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Abstract— Motivated by the goal of obtaining more-
anthropomorphic walking in bipedal robots, this paper con-
siders a hybrid model of a 3D hipped biped with feet and
locking knees. The main observation of this paper is that
functional Routhian Reduction can be used to extend two-
dimensional walking to three dimensions—even in the presence
of periods of underactuation—by decoupling the sagittal and
coronal dynamics of the 3D biped. Specifically, we assume the
existence of a control law that yields stable walking for the
2D sagittal component of the 3D biped. The main result of the
paper is that utilizing this controller together with “reduction
control laws” yields walking in three dimensions. This result is
supported through simulation.

I. INTRODUCTION

The consideration of a hipped biped with locking knees

(as in [12]) and feet is an important step in understanding the

intricacies of walking and, specifically, how to obtain more-

anthropomorphic walking. Adding feet not only increases the

postural stability of a biped, but also allows for a more-

natural-looking and energy-efficient gait as shown in [6],

[14], and [16]. The addition of feet, however, introduces new

complications as an accurate model must take into account

various transitions occurring throughout the biped’s gait.

Accordingly, we are confronted with a problem which can

only be solved by modeling the biped as a complex hybrid

system with multiple discrete domains (see Fig. 1).

The goal of this paper is to obtain walking for the 3D

system by extending existing methods which give a stable

gait for the 2D counterpart. Attaining a stable gait for a

2D model is difficult, and extending this to 3D only further

complicates the problem. One must not only achieve a stable

gait in the sagittal plane but also stabilize the walker in the

coronal plane to prevent it from falling over—this has been

done before for simpler biped models ([2], [4], [8], [17]).

We consider a hipped biped with knees and feet with two

degrees of rotational freedom at the ankles, i.e., the ankle

can rotate in both the sagittal and coronal planes. Our idea is

to effectively decouple the sagittal and coronal dynamics—

as in [3] and [5]—such that we can stabilize the biped in

the coronal plane while simultaneously applying an existing

control law to the sagittal dynamics that yields 2D walking.

The main idea of this paper is to achieve this decoupling

using reduction. We do this by exploiting the inherent

symmetries present in the model (specifically in the coronal

rotation angles) using geometric reduction. We consider a

particular form of geometric reduction termed functional
Routhian reduction developed in [1] and [2]. Like classical
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Fig. 1: Graph of system domains

reduction, we utilize the symmetries of “cyclic” variables,

effectively removing these variables from the dynamics. The

main difference between classical reduction and functional

Routhian reduction is that we are able to set the conserved

quantity to a function of the “cyclic” variables rather than

a constant. This allows us to stabilize the walker while

simultaneously decoupling the dynamics throughout the gait.
The main result of this paper is a control law which gives

walking for the 3D model given a control law which gives

stable walking for the reduced model (given in [14]). In order

to use this 2D control law on our 3D model, we implement

two additional control laws. The first of these control laws

shapes the Lagrangian of the system to render it “almost-

cyclic”. This allows us to perform functional Routhian reduc-

tion, which decouples the sagittal and coronal dynamics of

the system and allows us to stabilize the walker in the coronal

plane. However, reduction is only valid for certain initial

conditions and so we implement an input/output linearization

control law which stabilizes to the surface of conditions on

which the reduction is valid. We verify through simulation

that this control law results in walking.

II. HYBRID SYSTEMS AND CONSTRAINTS

Throughout this paper, we use the notation and definitions

given in full in [14]. A brief summary follows:
Hybrid systems are systems that display both continuous

and discrete behavior and so bipedal walkers are naturally

modeled by systems of this form: we consider a non-
autonomous hybrid control system, which is a tuple H C =
(Γ, D, U, G, R, FG). If there is no control, then we have

a hybrid system H = (Γ, D, G, R, F ) which is a hybrid

control system with U = {0}.
The continuous component of the hybrid model will con-

sist of dynamics dictated by Lagrangians. For a configuration

space Q ⊆ R
n, consider a Lagrangian given in coordinates

by L(q, q̇) = T (q, q̇)−V (q) with forcing term Υ; the dynam-

ics are obtained from the forced Euler-Lagrange equations:

ELq(L) =
d

dt

∂L

∂q̇
− ∂L

∂q
= Υ. (1)
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Of special interest are Lagrangians of the form L =
1
2 q̇T M(q)q̇ − V (q) modeling mechanical systems, in which

case the Euler-Lagrange equations become (cf. [11], §6.1.2):

M(q)q̈ + C(q, q̇)q̇ + N(q) = Υ, (2)

which yields the control system:

fL(q, q̇) =
(

q̇
M−1(q)(Υ − C(q, q̇)q̇ − N(q))

)

gL(q) =
(

0n×k

M−1(q)B

)
, (3)

where 0n×k is a n × k matrix of zeros.

