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Abstract As unmanned aerial vehicles (UAVs) increase in
popularity and usage, an appropriate increase in confidence
in their behavior is expected. This research addresses a par-
ticular portion of the flight of an aircraft (whether autono-
mous, unmanned, or manned): specifically, the recapture of
the glide slope after a wave-off maneuver during landing.
While this situation is rare in commercial aircraft, its appli-
cability toward unmanned aircraft has been limited due to
the complexity of the calculations of safety of the maneu-
vers. In this paper, we present several control laws for this
glide-slope recapture, and inferences into their convergence
to the glide slope, as well as reachability calculations which
show their guaranteed safety. We also present a methodology
which theoretically allows us to apply these offline-computed
safety data to all kinds of unmanned fixed-wing aerial vehi-
cles while online, permitting the use of the controllers to
reduce wait times during landing. Finally, we detail the live
aircraft application demonstration which was done to show
feasibility of the controller, and give the results of offline
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simulations which show the correctness of online decisions
at that demonstration.
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1 Introduction

Aircraft control is extremely complex. The model of the non-
linear behavior of an aircraft is a subject usually left to senior
undergraduate or graduate education—the ability to exercise
control on this complex model with any degree of certainty is
still emerging research for many control applications. When
the effects of wind, altitude, humidity, and payload (in terms
of mass, inertia, and drag) are added to the model of the sys-
tem, the ability to consider a complete system model for all
kinds of control is nontrivial.

1.1 The software-enabled control program

To decrease the complexity and difficulty of these prospects,
aircraft control uses the common software concept of infor-
mation hiding to manage the layers of control. These basic
layers of control are shown in Fig. 1, which has been adapted
from [9] to include general control.

The difficulty of guaranteed control for some aeronau-
tical maneuvers and applications, especially in aeronautical
systems, prompted the development of the Software Enabled
Control (SEC) program, in the Defense Advanced Research
Projects Administration Information eXploitation Office
(DARPA/IXO). The overall objective of SEC was to pro-
vide control technologies which would advance the state of
the art for both manned and unmanned vehicles (see http:
//www.darpa.mil/).

Here, the inability to develop control laws for some sys-
tems using traditional control methods guided the develop-
ment of alternative methods which were based on software,
but which nonetheless required satisfaction of functional,
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Fig. 1 The basic layers of control for a fixed-wing aircraft (adapted
from [9]). Our contribution lies mainly in the decision controller, with
inputs to the outer control

performance, and reliability constraints along the following
axes:

– Stability: Will the system be stable during execution?
– Safety: Will the system be safe during execution?
– Optimality: Is a heuristic acceptable, or is an optimal

solution required?
– Compositionality: Does the coupling of two controllers

require additional guarantees?
– Robustness: Do small perturbations make the system

unstable?
– Provability: Is the software algorithm or decision prov-

ably correct?
– Decidability: Is it possible to give a decision in terms of

one of these constraint axes?
– Time-criticality: Does software execution time affect the

behavior of the system?

It is questions like these that the SEC program was interested
in answering.

1.2 Motivation

Many of the tasks which are carried out by humans, such as
landing, takeoff, refueling, etc., are generally held in high
confidence by crew, ground controllers (and, as appropriate,
passengers) because of the rigorous training process through
which pilots pass. As pilots make decisions regarding the
stability and safety of the aircraft in these more difficult situ-
ations (Here we specifically compare the difficulty of landing
to that of steady-state flight, as described in [16].) they are
influenced by this training and experience.

For unmanned vehicles, this presents something of a prob-
lem, since for manned vehicles the situation awareness1 of
the pilot influences decisions that are made. It is nontrivial to
separate this “seat-of-the-pants” knowledge from instrumen-
tal and other knowledge, and thus provide a high-confidence
assessment of what an autonomous or remotely controlled
vehicle is doing during risky maneuvers.

This problem becomes even more difficult when guaran-
tee of data is not present for remote control of the aircraft by a

1 Situation awareness is the mental model of the “system” by a pilot,
and is the subject of research in ergonomics [1] and aviation psychology,
as well as important to the safety of the aircraft [6].

pilot on the ground. In this case, time-critical decisions which
require a human in the loop regarding the aircraft behav-
ior (e.g., what waypoint to follow next, whether or not it is
safe to land) should be made whenever possible by a deci-
sion computer, which weighs the state of the aircraft against
desired states, known control laws, and stability, safety, opti-
mality, compositionality, robustness, provability, time-criti-
cality, and constraints.

1.3 Overview

This paper presents a general framework and aircraft-specific
solution for a particular kind of decision computer: glide-
slope recapture. Section 2 defines the general problem, its
boundary conditions, and the way in which the decision com-
puter is used to solve the problem. It also provides some
background material on the history of this problem, previous
work that has been done, and why the issue is becoming more
important for the domain of unmanned vehicles.

Section 3 gives several candidate control laws that we
apply to maintain and recapture a glide slope. In this section
we address the stability, optimality, and provability questions
which might be asked of the controller.

Section 4 operates with control laws and aircraft-specific
properties to address the safety and robustness of the system,
using backward-reachable sets. In this section we give a brief
background and introduction to the technology and complex-
ity of calculating these reachable sets, and techniques which
can be used to combine safe sets and subtract unsafe sets to
yield more refined safety and robustness claims.

Section 5 details how it is possible to take the calculated
reachable sets from Sect. 4 and apply those raw data directly
to the synthesis of a decision controller, which is a generated
executable that can be run on an onboard computer. In this
section we give details which the reader may wish examine
to employ the technique to avionics testbeds, and we address
issues of compositionality and time-criticality which must be
answered to maintain the safety and stability claims made in
Sects. 3 and 4.

Section 6 describes the SEC Capstone Demonstration,
in which we controlled a Boeing T-33 trainer jet using our
generated software through its autopilot interface.

Section 7 gives analysis of the flight demonstration, as
well as several a posteriori comparisons of the control law
which was used during the flight demonstration, to other con-
trol laws described in Sect. 3. We also discuss in this section
the fundamental differences in the reachable sets we used for
our online flight demonstration (and previously presented
in [15]) and those which we develop in Sect. 4. In this sec-
tion we also give thought to the overall contribution of this
research, and its possible impact upon policies for automated
landing in the future.

Section 8 describes future work we envision for this res-
earch in software engineering terms, as well as the electrical
engineering and computational issues which remain either
unsolved or infeasible, and are in need of future attention.
Finally, we give concluding remarks in Sect. 9.
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2 Problem description

This section gives some motivation for and provides tech-
nical and informal descriptions of the glide-slope recapture
problem, which is an interesting subproblem of multi-vehicle
landing scheduling. This problem is also explained in [15],
which presents the applied accomplishment of the authors in
that particular problem, and promise for future work. This
paper delves deeper into the problem, and provides more
context for future solutions, as well as reasonings about the
application demonstration which have not previously been
discussed. For the sake of continuity of this paper, we re-
peat here some of the descriptions and story which are given
in [15].

2.1 Historical perspective

The first automatic fixed-wing aircraft landing took place usi-
ng a manned vehicle controlled by an onboard autopilot on
23 August 1937. This pre-World War II proof of concept was
accomplished due to the ingenuity and hard work of several
driven military personnel, as well as a competent electron-
ics engineer. Also, it used a clear runway where it was the
only expected landing. In fact, for years after this event the
landing of multiple aircraft was treated as a sequential set
of individual landings, where each plane was not allowed to
approach the runway until the plane before it had landed and
taxied off the runway. It was not until the large demand for
food and supplies which motivated the Berlin airlift [3] that
this problem had to be solved; without this pipelining (as it is
termed in computer hardware and chip design) it would not
have been possible to meet food and supply needs.

