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Abstract— This paper presents a method for completing
Lagrangian hybrid systems models in a formal manner. That
is, given a Lagrangian hybrid system, i.e., a hybrid system that
models a mechanical system undergoing impacts, we present
a systematic method in which to extend executions of this
system past Zeno points by adding an additional domain to
the hybrid model. Moreover, by utilizing results that provide
sufficient conditions for Zeno behavior and for stability of Zeno
equilibria in Lagrangian hybrid systems, we are able to give
explicit bounds on the error incurred through the practical
simulation of these completed hybrid system models. These
ideas are illustrated on a series of examples, and are shown
to be consistent with observed reality.

I. INTRODUCTION

The existence of Zeno behavior—an infinite number of

discrete transitions in a finite amount of time—is an in-

triguing phenomenon which is unique to hybrid systems.

When modeling real physical systems as hybrid systems, it

is often argued that the Zeno behavior represents an inherent

limitation of the hybrid model, since it fails to predict the

behavior of the physical system past the Zeno time. This line

of reasoning motivates the following question: how does one

detect these model shortcomings and overcome them? The

answer to this question, like the question itself, is two-fold:

one must detect the existence of Zeno behavior and then use

the information present in the model to augment it in a way

that represents physical reality.

The goal of this paper is to present a method for “com-

pleting” hybrid systems that model mechanical systems un-

dergoing impacts: Lagrangian hybrid systems. In particular,

we consider a configuration space, a Lagrangian modeling a

mechanical system, and a unilateral constraint function that

gives the set of admissible configurations for this system.

From this data, we obtain a Lagrangian hybrid system. The

benefit of studying systems of this form is that they often

display Zeno behavior (when an infinite number of collisions

occur in a finite amount of time), so they give an ideal class

of system in which to gain an intuitive understanding of Zeno

behavior, e.g., due to the physical nature of these systems,

when they display Zeno behavior it is clear what the system

“should” do after reaching a Zeno point.

Using the special structure of Lagrangian hybrid systems,

the main observation is that points to which Zeno executions
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converge—Zeno points—must satisfy constraints imposed

by the unilateral constraint function. These constraints are

holonomic in nature, which implies that after converging

to a Zeno point, the hybrid system should switch to a

holonomically constrained dynamical system evolving on the

zero level set of the unilateral constraint function. Moreover,

if the force constraining the dynamical system to the surface

becomes zero, there should be a switch back to the original

hybrid system. However, while these observations, and the

resulting “formal” completion described in this paper are

theoretically valuable, they are not practically useful, since

in general the exact limit point of a Zeno execution cannot be

computed analytically, as it requires computation of infinite

number of discrete transitions.

In order to provide a method for completing hybrid

systems that is practically applicable, it is first necessary to

detect the existence of Zeno behavior. In this work, we utilize

conditions for the existence of Zeno behavior and stability

of Zeno equilibria which were obtained in [8] and [13]. Due

to the constructive nature of the proofs of these results, we

are able to leverage them in this paper in order to compute

bounds on the errors incurred by a finite truncation of a

Zeno execution, which is necessary in practical simulations.

These results allow us to propose a method for practically

completing hybrid systems such that the truncation errors are

guaranteed to satisfy any pre-specified bounds.

There have been many different methods proposed in the

literature for dealing with Zeno behavior. The techniques

and ideas presented in this paper are motivated by [1],

although in that paper the transition from the constrained

dynamical system back to the hybrid system was overlooked,

sufficient conditions for Zeno behavior were not utilized in

the practical completion process, and no formal bounds on

truncated Zeno solutions were given. Note that the technique

presented here is analogous to the technique proposed in

[5] in the context of switched systems, where the solution

slides along the switching surface. Another technique that

has been proposed in the hybrid systems literature is that of

regularization [7], which was applied to specific examples

without stating any formal results. In a similar spirit, [11]

proposed the notion of generalized solutions, obtained by

considering elastic constraint forces and taking the formal

limit as the stiffness tends to infinity.

II. LAGRANGIAN HYBRID SYSTEMS

In this section, we introduce the notion of a hybrid

Lagrangian, the associated Lagrangian hybrid system, and

discuss Zeno behavior and the corresponding notion of Zeno

equilibria in systems of this form. Hybrid systems of this
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Fig. 1. A graphical representation of a simple hybrid system.

form have been studied in the context of Zeno behavior see

[1], [8], and were also formulated as linear complementarity

systems in [3] and [16].

We begin this section by reviewing the notion of a simple

hybrid system (A graphical representation of a simple hybrid

system can be seen in Fig. 1).

Definition 1: A simple hybrid system is a tuple:

H = (D,G, R, f),

where

• D is a smooth manifold called the domain,

• G is an embedded submanifold of D called the guard,

• R is a smooth map R : G → D called the reset map,

• f is a smooth vector field on the manifold D.

This paper focuses on simple hybrid systems, having a

single domain, guard, reset map, and vector field. A general

hybrid system (see [9] and [17]), which is not discussed here,

consists of a collection of domains, guards, reset maps and

vector fields as indexed by an oriented graph.

Hybrid executions. A hybrid execution1 of a simple hybrid

system H is a tuple χH = (Λ, I, C), where

• Λ = {0, 1, 2, . . .} ⊆ N is an indexing set.

