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~ Abstract—This paper begins by introducing the notion of a  a hybrid system,7#3, to a HMS. The main result of
simple hybrid mechanical system, which generalizes mechanical this paper is conditions on when it is possible to reduce
systems to include unilateral constraints on the configuration hybrid systems of this form, and more general simple hybrid

space. From such a system we obtain, explicitly, a simple hybrid . . .
system. The main contribution of this paper is to provide systems (hybrid systems with one domain and reset map).

conditions on when it is possible to reduce the phase space e begin by considering a Hamiltonian G-space and give
of hybrid systems obtained from simple hybrid mechanical conditions on the elements of this G-space so that it de-
systems, and general simple hybrid systems, due to symmetries fines a hybrid Hamiltonian G-space. Explicitly, this involves
in the systems. Specifically, given a Hamiltonian G-space— defining the notion of a hybrid group action and a hybrid

which is the ingredient needed to reduce continuous systems— t hich is first d in th | setti
we find conditions on the hybrid system and the G-space so that momentum map, which IS Tirst done in the general setling

reduction can be carried out in a hybrid setting—conditions  Of simple hybrid systems, followed by the special case of
that are explicitly related to conditions on the original hybrid ~ HMS's. Using these general notions, conditions are obtained
mechanical system. on when a simple hybrid systen##’, can be reduced; the
result is a simple hybrid systen#?],. Moreover, as with
classical reduction, we can understand the behavio#pf

Simple mechanical systems describe a very large classifterms of the behavior of#—hybrid flows of 57 project
physical systems since each consists of a configuration spagenybrid flows of 7.

I. INTRODUCTION

@ and a Hamiltonian/ : 7*Q — R of the form: Simple hybrid mechanical systems have been well-studied
L, 1o in the literature under many names (cf. [3] and the more than
H(g,p) = §Hp|lq +Vi(a), 1000 references therein), although the authors are unaware of

any results regarding the reduction of systems of this form.

o 5 N
\;vrr\]der;(j;)Cgislstkfzep%?:r?t?alsrjeice%g]; qu tl?str;)%géri]titelc tingcheHybrid systems also have been well-studied in a geometric
the dimensionality of systems of this form when they havcontext, €.g., [4] studies hybrid mechanical systems and [6]

. onsiders hybrid systems with symmetries. The authors again
symmetries through a process known as cotangent bun y y y g

ducti d the di ionality of the ph Fe unaware of any results regarding the reduction of these
reduc |onTo.ng .CaT reduce the dimensionality ot the p.a%‘f/stems, except for [2] which considers Routhian reduction
space (by “dividing” out by the symmetry group) and def'n%vith a focus on calculation
a corresponding Hamiltonian on this rgduged phase SpaCe'AIthough never explicitl;I/ mentioned, the literature on
The main result of geometrlc reduction is tha_t we Ca%#assical reduction (cf. [1], [8], [9] and [10]) has touched
understand the behavior of the full-order system in terms o : . : :
upon issues relating to hybrid reduction. In [8] a form

the behavior of the reduced system and vice versa. Thereforg, . LI . . .
of' discrete reduction is considered with assumptions very

the reduction of mechanical systems with symmetries pla)ésl ilar to conditions enumerated later in this paper. Similarly,

a fundamental role in understanding the many important aqu: reduction of continuous systems with constraints has been

mteres‘gng properties of t.hese systems. . studied in [7] and related references therein. Therefore, this

.In this paper, we consider a cla_lss of mechanical syste per can be viewed as the next logical step in understanding
with constraints (usually physical in nature) on the conflguﬁow to reduce the dimensionality of systems with symmetry
ration space, i.e., there is a functian: Q — R describing '
the admissible configurations of the syste®{;)>o1-

These systems are denoted Hy and termedsimple hybrid Il. SIMPLE HYBRID SYSTEMS

.glln this section, we introducesimple hybrid mechani-

) R : o i systemgHMS's) andsimple hybrid systemsexplicitl
discontinuities in the vector field describing the evolution o emg/nstrat?ng hov3 to asso?:iateya simgle hybridpsyst)ém to
the mechanical system. Therefore, we can explicitly associ:;};e'_”\/lS This association is achieved through the use of

*This research is supported by the National Science Foundation (NéNeWt(_)n.'an Impact equaUOnSNh'Ch pr_owde a method for_
award number CCR-0225610) describing the behavior of a mechanical system undergoing



impacts, and results in a specific type of simple hybridvhere H is defined as in (1), and : @ — R defines
system, termed &lamiltonian hybrid system constraints on the configuration of the system.