The experience, protocol, and technologies devised to
solve this problem for the Berlin airlift helped to enable com-
mercial airports all around the world handle the large quan-
tity of air traffic which exists today. This general problem
of scheduling aircraft-landing times and ordering is man-
aged nonoptimally by air traffic control (ATC). Please refer
to Bayen et al. [2] for more insight into the difficulty of,
and some heuristical solutions to, this problem. Formally,
the problem can be broken down into several subproblems,
which are solved by different levels of control. We leave the
long-range planning and details up to the interested reader,
and instead concentrate on the problem as it affects us.

2.2 Problem formalization

2.2.1 Pmany under normal conditions

Here we will examine the uncomplicated problem, that is,
the problem without added complications of faults or distur-
bances, of landing a large quantity of fixed-wing aircraft on
one runway, which we will call the Pmany problem.2

2 This section is taken largely from [15].

The Pmany problem is the problem that ATC solves every
day, which is to provide a time-spaced ordering forN aircraft
which are on arrival to a runway. Once an aircraft ordering
is provided (i.e., once Pmany has been solved) then each air-
craft, p1 . . . pN , obeys the spacing commands of ATC to put
themselves on the glide slope, and maintains the velocity,
heading, and descent commands which are the solution to
the Pone problem. Figure 2a shows this phenomenon pictori-
ally.

A note on aircraft diagrams. Aeronautical experts will note
that the angle of attack,α, and sideslip angle,β, are not shown
or mentioned in our body dynamics. Since our onboard sys-
tems do not actually give us the angular measurements of
the body but simply the direction of translational motion, we
absorb these values into the translational motion, and display
all aircraft translational motion with α and β as effectively
0◦. This will result in diagrams such as Fig. 2a, which present
a view of the aircraft which is nonrepresentative of how the
aircraft would actually appear in reality. This phenomenon
does not affect our controller, since our autopilot control-
ler enforces our commanded descent and turn rates and will
thus reproduce the necessary α and β to produce lift during
landing.

The Pone problem is that which lands some plane, pi , as
if it were the only plane scheduled to land—that is, any devi-
ation from the control as defined in the Pone solution requires
human intervention. This is what we call the Pnext problem,
in this paper.

2.2.2 Pnext: a fault-susceptible problem

Between the large problem of managing the arrival and land-
ing of large quantities of planes (we will call this Pmany), and
the small problem of landing one plane (Pone), there is the
problem of landing the next plane, (Pnext). The Pnext problem
stems from the requirement that while plane pi is landing,
plane pi+1 is already on its glide slope. The glide slope is the
position vector, angle of descent, velocity, and attitude of the
plane as it “glides” in for its landing to arrive at some prede-
fined point in space. Assuming that there is sufficient spacing
between the planes (i.e., Pmany has been solved), then each
plane’s Pone solution is sufficient to land that plane. However,
Pnext emerges as a problem when some fault occurs during or
directly after the landing of pi , affecting the ability of pi+1
to use the runway to land.

When some fault emerges which puts into question the
safe landing of pi+1, ATC (solving the Pmany problem) will
usually instruct pi+1 to vector-off and fly a go-around man-
euver. Figure 2b visually depicts this possibility. This means
that pi+1 will immediately depart from the glide slope, and
choose a trajectory which will send it to the end of the queue
of landing planes (or fly a holding pattern) and try to land
again. This requires ATC to resolve the Pmany problem and
reinsertpi+1 into the queue, perhaps influencing other aircraft
already lined up, depending on the fuel or other constraints
of the other aircraft.
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Fig. 2 Initial departure from the glide slope by pi (Fig. 2 b), and possible maneuvers if the “Land” command is given by the ground once
significant departure from the glide slope has taken place (Fig. 2 c, d). Each of these is shown in the x–z plane for ease of understanding, though
planes which vector-off are generally directed out of this plane by some angle ψvec. a A queue of p1 . . . pN planes coming in to land, with glide
slope θG . b Departure of aircraft pi from the glide slope, as requested by ground control. c Recapture of aircraft pi to the glide slope, using the
recapture controller according to the Pnext formulation. d Aircraft pi uses the “go-around” control law, and circles back into the landing set.
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2.2.3 Pretry: glide-slope recapture

Occasionally, the disruption on the runway will be solved
before the pi+1 plane has turned around, but after it has alr-
eady left the glide slope. The question then becomes, can
pi+1 recapture the glide slope? If it can, then the time to land
the queue of planes does not increase, and the optimality of
the solution will likely not decrease. This is considered to be
the best case for ATC, since resolving the Pmany problem is
highly unlikely, though not impossible, as we discuss next.

There is some probability that pi+1 will land in the same
sequence, but not at the same time as it would have previ-
ously. This in turn may cascade down the stack of pN aircraft
and result in some aircraft falling below its minimum speed
to maintain lift. We posit that, if this is the case, then ATC
will not ask pi+1 to retry its landing maneuver.

It is important to note that the calculation to recapture
the glide slope is not the same class of problem as deter-
mining whether the current state lies on the glide slope, or
what control will take the aircraft to the glide slope, which
is used to close the loop in a landing controller. Our problem
is the real-time calculation to determine whether the landing
controller may be safely invoked. The Pretry solution, then,
includes both the control law or laws which will guide pi+1
back onto the glide slope, and then resume its Pone controller,
as well as the calculation that the invocation of the recapture
control law does not violate any stability or safety constraints.
Figure 2c visually describes a case where the Pretry solution
is followed.

If the calculation deems that stability or safety constraints
will be violated, then pi+1 will continue on its plan to rejoin
the landing queue, as shown in Fig. 2 d.

2.2.4 Applicability of a Pretry solution

The motivation we have to solve this problem extends from
the need for improvement in the operability of UAVs during
landing operations—especially in a military context, where
high-risk maneuvers are more likely to be employed. During
maneuvers to land on a carrier (or in any hostile environ-
ment) one major input to a human-driven controller (i.e., a
pilot) when solving this recapture problem is the experience
of that pilot in similar situations—whether encountered in a
simulator or in the field. The pilot of an aircraft will decline
to land in certain situations if the pilot’s situation awareness
suggests that it could violate the human or aircraft perfor-
mance constraints. Note that the use of the pilot’s instinct is
in a military, rather than commercial, context where caution
almost always trumps aircraft or human performance con-
straints.

One difficulty with substituting a computer-driven con-
troller for a human controller when solving Pnext is that the
computer controller does not have the vast experience or dep-
endable natural instinct of a trained human pilot. Attempting
to substitute the human with the computer could be disastrous
if the computer were not capable of determining whether a
planned sequence of maneuvers would exceed the aircraft’s

$v

$v

x

z

x

y

+ψ

�θ

Fig. 3 Definitions of angular measurements in terms of body motion.
Note that x represents the longitudinal axis of the runway, y represents
the axis for the width of the runway, and z is altitude. These directions
are useful for the direction of motion for designing the control laws, but
note that during reachability calculations many of these values will be
negative due to the calculations backward in time

safety or stability constraints—possibly resulting in loss of
the aircraft and damage on the ground. Any controller that
is used during flight, then, must be aware of the safety and
stability constraints of the aircraft, and should never violate
those constraints. Since the state of the aircraft is changing
at all times, and the calculation period of a solution may be
outdated by the time a solution is calculated, time-criticality
is an issue. The decision cannot be made over a period of
seconds; rather, the period should be milliseconds, since the
window of opportunity to land safely may close during the
time in which the decision is made. This is discussed further
in Sect. 5, where we examine the time-criticality constraints
of Pretry.

We now turn our attention to the control laws and state
equations used in the Pretry solution to recapture the glide
slope.

3 Control laws

In this section, we construct a pair of control laws that force
an aircraft to reach the glide slope. We first consider the case
when the aircraft is moving in two-dimensional space, and
then extend the control laws to the case when the aircraft is
moving in three-dimensional space.