• I = {Ii}i∈Λ is a hybrid interval where Ii = [τi, τi+1]
if i, i+1 ∈ Λ and IN−1 = [τN−1, τN ] or [τN−1, τN ) or

[τN−1,∞) if |Λ| = N , N finite. Here, τi, τi+1, τN ∈ IR
and τi ≤ τi+1.

• C = {ci}i∈Λ is a collection of integral curves of f , i.e.,

ċi(t) = f(ci(t)) for t ∈ Ii, i ∈ Λ,

and the following conditions hold for every i, i + 1 ∈ Λ:

(i) ci(τi+1) ∈ G,
(ii) R(ci(τi+1)) = ci+1(τi+1),
(iii) τi+1 = min{t ∈ Ii : ci(t) ∈ G}.

The initial condition for the hybrid execution is c0(τ0).

Lagrangians. Let Q be the n-dimensional configuration

space for a mechanical system (assumed to be a smooth

manifold) and TQ the tangent bundle of Q. In this paper,

we will consider Lagrangians, L : TQ → IR, describing

mechanical systems, which take the form

L(q, q̇) =
1

2
q̇T M(q)q̇ − V (q), (1)

where M(q) is the (positive definite) inertial matrix,
1
2 q̇T M(q)q̇ is the kinetic energy and V (q) is the potential

1Note that we refer to an execution of a hybrid system as a “hybrid
execution” in order to differentiate it from other types of executions that
will be considered in this paper.

energy. In this case, the Euler-Lagrange equations yield the

(unconstrained) equations of motion for the system:

M(q)q̈ + C(q, q̇)q̇ + N(q) = 0, (2)

where C(q, q̇) is the Coriolis matrix (cf. [12]) and N(q) =
∂V
∂q

(q). Setting x = (q, q̇), the Lagrangian vector field, fL,

associated to L takes the familiar form:

ẋ = fL(x) =

(
q̇

M(q)−1(−C(q, q̇)q̇ − N(q))

)
. (3)

This process of associating a dynamical system to a La-

grangian will be mirrored in the setting of hybrid systems.

First, we introduce the notion of a hybrid Lagrangian.

Definition 2: A simple hybrid Lagrangian is defined to

be a tuple

L = (Q,L, h),

where

• Q is the configuration space,

• L : TQ → IR is a hyperregular Lagrangian,

• h : Q → IR provides a unilateral constraint on the

configuration space; we assume that the zero level set

h−1(0) is a smooth manifold.

Simple Lagrangian hybrid systems. For a Lagrangian (1),

there is an associated dynamical system (3). Similarly, given

a hybrid Lagrangian L = (Q,L, h) the simple Lagrangian

hybrid system (SLHS) associated to L is the simple hybrid

system:

HL = (DL, GL, RL, fL).

First, we define

DL = {(q, q̇) ∈ TQ : h(q) ≥ 0},

GL = {(q, q̇) ∈ TQ : h(q) = 0 and dh(q)q̇ ≤ 0},

where dh(q) =

(
∂h

∂q
(q)

)T

=
(

∂h
∂q1

(q) · · · ∂h
∂qn

(q)
)

.

In this paper, we adopt the reset map:

RL(q, q̇) = (q, PL(q, q̇)),

which based on the impact equation ([2])

PL(q, q̇)= q̇−(1+ e) dh(q)q̇
dh(q)M(q)−1dh(q)T M(q)−1dh(q)T, (4)

where 0 ≤ e ≤ 1 is the coefficient of restitution, which

is a measure of the energy dissipated through impact. This

reset map corresponds to rigid-body collision law under the

assumption of frictionless impact [2]. Examples of more

complicated collision laws that account for friction can be

found in [2] and [4]. Finally, fL = fL is the Lagrangian

vector field associated to L in (3).

Zeno behavior. A hybrid execution χH is Zeno if Λ = N

and limi→∞ τi = τ∞ < ∞. Here τ∞ is called the Zeno

time. If χHL is a Zeno execution of a Lagrangian hybrid

system HL, then its Zeno point is defined to be

c∞ = (q∞, q̇∞) = lim
i→∞

ci(τi) = lim
i→∞

(qi(τi), q̇i(τi)).

3625



 

θ1 

m1,L1 

θ2 

m2,L2 

g 

(b) 

mechanical  
stop 

Fig. 2. (a) The ball on a sinusoidal surface (b) The double pendulum

These limit points are intricately related to a type of equi-

librium points that are unique to hybrid systems: Zeno

equilibria.

Definition 3: A Zeno equilibrium point of a simple hybrid

system H is a point x∗ ∈ G such that

• R(x∗) = x∗,

• f(x∗) �= 0.

Zeno equilibria. If HL is a Lagrangian hybrid system,

then due to the special form of these systems we find that

the point (q∗, q̇∗) is a Zeno equilibria iff q̇∗ = PL(q∗, q̇∗),
with PL given in (4). In particular, the special form of PL

implies that this holds iff dh(q∗)q̇∗ = 0. Therefore the set of

all Zeno equilibria for a Lagrangian hybrid system is given

by the hypersurface in GL:

Z = {(q, q̇) ∈ GL : dh(q)q̇ = 0}.