Hamiltoni.ans. The stgrting point for simple mechanical pefinition 2: A simple hybrid systertso named because
systems is a configuration space Let TQ be the tangent of jts connection with simple HMS's, coupled with its
bundle of@ and letT*(Q be the cotangent bundle (the phasesimp|eu structure) is a tuple:
space). We denote the pairing between the vector spaces
T:Q and T,Q by (-, -) : T:Q x T,Q — R, which for A = (D, S, R, X),
(p,v) € T;Q x T,Q is given by (p,v) = E?fl‘(@)pivi. where
Let M(q) be the inertial matrix for a mechanical system , D is a smooth manifold called thdomain
and K(q) = M(q)~'. For eachg € Q, we consider the . § is an embedded submanifold &f called theswitch-

K(g)-inner product on the vector spa@g @ given by ing surface(or guard),
dim(Q) o R is a smooth embedding : S — D called thereset
(p,0))q = Z pip}Kij(q), map (or state transition map

o X is a vector field onD.
We define ahybrid manifoldas a tupleD” = (D, S, R)
with elements as defined above. It is often useful to visualize
hybrid manifold in the form of a diagram:

ij=1
for p,p’ € T;Q; we use|| - ||, to denote the corresponding

norm on7; Q. This induces (or is obtained from, dependin
on the perspective taken) an inner product ByQ) (the

M(q)_-inner product, which defines_ a Riemannian metric on D v g R D,
Q) via the Legendre transformatioffL : TQQ — T*Q,
whereFL(q,q) = (q, M(q)q). where: is the natural inclusion.

A Hamiltonian is a mapH : T*Q — R. For this paper, We say that’” = (D, S, R, X) is a Hamiltonian hybrid
we suppose that the Hamiltonidih describes a mechanical Systenwith respect to a Hamiltonia# if there exists a sym-
system, i.e., that it has the following fofm plectic formw on D such that(D,w, X) is a Hamiltonian
system with respect to the Hamiltonizh, i.e.,d(H) = txw.

H(g,p) = 5113 + V(a). 1) | S |
The importance of this definition is that from a hybrid
where ||p||2 is the kinetic energy anif (¢) is the potential mechanical systen# = (Q, H, h), we can obtain a hybrid
energy. system, 7%, just as a dynamical system can be obtained
The cotangent bundl&;*Q, is a symplectic manifold with from a classical simple mechanical system. This is done
its symplectic structure given by the canonical symplectith two phases: first we define a hybrid manifold frah
form n followed by the definition ofs#;. Note that the hybrid
Weanonical = Z dqt A dp;. system optained from a hybrid He_lmiltonian via the following
construction has support in the literature (cf. [3], [4], [5]).

=1
With this symplectic form, we obtain a vector field @M@ Hybrid Manifolds from HMS's.  In order to construct a
from a Hamiltonian, Xy : T*Q — T(T"Q), by requiring  hybrid system from a HMS, we begin by contructing the
that it satisfies hybrid manfold D = (D, Su, Ru) from a HMSH =

d(H) = Lx, Weanonical (Q, H, h). First, D and Sy are given as follows:
H anonical -

In coordinates, this yields the classical Hamiltonian equal® = 1(¢;p) € T°Q: h(q) = 0},

tions Su = {(¢,p) €T°Q: h(g) =0 and ((p,dhq)), < 0}.
qa\ X - 9 (¢, p) 5 This is exactly the setup in mechanical systems with uni-
p )T (g, p) = _%(q,p) : (@) |atural constraints. With this in mind, we can define a state

transition mapRyg by

Ru(q,p) = (¢, Pq(p)), @)
Definition 1: A simple hybrid mechanical systeiMS)  \yhere p, : 75 — T*Q is given by
is defined to be a tuple: e I (o dho))
D, Alg

We refer the reader to [1] and [9] for more details.