The discrete component of the hybrid system modeling

a biped is obtained from various constraints: unilateral,

holonomic and kinematic.

Simple discrete phenomena (such as knees locking and

parts of the foot striking the ground) are modeled through

unilateral constraints, written as tuples h = (Q, L, h); these

yield corresponding domains and guards,

Dh = {(q, q̇) ∈ TQ : h(q) ≥ 0}, (4)

Gh = {(q, q̇) ∈ TQ : h(q) = 0 and dqh(q)q̇ < 0},
They also yield reset maps when viewed as simple kinematic

constraints (to be defined shortly).

In some domains, we must impose a holonomic constraint,
written as a tuple η = (Q, L, η) which yields a correspond-

ing domain and guard,

Dη = {(q, q̇, u) ∈ TQ × R
k : λη(q, q̇, u) ≥ 0}, (5)

Gη = {(q, q̇, u) ∈ TQ × R
k : λη(q, q̇, u) = 0

and λ̇η(q, q̇, u) < 0}, (6)

and a reset map which is the identity map. These constraints

also affect the dynamics: given a vector of Lagrange multi-

pliers λη : TQ×R
k → R

c with k the number of inputs, one

obtains the holonomically-constrained dynamics:

M(q)q̈ + C(q, q̇)q̇ + N(q) + dqη(q)T λη(q, q̇, u) = Bu, (7)

which yields a control system as in (3) by solving for q̈.

In order to derive reset maps, we sometimes require

additional constraints, kinematic constraints (containing the

unilateral constraint, if present), which are written as tuples

κ = (Qs, Qt, M, κ, ι, J) that give a reset map

R(qs, q̇s) =
(

J 0
0 J

)
π∗

(
ι(qs)

P (ι∗(qs, q̇s))

)
(8)

with P the rigid body plastic impact equations (cf. [14]).

III. BIPEDAL MODEL

In this section, the hybrid model of the biped that will

be studied is introduced (note that due to space constraints,

and the large complexity of the expressions, the specific

expressions for the Lagrangians and constraint functions used

to define this system are not included, but can be found at

[18]). The coronal angles for all domains are shown in Fig.

2(f). We define the hybrid control system:

H C 3D = (Γ, D, U, G, R, FG) (9)

with Γ the oriented graph of the system (see Fig. 1):

Γ = ({kl , hl , hs, ts, tl}, {ekl = (kl , hl), ehl = (hl , hs),
ehs = (hs, ts), ets = (ts, tl), etl = (tl , kl)}),

The specific elements of (9) will now be given.
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Fig. 2: Biped Configurations (ϕ angles not shown)

Domain 1 (kl): The stance foot is flat on the ground

and the non-stance knee is unlocked. The configuration is

shown in Fig. 2(a). The admissible control on this domain

is Ukl = R
6 and the guard is knee-lock, which occurs

when the knee becomes straight and locks. We define the

unilateral constraint hkl = (Qkl , Lkl , hkl), where Qkl =
R

6 has coordinates qkl = (θst , θnst , θnsc , θnsf , ϕs , ϕns)T ,

Lkl(qkl) = 1
2 q̇T

klMkl(qkl)q̇kl − Vkl(qkl) is the Lagrangian

modeling the system, and hkl(qkl) = θnsc − θnst is the

relative angle of the non-stance knee. Using hkl , the domain

and guard are then given in (4).

We define the kinematic constraint κkl =
(Qkl , Qhl , Mkl , κkl , ιkl , Jkl), with Qhl introduced in the next

domain, κkl(qkl) = hkl(qkl), ιkl : Qkl → Qkl ∪ J−1
kl (Qhl)

the embedding given by (θst , θnst , θnsc , θnsf , ϕs , ϕns) �→
(−π

2 , θst , θnst , θnsc , θnsf , ϕs , ϕns), and Jkl = I . The reset

map is given by (8). The control system is as in (3).

