ηhl)

where Qhl = R
4 is the configuration space with coordinates

qhl = (θsf , θst , θnst , θnsf )T , Lhl(qhl) = 1
2 q̇T

hlMhl(qhl)q̇hl −
Vhl(qhl) is the Lagrangian modeling the system, and ηhl :
Qhl → R is the height of the stance heel. Note that we

include θsf even though it is constant throughout the domain.

This will be necessary in order to calculate the Lagrange

multiplier, ληhl
(qhl , q̇hl , uhl), which we will use as our guard.

Using ηhl , the domain and guard are then given in (7).

The reset map is simply the identity map. Finally, the

control system is given in (8) using the Lagrange multiplier

ληhl
(qhl , q̇hl , uhl) obtained from the holonomic constraint.

By imposing this constraint, we are forcing the stance heel

to have constant zero velocity.

Domain 3 (hs): Both knees are locked and the system is

rotating about the stance toe. The configuration is shown in

Fig. 2(c). The admissible control is Uhs = R
3 and the guard

is heel-strike. Therefore, we define the unilateral constraint

hhs = (Qhs , Lhs , hhs)

where Qhs = R
4 is the configuration space with

coordinates qhs = (θsf , θst , θnst , θnsf )T , Lhs(qhs) =
1
2 q̇T

hsMhs(qhs)q̇hs −Vhs(qhs) is the Lagrangian modeling the

system, and hhs(q) is the height of the stance heel. Using

hhs , the domain and guard are given in (4). In order to define

the reset map, we need the kinematic constraint,

κhs = (Qhs , Qts , Mts , κhs , ιhs , Jhs)

with Qts and Mts introduced in the next domain, κhs the

x and y positions of the non-stance heel, and ιhs : Qhs →
Qhs ∪ J−1

hs (Qts) the embedding given by

(θsf , θst , θnst , θnsf ) �→ (θsf , θst , θst , θnst , θnsf ).

The reset map requires that the non-stance and stance

legs be switched so we use the relabeling matrix Jhs =
antidiag(1, . . . , 1). The reset map is then given in (10).

Finally, the control system is given in (3).

Domain 4 (ts): The non-stance knee is unlocked and the

system is rotating about the stance heel. The non-stance toe

is on the ground. The configuration is shown in Fig. 2(d).

The admissible control is Uts = R
4 and the guard is toe-

strike, which occurs when the stance toe rolls into the ground.

Therefore, we define the unilateral constraint

hts = (Qts , Lts , hts)

where Qts = R
5 is the configuration space with co-

ordinates qts = (θsf , θst , θnst , θnsc , θnsf )T , Lts(qts) =
1
2 q̇T

tsMts(qts)q̇ts − Vts(qts) is the Lagrangian modeling the

system, and hts is the height of the stance toe. Using hts ,

the domain and guard are given in (4).

In order to define the reset map and control system, we

will need to define a holonomic constraint,

ηts = (Qts , Lts , ηts),
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with ηts : Qts → R
2 the x and y position of the non-stance

toe which will be enforced by a vector of Lagrange multipli-

ers, ληts
: TQts × Uts → R

2, of the form ληts
(qts , q̇ts , uts),

which will prevent the non-stance toe from moving.

We define the kinematic constraint

κts = (Qts , Qtl , Mts , κts , ιts , Jts)

with Qtl introduced in the next domain, κts : Qts → R
3

given by κts = (hts(qts), ηT
ts(qts))

T , and ιts the identity

map. Including the holonomic constraints causes the non-

stance toe to have zero velocity after impact. The reset map

is then given by (10) with relabeling matrix Jts = I . Finally,

the control system is given in (8).

Domain 5 (tl): The stance foot is flat on the ground and

the non-stance knee is unlocked. The non-stance toe is on

the ground. The configuration is shown in Fig. 2(e). The

admissible control is Utl = R
4 and the guard is toe-lift,

which occurs when the non-stance toe lifts from the ground.

Therefore, we define the holonomic constraint

ηtl = (Qtl , Ltl , ηtl)

where Qtl = R
4 is the configuration space with coordinates

qtl = (θst , θnst , θnsc , θnsf )T , Ltl(qtl) = 1
2 q̇T

tl Mtl(qtl)q̇tl −
Vtl(qtl) is the Lagrangian modeling the system, and ηtl :
Qtl → R

2 is a vector specifying the x and y positions of the

non-stance toe. From the holonomic constraints, we calculate

a vector of Lagrange multipliers. We use (ληtl
)2, (i.e., the

constraining force in the y direction) to specify the domain

and guard as given in (7).