Note that if dim(Q) > 1, the Zeno equilibria in Lagrangian

hybrid systems are always non-isolated (see [8])—this mo-

tivates the study of such equilibria.

Example 1 (Ball): The first running example of this pa-

per is a planar model of a ball bouncing on a sinusoidal

surface (cf. Fig. 2(a)). The ball is modeled as a point mass

m. In this case

B = (QB, LB, hB),

where QB = IR2, and the configuration is the position of

the ball q = (x, y),

LB(x, ẋ) =
1

2
m‖q̇‖2 − mgy.

Finally, the ball’s configuration is unilaterally constrained

by the constraint function hB(q) = y − sin(x) ≥ 0. So,

for this example, there are trivial dynamics and a nontrivial

constraint function.

Note that from the hybrid Lagrangian B = (QB, LB, hB)
we obtain a hybrid system HB = (DB, GB, RB, fB). The

set of Zeno equilibria for this hybrid system are given by:

Z = {(x, y, ẋ, ẏ) ∈ GB : ẏ − ẋ cos(x) = 0}.

Physically, this set corresponds to states at which the ball

slides along the sinusoidal surface.

Example 2 (Double Pendulum): Our second running ex-

ample is a constrained double pendulum with a mechanical

stop (cf. Fig. 2(b)). The double pendulum consists of two

rigid links of masses m1, m2, lengths L1, L2, and uniform

mass distribution, which are attached by passive joints, while

a mechanical stop dictates the range of motion of the second

link. The example serves as a simplified model of a leg

with a passive knee and a mechanical stop, which is widely

investigated in the robotics literature in the context of passive

dynamics of bipedal walkers (cf. [10] and [15]). In this case

P = (QP, LP, hP),

where QP = S
1 × S

1, q = (θ1, θ2), and

LP(q, q̇) = 1
2 q̇T M(q)q̇ + ( 1

2m1L1 + m2L1)g cos θ1

+ 1
2m2L2g cos(θ1 + θ2),

with the elements of the 2×2 inertia matrix M(q) given by

M11 = m1L
2
1/3 + m2(L

2
1 + L2

2/3 + L1L2 cos θ2)

M12 = M21 = m2(3L1L2 cos θ2 + 2L2
2)/6

M22 = m2L
2
2/3.

Finally, the constraint that represents the mechanical stop is

given by hP(q) = θ2 ≥ 0. So, for this example, there are

nontrivial dynamics and a trivial constraint function.

Note that from the hybrid Lagrangian P = (QP, LP, hP)
we obtain a hybrid system HP = (DP, GP, RP, fP). The

set of Zeno equilibria for this hybrid system are given by:

Z = {(θ1, θ2, θ̇1, θ̇2) ∈ DP : θ2 = 0, θ̇2 = 0}.

That is, the set of Zeno equilibria are the set of points where

the lower link (i.e. the “knee”) is locked.

III. THE COMPLETED LAGRANGIAN HYBRID SYSTEM

In this section, we present a method for carrying execu-

tions of Lagrangian hybrid systems beyond Zeno equilibria,

i.e., we formally define a “completed” hybrid system.

Overview of completion process. The motivation for

completing hybrid system models is based upon the fact

that despite the name “Zeno equilibrium,” a Zeno point

c∞ is not a physical equilibrium point, since it satisfies

fL(c∞) �= 0, and involves nonzero velocity. It was postulated

[1] that after the Zeno time, the system should switch to a

holonomically constrained dynamical system. Note that this

postulation is essentially a modeling paradigm, and as such,

its correctness cannot be mathematically proven. However,

we argue that this concept correctly captures the physical

behavior of mechanical systems with unilateral constraints,

modeled here as Lagrangian hybrid systems.

The main observation of [1] is that a Zeno execution

of a Lagrangian Hybrid System converges to a limit point

(q∞, q̇
∞

) that satisfies h(q∞) = 0 and dh(q∞)q̇
∞

= 0. This

limit point lies on the surface h−1(0) = {q ∈ Q : h(q) = 0},

and its velocity vector is tangent to this surface. Since in

Lagrangian hybrid systems the unilateral constraint h(q) ≥ 0
usually represents a mechanical contact, it is hypothesized in

[1] that once such a contact is re-established via a Zeno

execution, it is then maintained by a constraining force.

This behavior is captured by the formulation of a holo-

nomically constrained dynamical system whose trajectories
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are constrained to the surface h−1(0), where the constraint

is maintained by a Lagrange multiplier λ, representing the

physical contact force.

An important fact that was overlooked in [1] is that, in

such systems, a contact force is often also constrained to

be non-negative, thus eliminating tension or adhesion forces.

Under this assumption, our completed model suggests that at

a zero-crossing event of the constraint force, the constrained

system switches back to the hybrid system. Physically, this

event corresponds to contact breakage and separation.