Domain 2 (hl): Both knees are locked and the stance foot is

flat on the ground. The configuration is shown in Fig. 2(b).

The admissible control on this domain is Uhl = R
5 and

the guard is heel-lift. Therefore, we define the holonomic
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constraint ηhl = (Qhl , Lhl , ηhl), where Qhl = R
6 has

coordinates qhl = (θsf , θst , θnst , θnsf , ϕs , ϕns)T , Lhl(qhl) =
1
2 q̇T

hlMhl(qhl)q̇hl − Vhl(qhl) is the Lagrangian modeling the

system, and ηhl : Qhl → R is the height of the stance heel.

Using ηhl , the domain and guard are then given in (5).
The reset map is simply the identity map. Finally, the

control system is given in (7) using the Lagrange multiplier

ληhl
(qhl , q̇hl , uhl) obtained from the holonomic constraint.

Domain 3 (hs): Both knees are locked and the system is

rotating about the stance toe. The configuration is shown in

Fig. 2(c). The admissible control on this domain is Uhs =
R

5 and the guard is heel-strike. Therefore, we define the

unilateral constraint hhs = (Qhs , Lhs , hhs), where Qhs =
R

6 has coordinates qhs = (θsf , θst , θnst , θnsf , ϕs , ϕns)T ,

Lhs(qhs) = 1
2 q̇T

hsMhs(qhs)q̇hs − Vhs(qhs) is the Lagrangian

modeling the system, and hhs(qhs) is the height of the stance

heel. Using hhs , the domain and guard are given in (4).
In order to define the reset map, we need the kinematic

constraint, κhs = (Qhs , Qts , Mts , κhs , ιhs , Jhs), with Qts

and Mts introduced in the next domain, κ : Qhs → R
3 the

non-stance heel position, and ιhs : Qhs → Qhs ∪ J−1
hs (Qts)

the embedding given by (θsf , θst , θnst , θnsf , ϕs , ϕns) �→
(θsf , θst , θst , θnst , θnsf , ϕs , ϕns).
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Fig. 3: Model configuration

The reset map

requires that the

non-stance and

stance legs be

switched through

a relabeling

matrix Jhs

(consisting of

1’s and 0’s) that

flips the angles.

The reset map

is then given in

(8). Finally, the

control system is

given in (3).

Domain 4 (ts): The non-stance knee is unlocked and the

system is rotating about the stance heel. The non-stance

toe is on the ground. The configuration is shown in Fig.

2(d). The admissible control on this domain is Uts = R
6

and the guard is toe-strike, which occurs when the stance

toe rolls into the ground. Therefore, we define the unilat-

eral constraint hts = (Qts , Lts , hts), where Qts = R
7

has coordinates qts = (θsf , θst , θnst , θnsc , θnsf , ϕs , ϕns)T ,

Lts(qts) = 1
2 q̇T

tsMts(qts)q̇ts − Vts(qts) is the Lagrangian

modeling the system, and hts(qts) is the height of the stance

toe. Using hts , the domain and guard are given in (4).
In order to define the reset map and control system,

we will need to define the holonomic constraint, ηts =
(Qts , Lts , ηts), with ηts : Qts → R

3 the x, y, z position

of the non-stance toe which will be enforced by a vector of

Lagrange multipliers, ληts
: TQts × Uts → R

3, of the form

ληts
(qts , q̇ts , uts). Augmenting the dynamics in this way will

prevent the non-stance toe from moving.
We define the kinematic constraint κts =

(Qts , Qtl , Mts , κts , ιts , Jts) with Qtl introduced in the next

domain, κts : Qts → R
4 given by κts(qts) = (hts , η

T
ts)

T ,

and ιts the identity map. Note that including the holonomic

constraints causes the non-stance toe to have zero velocity

after impact. The reset map is given by (8) with Jts = I .

The control system is obtained from (7).