The reset map is simply the identity map. Finally, the

control system is given in (8) using the Lagrange multiplier

derived from ηtl(qtl), which prevents the non-stance toe from

moving.

IV. FUNDAMENTAL CONTROL LAWS

In each domain, we implement a combination of five basic

control laws which are given in this section; in the next

section, we will discuss how these control laws are utilized

on the bipedal robot being considered.

Controlled symmetries. The first law considered is con-

trolled symmetries, motivated by [13]. This controller works

by shaping the potential energy of the associated Lagrangian

to that of a passive biped walking down a slope. We effec-

tively “rotate the world” via a group action which operates

on the potential energy. It was shown in [4] that a kneed

walker can walk passively down a slope and further shown

in [3] that controlled symmetries gives a stable gait for a

kneed walker on flat ground.

Consider the group action Ψ : S × Q → Q given by

Ψγ(q) := q + γ1n,

for slope angle γ ∈ S, q ∈ Q and 1n a vector of 1’s of

length n. From this, we define the feedback control law

Kγ(q) = B−1(N(q) − N(Ψγ(q)), (11)

where B is a linear transformation which converts from

relative to absolute coordinates. Note that this control law

requires full actuation (i.e., B must be full rank as we require

that it be invertible). Application of this control law to the

control system (f, g) yields the modified vector field:

fγ(q, q̇) = f (q, q̇) + g(q)Kγ(q)

which is the vector field associated to the shaped Lagrangian:

Lγ(q, q̇) =
1
2
q̇T M(q)q̇ − V (Ψγ(q)).

Underactuated controlled symmetries. Consider the case

of a system in which we have n − k degrees of underactu-

ation. Motivated by our desire to apply controlled symme-

tries, we introduce the concept of underactuated controlled
symmetries. Assume our coordinates are ordered such that

the first k coordinates have full actuation and let qa =
(q1, . . . , qk)T . Define the following feedback control law:

Kγ(q) =
(

B−1
a (Na(q) − Na(Ψ(qa)))

0n−k

)
(12)

where Ba represents a linear transformation, found by taking

the top-left submatrix of size k×k from B and Na : Q → R
k

is given by

Na(q) =
(

∂V (q)
∂q1

· · · ∂V (q)
∂qn−k

)T

.

Applying this control law yields the modified vector field:

fγ(q, q̇) := f(q, q̇) + g(q)Kγ(q).

Thus we have partially shaped the system by affecting only

those coordinates which have full actuation.

Spring-damper controller. Motivated by the elasticity of

the human ankle and the need to keep the foot from spinning

freely when not on the ground, we introduce a spring-damper

controller which creates forces on the system equivalent to

those of a linear spring-damper system. Consider j relative

angles Θ : Q → R
j of the system with angular velocities

Θ̇ : TQ → R
j and define the feedback control law:

KΘ(q, q̇) = (−kΘ(Θ(q) − Θ0) − cΘΘ̇(q, q̇))BΘ, (13)

with kΘ > 0 a diagonal matrix of corresponding spring

constants, cΘ > 0 a diagonal matrix of viscous damping

coefficients, Θ0 the undeflected angles of the springs, and

BΘ = ∂Θ
∂q (0). Applying this yields the vector field

fΘ(q, q̇) = f (q, q̇) + g(q)KΘ(q, q̇).

λ-zeroing controller. Recall that on certain domains, the

guard is defined as a Lagrange multiplier; this multiplier must

be zeroed to pass into the next domain. Note from (6) that the

Lagrange multiplier depends directly on the control input u;

thus, we can affect the Lagrange multiplier by choosing the

control input at the ankle for which the Lagrange multiplier

is calculated. For simplicity’s sake, we choose to have the

Lagrange multiplier diminish linearly over time as follows:

λr(t) = λ0 − a(t − t0),
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where λ0 and t0 are respectively the value of the Lagrange

multiplier and the time at the beginning of the domain and

a ∈ R is a positive constant which affects how fast λr(t) is

driven to zero. Consider the Lagrange multiplier given by

λη(q, q̇, u) =

(A(q)M−1(q)AT (q))−1(A(q)M−1(q)(F (q, q̇) +
Bu − C(q, q̇)q̇ − N(q)) + Ȧ(q, q̇)q̇)

with F : TQ → R
n a vector of external forces acting on the

system. Solving for the control input gives our control law:

Ka(q, q̇, t) = (14)

(A(q)M−1(q)B)−1(A(q)M−1(q)(C(q, q̇)q̇ + N(q) −
F (q, q̇) − AT (q)λr(t)) − Ȧ(q)q̇)	b

with 	b the basis vector corresponding to the control input

being used. Applying this controller gives the vector field:

fa(q, q̇, t) = f (q, q̇) + g(q)Ka(q, q̇, t)

Scuffing prevention controller. The final control we con-

sider is designed to prevent scuffing. This control law is a

simple feedback control law introducing an effect similar to

gravity, but with a repulsive force, given by

Kg(q) = −αe−ρhtoe(q) (15)

where α, ρ ∈ R are positive constants and htoe : Q → R is

the height of the toe. α represents the strength of repulsion

and ρ represents the spatial dissipation rate. Applying this

controller yields the vector field:

fg(q, q̇) = f (q, q̇) + g(q)Kg(q).

V. CONTROL LAW CONSTRUCTION

In this section, we describe how the control laws of Sec.

IV are implemented in each domain. In all domains, we

implement the spring-damper controller which would be

replaced with a spring-damper system in a physical construct.

This control law is implemented in both ankles and thus we

have the control input KΘ(q, q̇) as given in (13).

Domain 1 (kl). First, we implement controlled symmetries

since we have full actuation. The majority of the limit cycle

is spent in this domain so this controller is responsible for

the majority of the energy added to the system during a limit

cycle. This gives us the control input Kγ
kl(qkl) as in (11).

Next, we implement the scuffing prevention controller to

prevent the non-stance toe from hitting the ground. This gives

us the control input Kg
kl(qkl) as in (15). Combining these

controllers with the spring-damper controller, KΘ
kl (qkl , q̇kl),

gives us the final control law for this domain,

KΘ,g,γ
kl (qkl , q̇kl) = KΘ

kl (qkl , q̇kl) + Kg
kl(qkl) + Kγ

kl(qkl),

which yields the closed-loop vector field

fΘ,g,γ
kl (qkl , q̇kl) = fkl(qkl , q̇kl) + gkl(qkl)K

Θ,g,γ
kl (qkl , q̇kl).

Domain 2 (hl). First, we implement controlled symmetries,

which is simply an extension of the controlled symmetries

implemented in the previous domain. This gives us the

control input Kγ
hl(qhl) as in (11).

To enter the next domain, we must zero the Lagrange

multiplier corresponding to the height of the stance heel,

causing heel-lift. Therefore, we implement the λ-zeroing

controller which gives us the control input Ka
hl(qhl , q̇hl , t)

as in (14). Adding these controllers and the spring-damper

controller, KΘ
kl (qkl , q̇kl), gives the final control law

KΘ,a,γ
hl (qhl , q̇hl , t) =

KΘ
hl(qhl , q̇hl) + Ka

hl(qhl , q̇hl , t) + Kγ
hl(qhl),

which yields the closed-loop vector field

fΘ,a,γ
hl (qhl , q̇hl , t) = fhl(qhl , q̇hl)+ghl(qhl)K

Θ,a,γ
hl (qhl , q̇hl , t).

Domain 3 (hs). In this domain, we use the λ-zeroing control

law from the previous domain, Ka
hl(qhl , q̇hl , t), as given in

(14) modifying only the control gain a = ahs . Thus, we

continue to drive λ past zero, which keeps the system rotating

forward about the stance heel.

Combining this controller with the spring-damper con-

troller, KΘ
hs(qhs , q̇hs), gives us the final control law

KΘ,a
hs (qhs , q̇hs , t) = KΘ

hs(qhs , q̇hs) + Ka
hl(qhl , q̇hl , t),

which yields the closed-loop vector field

fΘ,a
hs (qhs , q̇hs , t) = fhs(qhs , q̇hs)+ghs(qhs)K

Θ,a
hs (qhs , q̇hs , t).