Constrained dynamical systems. We now define the holo-

nomically constrained dynamical system DL associated with

the hybrid Lagrangian L. For such systems, the constrained

equations of motion can be obtained from the equations of

motion for the unconstrained system (2), and are given by

(cf. [12]):

M(q)q̈ + C(q, q̇)q̇ + N(q) = dh(q)T λ, (5)

where λ is the Lagrange multiplier which represents the

contact force. Differentiating the constraint h(q(t)) = 0
twice with respect to time and substituting the solution for

q̈ in (5), the solution for the constraint force λ is obtained

as follows:

λ(q, q̇) =
(
dh(q)M(q)−1dh(q)T

)−1(
dh(q)M(q)−1(C(q, q̇)q̇ + N(q)) − q̇T H(q)q̇

)
,

(6)

where H(q) is the Hessian of h at q. From the constrained

equations of motion, for x = (q, q̇), we get the vector field

ẋ=fλ
L(x)=

(
q̇

−M(q)−1(C(q, q̇)q̇+N(q)−dh(q)T λ(q, q̇))

)

Note that fλ
L defines a vector field on the manifold

TQ|h−1(0), from which we obtain the dynamical system

DL = (TQ|h−1(0), f
λ
L). For this dynamical system, q(t)

slides along the surface h−1(0) as long as the constraint

force λ is positive.

A constrained execution χ̃ of DL is a pair (Ĩ , c̃) where

Ĩ =[t̃0, t̃f ]⊂IR if t̃f is finite and Ĩ =[t̃0, t̃f )⊂IR if t̃f =∞
and c̃ : Ĩ → TQ, with c̃(t) = (q(t), q̇(t)) a solution of (5)

that satisfies the following properties:

(i) h(q(t̃0)) = 0,

(ii) dh(q(t̃0))q̇(t̃0) = 0,

(iii) λ(q(t̃0), q̇(t̃0)) > 0,

(iv) t̃f = min{t ∈ Ĩ : λ(q(t), q̇(t)) = 0}.

(7)

Using the notation and concepts introduced thus far, we

introduce the notion of a completed hybrid system.

Definition 4: If L is a simple hybrid Lagrangian and HL

the corresponding Lagrangian hybrid system, the correspond-

ing completed Lagrangian hybrid system2 is defined to be:

H L :=

{
DL if h(q) = 0, dh(q)q̇ = 0, λ(q, q̇) > 0
HL otherwise.

2As was orginally pointed out in [1], this terminology (and notation) is
borrowed from topology, where a metric space can be completed to ensure
that “limits exist.”

Fig. 3. A graphical representation of a completed hybrid system.

Remarks. First, note that the only way for the transition

to be made from the hybrid system HL to the constrained

system DL is if a specific Zeno execution reaches its Zeno

point. Second, a transition from DL to HL occurs when the

constraint force λ crosses zero. A graphical representation

of the completed system H L is illustrated in Fig. 3. Finally,

let ḧ(q, q̇) be the acceleration of h(q(t)) along trajectories

of the unconstrained dynamics (2), given by ([13]):

ḧ(q, q̇)= q̇T H(q)q̇−dh(q)M(q)−1(C(q, q̇)q̇+N(q)). (8)

The definitions of ḧ(q, q̇) in (8) and λ(q, q̇) in (6) imply

that these two quantities are in complementarity relations,

that is, while the solution slides along the surface h−1(0),
either ḧ = 0 and λ > 0, corresponding to maintaining

constrained motion, or ḧ > 0 and λ = 0, corresponding

to leaving the constraint surface and switching back to the

hybrid system. Thus, the definition of the completed hybrid

system is consistent3.

The completed execution Having introduced the completed

hybrid system, we now introduce the semantics of solutions

of systems of this form, which is captured by the notion of

completed execution of a completed hybrid system.

Definition 5: Given a simple hybrid Lagrangian L and the

associated completed system H L, a completed execution χ
is a (possibly infinite) ordered sequence of alternating hybrid

and constrained executions

χ = {χ(1), χ̃(2), χ(3), χ̃(4), ...}

that satisfies the following conditions:

(i) For each pair χ(i) and χ̃(i+1),

τ
(i)
∞ = t̃

(i+1)
0 and c

(i)
∞ = c̃

(i+1)
0 (t̃

(i+1)
0 ).

(ii) For each pair χ̃(i) and χ(i+1),

t̃
(i)
f = τ

(i+1)
0 and c̃(i)(t̃

(i)
f ) = c

(i+1)
0 (τ

(i+1)
0 ).

where the superscript (i) denotes values corresponding to the

i-th execution in χ, and τ
(i)
∞ , c

(i)
∞ denote the Zeno time and

Zeno point associated with the i-th hybrid execution χ(i).

Note that the first element of χ can also be a constrained

execution χ̃(1), as long as the overall initial conditions satisfy

conditions (i)-(iii) in (7). Note, too, that χ can also consist

of a finite number of executions, where the last execution,

3Note that adding Coulomb’s friction to the constrained motion leads to
possible inconsistencies of the solution [2].
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which can be either a constrained execution or a non-Zeno

hybrid execution, extends to infinite time.

IV. PRACTICAL COMPLETION AND ZENO STABILITY

In this section, we discuss some of the practical difficulties

arising in numerical simulation of completed hybrid systems

near Zeno points. Motivated by these difficulties, we review

some relevant results regarding Zeno behavior and stability

of Zeno equilibria.

