
H-Categories and Graphs

Aaron D. Ames and Paulo Tabuada

Abstract

H-categories are an essential ingredient of categorical models for hybrid systems. In this note,
we consider oriented H-categories and form the category of these categories, Hcat. The main
result is that there is an isomorphism of categories:

Hcat∼=Grph .

The proof of this fact is constructive in nature, i.e., it is shown how to obtain a graph from and

H-category and an H-category from a graph.

1. Introduction

Small categories play a critical role in the study of diagrams in a category, i.e., one
often considerers the the functor category TC whose objects are all functors FFF : C→
T, for a small category C. Similarly, diagrams can also be defined by a graph whose
vertices index a collection of objects in T and edges index a collection of morphisms
in T. These two notions of “diagrams” in a category are related via functors from
Grph to Cat and Cat to Grph which form an adjoint pair [7]. The disadvantage to
this construction is that the creation of a small category from a graph is achieved
by adding information to the graph (in the form of paths in the graph); it may be
the case that this added information is unwanted and/or unneeded. This motivates
the creation of a small category from a graph in which the resulting category is the
“same” as the original graph, i.e., we would like to find a subcategory of Cat that is
isomorphic to Grph. The purpose of this note is to find this subcategory.

We start by defining a specific type of small category termed an H-category and
denoted by H. This is a small category in which every diagram has the form:

• � • - • � • - • · · · • � • - •

That is, an H-category has as its basic atomic unit a diagram of the form:

• � • - •

and any other diagram in this category must be obtainable by gluing such atomic
units along the target of a morphism (and not the source). We can orient an H-
category by, once and for all, picking a labeling of its morphisms. This allows us to
form the category of all H-categories Hcat, which is a subcategory of Cat.
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Given an oriented graph, we are able to explicitly construct and oriented H-
category, and vice-versa, i.e. we can define functors from Hcat to Grph and from
Grph to Hcat. The main result of this paper is a proof of the existence of the follow-
ing isomorphism of categories:

Grph∼=Hcat .

This result has implications in the area of hybrid systems—systems that display
both discrete and continuous behavior. Recently, a categorical model for these sys-
tem has been proposed (cf. [1]-[5]); the starting point for this theory is the notion of
a hybrid object over a category T. This is a diagram in T, FFF : H→T, in which the in-
dexing small category is an H-category—no other small category would be suitable
for this theory, and one could not work with graphs. The main result of this note is
the completely characterization of the indexing objects of hybrid objects.

2. H-categories

In this section, we introduction the notion of a oriented H-category.

2.1. H-categories. An H-category is a small category H satisfying the following condi-
tions:

1. Every object in H is either the source of a non-identity morphism in H or the
target of a non-identity morphism but never both, i.e., for every diagram:

a0
α1- a1

α2- · · · αn- an

in H, all but one morphism must be the identity (the longest chain of compos-
able non-identity morphisms is of length one).

2. If an object in H is the source of a non-identity morphism, then it is the source
of exactly two non-identity morphisms, i.e., for every diagram in H of the form:

a0

a1
�

α1

a2
�

α 2

a3

�
α

3

· · · · · · · · ·an

α
n -

either all of the morphisms are the identity or two and only two morphisms
are not the identity.

Note that the category of H-categories forms a full subcategory of the category of
small categories.
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2.2. Important objects in H-categories. Let H be a H-category. We use Ob(H) to denote
the objects of H, Mor(H) to denote its morphisms of H, and Morid� (H) to denote the
set of non-identity morphisms of H. For a morphism α : a → b in H, its domain
(or source) is denoted by dom(α) = a and its codomain (or target) is denoted by
cod(α) = b. For small H-categories, there are two sets of objects that are of particular
interest; these are subsets of the set Ob(H). The first of these is called the edge set of
H, is denoted by Ob(←·→)(H), and is defined to be:

Ob(←·→)(H) = {a ∈Ob(H) : a = dom(α), a = dom(β), α,β ∈Morid� (H), α 6=β}.