Domain 4 (ts). In this domain, we implement a λ-zeroing

controller using the Lagrange multiplier corresponding to the

height of the non-stance toe. The control law implemented

in this domain is almost identical to that described in Sec. IV

except the gain a is negative which drives the value of λ in

the opposite direction, causing the toe to push into the floor

with greater force. This allows for a harder toe push-off, thus

adding more energy to the system. The control input from

this control law is Ka
ts(qts , q̇ts , t) as given in (14). Adding

this controller to the spring-damper controller, KΘ
ts(qts , q̇ts),

gives us the final control law,

KΘ,a
ts (qts , q̇ts , t) = KΘ

ts(qts , q̇ts) + Ka
ts(qts , q̇ts , t),

which yields the closed-loop vector field

fΘ,a
ts (qts , q̇ts , t) = fts(qts , q̇ts) + gts(qts)K

Θ,a
ts (qts , q̇ts , t).

Domain 5 (tl): In this domain, we have 3 degrees of

actuation as a result of having 1 degree of underactuation.

Thus, we implement partial controlled symmetries which

gives us the control input Kγ
tl(qtl) as in (12). This allows us

to add extra energy to the system, increasing the robustness.

In order to enter the next domain, the non-stance toe must

lift off the ground. We effect this through the use of a λ-

zeroing controller using the Lagrange multiplier specifying

the height of the non-stance toe. By choosing the coefficient

a, we can affect the strength with which the toe pushes off

the ground and thus how much energy is added to the system.

This gives us the control input Ka
tl(qtl , q̇tl , t) as in (14).

Combining these controllers with the spring-damper con-

troller, KΘ
tl (qtl , q̇tl), gives us the final control law,

KΘ,a,γ
tl (qtl , q̇tl , t) = KΘ

ts(qts , q̇ts)+Ka
tl(qtl , q̇tl , t)+Kγ

tl(qtl),
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Fig. 3: Example of stable walking gait

which yields the closed-loop vector field

fΘ,a,γ
tl (qtl , q̇tl , t) = ftl(qtl , q̇tl) + gtl(qtl)K

Θ,a,γ
tl (qtl , q̇tl , t).

VI. SIMULATION RESULTS AND CONCLUDING REMARKS

In this section, we present simulation results for the biped

and corresponding control laws being considered. We de-

scribe the simulation setup and then show that the simulation

resulted in stable walking. We choose the following model

parameters:

M = .5 kg , mt = .5 kg , mc = 50 mg ,

mf = 2.5 mg , � = 1 m , �t = .175 m ,

�c = 37.5 cm , rh = 5 cm , rt = 15 cm ,

rf = 5 cm , ra = 5 cm , γ = .08 rads ,

kΘ = 2 Nm/rad , cΘ = .01 Nms/rad , Θ0 = 90◦.

For the λ-zeroing controller with gain ai on domain

i ∈ V , we use the following coefficients: ahl = 200, ahs =
60, ats = −150, atl = 65. For the scuffing prevention

controller of domain kl, we use α = 1, ρ = 100. We

perform our simulation starting in domain kl, using as an

initial condition the fixed point on the guard Gkl :

(qkl)0 = (0.0712 −0.2986 −0.2942 −1.8629)T ,

(q̇kl)0 = (0.8787 −0.0412 −7.3957 −7.3118)T .

The gait is shown in Fig. 3. We can observe from this

figure (and from Fig. 4) that the majority of the gait is

spent in domain kl. This is beneficial because we implement

controlled symmetries in this domain. In domains hs and ts,

we do not implement controlled symmetries but rather only

a simple controller to achieve the desired feet behavior. We

can also see from Fig. 3 that the biped pushes off with the

back foot which allows us to add more energy to the system

to help make up for energy lost to impact.

Fig. 4 shows a temporal breakdown of the gait and a

comparison between the model gait and a sample human

gait from [1]. Note the similarity between gaits: this can be

seen as an objective measure of the anthropomorphism of the

model gait. This metric could be very useful in the future

for measuring the extent of the anthropomorphic nature of

control laws for bipedal robots.

The phase portraits of the various angles are shown in

Figs. 5(b) and 5(c). Note specifically the large angular

velocity of the non-stance foot. This occurs for only a

short period of time after toe-lift as can be seen from Fig.