Observations. An important observation is that the notion

of completed hybrid system described in Section III is not

practically useful; to be successfully implemented, one would

need exact knowledge of Zeno executions. Since such exact

knowledge cannot be assumed as it requires computing an

infinite number of discrete transitions, one must be prepared

to present a practical method for completing hybrid systems

that will be amenable to simulation. That is, any software

implementation of the numerical simulation of Zeno execu-

tions will necessarily involve a finite truncation of the infinite

sequence of discrete transitions. This leads to the conclusion

that a notion of completing hybrid systems practically must

be introduced—one that can handle errors incurred by the

finite truncation of Zeno executions.

The practical realities of simulating Zeno executions pose

two problems regarding the reliability of the numerical

approximations, that must be addressed. Firstly, one needs to

guarantee that an approximation of a Zeno execution actually

detects the true Zeno behavior of the exact execution, and not

just an aliasing effect resulting from truncations. Secondly,

recall that as part of the completion process, the numerical

simulation would need to generate an approximate Zeno

point which then serves as an initial condition for the

next phase of constrained dynamics. Therefore, in order to

generate a reliable simulation, one needs to guarantee that

the approximated Zeno point lies in an arbitrarily close

neighborhood of the exact Zeno limit point (which cannot

be computed analytically), that is, the approximation error

should satisfy a pre-specified bound. These two problems

will be addressed in this paper through the utilization of

relevant results regarding sufficient conditions for Zeno

behavior and conditions for stability of Zeno equilibria.

Therefore, before discussing how to practically complete

hybrid systems, we will first review these relevant results.

Sufficient conditions for Zeno behavior. In order to address

the problem of reliably detecting Zeno executions, we now

present sufficient conditions for existence of Zeno executions

in the vicinity of a Zeno equilibrium point of a simple

Lagrangian hybrid system. These conditions are based on

evaluating the acceleration ḧ(q, q̇) (Eq. (8)) at the Zeno

equilibrium point, as summarized in the following theorem.

Theorem 1 ([8]): Let HL be a simple Lagrangian hybrid

system and Let x∗ = (q∗, q̇∗) be a Zeno equilibrium point

of HL. Then if e < 1 and ḧ(q∗, q̇∗) < 0, there exists a

neighborhood W ⊂ DL of x∗ such that for every x0 ∈ W ,

there is a unique Zeno execution χHL with c0(τ0)=x0.

This theorem provides a way for detecting candidate Zeno

limit points, such that truncating an execution in their vicinity

and switching to a constrained system preserve the qualitative

behavior of the exact solution. However, the theorem does

not provide any quantitative measure of how close to the

limit point one should truncate, and how large the resulting

approximation error is. This motivates the definition of

stability of Zeno equilibria, given as follows:

Definition 6: Let x∗ = (q∗, q̇∗) be a Zeno equilibrium

point of a simple Lagrangian hybrid system HL. Then x∗ is

defined as bounded-time locally stable (BTLS) if for each

open neighborhood U ⊆ TQ of x∗ and εt > 0, there exists

another open neighborhood W of x∗, such that for every

initial condition c0(τ0) ∈ W ∩DL, the corresponding hybrid

execution χHL is Zeno, and satisfies ci(t) ∈ U for all t ∈ Ii

and i ∈ Λ, while its Zeno time satisfies τ∞ − τ0 < εt.

The definition is equivalent to the notion of uniform Zeno

stability defined in [6]. The following theorem establishes

conditions for the BTLS of Zeno equilibria of SLHS.

Theorem 2 ([13]): Let x∗ = (q∗, q̇∗) be a Zeno equilib-

rium point of a simple Lagrangian hybrid system HL. Then

the following two conditions hold:

(i) If e < 1 and ḧ(q∗, q̇∗) < 0, then x∗ is BTLS

(ii) If ḧ(q∗, q̇∗) > 0, then x∗ is not BTLS

This theorem implies that the conditions given in Theorem

1 are also sufficient for bounded-time local stability. More

importantly, the proof of the theorem, which appears in [13],

provides an explicit construction of the neighborhood W
for a given neighborhood U , which is fundamental to the

practical completion of hybrid systems.

Explicit construction of neighborhoods. We conclude this

section by reviewing the derivation of explicit expressions

for two intermediate neighborhoods associated with a given

U in Theorem 2, which will prove useful in our context

of practical completion with bounded error. For the sake of

concreteness and simplicity, we use a local coordinate chart

for small neighborhoods of x∗. Therefore, we can identify

both q and q̇ with elements of IRn, and use the induced

Euclidean norm ‖ · ‖ to define neighborhoods of x∗ as

N(εq, εv) = {(q, q̇)∈DL : ‖q−q∗‖<εq and ‖q̇−q̇∗‖<εv}.

Using this notation, for a given U there exist εq and εv such

that U ⊆N(εq, εv). Thus, we assume that U is initially in the

form U =N(εq, εv). We now review two lemmas which were

used to prove Theorem 2 in [13]. The first lemma defines an

intermediate neighborhood V ∈ U , such that any execution

that stays within V at all times is guaranteed to be Zeno.