- B q
H=(Q,H,h), Pyp) = p—(1+e) a2 dhy, )
!We later will use the same notation to denote the pairing between a Lizith 0 < e < 1 is the coefficient of restitution, e.g., for a
algebra and its dual, as is common [8]. _ _ perfectly elastic impact = 1, and for a perfectly plastic
2Note that this Hamiltonian is obtained from a Lagrangian of the familiar
form impacte = 0.

ol
La,q) = 54" M@)d = V()- Hybrid Systems from HMS's. Since we already have

via the Legendre transformation. constructed a hybrid manifoldDyf = (Dy, Sy, Ry) from



[TnN—1,00) iIf |A] = N, N finite, with 7;, ;11,78 € R
and Ti < Tit1,
e C = {c¢;}ica is a collection of solutions ofX, i.e.,
¢i(t) = X(ci(¢)) forall i € A,
such that the following conditions hold for eveiryi+1 € A,

(i) ci(Tiv1) €S,

(i) R(ci(rit1)) = ciy1(Tit)-
The initial condition for the hybrid flow iscy = co(70).
When we wish to make explicit the initial condition gf*,
. . . _we write x7 (zo).
Fig. 1. Spherical pendulum mounted on the floor as given in the running
example.

1. HYBRID HAMILTONIAN G-SPACES

. . . . ' The purpose of this section is to introduce the notion of
the hybrid mechanical systei, it only remains to define . o . . :
' : ; . a hybrid Hamiltonian G-space, the starting point for which
the vector fieldXy. Using the canonical symplectic form, . - . .
i . ; ; is a Hamiltonian G-space with respect to the continuous
Weanonical, W€ defineXy = Xg, as given in (2). Finally,

s — (Du, Sur, Ree, Xn). It trivially follows that 74 is portion of #. We d|§cuss hybr|d Hamiltonian G sp’af:(_as in
N . Lo the context of both simple hybrid systems and HMS'’s; in the
a Hamiltonian hybrid system w.r.t. the Hamiltoni&h . g :
later case, explicit constructions are carried out.

Example 1: The running example in this paper will be
a spherical pendulum mounted on the floor (Fig. 1). Herd. General Case: Simple Hybrid Systems
Qp = S? and, using the standard spherical coordinates, we
denote an element € S? by ¢ = (6, ) and we denote an Hamiltonian G-spaces. The starting point for reduction is
elementp € T;S? by p = (ps,p,,). For this example, the a Hamiltonian G-space (cf. [1], [9], [10]) which is a tuple:
Hamiltonian Hp is given by (D,w,®,.J),

1 2 where
Hp(q,p) = —— | p2 + —2 — mgR cos(0).
p(a.p) 2mR2 <p9 sin2(9)> g ©) « (D,w) is a symplectic manifold,

Finally, hp is the height functiorhp (6, ) = Rcos(6), i.e., » @ s a symplectic action of a Lie grouff on D, i.e.,

. . . . ®:GxD—Dandd*w=wforall g € G,
we have a simple hybrid mechanical system givenbby= ‘D . Adt 9= .
(Qp, Hp, hp). e J: D — g*is an Ad-equivariant momentum mapping

for this action.
The question is: what is the hybrid version of this data? More
specifically, what is the hybrid version of a Lie group action?

The hybrid manifold for the spherical pendulumg” =
(Dp, Sp, Rp) is given by

Dp = {(0,9,p0,p0,) € T*S? : cos(6) > 0}, A hybrid momentum map?
_ *Q2 . nna(f)) —
Sp = {(0.9.p0.p,) €T7S" 1 cos(f) =0 and pp = 0}, g group actions. Let # = (D, S, R, X) be a hybrid
and system. Consider an actioh: G x D — D of a Lie group
Rp (0, 0,p0,0,) = (0,0, —epa, py)- G on D. We say that this is &ybrid actionif ®,|s is an

action of G on S and for allg € G:

Finally, the vector field is given by Row, b oR
o g S = g [0} .