Domain 5 (tl): The stance foot is flat on the ground and

the non-stance knee is unlocked. The non-stance toe is on

the ground. The configuration is shown in Fig. 2(e). The

admissible control on this domain is Utl = R
6 and the

guard is toe-lift, which occurs when the non-stance toe lifts

from the the ground. Therefore, we define the holonomic

constraint ηtl = (Qtl , Ltl , ηtl), where Qtl = R
6 has

coordinates qtl = (θst , θnst , θnsc , θnsf , ϕs , ϕns)T , Ltl(qtl) =
1
2 q̇T

tl Mtl(qtl)q̇tl − Vtl(qtl) is the Lagrangian modeling the

system, and ηtl : Qtl → R
3 is a vector specifying the

x, y, z positions of the non-stance toe. From the holonomic

constraints, we calculate a vector of Lagrange multipliers.

We use (ληtl
)3 (i.e., the constraining force in the z direction)

to specify the domain and guard as given in (5).
The reset map is simply the identity map. Finally, the

control system is obtained from (7) using the Lagrange

multiplier derived from ηtl(qtl).

IV. FUNCTIONAL ROUTHIAN REDUCTION

In this section, we extend the functional Routhian Re-
duction of [2] to cover the case of m cyclic variables

with external forces. Specifically, we will consider the non-

conservative forces Υ : TQ → R
n which do not depend on

ϕ, ϕ̇ and act only on the θ component of the corresponding

Euler-Lagrange equations. Performing this reduction on the

biped will allow us to decouple the sagittal and coronal dy-

namics and then achieve stable walking in three dimensions.

Almost-Cyclic Lagrangians. Consider a system with con-

figuration space Q = S × R
m, where S is called the shape

space. Let the coordinates be represented by q = (θT , ϕT )T

with θ ∈ S and ϕ ∈ R
m. A Lagrangian Lλ : TS×TR

m → R

is almost-cyclic if it takes the form

Lλ(θ, ϕ, θ̇, ϕ̇) = (10)

1
2

(
θ̇T ϕ̇T

)
Mλ(θ)

(
θ̇
ϕ̇

)
− Wλ(θ, ϕ, θ̇) − Vλ(θ, ϕ),

Mλ(θ) = (11)(
Mθ(θ) + MT

ϕ,θ(θ)M
−1
ϕ (θ)Mϕ,θ(θ) MT

ϕ,θ(θ)
Mϕ,θ(θ) Mϕ(θ)

)
,

Wλ(θ, ϕ, θ̇) = λT (ϕ)M−1
ϕ (θ)Mϕ,θ(θ)θ̇,

Vλ(θ, ϕ) = Vfct(θ) − 1
2
λT (θ)M−1

ϕ (θ)λ(θ),

for some λ : R
m → R

m with Mθ : S → R
n−m×n−m and

Mϕ : S → R
m×m are positive definite symmetric.

Momentum maps. Reduction is based on the concept of

conserved quantities specificed by a momentum map:

J(θ, ϕ, θ̇, ϕ̇) =
∂Lλ

∂ϕ̇
(θ, ϕ, θ̇, ϕ̇) = Mϕ,θ(θ)θ̇ + Mϕ(θ)ϕ̇.
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Unlike standard Routhian reduction, for functional Routhian

reduction we set this map equal to a function λ(ϕ).
Functional Routhians. For an almost-cyclic Lagrangian

Lλ, define the functional Routhian Lfct : TS → R as

Lfct(θ, θ̇) =
[
Lλ(θ, ϕ, θ̇, ϕ̇) − λT (ϕ)ϕ̇

]
J(θ,ϕ,θ̇,ϕ̇)=λ(ϕ)

Because J(θ, ϕ, θ̇, ϕ̇) = λ(ϕ) implies that

ϕ̇ = M−1
ϕ (θ)(λ(ϕ) − Mϕ,θ(θ)θ̇), (12)

by direct calculation the functional Routhian is given by:

Lfct(θ, θ̇) =
1
2
θ̇T Mθ(θ)θ̇ − Vfct(θ). (13)

The Euler-Lagrange equations of Lλ (in the presence of

external forcing Υ(q, q̇, t)) yield the dynamical system

fLλ
(q, q̇, t) = (14)(

q̇

−M−1
λ (q)(ELq(Lλ) − Mλ(q)q̈ − Υ(θ, θ̇, t))

)
,

with ELq(Lλ) the Euler-Lagrange equations of Lλ; see (1).