That is, for all a ∈Ob(←·→)(H) there are two and only two morphisms (which are not
the identity)α,β ∈Mor(H) such that a = dom(α) and a = dom(β), so we denote these
morphisms by αa and βa (we will pick, once and for all, a labeling of the morphisms
in H in this way—this will define an orientation for H). Conversely, given a morphism
γ ∈ Morid� (H), there exists a unique a ∈ Ob(←·→)(H) such that γ = αa or γ = βa . The
symbol Ob(←·→)() is used because every object a ∈ Ob(←·→)(H) sits in a diagram of
the form:

b = cod(αa) � αa dom(αa) = a = dom(βa)
βa - cod(βa) = c

called a bac-diagram. Note that giving all diagrams of this form (of which there is
one for each a ∈ Ob(←·→)(H)) gives all the objects in H, i.e., every object of H is the
target of αa or βa , or their source, for some a ∈ Ob(←·→)(H). More specifically, we
can define the vertex set of H by

Ob(→·←)(H) = (
Ob(←·→)(H)

)c

where here
(
Ob(←·→)(H)

)c is the complement of Ob(←·→)(H) in the set Ob(H). It fol-
lows by definition that

Ob(←·→)(H)∩Ob(→·←)(H) = ;
Ob(←·→)(H)∪Ob(→·←)(H) = Ob(H).

2.3. Orienting H-categories. We can orient an H-category by picking a specific labeling
of its morphisms. Specifically, we define an orientation of an H-category H as a pair
of maps (α,β) between sets:

Ob(←·→)(H)
α -

β
- Morid� (H)

such that for every a ∈Ob(←·→)(H), there is a bac-diagram in H:

b � αa a
βa - c

We say that an H-category is oriented, or that it is an oriented H-category, if it has
been given an orientation.
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An orientation of H defines a partition of the non-identity morphisms of H:

Morα(H) := {γ ∈Morid� (H) : γ=αa for some a ∈Ob(←·→)(H)}

Morβ(H) := {γ ∈Morid� (H) : γ=βa for some a ∈Ob(←·→)(H)}

wherein it follows that:

Morα(H)∩Morβ(H) = ;
Morα(H)∪Morβ(H) = Morid� (H).

We will always assume that a given H-category has an orientation.
Define the category of oriented H-categories, Hcat, to have objects H-categories.

A morphism between two oriented H-categories, H and H′ (with orientations (α,β)
and (α′,β′), respectively), is a functor FFF : H→H′ such that the following diagrams:

Ob(←·→)(H)
FFF- Ob(←·→)(H

′) Ob(←·→)(H)
FFF- Ob(←·→)(H

′)

Morid� (H)

α

? FFF- Morid� (H′)

α′

?
Morid� (H)

β

? FFF- Morid� (H′)

β′

?

(1)

commute. By requiring these diagrams to commute, we mean that if a ∈Ob(←·→)(H)
with corresponding bac-diagram:

b � αa a
βa - c

then there is a corrisponding bac-diagram:

FFF (b) �
FFF (αa) =α′

FFF (a)
FFF (a)

FFF (βa) =β′
FFF (a)- FFF (c)

where FFF (a) ∈Ob(←·→)(H′).

3. Oriented H-categories and Oriented Graphs

We not turn our attention to the association of an H-category to a graph, and vice-
versa.

3.1. Oriented Graphs. An oriented graph is a pair Γ= (Q,E), where Q is a set of vertices
and E is a set of edges, together with a pair of functions s and t

E
s -

t
- Q

called the source and target functions: for e ∈ E , s(e) is the source of e and t(e) is the
target of e.
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A morphism of graphs is a pair D = (DQ ,DE ) : Γ = (Q,E) → Γ′ = (Q′,E ′), where
DQ : Q →Q′ and DE : E → E ′, such that the following diagram commutes:

E
DE - E ′ E

DE - E ′

Q

s

? DQ - Q′

s′

?
Q

t

? DQ - Q′

t′

?