3.1 Two-dimensional control laws

Consider the simplified kinematic model of an airplane mov-
ing in two-dimensional space as dictated by the ordinary
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differential equation (ODE):


ẋ1
ẋ3

θ̇


 =



v cos(θ)
v sin(θ)
u


 = f (x1, x3, θ, u) (1)

where the velocity of the aircraft, v, is assumed to be con-
stant. We also assume that the control u is bounded, that is
u ∈ [−Umax, Umax] where Umax is the maximum value that
the control input can take. We will also suppose that the angle
θ can only take values in a set [−θmax, θmax] ⊂ [−π, π).
These values depend on the specific aircraft being consid-
ered, e.g., for a passenger airliner, the maximum angle would
be much smaller than for a fighter aircraft.

The glide slope is the subset of the state space such that,
if the trajectories of (1) reach this subset before reaching the
landing zone, a good landing is possible. We define the glide
slope as follows:

G = {(x1, x3, θ) ∈ �2 × [−π, π) : x3 = tan(θG)x1

θ = θG} (2)

where θG is the angle of approach; typically, this is taken to
be θG = −3◦.

The goal is to define a feedback control law

u = K(x1, x3, θ) (3)

such that, if

ẋ1
ẋ3

θ̇


 = f (x1, x3, θ,K(x1, x3, θ)) (4)

is the closed-loop system, then

lim
t→∞(x1(t), x3(t), θ(t)) ∈ G . (5)

We define the feedback controller K to achieve this specifi-
cation. Reachability analysis will then be used on the closed-
loop system to see which solutions reach some neighborhood
of the glide slope before contacting the ground. First, we
construct a pair of control laws. Each of these will be used
later on the more general three-dimensional case. First, sup-
pose that we want our third state variable, θ , to track some
desired angle which is given as a function of the state vari-
ables: θd(x1, x3, θ). Then we can force θ to converge to this
desired-angle function in finite time by defining the bang–
bang control law:

K(x1, x3, θ) = −Umaxsign(θ − θd(x1, x3, θ)) . (6)

Therefore, we can construct a family of control laws by defin-
ing desired-angle functions θd .

Although bang–bang controllers are optimal, they depend
on the ability to change the control input in a discontinuous
and nonsmooth fashion, which is an unrealistic assumption
in an aircraft with momentum and other consideration which
drive the feasibility of its control inputs. Ideally, we would
want to command values which would not saturate the inner-
loop controller, and thus provide the behavior we anticipate
in offline verification.
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Fig. 4 Smoothed version of the sign function, used to yield a more
desirable control input

Since bang–bang control laws are not desirable, our actual
control laws will utilize approximations of the sign function.
That is, we will use �ε to be any function that uniformly
converges to the sign as ε → 0. A specific example of this
is obtained by using the well-known sigmoid function given
by:

σε(x) = 1

1 + e− 1
ε
x

(7)

The approximation of the sign function is then given by

�ε(x) = 2σε(x)− 1 = 2

1 + e− 1
ε
x

− 1 (8)

We will typically take a value of ε that is small, but not too
small, e.g., ε = 1. Variations on these values, which show
the convergence to the actual sign function, are shown in
Fig. 4. In this case, we obtain smooth feedback control laws
(assuming θd is smooth) by considering the control law:

K(x1, x3, θ) = −Umax�ε(θ − θd(x1, x2, θ)) . (9)

By considering a set of desired-angle functions, we obtain a
set of feedback control laws.

Thus far, we have not utilized our restrictions on the angle.
To do this, we threshold the desired-angle function. More spe-
cifically, we consider the saturation function SatV (x) defined
by

SatV (x) =
{
x if |x| < V,

sign(x)V otherwise.
(10)

We can write this function in terms of sign functions and,
utilizing our approximation of the sign function, we obtain a
smoothed version of this function, SatVε (x), given by

SatVε (x) = V σε(x − V )− V σε(−(x + V ))

+x ((1 − σε(x − V ))(1 − σε(−(x + V ))))(1+ 1
V
)
√
ε

(11)

This approximation of the saturation function is somewhat
subtle. An especially remarkable feature of this function is
the presence of the expression (1+ 1

V
)
√
ε . The purpose of this
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Fig. 5 Candidate smoothed versions of the [SatVε (x)] function, used
to saturate at the maximum input value. Note the relative overshoot
present without the exponential term in (11), compared to the canonical
SatV (x) function
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Fig. 6 Many different values of ε show that, as ε approaches zero,
the approximate saturation function SatVε (x) converges nicely to the
canonical SatV (x) function

expression is two-fold: it prevents the approximation of the
saturation function from overshooting (Fig. 5) the saturation
value and it forces the approximation to converge in a well-
behaved way to that saturation function (Fig. 6) as ε → 0.
If this term were absent—as it would be in more obvious
approximations of the saturation function—there would be
a substantial amount of overshoot in the approximation of
this function. This would greatly reduce the believability of
control laws that utilize approximate saturation functions.

Utilizing the smooth saturation function, we obtain a
smooth feedback control law

K(x1, x3, θ) = −Umax�ε(θ − Satθmax
ε (θd(x1, x3, θ))) (12)

which smoothly prevents the desired-angle function from
exceeding the maximum angle.

Control law I–2D: First, we define the desired-angle func-
tion by

θd(x1, x3, θ) =




−θmax if x3 > tan(θG)x1

θmax if x3 < tan(θG)x1

θG if x3 = tan(θG)x1

(13)

which can be written as a discontinuous function in terms of
the sign as follows

θd(x1, x3, θ) = −θmaxsign(x3 − tan(θG)x1)

−θG(sign(x3 − tan(θG)x1))
2 + θG (14)

Basically, this desired-angle function says that, if the aircraft
is above or below the glide slope, it should turn towards the
glide slope as much as possible by applying −θmax or θmax,
and if it is on the glide slope it should stay on the glide slope.

It is desirable to have a smooth version of this function,
so again taking our approximation for the sign function (8)
we obtain a smooth desired-angle function:

θεd (x1, x3, θ) = −θmax�ε(x3 − tan(θG)x1)

−θG(�ε(x3 − tan(θG)x1))
2 + θG (15)

Using the methods given in (9), we obtain a smooth (in fact,
analytic) feedback control law3 approximating the bang–
bang controller given by:

KI(x1, x3, θ) = −Umax�ε(θ − θεd (x1, x3, θ)) (16)

where θεd is given in (15). We will later generalize this control
law to the a three-dimensional configuration space.

Control law II–2D: We can define a control law by requiring
that our desired angle change proportionally to the distance
of the aircraft from the glide slope; this is a slight varia-
tion on the standard proportional controller as we first obtain
the glide slope in space and then we focus on obtaining the
glide-slope angle. In other words, our desired-angle function
is given by

θd(x1, x3, θ) = −(x3 − tan(θG)x1)+ θG (17)

From this, and utilizing (12), we obtain the desired feedback
control law:

KII(x1, x3, θ) = −Umax�ε(θ − Satθmax
ε (θd(x1, x3, θ)))

(18)

where θd is given in (17) and the smooth saturation function
is given in (11). As with control law I–2D we will generalize
this control law to the three-dimensional case.

Regardless of the controller chosen, in many initial states
the glide slope will not be reachable, as illustrated in Fig. 7.
In such a case no controller would be capable of reaching the
landing target without breaking one or more constraints. The
exact determination of these reachability states is the subject
of Sect. 4.