5(a) and is caused by the spring-damper controller and the

scuffing prevention controller. Thus, the qualitative behavior

of the phase portraits of the feet are heavily dependent upon

Double�Support Single�Support
0% 20% 40% 60% 80% 100%

H
um

an
M
od

el

ts tl kl hl hs

Double�Support Single�Support
0% 20% 40% 60% 80% 100%

H
um

an
M
od

el

ts tl kl hl hs

Fig. 4: Temporal comparison of model and human gaits

the parameters chosen for these two controllers. Namely,

kΘ, cΘ, Θ0, α, ρ affect these phase portraits.

The primary motivation behind adding feet is to allow

for the use of controlled symmetries in a realistic model. A

system with point feet is necessarily underactuated and is

thus incompatible with controlled symmetries. Accordingly,

the behavior of the feet through most of the limit cycle does

not play a significant role in the gait of the biped. It is also

interesting to note that the phase portrait of the legs shown

in Fig. 5(b) is qualitatively similar to the phase portrait of a

3D kneed walker without feet as in [3].

The addition of feet introduces new phenomena: toe roll

and heel roll. Toe roll occurs when the stance heel lifts off

the ground. Heel roll occurs if the heel of the non-stance foot

strikes the ground before the toe. In both cases, the system

is underactuated during these phases. These phenomena,

therefore, seem undesirable, yet having them present seems

to yield a more-natural-looking and energy-efficient gait as

indicated by Fig. 4.

Another concern addressed by this paper is scuffing.

Scuffing occurs when the non-stance foot strikes the ground

at an unexpected time. Previous work has largely ignored

this problem, yet it seems to play an important role in

anthropomorphic gaits. That is, a biped must avoid the

ground when walking and doing so has an effect on the

overall gait. The scuffing prevention controller implemented

in this model results in a gait that appears to be more

anthropomorphic than previous gaits obtained, such as that

in [3].

We verify numerically that the limit cycle is locally

exponentially stable by examining the eigenvalues of the

linearized Poincaré map. We calculate the Jacobian at a fixed

point by perturbing along the guard. We choose our Poincaré

section to be the guard of domain kl, Gkl , which is knee-

lock. Because we are perturbing along the guard, we will

always have n − 1 eigenvalues, where n is the dimension

of the domain. Since domain kl is of dimension n = 8, we

will have seven eigenvalues. The fixed point at which we

calculate the Jacobian is

x∗ =
(0.07222, −0.29912, −0.29912, −1.86777,
0.88512, −0.03234, −7.41687, −7.35685)T .

We find that the eigenvalues have magnitudes .9147,

.9147, .1306, .1306, 1.382 × 10−6, 1.382 × 10−6, 1.104 ×
10−6. Note that all these eigenvalues have magnitude less

than 1, indicating stability. In fact, most of the eigenval-

ues are much less than one which indicates the system is

generally robust to perturbations; however, note that the

first complex pair of eigenvalues has magnitude near 1,
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which indicates the system is not robust to perturbations

with respect to these eigenvalues. This is possibly a result

of some of the controllers implemented (esp. the time-

dependent controllers) and would be an interesting topic to

pursue further.
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Fig. 6: Lagrange multipliers and controls

Now consider Fig. 6. The top graph shows the progression

of domains over time and the middle graph shows the

Lagrange multipliers at the stance heel and non-stance toe

in the domains in which they are considered. Note that both

Lagrange multipliers are linear—a result of the λ-zeroing

controller. Also, note the slopes change depending on the

value of the control gain. The bottom graph shows the control

input necessary on the stance ankle or non-stance ankle (de-

pending on the domain) to have these Lagrange multipliers

be linear. Thus, we can see that our λ-zeroing controller does

exactly what we expect. The domain transitions are shown

as vertical dotted lines. Additionally, these graphs show the

amount of time spent in each domain. Note that the value

of the control input in domain kl results from the scuffing

prevention controller and not from the λ-zeroing controller.

The bipedal model we considered, and the corresponding

control laws, have certain shortcomings. Namely, the λ-

zeroing controller is time-dependent, which apparently re-

duces the robustness of the system. Possible future research

should therefore include replacing this controller with a

time-independent state feedback controller. We would also

like to optimize not only control gains but also physical

model parameters. Finally, it would be interesting to study

the robustness of the system in an objective way, e.g., by

determining the domain of attraction of the limit cycle.
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