(2)

The category of graphs, Grph, has as objects oriented graphs and as morphisms mor-
phisms of graphs.

3.2. Oriented H-categories from oriented graphs. Given an oriented graph, Γ= (Q,E),
we can associate to this graph an (oriented) H-category HΓ. First, we define the
objects of HΓ by using:

Ob(←·→)(HΓ) := E , Ob(→·←)(HΓ) :=Q.

and so Ob(HΓ) =Ob(←·→)(HΓ)∪Ob(→·←)(HΓ). To introduce the morphisms of HΓ we
define, for every e ∈ E , morphisms:

s(e) �αe e
βe- t(e)

and we define:

Morα(HΓ) := {αe : e → s(e)}e∈E , Morβ(HΓ) := {βe : e → t(e)}e∈E

so Morid� (HΓ) =Morα(HΓ)∪Morβ(HΓ). We complete the description of HΓ by defin-
ing an identity morphism on each object of HΓ. Note that in the definition of HΓ, we
gave it a canonical orientation; namely, (α,β) were αe and βe are defined as above
for every e ∈ E .

Given a morphism D : Γ→ Γ′, we can define a functor FFF D : HΓ → HΓ′ operating
on objects as follows:

FFF D(a) :=
{

DE (a) if a ∈ E =Ob(←·→)(HΓ)
DQ(a) if a ∈Q =Ob(→·←)(HΓ)

(3)

and operating on morphisms as follows:

FFF D(γ) :=
{
α′

FFF D (e) : FFF D(e) → s(FFF D(e)) if γ=αe ∈Morα(HΓ)

β′
FFF D (e) : FFF D (e) → t(FFF D(e)) if γ=βe ∈Morβ(HΓ)

(4)

Of course, FFF D is defined on identity morphisms in the obvious fashion: FFF D(ida) :=
idFFF D (a). Note that FFF D is a valid morphism of H-categories; (2) commutes because (1)
commutes.

The method of associating an oriented H-category to a graph defines a functor:

ΓΓΓ : Grph −→ Hcat (5)

Γ 7→ ΓΓΓ(Γ) :=HΓ .

We can now introduce the inverse of this construction.
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3.3. Oriented graphs from oriented H-categories. Given an oriented H-category H (that
is, we have functionsα andβ), we can obtain an oriented graph from this H-category,

ΓH = (QH,EH),

by defining:
QH :=Ob(→·←)(H), EH :=Ob(←·→)(H),

with source and target functions:

EH =Ob(←·→)(H)
s-

t
- Ob(→·←)(H) =QH

defined by, for all a ∈ EH = Ob(←·→)(H), s(a) := cod(αa) and t(a) := cod(βa). This in
turn defines a functor:

HHH : Hcat −→ Grph (6)

H 7→ HHH(H) := ΓH.

To finish the definition of this functor, we must define it on functors between H-
categories. For a morphism between H-categories, F : H → H′, define HHH(FFF ) := DFFF

where DFFF is the object function of FFF (that is, the functor FFF viewed as a function
between the objects of H and the objects of H′). More specifically, we define:

DFFF = ((DFFF )Q , (DFFF )E ) := (FFF |QH
,FFF |EH

) = (FFF |Ob(→·←)(H),FFF |Ob(←·→)(H))

Note that DFFF is a valid morphism of graphs; (1) commutes because (2) commutes.

3.4. Example.
The following diagram shows an oriented cycle graph, Γ=Ck , and the asso-
ciated H-category HΓ:

e1

ek e2

1
e1 - 2 1

�α
e 1

βek
-

2

β
e

1 -

� αe2

k
e k-

3

e2-

k

α
e

k
-

3

�β
e 2

... Γ
...

... HΓ

...

i +2 i −1 i +2 i −1

i +1 �ei

�ei+1

i
�e i−1

i +1 i

ei+1

β e i+
1-

αe i+1
-

ei−1

�
α

e
i−

1

�
βei−1

ei

α e i
-

�
β

e
i
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4. Main Result

In this section we give the main result of this note.