3.2 Three-dimensional control laws

We consider a simplified kinematic model of an airplane mov-
ing is three-dimensional space. Specifically, this is given by
the ODE:

3 In this case we do not need to use the smooth approximation of the
saturation function since, by design, our desired-angle function will not
exceed the maximum angle.
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Fig. 7 Two attempts to capture the glide slope from two initial positions: in the trajectory starting further towards the left the glide slope is
reachable, in the trajectory towards the right it is not reachable and the aircraft misses the landing target at the origin. a Trajectory of recapture
attempts: x and z shown. b Trajectory of recapture attempts: θ shown

ẋ =




ẋ1
ẋ2
ẋ3

θ̇

ψ̇


 =




v cos(ψ) cos(θ)
v sin(ψ) cos(θ)

v sin(θ)
u1
u2


 = f (x, u1, u2) (19)

This equation dictates the evolution of the aircraft relative to
the origin, which is the assumed location of the landing strip.
As in the two-dimensional case we will assume that the con-
trol inputs are bounded, i.e., u1 ∈ [−U 1

max, U
1
max] and u2 ∈

[−U 2
max, U

2
max]. Again, these values depend on the aircraft

being considered. We will also assume that the angles θ and
ψ are constrained, that is θ ∈ [−θmax, θmax] ⊂ [−π/2, π/2]
and ψ ∈ [−ψmax, ψmax] ⊂ [−π, π).

The glide slope is a subset of the state space such that, if
the trajectories of (19) reach this subset before reaching the
landing zone, a good landing is possible. We define the glide
slope as in the two-dimensional case:

G = {(x1, x2, x3, θ, ψ) ∈ �3 × [−π, π)× [−π/2, π/2] :

x2 = tan(ψG)x1

x3 = sin(θG)
√
x2

1 + x2
2 + x2

3

θ = θG
ϕ = ψG} (20)

where θG is the glide slope heading; typically, this is taken
to be θG = −3◦. Here, ψG = 0 is the glide slope heading.

The goal is, as in the two-dimensional case, to define feed-
back control laws u1 = P(x), and u2 = Q(x) such that, if

ẋ = f (x, P (x),Q(x)) (21)

is the closed-loop system, then

lim
t→∞ x(t) ∈ G. (22)

We extend the two-dimensional controllers to the three-dimen-
sional case to achieve this goal; as for the two-dimensional
controllers, the general method for designing controllers that
reach the glide slope is to define desired-angle functions
θd(x) and ψd(x); the goal of the controllers will be to track
these desired-angle functions.

Control law I–3D: The first three-dimensional controller will
be a direct generalization of the first two-dimensional con-
trol law, i.e., it is obtained by first considering a bang–bang
control law and then smoothing this control law. Progress-
ing directly to the desired-angle functions, which could be
equivalently be stated in terms of conditional statements, we
have:

θd(x) = −θmaxsign(x3 − sin(θG)
√
x2

1 + x2
2 + x2

3 )

−θG
(

sign(x3 − sin(θG)
√
x2

1 + x2
2 + x2

3 )

)2

+θG (23)

ψd(x) = −ψmaxsign(x2 − tan(ψG)x1)

−ψG(sign(x2 − tan(ψG)x1)
2 + ψG (24)

This desired-angle function says that, if the aircraft is above
or below the glide slope, it should turn towards the glide slope
as much as possible by applying −θmax or θmax and, if it is on
the glide slope, it should stay on the glide slope. Similarly,
it says that, if the aircraft is to the left or right of the glide
slope, then it should apply −ψmax or ψmax and, if it is on the
glide slope, it should stay on the glide slope.

Smooth versions of these desired-angle functions are obt-
ained by using the approximation of the sign function given
in (8). This yields the desired-angle functions
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θεd (x) = −θmax�ε(x3 − sin(θG)
√
x2

1 + x2
2 + x2

3 )

−θG
(
�ε(x3 − sin(θG)

√
x2

1 + x2
2 + x2

3 )

)2

+θG (25)

ψε
d (x) = −ψmax�ε(x2 − tan(ψG)x1)

−ψG(�ε(x2 − tan(ψG)x1)
2 + ψG (26)

which are direct generalizations of the desired-angle function
given in (15). From (9) it follows that our feedback controllers
are given by

PI(x) = −U 1
max�ε(θ − θεd (x)) (27)

QI(x) = −U 2
max�ε(ψ − ψε

d (x)) (28)

where θεd and ψε
d are the desired-angle functions given in

(25) and (26). These control laws are a direct generalization
of that given in (16).

Control law II–3D: We can generalize the proportional con-
troller given in (18) to a three-dimensional controller. In other
words, our desired-angle functions are given by

θd(x) = −
(
x3 − sin(θG)

√
x2

1 + x2
2 + x2

3

)
+ θG (29)

ψd(x) = −(x2 − tan(ψG)x1)+ ψG (30)

From this, and utilizing (12), we obtain the desired feedback
control law:

PII(x) = −U 1
max�ε(θ − Satθmax

ε (θd(x))) (31)

QII(x) = −U 2
max�ε(ψ − Satψmax

ε (ψd(x))) (32)

where θd and ψd are given as in (29) and (30).

4 Reachability calculations

The finite horizon backwards reach set G(t) is the set of
states from which trajectories arise that lead to some target
set G0 after exactly a specified time t . If the system’s dynam-
ics include inputs, those inputs can be chosen to drive the
trajectories towards or away from the target set; the interpre-
tation of these inputs as either optimal controls or worst-case
disturbances depends on the circumstances.

4.1 Encoding the problem as a reachable set

Although we have already defined the glide slope as a math-
ematical ideal, we also have to define it as a set to which
we want to test intersection. In the glide-slope-recapture sce-
nario studied here, we lightly abuse our notation and denote
the target set, G0, as a small set of states at the end of the run-
way where the aircraft can safely depart from the glide slope

and accomplish a soft touchdown with a flare maneuver.

G0 =




θG ∈ [2.85◦, 3.15◦],
ψG ∈ [−0.2◦,+0.2◦],
x2 ∈ [−100,+100] ft,
x3 ∈ [−15,+15] ft,
x1 = 0.

(33)

It is appropriate to name this state G0 since it denotes the
desired glide-slope angle, θG , and it represents the desired
value at some time, zero.

The control inputs (θ̇ and ψ̇) are chosen to drive trajecto-
ries toward this set of safe states. The union of the backwards
reach sets over all time will therefore represent the controlla-
ble safe envelope, or the set of states from which the aircraft
can safely set up for a soft landing.

As with the generation of Lyapunov functions for sta-
bility analysis, the reach set of a nonlinear system is often
impossible to determine analytically. Depending on the type
of dynamics and the presence of inputs, there are many app-
roaches to approximating these sets; in this paper we adopt an
algorithm based on the Hamilton–Jacobi (HJ) partial differ-
ential equation (PDE) [12,17].We briefly recap some features
of that work, and modify some other features here. Most nota-
bly, that work included competing input signals, while here
all inputs are seeking to drive the system to the target set.
Also, the reach set described here is for a fixed point in time
t , while the reach set in previous work was a union over all
times s ∈ [0, t] (when necessary, we will refer to such a union
as a reach tube). These modifications simplify the presenta-
tion, and also allow us to apply some tricks to simplify the
computational effort.

The target and reach sets are represented by an implicit
surface function ψsurf(x, t)

G0 = {x ∈ � | ψsurf(x, 0) ≤ 0},
G(t) = {x ∈ � | ψsurf(x, t) ≤ 0},

where � is some well-behaved configuration space; in this
case � = [0, 360◦)2 × �3 and x = (θ ψ x1 x2 x3)

T. Con-
struction of the implicit surface function ψsurf(x, 0) for G0
is generally straightforward: there are simple functions for
common shapes such as circles, spheres, cylinders, halfspac-
es and prisms, and the set operations of union, intersection
and complement become the pointwise functional operations
minimum, maximum and negation. For the target set (33),
G0 is the intersection of eight halfspaces (each of the four
intervals has two endpoints), and so ψsurf(x, 0) turns out to
be the pointwise maximum of eight simple linear functions.
The separate treatment of the x1 constraint in G0 is described
below.