Lemma 1 ([13]): Let x∗ = (q∗, q̇∗) be a Zeno equi-

librium point of a simple Lagrangian hybrid system such

that ḧ(q∗, q̇∗) < 0 and e < 1. Let U = N(εq, εv) be

a given neighborhood of x∗, and define the neighborhood

V = N(ε′q, ε
′

v), where ε′q < εq and ε′v < εv are chosen as to

satisfy the conditions:

amax > amin > 0 and e
amax

amin

< 1, (9)
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where amin = − max
(q,q̇)∈V

ḧ(q, q̇),

amax = − min
(q,q̇)∈V

ḧ(q, q̇).

Then any execution χHL such that ci(t) ∈ V for all t ∈ Ii

and i ∈ Λ, is Zeno.

The second lemma defines a neighborhood W ′ ⊂ GL∩V ,

which lies on the guard GL, such that any execution whose

first collision point c0(τ1) lies within W ′ is guaranteed to

stay within V . First, we define the following scalars:

e′ = e
amax

amin

e′′ = e

√
amax

amin

β = ‖q̇∗‖ + ε′v

η = max
(q,q̇)∈V

‖M−1(q)dh(q)T ‖

dh(q)M(q)dh(q)T

ζ = max
(q,q̇)∈V

∥∥M−1(q) (C(q, q̇)q̇ + N(q))
∥∥ . (10)

Using these definitions, the lemma is as follows.

Lemma 2 ([13]): Let x∗ = (q∗, q̇∗) be a Zeno equilibrium

point of a simple Lagrangian hybrid system HL such that

ḧ(q∗, q̇∗) < 0 and e < 1, and let V = N(ε′q, ε
′

v) be a

neighborhood of x∗ that satisfies (9). For a given εt > 0,

define the neighborhood W ′ as

W ′ = {(q, q̇) ∈ TQ : h(q) = 0, ‖q − q∗‖ ≤ δ′q,

‖q̇ − q̇∗‖ ≤ δ′v , and dh(q)q̇ < −v1max < 0},
(11)

such that δ′q, δ
′

v and v1max satisfy the conditions

δ′q < ε′q, δ′v < ε′v, v1max < min {c1, c2, c3} , (12)

where c1 = amin(1−e′)
2e

εt

c2 =
amin(1−e′)

2eβ
(ε′q − δ′q) (13)

c3 =
(
ε′v − δ′v

) / (
(1+e)η
1−e′′

+ 2eζ
amin(1−e′)

)
.

Then each execution χHL such that c0(τ1) ∈ W ′ is Zeno,

and satisfies ci(t) ∈ V for all t ∈ Ii and i ≥ 1. Moreover,

the corresponding Zeno time satisfies τ∞ − τ1 < εt.

These results will be utilized in the next section for

constructing a reliable approximation for the completed

execution, with guaranteed error bounds.

V. PRACTICAL COMPLETION OF HYBRID SYSTEMS

In this section we describe the procedure of computing

a reliable approximation for the execution of a completed

hybrid system, with guaranteed bounds on the approximation

error, based on the results of Lemmas 1 and 2 regarding

stability of Zeno equilibria. This is a key result of this paper.

Overview. The main idea behind the reliable approxima-

tion algorithm is now outlined. First, a hybrid execution

is simulated, until it reaches a collision at some time τk,

with the state (q(τk), q̇(τk)) satisfying certain conditions,

called the reliable truncation conditions. At that point, the

hybrid execution is truncated, and the algorithm applies a

re-initialization map R∗ that maps the state (q, q̇) at the

time of truncation into a Zeno equilibrium point (q∗, q̇∗).
The algorithm then switches to simulating the constrained

dynamics (5), with the initial conditions given by (q∗, q̇∗).
We now define the re-initialization map R∗, and then

define the reliable truncation conditions. The re-initialization

map R∗ : DL → Z is given by R∗(q, q̇) = (q∗, q̇∗), where

q∗ = q and q̇∗ = q̇ −
dh(q)q̇

‖dh(q)‖
2 dh(q)T .

Note that since R∗ is applied at a collision time, q already

satisfies h(q) = 0. Moreover, under the map R∗, the velocity

q̇ is projected orthogonally onto the plane dh(q)q̇ = 0. Thus,

it is clear that (q∗, q̇∗) is actually a Zeno equilibrium point.

We now define the reliable truncation conditions, depend-

ing on the given bounds εq, εv, and εt, which are the

desired bounds on the position, velocity, and time errors,

respectively, caused by the truncation.

Definition 7: Let (q, q̇) be a state of HL such that h(q) =
0 and dh(q)q̇ < 0, and denote (q∗, q̇∗) = R∗(q, q̇). Then for

given εq, εv, and εt, the reliable truncation conditions for

(q, q̇) are given by:

(i) ḧ(q∗, q̇∗) < 0

(ii) |dh(q)q̇| < min{c̄1, c̄2, c̄3},
(14)

where c̄1 = amin(1−e′)
2e

εt

c̄2 =
amin(1−e′)

2eβ
ε′q

c̄3 = ε′v
/(

(1+e)η
1−e′′

+ 2eζ
amin(1−e′) + 1

‖dh(q∗)‖

)
,

(15)

ε′q, ε′v, amin and amax satisfy (9) and e′, e′′, β, η and ζ
are defined in (10).