4.1. Theorem.
There is an isomorphism of categories:

Hcat∼=Grph

where this isomorphism is given by the functor HHH : Hcat → Grph with inverse
ΓΓΓ : Grph→Hcat.

Proof. We first verify that ΓΓΓ ◦ HHH = IdHcat. On objects, this holds since, using the
notation of the previous paragraphs:

Morid� (ΓΓΓ◦HHH(H)) = Morid� (HΓH
)

= {e → s(e)}e∈EH
∪ {e → t(e)}e∈EH

= {a → cod(αa)}a∈Ob(←·→)(H) ∪ {a → cod(βa)}a∈Ob(←·→)(H)

= Morα(H)∪Morβ(H)

= Morid� (H).

And, using the notation of the previous paragraphs:

Ob(ΓΓΓ◦HHH(H)) = Ob(HΓH
)

= EH∪QH

= Ob(→·←)(H)∪Ob(←·→)(H)

= Ob(H)

Next, the identity morphisms of H and H◦ΓΓΓ(H) are the same by definition.
Finally, for FFF : H→H′, on objects:

ΓΓΓ◦HHH(FFF )(a) = FFF DFFF (a)

=
{

FFF (a) if a ∈ EH =Ob(←·→)(HΓH
) =Ob(←·→)(H)

FFF (a) if a ∈QH =Ob(→·←)(HΓH
) =Ob(→·←)(H)

= FFF (a).

And, on morphisms:

ΓΓΓ◦HHH(FFF )(γ) = FFF DFFF (γ)

=
{
α′

FFF DFFF (e) : FFF DFFF (e) → s(FFF DFFF (e)) if γ=αe ∈Morα(HΓH
)

β′
FFF DFFF (e) : FFF DFFF (e) → t(FFF DFFF (e)) if γ=βe ∈Morβ(HΓH

)

=
{
α′

FFF (a) : FFF (a) → s(FFF (a)) if γ=αa ∈Morα(H)
β′

FFF (a) : FFF (a) → t(FFF (a)) if γ=βa ∈Morβ(H)

=
{

FFF (γ) : FFF (a) → cod(FFF (γ)) if γ=αa ∈Morα(H)
FFF (γ) : FFF (a) → cod(FFF (γ)) if γ=βa ∈Morβ(H)

= FFF (γ).
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This demonstrates that: ΓΓΓ◦HHH = IdHcat.
Next we verify that HHH ◦ΓΓΓ= IdGrph. For a graph Γ, we have

HHH ◦ΓΓΓ(Γ) = ΓHΓ

= (QHΓ ,EHΓ )

= (Ob(→·←)(HΓ),Ob(←·→)(HΓ))

= (Q,E) = Γ

Consider a morphism of graphs D = (DQ ,DE ) : Γ→ Γ′. If q ∈Q, then

(HHH ◦ΓΓΓ(D))QHΓ
(q) = (HHH ◦ΓΓΓ(D))Q (q)

= (DFFF D )Q(q)

= FFF D(q)

= DQ(q)

And if e ∈ E ,

(HHH ◦ΓΓΓ(D))EHΓ
(e) = (HHH ◦ΓΓΓ(D))E (e)

= (DFFF D )E (q)

= FFF D(e)

= DE (e)

Therefore, (HHH ◦ΓΓΓ(D)) = D, which completes the proof.

4.2. Corollary.
There is an adjunction from Hcat to Grph, 〈HHH ,ΓΓΓ,φ〉, where

Hcat
HHH-

�
ΓΓΓ

Grph

and φ is a function which assigns to every pair of objects H ∈ Ob(H) and Γ ∈
Ob(Grph) a bijection of sets

φH,Γ : Hcat(HΓ,Γ) ∼=Grph(Γ,ΓH)

which is natural in H and Γ.

Proof. Defining the function φ is equivalent to defining the unit and counit of the
adjunction. In this case, we define the counit and the unit to be the identity natural
transformations.
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