Po
mR2

— Y
mR? sin?(0)

That is, for allg € G we have a commuting diagram:

Xp(q,p) = 2 R

mRZ cos(0) sin2(0) mgR Sln(e) 7 S ——D
0
(I)Q|S l lq)g (%)
andy:(Dp,Sp,Rp,Xp). R
_ . . S ——D
Hybrid flows. A hybrid flowis a tuple: Or, in other words,R is equivariant with respect to the
= (A,9,€) actions® and®|s. We say thatb is a free and proper hybrid
e action, if @ is a free and proper action that is hybrid.
where Hybrid orbit For the hybrid ifoldD”*
. . o . ybrid orbit spaces. For the hybrid manifo =
. = ...p C . . . .
;\et {0.1,2,...} € N'is a finite or infinite indexing (D, S, R), a Lie group&, and® a hybrid action, we define

e J={I;}ica is ahybrid intervalwhere I, = [7;, Ti41] the hybrid orbit space as a tuple:

if i,i+1 € Aandly_1 = [rn_1,7n] O [Ty_1,7n) OF D’ /G = (D/G,S5/G,R),



where D/G and S/G are the orbit spaces b and ®|g, of G on @ such thath, the potential energy’, and H are

respectively, andk : D/G — S/G is the induced map. G-invariant:

We would like to give conditions on the hybrid actidn _ _
so thatD” /G is a hybrid manifold, i.e., such that we have h(¥y(q)) = hlq), V(¥(9) = V(9),
a diagram H(Y] (q.p)) = H(q,p),

~

( R for all g € G; note that the last assumption says tliatis

D/G = §/G —~ D/G G-invariant under the lifted action, which holds iff

in which D/G is a smooth manifoldS/G is an embedded . . B

submanifold and? is a smooth map. In fact, conditions for (g (), Wgma (D@ = (0 Doy (7)

when these occur are well-known (cf. [1]). when coupled with the assumption on the G-invariance of
the potential energy.

Proposition 1: If ® : G x D — D is free and proper

hybrid action, thenD” /G is a hybrid manifold. Moreover,  Proposition 2: If H = (Q, H, h) is G-invariant, then the

there is a submersion : D — D/G such that the following lifted action ¥”" of G on D is a hybrid action.

diagram
Momentum maps for HMS's. For simple mechanical

D> S 4R. D systems, there is an explicit definition of an*Adquivariant
momentum map/g. Let ¥ be the action ofG on @, and
™ Tls| o |m define a vector field oK) by
7 R
D/G < S/G — D/G d
(G 86— D fola) = ZVEp(e).0)|  €T,Q, ®
commutes ane|s is a submersion. t=0

o o _ for ¢ € T.G = g. Using this, we can defindyg and prove
Definition 3: An Ad*-equivariant momentum mag is that it is a hybrid Ad-equivariant momentum map under
said to be ahybrid Ad*-equivariant momentum map if the easily verifiable conditions.

following diagram
* Proposition 3: For H = (Q, H,h), if h is G-invariant,
thenJyg : Dg C T*Q — g* defined by
3 o
J ls‘ ©) (Jr(a,p),€) = (p.£q(a)),
R
Y

is a hybrid Ad-equivariant momentum map.

g

< B}

commutes. - "
Combining the results from Propositions 2 and 3, we have

Definition 4: A hybrid Hamiltonian G-spacés a tuple  the following theorem that provides easily verifiable condi-
v tions on when a specific Hamiltonian G-space associated to
(D™, w, @, J), a HMS is a hybrid Hamiltonian G-space.

such that D, w) is a symplectic manifoldp is a hybrid sym-
plectic action, and/ is a hybrid Ad‘-equivariant momentum
map. (D§7W;QT*7JH)

Theorem 1:If H = (Q, H, h) is G-invariant, then

is a hybrid Hamiltonian G-space.