In addition, the vector field, fLfct , corresponding to Lfct is

given by (3). The solutions of these two systems are related

in the following manner (in a way analogous to the classical

Routhian reduction result, see [9], pp. 260).

Theorem 1: Let Lλ be an almost-cyclic Lagrangian with
m almost-cyclic variables and Lfct the corresponding func-
tional Routhian with shape space S = R

n−m. Additionally,
let Υ : TS × R → R

n represent external forces applied to
the system satisfying:

(i) Υ(θ, θ̇, t) does not depend on ϕ, ϕ̇,
(ii) Υi(θ, θ̇, t) = 0 for i = n − m + 1, . . . , n.

(i.e., no external forces act on the angles of the almost-cyclic
variables.)

Then, (θ(t), ϕ(t), θ̇(t), ϕ̇(t)) is a solution to the forced
vector field fLλ

given by (14) on [t0, tF ] with

ϕ̇(t0) = M−1
ϕ (θ(t0))(λ(ϕ(t0)) − Mϕ,θ(θ(t0))θ̇(t0)), (15)

if and only if (θ(t), θ̇(t)) is a solution to the forced vector
field fLfct given by (3) and (ϕ(t), ϕ̇(t)) satisfies:

ϕ̇(t) = M−1
ϕ (θ(t))(λ(ϕ(t)) − Mϕ,θ(θ(t))θ̇(t)). (16)

This theorem is the main theoretical result of this paper.

The proof can be found in [15].

V. REDUCTION CONTROL LAWS

In this section, we introduce the control laws that will be

applied to the model considered in this paper. We assume

the presence of a control law, Kδ
2D(θ, θ̇, t), (with δ a set

of control gains) that gives stable walking on the sagitally-

restricted model (the control law used is described in [14]).
The Lagrangian of the 3D biped considered in this paper

has the general form (on each domain):

L3D(q, q̇) = −V3D(q) + (17)

1
2

(
θ̇T ϕ̇T

) (
Mθ(θ) MT

ϕ,θ(θ, ϕ)
Mϕ,θ(θ, ϕ) Mϕ(θ, ϕ)

)
︸ ︷︷ ︸

M3D(q)

(
θ̇
ϕ̇

)
,

where the inertia matrix M3D(q) has been written in block

form and V3D(q) is the potential energy. The control system

associated to this Lagrangian, (f3D, g3D), is given in (3).

Reduced dynamics. Consider the sagittal dynamics of the

3D biped. These dynamics have configuration space Q2D =
R

n−m (where m is the number of cyclic variables in the 3D

system) with coordinates θ. The Lagrangian is given by

L2D(θ, θ̇) =
1
2
θ̇T Mθ(θ)θ̇ − V2D(θ),

with Mθ(θ) a submatrix as defined in (17) and V2D(θ) =
V3D(q)|ϕ=0. These equations yield the control system

(f2D, g2D) as in (3). Applying the existing control law,

Kδ
2D(θ, θ̇, t), yields the dynamical system

fδ
2D(θ, θ̇, t) = f2D(θ, θ̇) + g2D(θ)Kδ

2D(θ, θ̇, t). (18)

This will later be specialized to each domain.

Having defined the 3D system and its reduced 2D coun-

terpart, we turn our focus to shaping the 3D system in such

a way that we can apply Theorem 1, making it equivalent

to the 2D system. In an attempt to satisfy the conditions

of Theorem 1, we implement two control laws. The first

control law transforms the 3D Lagrangian, L3D(q, q̇), given

by (10) into an almost-cyclic Lagrangian as in the statement

of Theorem 1. The second control law uses input/output

linearization to stabilize to the surface of initial conditions

for which the reduction is valid. Combining these control

laws with the assumed 2D control law, Kδ
2D(θ, θ̇, t), allows

us to achieve stable walking for the 3D biped.

Lagrangian shaping controller. Having an almost-cyclic

Lagrangian enables us to perform reduction. This controller,

therefore, shapes the Lagrangian of the system into an

almost-cyclic Lagrangian. Consider the almost-cyclic La-

grangian Lα given in (10), where we choose the function

λ(ϕ) = −αϕ, with α ∈ R a positive constant specifying the

rate of convergence, and switch the subscripts accordingly

to represent the new control gain, α.