Calculation of the backwards reach set then reduces to
solving an initial-value HJ PDE. Let the system dynamics be
given by ẋ = f (x, u), where f is bounded and Lipschitz-
continuous in x. Choose the input signalu to drive trajectories
toward G0 and assume that it is measurable and bounded at



J. Sprinkle et al.

each point of time u(t) ∈ U , where U is compact. Then the
implicit surface function ψsurf(x, t) for the backwards reach
set G(t) is the solution to the initial-value HJ PDE

∂ψsurf

∂t
−H

(
x,
∂ψsurf

∂x

)
= 0, (34)

where

H(x, p) = min
u∈U

pTf (x, u) (35)

and the initial conditionsψsurf(x, 0) are defined as above. For
more details, see [12]; however, note that the HJ PDE given
there is for a reach-tube calculation with competing inputs
and is a terminal-value PDE (time proceeds backwards from
t = 0).

Finding an analytic solution of this nonlinear PDE is not
usually possible; in fact, it often does not have a classical
differentiable solution at all. Fortunately, a well-defined weak
solution exists, and numerical methods have been designed to
approximate it. The Toolbox of Level Set Methods is a collec-
tion of such algorithms that runs in Matlab and is available
free of charge on the web [8]. For more information on level
sets, please see the excellent [13].

4.2 Computational complexity

The biggest problem with such techniques is that they fall
prey to Bellman’s curse of dimensionality. In the case of
the toolbox, the state space is divided into a Cartesian grid,
so the computation and memory costs grow exponentially
with dimension. In practice, systems of dimension 1–3 can
be studied interactively on a desktop, systems of dimension
4–5 require long periods on a well-equipped machine, and
systems of dimension 6+ are impractical.

Consequently, when studying the reach set of systems we
work hard to reduce the dimension of their state space. In the
case of the glide-slope-recapture problem, it turns out that we
can capture the important features of the full five-dimensional
system by solving two PDEs in only two spatial dimensions.
The two tricks for dimensional reduction outlined below may
prove useful in other reach-set calculations.

4.2.1 Distance and time

The first trick makes use of the fact that we are not actually
interested in the reach set at any particular time, since we
do not usually know the exact time until touchdown. A more
useful measure is the set of safe states (the reach set) at a
particular distance from the end of the runway (a state which
is assumed known). While this information is available from
the reach tube, it seems like a waste to calculate with a tem-
poral variable which will then be discarded. Fortunately, for
this particular system the dynamics of x1 are monotonic in
time, because θ, ψ ∈ (−90◦,+90◦) and thus

ẋ1 = fx1(x, u) = fx1(x) = v cosψ cos θ > 0.

Furthermore, the dynamics of all variables are independent
of x1. Therefore, we can substitute x1 for our time variable in

the PDE and reduce the spatial dimension of the problem by
one [7]. Let x̃ = (θ ψ x2 x3)

T be the reduced state dimension
and ˙̃x = f̃ (x̃, u) be the reduced dynamics (simply remove
the x1 component). Solve (34) with

H(x̃, p) = min
u∈U

pTf̃ (x̃, u)

fx1(x̃)
(36)

instead of (35). The result ψsurf(x̃, t) is an implicit surface
representation of the reach set at x1 = t . Simple implemen-
tation of this change of variables is also the reason why the
target set’s dependence on x1 in (33) is a point rather than a
range; in this case, the target set is still represented by only
the initial conditions ψsurf(x̃, 0) of the PDE. There are ways
to implement a range, but they are more complicated.

While a four-dimensional system’s reach set can be com-
puted, it still takes several days on a fast machine.

4.2.2 Dynamical decoupling

The second trick for dimensional reduction is to split the
system into two separate projections. Noting that the θ–x3
dynamics are independent of the ψ–x2 dynamics, we simply
compute two separate reach sets. One uses the θ–x3 target
set and dynamics, while the other uses the ψ–x2 target set
and dynamics. A safe landing is possible from a state only if
it lies inside both reach sets.

Astute readers may object that these projections are cou-
pled through fx1 as it appears in (36), since the x1 dynamics
depend on both θ and ψ . However, in (36) fx1 is a common
divisor for all the other dynamics. In the θ–x3 projection, for
example, plugging any value of ψ into fx1 would have the
same effect on the evolution of the reach set in both the θ
and x3 dimensions. Therefore, we simply ignore the missing
angular dimension when calculating fx1 in these projections,
since it is effectively a common scaling factor. Calculations
with the full four-dimensional dynamics support this simpli-
fication.

We are investigating ways of working in lower-dimen-
sional subspaces even if the dynamics of the projections are
inseparably coupled. We have examined this problem in pre-
vious work [11], but those techniques are not directly appli-
cable—they find overapproximations of the reach set, but for
envelope-protection problems like this one safety demands
underapproximations.

Code to approximate the reach set of the glide-slope-
recapture problem using the toolbox is available as a separate
download from [8]. Some additional details of that code are
worth mentioning here.

The treatment of inputs in (35) and (36) both generate
reach sets based on optimal, measurable input signals. In
practice, these are bang–bang controllers and are not usu-
ally suitable for implementation on real vehicles. Given any
appropriate feedback control law u = K(x), such as those
designed in Sect. 3, we can compute the reach set of the
system under that feedback control by using the dynamics
ẋ = f (x,K(x)) in (35). From the viewpoint of the mini-
mization in that equation, these dynamics are now input-free
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(u does not appear). Assuming that the feedback control law
satisfies the same constraints as the optimal controller, the
resulting reach set will be smaller; however, it may be more
practical to implement. The released code allows for compu-
tation of both optimal and feedback controlled reach sets.

4.2.3 Grid scaling

Like most methods to approximate the HJ PDE, the toolbox
works on a regular Cartesian grid of the state space. The grid
cell size gives a rough idea of the resolution of the reach set
approximation; features of the reach set that are smaller than
a few grid cell widths will not be resolved. Unfortunately, the
target set is very small compared with the size of the eventual
reach set; for example, in the x2 dimension the target set at
x1 = 0 is roughly a factor of 1000 smaller than the size of
the reach set at x1 = 10NM [AQ1]. Resolution of both sets
would therefore demand a grid with several thousand nodes
in each dimension, and such grids are very expensive to work
with.

To resolve this range of scales despite the restriction of
a uniform grid, we perform a nonlinear change of variables
for some dimensions. The uniform grid is built in x̄ space,
where kx = sinh x̄ and k is a scale factor that controls the
degree of nonlinearity. The hyperbolic sine function is cho-
sen because it is monotonic and has a bounded derivative
over any bounded domain. An example built grid is shown in
Fig. 8. By increasing k, we can increase the resolution near
the origin of the state space, at the cost of reducing resolu-
tion at the edges of the grid. For the problem described in this
paper, such a reduction is acceptable since it occurs in states
far from touchdown. The transformed dynamics are given by

˙̄x = dx̄

dx

dx

dt
= kẋ√

1 + k2x2
.

Such nonlinear scaling allows reasonable approximation of
the reach set with only a hundred nodes per dimension, ins-
tead of several thousand. If n is the number of nodes per
dimension and d is the dimension, the cost of approximat-
ing the solution of (34) to some fixed t using the toolbox
is O(nd+1), so the savings due to scaling is enormous. The
released code includes subfunctions to perform the nonlinear
transformation as well as linear transformations that are used
to handle k and to improve the relative scaling of the different
dimensions even if nonlinear scaling is not used.

4.3 Maintaining constraints

In addition to constraints on their temporal derivatives, the
angular states ψ and θ are also constrained in their values
through (Sect. 3). The reach set must remain a subset of these
constraints at all times if it is to denote the set of states from
which it is safe to land. In the implementation these con-
straints are represented by implicit surface functions, and
are then imposed on the reach-set evolution through a pro-
cess called masking. Further discussion of masking and other

implementation details for calculating reach sets using the
toolbox can be found in the toolbox documentation.