B. Special Case: Simple Hybrid Mechanical Systems

Example 2: For our running examplei:p = S!, which
Lifted group actions. For a hybrid mechanical systeM, = cts by rotations about the vertical axis, i®g : S xQp —
(Q,H,h), Du = T"Q|{n(g)>0y- Therefore, it is natural to (), is given by
consider actions oft* @ that are obtained by lifting an action
on Q. Specifically, for an actio : G x Q — @, we obtain Up (¥, (0,9) = (0,0 +¢),
an action ofG on 7@ by cotangent lifts, i.e., we obtain an 59 the lifted action oDp is given by

action¥”" : G x T*Q — T*Q by defining .
\I]P (1/}’ (07 907p95ps0)> = (9, w+ va%pcp);

U (g,(q.p) == T"Ty1(q,p) = (T4(q), ¥} (p))- o o y
. . . . i _ . which is clearly a hybrid action by Proposition 2. Now for
It is possible to give conditions on when this action is & cgp =R

hybrid action by considering the constraint functibnthe

potential energyl’, and H. $qe(0,9) = (0,8) € T, Qp,
Definition 5: A simple hybrid mechanical systel = S0 the momentum map is given by
(Q, H,h) is said to beG-invariant if there is an action¥ Jp(0,0,p6,Dp) = Do,



which is a hybrid momentum map by Proposition 3. Finallyjs a hybrid manifold.

it follows from Theorem 1 that ) _ )
The reduced hybrid phase space. The hybrid manifold

(DE, Weanonicals ¥ » Jp) introduced in the above theorem is referred to as rthe
duced hybrid phase spac&o better understand this hybrid
manifold, note that the submersiaf together with (6) and
(9) yields the following commuting diagram

is a hybrid Hamiltonian G-space.

IV. HYBRID SYSTEM REDUCTION g*
We begin by reviewing the classic phase space reduction 3 J
theorem, first proven by Marsden and Weinstein [10]. We use Ils
this theorem to prove the existence of a reduced Hamiltonian D = ¢ S R D
hybrid system given a Hamiltonian hybrid system together
with hybrid Hamiltonian G-space. Moreover, we are able L | (10)
to prove a relationship between the hybrid flows of these 1 1 -1 R Jst ) o4
two systems—a result that is very similar to the classical J () ~— Jg () ——— (W)
trajectory reduction theorem. ml lm\ﬂ;l(ﬂ) l”u
Thg reduced phase space.Let (D,w,CI?,J) be a Hamil- D, ~ ¢ S, Ry -~ D,
tonian G-space, and assume that g* is a regular value ) _ S
of J. If wherew#\Jlgl(H) is also a submersion; this implies thaf,
G,={geG:Ad’ 1y =p} is defined by requiring that the bottom right square in this
s Ad-

diagram commute.

is the isotropy subgroup af, then the actiord of G on D
restricts to an action ofs, on J~!(u), Theorem 3: Given a Hamiltonian hybrid system? =

' 1 _1 (D,S,R,X) w.rt. a G-invariant HamiltonianH, and an

© G x I () = I () associated hybrid HamiltoniarG-space satisfying the as-
because of theAd*-equivariance ofJ. Moreover, if the sumptions of Theorem 2, then there is a reduced Hamiltonian
action of G, on J~'(u) is free and proper, the®, = hybrid system (w.rtH,,)
J~1(n)/G,, is a manifold, referred to as the reduced phase
. . ' . 6, = (D, Sy, Ry, X

space, and there is a submersiop : J~!'(y) — D,. b= Dy Sus By Xe),
Finally, the main theorem of [10] says th&%, has a unique WhereD;f‘” = (D,,S,, R,,) is defined as in Theorem 2, and

symplectic formw,, with the property: X, is defined byi(H,,) = tx,wy.
WZWM = ZZ% Reduced Hamiltonians. If H is aG-invariant Hamiltonian

wheres, : J='(11) — D is the inclusion. on D, then there;lgced Hamiltoniand,, on D,, is defined
uniquely by requiring that

Hybrid regular values. Lets# = (D, S, R, X) be a hybrid

system. Suppose that is a regular value of/ : D — g*.