Note that the first condition in (14) is precisely the condi-

tion for local stability of the Zeno equilibrium point (q∗, q̇∗).
The second condition in (14) requires that the collision

velocity ḣ(q(τk)) is sufficiently small. The following theorem

states that the reliable truncation conditions guarantee the

desired bounds on the error between the exact Zeno point

(q∞, q̇
∞

) and the truncated and re-initialized state (q∗, q̇∗),
as well as on the exact Zeno time.

Theorem 3: Let χHL be an execution of a simple La-

grangian hybrid system HL. Then if there exists k ∈ Λ
such that (qk−1(τk), q̇k−1(τk)) satisfy the reliable truncation

conditions with respect to given εq, εv, and εt, then χHL is a

Zeno execution, whose Zeno time satisfies τ∞−τk < εt, and

its Zeno point satisfies ‖q∞ − q∗‖ < εq and ‖q̇
∞

− q̇∗‖ <
εv , where (q∗, q̇∗) = R∗(qk−1(τk), q̇k−1(τk)).
Using this theorem, one can reliably truncate a Zeno exe-

cution at a time τk after a finite number k of steps with

guaranteed error bounds.

Proof: First, condition (i) in (14) implies that (q∗, q̇∗)
is a stable Zeno equilibrium point, and that the neighbor-

hood V = N(ε′q, ε
′

v) exists. Choosing δ′q = 0 and δ′v =
dh(q∗)q̇/‖dh(q∗)‖, and defining the neighborhood W ′ of
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(q∗, q̇∗) as in (11), the definition of R∗, along with condition

(ii) in (14) imply that (qk−1(τk), q̇k−1(τk)) ∈ W ′. We can

then exploit the time-invariance of HL to shift the time τk

to τ1, and treat the remaining part of the execution χHL of

times t ≥ τk (i.e. past the truncation point) as an execution

in the vicinity of (q∗, q̇∗), having initial conditions within

W ′. Lemma 2 then implies the desired bounds on the Zeno

point and the Zeno time of χHL , where the definitions (15)

are straightforward substitution of the chosen δ′q and δ′v into

(13).

Procedure for the practical simulation of a completed

Lagrangian hybrid system We now present the procedure

for practical simulation of a completed Lagrangian hybrid

system H L, under desired bounds εq, εv, εt on the truncation

errors.

1) Initialization: set an initial time τ0 and initial condi-

tions (q(τ0), q̇(τ0)).
2) If h(q(τ0)) = 0 and dh(q(τ0))q̇(τ0) = 0, go to step 5.

3) Simulate an execution of the hybrid system HL, until it

reaches a collision at time τk such that (q(τk), q̇(τk))
satisfy the reliable truncation conditions.

4) Set τ0 = τk and (q(τ0), q̇(τ0)) = R∗(q(τk), q̇(τk)).
5) Simulate the constrained dynamical system DL until it

reaches a time t′ at which λ(q(t′), q̇(t′)) = 0.

6) Set τ0 = t′ and (q(τ0), q̇(τ0)) = (q(t′), q̇(t′)).
7) Return to step 3.

Remarks: It is important to discuss the ramifications of

the proposed procedure, which will be done through a series

of remarks. First, note that in some cases, step 2 or step 5

may never terminate. This happens when either the hybrid

execution is not Zeno and extends to infinite time, or when

the constrained execution is consistent, i.e. satisfies λ > 0,

for infinite time.

Second, note that in practice, the quantities amin, amax, η,

β and ζ need not be computed exactly. Instead, one can use

simplified conservative approximations of them, e.g. ãmin <
amin, ãmax > amax, β̃ > β, et cetera.

Finally, note that Theorem 3 only implies that the bounds

on the truncation error hold for a single truncation, and not

for the overall cumulative error of a long-time simulation

with multiple truncations. Other sources of numerical errors

in simulation of hybrid executions are numerical integration

errors during the continuous phases of constrained and

unconstrained motion, as well as inaccuracies in the detection

of zero-crossing events h(q(t)) = 0 and in the re-initialized

state. While discussion of numerical integration errors is be-

yond the scope of this paper, the problem of event detection

and re-initialization inaccuracies can be partially solved by

defining an alternative set of coordinates q′ such that h(q) is

one of the new coordinates. This enables easier detection of

the event h=0, and allows for manually enforcing h=0 at

the post-collision configuration. Moreover, these coordinates

are also useful for numerical integration of the constrained

dynamics DL with higher accuracy, by enforcing h= ḣ=0
at each time step.

VI. SIMULATION RESULTS

This section presents numerical simulation results of the

completed hybrid systems for the two running examples in

this paper: the ball bouncing on a sinusoidal surface and the

double pendulum with a mechanical stop.

Example 3 (Ball): Continuing with Example 1, by direct

computation the condition for stability of a Zeno equilibrium

point (q, q̇) in this system as given in Theorem 2 is:

ḧ(q, q̇) = ẋ2 sin(x) − g < 0.

with q = (x, y). This indicates that the points on the surface

of Zeno equilibria, Z, that satisfy sin(x) > 0 (i.e. near

the maxima) can attract Zeno executions only if the initial

horizontal velocity ẋ is sufficiently small.