5 Online decision control synthesis

In Sect. 4 we described how it was that we were able to
produce the backward-reachable sets for both the dynamical
system (i.e., what was dynamically possible to happen) and
the controller (i.e., what would happen under certain initial
conditions). In this section we discuss exactly how we can
take the raw data produced by these reachability calculations
and form from it a decision controller, which yields a deci-
sion for the control of the aircraft under certain conditions.

5.1 Requirements

To operate the decision controller on the aircraft, several
requirements must be met, which are somewhat, but not en-
tirely, independent of the requirements of the code. These
revolve mostly around the robustness of the code.

Functional requirements:

– the answer must not be a false positive, under any cir-
cumstances;

– false negatives should be minimized (or at least, be acc-
eptably low).

Performance requirements:

– the answer must come in time;
– the possibility of preemption should be minimized.

Reliability requirements:

– an answer should always be returned.

5.2 Software engineering

To enforce the requirements we examined several options for
the final software solution. We crafted the software in such a
way that it addressed the concerns discussed in the Introduc-
tion: specifically, stability, safety, optimality, etc.

5.2.1 False positives and false negatives

The two functional constraints (no false positives, and accep-
tably low false negatives) emerge from the definition of the
safe set, as discussed in Sect. 4. The safe set defines a surface
object, inside of which everything is controllably safe, and
outside of which everything is uncontrollably unsafe. The
boundary of the set is somewhat tricky, since being on the
boundary implies safety assuming that you utilize exactly
the control law.

However, we are doing a numerical computation of the
level set, which means that there are ε differences between
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Fig. 8 Nonlinear grid scaling in the altitude dimension. This is useful since such a small target set requires additional sample points around any
“interesting” behavior, but would prove too dimensionally difficult to replicate that frequency over large values of the variable

what the actual and computed set are. To account for this,
we define an ε-boundary around the zero values in which we
assume that we are outside of the set. The size of this ε-bound-
ary is defined by the acceptably low nature of the computa-
tion, and is aided in definition by the method of computation
of the reach set (e.g., ‘low’ versus ‘veryHigh’) as well as the
definition of the Cartesian grid (a higher N will result in a
more accurate reach set).

The ability to place a guarantee on the number of false
negatives is discussed in Sect. 8.

5.2.2 Compositionality

Using the hierarchical controller inherent in the aircraft des-
ign (discussed in Sect. 6) we must consider the effects of
switching control strategies. Specifically, we must consider
the effects of switching to decrease rather than increase in
altitude.

Solving these kinds of switching problems for systems
in general falls into the domain of hybrid systems, which
is an emerging and rich area of research. For our particular
application, we must concern ourselves with the physics of
commanding the aircraft to change its momentum to descend
rather than ascend.

Since we are not controlling from the inner loop (i.e., the
stability controller), any commands we give to the autopi-
lot will not make the aircraft unsafe in flight (i.e., we will
not cause a stall, or a structural malfunction). What safety
concerns remain, then, are best described in the following
thought: how could we crash into the ground? There are only
a few possibilities for this (assuming that we will maintain
lift and no structural damage):

1. overshooting the glide slope;
2. not capturing the glide slope;
3. capturing the glide slope in space, but not velocity or

angle.

To overcome #1 we designed the control law discussed
in Sect. 3 to follow trajectories with an acceptable overshoot.
Then, upon performing the reachability analysis, we used the
control law, rather than the raw performance possibilities of
the aircraft, to create the set. This means that the reach set is
the full set of possible controller initial conditions that will
result in control directly to the target set.

To overcome #2, which is not quite capturing the glide
slope in space (and thus running past the runway when att-
empting to land), we place realistic bounds on the control
input values. This again stems from the careful definition of
a controller with smooth inputs, which are thus more likely
to reflect actual inputs at flight time. By obeying these input
constraints to the controller, we approximate the affect of
momentum during flight, which produces a lag in response
to inputs based on current velocity and angular acceleration.

To overcome #3, we simply recall that the angles of app-
roach and pitch are both calculated in the reachable sets, and
are part of the target set. This means that if we reach the target
set, we will be in the correct attitude.

5.2.3 Time-criticality

The decision made by the decision controller must be made
in accordance with the flow of time. For our particular appli-
cation, there were discrete time steps between refresh of the
input values for the autopilot. Therefore, upon request of a
decision for Pretry, a decision prior to advancement to the next
time step is the upper bound on the optimal time.
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However, there is no guarantee that such a decision can
be made prior to that time if dependence upon hardware or
lengthy calculations are required. This is one reason why we
chose backward-reachable sets, because, if the set is known
from an offline calculation, then it is possible for us to exam-
ine that set while online and check our place in it. Thus, our
computation time interval is on the order of milliseconds, if
we can have the file loaded in memory. For a general calcula-
tion interval, this phenomenon is shown in Fig. 5. Note that,
for our application, the calculation interval and the decision
interval overlap and thus the decision for control is concurrent
with the calculation of safety.

5.3 Code generation

Given that we need to have an online controller which is
compiled from all of the offline-computed reach sets, it is
somewhat intuitive that we should create this online exe-
cutable through generative techniques. That is, we defined a
transformation function which takes as a parameter a safe set,
and produces as its output a C++ class which will perform
evaluative measurements based on the safety, reliability, and
time-criticality requirements outlined in the earlier portions
of this section. By joining together these classes, we are able
to produce a global view of the state of the aircraft, and from
there pronounce safety under certain conditions.

5.3.1 Implementation details

We created our code generator using the C++ standard tem-
plate library (STL) to provide maximum support for com-
pilation across platforms. In fact, we were able to test the
algorithms using Windows XP and Server 2003 as the oper-
ating system, and further performed tests and at flight time
ran on RedHat Linux 9.

The code which was generated also took advantage of
templatized classes, and the object-oriented features of the
C++ language. Many of these implementation details are
uninteresting as research, but we present the main generated
classes below.

5.3.2 The SafeSet class

The SafeSet class is the base class which is called to check
the safety of some current state, x, against some final loca-
tion, runway, with compile-time values for the glide slope,
angle of approach, and ε-error bounds (i.e., how close to trust
the level set). The basic definition of this class is shown here:

class SafeSet
{
public:
SafeSet( );
virtual ˜SafeSet();
SafetyResult CheckSafety
( Common::iX x,

Common::iX runway );
protected:
SafetyResult IsItSafe
( Common::iX x );
/* member data of safe sets,
defined as
their own classes at
generation time */
3_psi_400_1nm *d_psi_400_1nm;
3_psi_400_3nm *d_psi_400_3nm;
3_psi_400_10nm *d_psi_400_10nm;
3_theta_400_1nm *d_theta_400_1nm;
3_theta_400_10nm *d_theta_400_10nm;
};

This particular code snippet is taken from the two ortho-
gonal reach sets which share a common distance in x from
the runway, and wish to look up different values to ensure
that the state is safe in both sets. This is discussed in great
detail in [15].

5.3.3 The reach-set classes

Each of the classes 3 psi 400 1nm is a reach-set class—
a self-contained class capable of looking up the value of a
reach set from the state location at some point(s). They are
name-mangled, as such:

[θG] [projection] [velocity] [maxXdistance],

for each reach set, to make the generated code easier to und-
erstand. These classes contain member functions to do the
lookup, which use contained classes of kind Range to inter-
polate and understand the safe sets as state information.

5.3.4 The Range class

The Range class is used to do a reverse lookup of the indi-
ces of a particular point in space and angle in the reach set.
Since the reach set is stored as a multidimensional matrix,
it is necessary to find from the (x, z, θ ) values the value of
the reach set which corresponds to those values. This is done
through an interpolation scheme through the reach-set class.

class Range_3_psi_400_10nm_0 :
public Range
{
public:
Range_ngc3_3_psi_400_10nm_0() :
Range([minX],[maxX],[samples]) { }
˜Range_ngc3_3_psi_400_10nm_0() { }
};

During this interpolation, the reach set is evaluated for-
ward in time by one time step, in accordance with the time-
criticality constraints. This parameter is set depending on the
particular configuration of the outer- and inner-loop control-
lers, and is configurable at code generation time.
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5.3.5 The SafetyResult class

Once a decision has been made, it is relayed back to the
decision computer through the SafetyResult class. This
class stores a large deal of information for the requesting pro-
gram, including the exact value of the state at the time it was
asked, whether the reach set at that point is safe, unsafe, or on
the boundary, as well as internal debugging functions which
guarantees that the safe set has been properly located (i.e.,
that out of “safe”, “unsafe”, and “boundary” exactly one is
true).