We say that this is dybrid regular valueif it is also a If (D,w, Xy) is a Hamiltonian system for the Hamiltonian

regular value of/|s. This implies, when coupled with the F, then the classical reduction theorem says that there is an

Hyom,=Hou,. (12)

commuting diagram (6), that the following diagram associated reduced Hamiltonian systém,,w,, Xy, ) for
R, the HamiltonianH,,. These two Hamiltonian Systems are
J () P JIg' () s ) J () related to each other in the following way:dft) is the flow
of Xy with initial condition c(to) € J~(p), thenm,(c(t))
1 1 1 (9 s the flow of Xy, with initial condition 7, (c(ty)). The
D' 5g R . D hybrid analogue of this is given in the following theorem.
commutes, where/ ~!(u) and J|g' (1) are embedded sub-  Theorem 4: With /# and.Z, as in Theorem 3, if” (z)
manifolds. is a hybrid flow of# with o € J~(u), then there is a

corresponding hybrid flow”+ of 7%, defined by
Theorem 2: Let (D”*,w, ®,.J) be a hybrid Hamiltonian

G-space. Assume € g* is a hybrid regular value of a hybrid X7 (mu () = (A9, m,(C)),
Ad*-equivariant momentum mapand that the action of7,,

h = i)« Ci .
on J~1(p) is free, proper and hybrid. Then wherer, (€) := {mu(c:) : ci € €}

Dﬁi” = (D,,Su,R,) Th_e hybrid reduction resu_lt given_ in Theorem 3 only
. . _ provides, to quote [11], “soft” information about the reduced
= (J (1)/Gu, s (#)/Guva\;l(u)) theorem in that it does not yield a method for explicitly



Position

techniques outlined in Section Il. The continuous portion of

or 1%a  the reduction follows from [8]. In this exampl& (Qp/Gp)
z" is identified with T*(S'/Z,), i.e., Qp, = S'/Z,. The
0sf 1 reduced Hamiltoniarflp, : 7*(Qp,) = T*(5'/Z2) — R
is given by
oor 1 1 p2 2
Hp, (0,pg) = = —2 0) + -~ — .
Wl | P#( 7p9) 2mR2 +ngCOS( ) QmRQ SIHQ(Q)
Finally, we havehp , (0) = Rcos(f).
S T i D A T D The hybrid manifold for the reduced spherical pendulum
0o 2 4 6 8 10 12 14 16 18 20 D;,‘} = (Dp,,Sp,,Rp,) is given by
Time s
Angular Velocities Dp, {(0,ps) € T*(QPH) : cos(6) > 0},
10 1 ‘hf):: . Sp, = {(0,ps) € T*(Qp,) : cos(f) = 0 and py > 0},
i | and

Rp,(0,p9) = (0, —epa).
i Finally, the vector field is given by

Peo
mR?

mgRsin(0) +

12 cos(6)
mR2 sin®(0)

1 Xp,(0,p9) = ( )

and #,, = (Dp,,Sp,,Rp,,Xp,). It can be verified by

direct inspection that in fact this hybrid system is the reduced

hybrid system associated t6? as given in Theorem 3

Fig. 2. Reconstruction of the reduced spherical pendulum: position of tfeecause it makes the diagram in (10) commute.

mass over time (top), angular velocities over time (bottom). Note that in this example it is easy to reconstruct the
trajectories of the full-order pendulum from the reduced

endulum through integration. A trajectory of the full-order

constructing the reduced Hamiltonian hybrid system. The'pendulum mounted on the ground, as reconstructed from the
are more concrete methods for computing the reduced syst Riuced system, can be found in, Figure 2; here .95,

by using methods from classical mechanics which allow fol[2 — 1 andm = 1. Note that both the fuII-oraer pendulum
the explicit reduction of Hamiltonians (see [1], [8]. [11]). 5y the reduced pendulum are Zeno with these parameters.
This can be generalized in a rather straight-forward manner
to HMS's when they aré&x-invariant. The end result is two
methods for reducing a hybrid system associated to a HMS,

described graphically by: 1
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