For this example, we chose the numerical parameters

m = 1 and g = 1, and a coefficient of restitution e =
0.5. Figures 4(a),(b),(c) show time plots of x(t), y(t) and

h(q(t)), respectively, for initial conditions q(0)=(0, 2) and

q̇(0) = (1.5, 0). Solutions of constrained executions appear

as solid curves, while solutions of hybrid executions appear

as dashed curves. The points of collision events are marked

with squares (‘�’). Figure 4(e) plots x(t) vs. y(t), with

the constraint surface y = sin(x) appearing as a thin solid

line. The results of this representative simulation show initial

bouncing of the ball which converges to a Zeno equilibrium

point at approximately t=3. Then the dynamics switches to

a constrained motion until the contact force λ(q, q̇) vanishes

at approximately t = 4. The dynamics switches back to a

hybrid execution, which converges to another Zeno point

at approximately t = 11. Finally, switching again to the

constrained dynamics, the solution is then ”trapped” near a

minimum, and exhibits an undamped pendulum-like periodic

motion for infinite time, since the constrained dynamics (5)

does not include any dissipation terms.

Example 4 (Double Pendulum): In the second running

example (Example 2), consisting of a double pendulum

with a mechanical stop, the condition for stability of Zeno

equilibria given in Theorem 2 is

ḧ(q, q̇) = g sin θ1

L̃
< 0, where L̃ = (4m1+3m2)L1L2

3(m1(L1+2L2)m2L2)
.

This indicates that only states in Z at which sin(θ1) < 0 (i.e.

the link L1 is inclined to the left) are stable Zeno equilibria.

For this example, we chose the numerical parameters

m1 = m2 = L1 = L2 = g = 1, and a coefficient of

restitution e = 0.5. Figure 4(e),(f) show the time plots of

θ1(t) and θ2(t) under initial conditions q(0) = (30◦, 25◦)
and q̇(0) = (0, 0). Again, solutions of constrained executions

appear as solid curves, while solutions of hybrid executions

appear as dashed curves. The results show a cyclic-like peri-

odic motion, at which link 2 repeatedly hits the mechanical

stop and bounces, until it converges to a Zeno point at which

θ1 < 0 and establishes contact. Then the two links attach and

swing as a single rigid pendulum in a constrained motion.

When θ1 crosses zero, the constraining force λ vanishes, and

the two links separate again, as predicted by the stability

condition. At this point the dynamics switches back to the
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Fig. 4. Simulation results for the ball ((a)-(d)) on a sinusoidal surface and the double pendulum with a mechanical stop ((e)-(f)).

hybrid system, and the solution exhibits a sequence of colli-

sion events and converges again to a Zeno equilibrium point

at θ1 ≈ −40◦. One can notice that this periodic-like motion

is actually decaying, due to the energy dissipation induced

by the collisions. A possible way for achieving energy-

preserving periodic trajectories for this mechanical system is

to compensate for the energy losses by adding a controlled

torque at the base of the pendulum, as demonstrated in our

recent work [14].

VII. CONCLUDING DISCUSSION

This paper presented a formal method for completion

of simple Lagrangian hybrid systems by augmenting Zeno

executions with solutions of the holonomically constrained

system associated with the unilateral constraint. The paper

also provided a method for practical simulation of the com-

pleted system such that the Zeno behavior of the exact system

is preserved with guaranteed bounds on the approximation

error. We now briefly discuss some high-level implications

and future extensions of the results.

First, note that the practical completion procedure de-

scribed in this paper essentially approximates a completed

Lagrangian hybrid system by transforming it into a hybrid

system with two domains, where the conditions of reliable

truncation play the role of a (rather complicated) guard, and

the re-initialization map R∗ is the reset map that sends the so-

lution to the constrained surface h−1(0), which is the second

domain. This approximation of the completed system, which

cannot be exactly simulated in practice, enables practical

simulation and further numerical investigation.

Second, the stability of a Zeno equilibrium point (q∗, q̇∗)
can also be viewed as stability of the unilaterally constrained

motion on the surface h−1(0) under small perturbations that

violate the constraint, with guaranteed finite-time conver-

gence back to the constraint surface via a Zeno hybrid exe-

cution with an infinite number of collisions. The equivalence

of the conditions ḧ(q∗, q̇∗)<0 and λ(q∗, q̇∗) > 0 implies that

the constrained motion is proven to be stable in that sense at

a point x∗=(q∗, q̇∗) if and only if the constrained dynamical

system is consistent at x∗, i.e. satisfies λ(q∗, q̇∗) > 0. This

intuitively appealing result is currently limited to mechanical

systems with a single unilateral constraint, involving friction-

less constrained dynamics in the form (5), under frictionless

collisions. However, the authors are not aware of any similar

result in the literature.

Finally, the paper focused on simple Lagrangian hybrid

systems having a single domain and a single guard. Extend-

ing the results to mechanical systems with multiple unilateral

constraints will enable analysis of complex mechanical and

robotic systems with intermittent contacts, such as bipedal

walkers with knees (e.g. [15] and [10]), without using the

unrealistic assumption of perfectly plastic impacts, see [14]

for preliminary steps in this direction.
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