The SafetyResult answer is compiled based on the
topology of the deployed system. For example, in the code
snippets above, the decision for which Range to check is
based on the value of x, as divided into three portions for one
portion of the safe set, and two portions for another. For the
safe sets, which are calculated using the nonlinear scaling
factor, this need for splitting reach sets into separate pieces is
somewhat mitigated, though it may still be required for large
reachability-analysis problems.

5.3.6 Variables and parameters

In general, we defined the following values as configurable
at the code generator’s compile time:

• epsilon: the proximity to the reach set which results in
a decision of unsafe regardless of the sign of the value.

• validationTime: the additional time to advance the
state of the aircraft, which allows the time-criticality con-
straint of safety to be addressed.

6 Flight demonstration

To provide elementary proof of concept of the Software Ena-
bled Control project, a capstone demonstration was organized
which allowed institutional participants to implement their
control laws in software and also test their software on a real
jet aircraft either alone, in cooperation with, or (in one case)
against human pilots (see [14] depending on the application).

In this section, we describe how we transformed our problem
so that it could be demonstrated with the given equipment and
safety concerns.

6.1 Capstone demonstration overview

The SEC program consisted of two capstone demonstration
experiments, one of which was a fixed-wing UAV flight-test
experiment that took place over three weeks at Edwards Air
Force Base (AFB) using a pilot’s aircraft modified for auton-
omous flight. The capstone demonstration development took
place over a 13-month period in which many of concepts
developed in the SEC program were prepared for this experi-
ment. A second capstone demonstration experiment was also
run to highlight SEC concepts on rotary-wing UAVs [10].

6.1.1 Equipment

A two-seater jet trainer T-33 owned by the Boeing Aircraft
Company (originally manufactured by the Lockheed Mar-
tin Company) was modified by Boeing for use in the SEC
capstone demonstration live flight testing in June 2004. This
UAV surrogate aircraft included a third-party autopilot sys-
tem which did not include airspeed control of the aircraft.
The UAV had on board a safety pilot who could take control
of the aircraft in the event of controller malfunction or poor
decision making, as well as for controlling the airspeed of
the aircraft based on indicator alerts and a displayed target
airspeed given to the pilot to increase/decrease thrust. The
trajectory of the UAV was controlled by a Linux OS laptop
computer running Boeingć6s Open Control Platform (OCP)
that was interfaced to the avionics and autopilot of the air-
craft. The OCP system, including the safe-landing software,
sent control commands to the avionics pallet, which trans-
formed them into autopilot maneuver commands. The state
of the UAV was available via this avionics interface.

The avionics and autopilot of the Boeing-owned T-33 had
limited state data and output control available, which required
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a simplified model to be used. For example, angle of attack
(α angle) and side-slip (β angle) were not available and the
autopilot was only capable of receiving rate of climb and rate
of turn commands, not pitch, roll or yaw (θ ,ϕ,ψ) commands.

6.1.2 Software component

To enable parallel development, reliable testing, rapid inte-
gration, and an operating-system-independent interface, a
software in-the-loop simulation (SILS) platform was pro-
vided for the SEC capstone demonstration by Boeing. This
OCP-based software platform used a generic (blackbox) air-
craft simulator called DemoSim and Java-based UAV exp-
eriment controller GUI. The final versions of OCP and the
experiment controller used were identical to those that would
be used in the final flight-test experiments. The DemoSim
model included the avionics and autopilot interfaces identi-
cal to the T-33 UAV surrogate such that the state information
and autopilot commands would be identical from the per-
spective of the OCP-based applications.

The landing controller and decision algorithms were
implemented as a single component in the Open Control Plat-
form (OCP). The OCP is a CORBA-based real-time distrib-
uted control platform.

The reachable safe sets were computed offline using the
level-sets toolbox and stored for online decision making by
the controller. We chose C++ as our implementation lan-
guage due to speed advantages, as well as the ability to have
arbitrarily large arrays optimized for performance at compile
time.

The controller and decision algorithms were tested in the
SILS environment and provided to Boeing for integration
and testing in their Hardware In-the-Loop Simulator (HILS).
The HILS system included an interface to the same avionics
system used on the UAV and a proprietary aircraft simulation
system. Along with software, the experiment test plans were
provided with which Boeing developers tested and verified
all the software for the various experiments, including the
landing controller.

6.2 Experiment

The capstone demonstration flight test took place at Edwards
AFB in the Mojave Desert in June 2004. The T-33 demon-
stration aircraft was flown under pilot control to the flight test
area, where the autonomous controller took over and began
to land on a virtual runway several thousand feet in the air.4 A
successful landing was achieved by passing through a virtual
landing spot on the runway (with some bounds for error) at
a certain velocity with a certain attitude.

The demonstration of concept was then carried out in the
following set of steps:

4 The virtual runway was used for safety and to allow us to focus on
the problem of glide-slope recapture in reducing the complexity through
not requiring control of landing gear and not actually performing the
landing.

1. To simulate an accident on the runway, the ground con-
trol issues a vector-off command during descent onto the
runway, at which time the aircraft departs the glide slope,
changing its state vector in every dimension. The aircraft
then proceeds from this time as if it were going to perform
a go-around maneuver, as described in [9].

2. After some time the ground control issues a revised com-
mand to land if possible.

3. The decision algorithm examines the current state of the
aircraft and determines whether it is safe to recapture the
glide slope.

4. If determined to be safe, the controller will issue com-
mands to recapture the glide slope; if unsafe, the control-
ler stays on its current course of go-around maneuver.

6.3 Data gathered

During the flight test, the landing controller experiment was
run on two separate flight tests for a total of four landing
experiments. During these experiments the algorithm dem-
onstrated its effectiveness and robustness in windy conditions
and with user challenges such asVIPs commanding the wave-
off and recapture signals from the experiment controller. The
controller was exercised in these limited opportunities in con-
ditions such that both “safe” and “unsafe” decisions were
successfully made.

7 Analysis

7.1 Control law comparisons

Here we provide some analysis for the two-dimensional
(x1, x3, θ ) glide-slope-recapture controllers. In Fig. 10 we
see that the proportional control laws with saturation (II–2D)
has a steady-state error, as one might expect from such a pro-
portional controller. This is not apparent in the other control
law. This steady-state error could be compensated for by us-
ing adding an integral control function, for instance, but this
would increase the complexity of this control law in compar-
ison to the other.

The initial response of the control laws and the initial
convergence to the glide slope are very similar for both of
the controller as they both effectively use the maximum theta
value during this time.

Neither control law exhibits overshoot in the results, how-
ever, for both of these control laws this is a matter of tuning
the control law parameters. In the case of control law I–2D
this is a simpler process in that the single parameter has a
direct and predictable effect on the response. For the pro-
portional controller II–2D this tuning is more difficult as the
response is very sensitive to the controller parameters.
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Fig. 10 Plots of the two control laws for two-dimensional recapture: I–2D and II–2D. a Position plots of the two control laws. The plane starts
with initial conditions off the glide slope, and then recaptures according to the two different control laws. The trajectory with steady-state error
is the saturated value controller (II–2D). b Pitch plots of the two control laws. The trajectory error as shown above is obvious when considering
the change in angles with respect to position in x1
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7.2 Decision controller analysis

The ability to generate smooth controllers like those devel-
oped in Sect. 3 means that the reachable sets are dependent on
the controller, rather than the so-called noninertial dynamics
of the aircraft.