Let Kδ
3D(θ, θ̇, t) = ((Kδ

2D(θ, θ̇, t))T ,0m)T represent the

2D walking controller in a form which can be applied to

the 3D system by padding the control vector with m zeros

representing the control inputs on the m cyclic variables.

Then define the feedback control law:

Kα,δ
3D (q, q̇, t) = B−1(C3D(q, q̇)q̇ + N3D(q) (19)

+ M3D(q)M−1
α (q)(Kδ

3D(θ, θ̇, t) − ELq(Lα) + Mα(q)q̈).

with Mα(q) the shaped inertia matrix as given in (11),

Cα(q, q̇) the shaped Coriolis matrix, and Nα(q) = ∂Vα(q)
∂q

with Vα(q) from (11) having the potential energy of the 2D

system Vfct(q) = V2D(θ). This yields the dynamical system

fα,δ
3D (q, q̇, t) = f3D(q, q̇) + g3D(q)Kα,δ

3D (q, q̇, t). (20)

By Theorem 1, we have:

Proposition 1: (θ(t), ϕ(t), θ̇(t), ϕ̇(t)) is a solution to the
vector field fα,δ

3D (q, q̇) on [t0, tF ] with

ϕ̇(t0) = −M−1
ϕ (θ(t0))(αϕ(t0) + Mϕ,θ(θ(t0))θ̇(t0), (21)
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if and only if (θ(t), θ̇(t)) is a solution to the vector field
fδ
2D(θ, θ̇) and (ϕ(t), ϕ̇(t)) satisfies:

ϕ̇(t) = −M−1
ϕ (θ(t))(αϕ(t) + Mϕ,θ(θ(t))θ̇(t)). (22)

Thus for initial conditions satisfying (21), the dynamics

of fα,δ
3D (q, q̇) can be effectively decoupled into the sagittal

and coronal dynamics with the control law Kα,δ
3D (q, q̇, t).

Furthermore, the coronal dynamics evolve according to (22).

Input-output linearization controller. Reduction allows

us to effectively decouple the sagittal and coronal dynamics

but only when the conditions (21) of Proposition 1 are

satisfied. Since these conditions are not always satisfied we

introduce a second control law to drive the system to the

surface where these conditions are satisfied. We will use the

standard method of input/output linearization (See [13] for

the continuous case and [7], [10] for the hybrid analogue).

We begin by defining a new control system, (fα,δ
3D , gα,δ

3D ),
with fα,δ

3D given in (20) and gα,δ
3D given by

gα,δ
3D (q) = g3D(q)

(
0n−m×n−m 0n−m×m

0m×n−m Im

)
. (23)

Define the output

y(q, q̇) = ϕ̇ + M−1
ϕ (θ)(αϕ + Mϕ,θ(θ)θ̇).

If y(q, q̇) = 0 then (21) is satisfied. Thus, we would like to

drive the system to the surface

Z =
{(

q
q̇

)
∈ TQ : y(q, q̇) = 0

}
. (24)

With this in mind and motivated by the standard method of

input/output linearization, define the feedback control law:

Kε,α,δ
3D (q, q̇, t) = (25)

−(Lgα,δ
3D

y(q, q̇))−1

(
Lfα,δ

3D
y(q, q̇) +

1
ε
y(q, q̇)

)
,

where L is the Lie derivative. Note that it can be verified

numerically that Lgα,δ
3D

y(q, q̇) �= 0. Applying this control law

gives us the dynamical system:

f ε,α,δ
3D (q, q̇, t) = fα,δ

3D (q, q̇, t) + g3D(q)Kε,α,δ
3D (q, q̇, t)

VI. CONTROL LAW CONSTRUCTION

We now describe how the control laws of the previous

section are applied to the our model, (9). We again assume

the presence of a control law, Kδ
2D,i(θ, θ̇, t) with correspond-

ing Kδ
3D,i(q, q̇, t), i ∈ V , which causes stable walking in

the reduced model. Our goal is to apply this control law in

addition to applying reduction, whenever possible.

Note we only have full actuation of the ϕ coordinates in

domains kl and hl and thus can only apply reduction in these

domains. Therefore, for i ∈ {hs, ts, tl},

fδ
3D,i(q, q̇, t) = f3D,i(q, q̇) + g3D,i(q)Kδ

3D,i(θ, θ̇, t).