In [15] and during the capstone demonstration, a reach set
based on these noninertial dynamics was used. That is, when
performing the reachability calculations the bang–bang style
control was assumed to be viable, meaning that instantaneous
changes in angle were possible. In fact, this is not the case,
so we decided to compare a simple controller to a smoothed
controller (such as those developed in Sect. 3) to check for
variations in the reach set.

In fact, variations were noticeable, as shown in Fig. 11.
However, these variations in reality reflect the relative smooth-
ness of the control laws applied. For the bang–bang control,
which assumes a perfect sign function, sharp edges are evi-
dent in the reach set (Fig. 11 b). However, where those edges
are sharp in that set, they are smoothed in accordance with
the appropriate �ε smoothing.

7.3 Broader impact

The experimental success as part of the SEC capstone dem-
onstration drove the research in the direction of application,
and we were able to show feasibility of the execution of a
safety decision computer. In general, we believe that deci-
sion control, as a safety buffer between requests and actions,
is a useful abstraction for unmanned vehicle control, and is
also extensible to manned vehicles.

7.3.1 Increased safety

– reduced stress and decision load for the pilot
– aircraft training less of a factor than before (due to set

calculations for individual aircraft dynamics)
– hyper-accurate safe-set calculations possible, reducing

the risk to the pilot

7.3.2 An aircraft-independent execution framework

– it allows for pilots to be trained on one aircraft, but fam-
iliar with the procedure on all aircraft

– the computational intensity would be the same for all air-
craft (given that the lookup tables are the same size)

– integration strategies can be more uniform, given the
common execution framework, across aircraft

7.3.3 Increased level of autonomy

– multiple versions of safe sets increase the effectiveness
of the autonomy of the aircraft (in the long term)

– no violation of the operational parameters of the aircraft
– multiple safe sets that can be interchanged to allow mod-

ified risk acceptability due to times of war, emergency, or
hazardous conditions

7.3.4 Rapid online calculations

– the ability to generate lookup tables that may be queried
in hard real time

– lookup/calculation only required at decision points (rather
than continuously generating trajectories to satisfy pos-
sible safety decisions)

– for multiple definitions of safety it becomes unfeasible to
doN concurrent trajectory generations at each time step,
whereas N lookups into (an albeit large) memory-based
tables is attractive

– additional computational cycles are available for other
portions of the inner-loop controller

One final note on analysis, is that we actually do not do
a reachability calculation into the negative region of pitch
(see the figure relating to the altitude recapture). This is a
valid assumption since we assume we will be capturing from
above the glide slope, meaning that if glide slope is 3◦, then
we will perhaps be using pitch angles between 15◦ and 0◦ (to
account for overshoot), but we do not anticipate capturing
with a large angle of pitch, say −10◦. However, this is an
area for future work.

8 Future work

8.1 Reachable-set calculations

The future work of this research revolves around techniques
through which new safe sets can be created. We made strides
in calculation speed/accuracy by presenting a variable grid
size, which provided the ability to have more data points
where the dynamics were more complex. An interesting fut-
ure application of this is a discovery method (not unlike
Runge–Kutta) where the emerging shape of the reach set det-
ermines the necessary grid points. Although this is nontrivial
to implement, it is quite promising as a technology to reduce
the domain knowledge required to transform a controller or
system into the proper format for reachability analysis.

Although our own expertise biased our choice of reach-set
algorithms, to our knowledge there are no other algorithms
that could approximate this set for this system’s nonlinear
dynamics with inputs and state constraints. The flexibility of
the HJ formulation allows us to work around the restrictions
of a regular computational grid, and permits approximation
with either optimal inputs determined during the calculation
or predetermined nonlinear feedback controllers. Although
expensive to precompute, the resulting implicit surface func-
tion is very cheap to consult at runtime for decisions about
safely recapturing the glide slope.

We can identify three significant shortcomings of the cur-
rent approach. The first is the size of the reach set’s implicit
surface representation, which may be an issue in UAVs with
limited memory. This problem may be addressed by various
implicit surface-storage compression techniques, at the cost
of slightly more runtime computation. The second is the fact
that current HJ approximations give no guarantees about the
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Fig. 11 Two reach sets, one with a smoothed control input (Fig. 11 a), and one using maximal values (i.e., bang–bang control)(Fig. 11 b). a A
reach set which uses a smooth control law. Note that the corners are more rounded, showing that instantaneous value changes in the input are
restricted. b A reach set which uses bang–bang control. Note the sharpness of the corner of the reachable set, showing that instantaneous value
changes are possible

sign of approximation errors. Confidence in the reach set for
this problem demands that the result be a guaranteed underap-
proximation. Related algorithms based on viable sets [4] can
make this guarantee, but their discrete set representation req-
uires more nodes for similar accuracy; we are investigating
ways of adopting the guarantee without losing the accuracy
of implicit surface functions. The third flaw is that high-fid-
elity system models require more dimensions. We hope that
our work on coupled projections may permit us to move in
this direction.

A final note on reachable sets is that the process of cor-
rectly devising and producing these sets is more of an art than
a science. In short, it is nontrivial to choose grid spacings,
initial condition ranges, and encode the Hamiltonian multi-
plication factors when just beginning to use such a toolbox.
This creates the need for more advanced tools to perform
verification of known good forward simulations and perhaps
overlay them against the reach sets, to give increased con-
fidence that the sets are progressing backwards in time cor-
rectly. It is important to understand that the accuracy of the
reach set does not affect the accuracy of the code generator
which produces the decision controller: in this case, we con-
tend that what we have provided is the decision compiler,
while the code must be written by the designer.

8.2 Commercial applicability

Some discussion is merited on the applicability of this tech-
nique for commercial aircraft. While we concentrated and
were driven by an aeronautics application which is quite
frankly more common in a military domain, the technology
which was developed to solve this problem is applicable in

the commercial sector for any decision which might at this
time be infeasible due to the complexity of the calculations.

Since our experience and motivations are not in the com-
mercial sector, and we have not researched any such problems
in that arena, we hope that experts in the commercial sector
will recognize this as an enabling technology to be applied
to those existing problems.

8.3 Distributed vehicle formation

Another possible application of this decision control technol-
ogy would be to provide distributed vehicles with common
grounds for optimally configuring themselves into a forma-
tion based on knowledge of their global internal state.

An example of this might be a network of vehicles where
individual nodes decide their future locations—and the con-
trol laws that would take them there—based on the cost of the
entire network configuration. For a priori decided algorithms
the vehicles could make this decision with no communica-
tion, and in a relative rapid manner, simply by following rules
set up by a template (see [5] for an application to submerged
vehicles where cost of communication is extremely high).

In the vein of reduced communication bandwidth, space-
deployed systems such as those to Mars could benefit from
a decision controller system which could be easily repli-
cated here on earth, to allow for high-confidence prediction
of behaviors, and prevention of risky behaviors.

9 Conclusions

In this paper we have discussed relatively advanced control
laws, code generation, aircraft dynamics, safety guarantees,
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and discrete switches between controllers. We wish to men-
tion that part of the attraction of this problem of decidability
and control lies with the complexity of the domain, coupled
with the inherent inflexibility of high-dimensional systems.
It is our belief that this sort of problem is indicative of the
leading edge of software innovation and best practices in
engineering, which we see as an increased need for soft-
ware experts and complex-systems experts to work together
to achieve high-confidence systems.

This is applicable not only to traditional fields such as
aeronautics, but also to emerging engineering tasks such as
the applied field of critical infrastructure maintenance and
understanding, as well as abstract topics such as networks
of heterogeneous systems. We believe that to have increased
confidence in software which controls our environs and makes
safety decisions as well as cost-conscious decisions (such as
energy pricing, for example) we will need to continue to ad-
dress in general the specific problems which we point out in
this paper.
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