Note that sagittal control law implementation is not covered

in this paper but is exactly analogous to [14].

Domain 1 (kl) and Domain 2 (hl): We implement both

Kδ
3D,kl(θ, θ̇, t) and the reduction control laws for Domains

1 and 2; the implementations are the same so we cover

both domains simultaneously. Let i ∈ {kl , hl}. We start

with the control law Kα,δ
3D,i(q, q̇, t) given in (19) which gives

the vector field fα,δ
3D,i(q, q̇, t) (as in (20)). Using (23), we

get the control system (fα,δ
3D,i, g

α,δ
3D,i). Finally, we implement

Kε,α,δ
3D,i (q, q̇, t) as in (25) which gives the dynamical system:

f ε,α,δ
3D,i (q, q̇, t) = fα,δ

3D,i(q, q̇, t) + gα,δ
3D,i(q)K

ε,α,δ
3D,i (q, q̇).

VII. SIMULATION RESULTS

In this section, we present the simulation results for the

bipedal model and control laws considered in this paper. We

describe the setup and the resulting stable gait. The physical

parameters can be found at [18]. We start in domain kl on

the guard Gkl with our initial condition as the fixed point:

(qkl)0 = ( 0.000874, 0.000312, 0.0341,
−0.278, −0.278, −1.847 )T ,

(q̇kl)0 = ( −0.00641, −0.00205, 0.601,
0.293, −7.284, −7.181 )T .

A sample gait is shown in Fig. 4 and a video can be found

at [18]. First, note that the majority of the gait is spent in

domains kl and hl. In these domains, we perform reduction

and thus we are able to implement a sagittal control law using

full actuation. Note further that the biped does not fall over

sideways—a result of the application of reduction—even

though coronal stabilization is not present throughout the

entire gait. Thus, we are able to achieve decoupled dynamics

even with periods of underactuation.

Because the foot rotation in the coronal plane is small

(see Fig. 5(c)), we make the simplifying assumption that

the foot has no coronal rotation when it strikes the ground.

This greatly reduces the complexity of the model without

significantly affecting its validity. An additional consequence

of ignoring the foot rotation is that the width of the foot is

irrelevant as long as it is not so thin that coronal actuation

of the ankle causes the foot to roll on its side. In our model,

we use feet wide enough to negate this concern.

The phase portraits of the various angles are shown in Fig.

5. It is (numerically) clear that the control laws introduced

in this paper resulted in a limit cycle, i.e., a walking gait

for the biped. Note that the limit cycle of the system must

go through 10 domains in order to complete one cycle (as

Fig. 4: Example of 3D gait
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Fig. 5: Phase portraits

opposed to five domains in [14]); in other words, the system

is bi-periodic. This is caused by the coronal swaying of the

system, which occurs as a result of the back toe kicking off

and to a lesser extent, the impact of the non-stance foot and

the reduction controller. This swaying motion is beneficial

in that it allows for extra clearance of the non-stance foot.
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Fig. 6: Virtual outputs and control

Note the

similarity

between Figs.

5(a) and

5(b) and the

corresponding

figures in

[14]. The

phase portraits

are virtually

identical as we

would expect

and hope. Thus reduction is effective at decoupling the

sagittal and coronal dynamics of the system with the end

result that it is possible to construct a hipped biped and

utilize the much simpler 2D control laws of the reduced

counterpart to effect stable walking.

In order for reduction to be valid, we needed to satisfy

the conditions given in (21), i.e., stabilize to the surface (24)

which was achieved through input/output linearization. This

controller drives the system to this surface at an exponential

rate as seen in Fig. 6. Additionally, the required amount of

control decreases as the system gets closer to the surface.

The gaps in the figure represent the domains in which we do

not apply reduction. Also note that the zero dynamics are not

invariant as evidenced by the jumps resulting from impacts.

The model considered is very complex. As a result, we

were unable to calculate accurate eigenvalues of a linearized

Poincaré map. Performing this calculation requires a high

degree of numerical precision and as such, the calculation

would require significant computing power. Thus, we can

only state the gait appears to be stable as it does not diverge

even after hundreds of steps and initial conditions near the

limit cycle converge to the limit cycle. Future research should

therefore include computing accurate eigenvalues to examine

the stability of the system. Additionally, we would like to

optimize the control gains used for reduction.
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