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Abstract— This paper extends Routhian reduction to a hybrid
setting, i.e., to systems that display both continuous and discrete
behavior. We begin by considering a Lagrangian together with
a configuration space with unilateral constraints on the set of
admissible configurations. This naturally yields the notion of a
hybrid Lagrangian, from which we obtain a Lagrangian hybrid
system in a way analogous to the association of a Lagrangian
vector field to a Lagrangian. We first give general conditions
on when it is possible to reduce a cyclic Lagrangian hybrid
system, and explicitly compute the reduced Lagrangian hybrid
system in the case when it is obtained from a cyclic hybrid
Lagrangian.

I. I NTRODUCTION

Reduction of mechanical systems with symmetries plays
a fundamental role in understanding these systems. The first
form of reduction was discovered by Routh in around 1860
[13]—now understood to be an abelian form of Lagrangian
reduction—which is concerned withcyclic Lagrangians, i.e.,
Lagrangians that are independent of certain coordinates of
the configuration space. The symmetries of systems of this
form are characterized by these variables. Given a cyclic
Lagrangian, the phase space of the system (the tangent
bundle of the configuration space) can be reduced, flows
of the original system can be projected down to flows of
the reduced system, and flows of the reduced system can
be reconstructed to yield flows of the full-order system. The
purpose of this paper is to mirror these constructions in a
hybrid setting.

We begin by considering a configuration spaceQ and a
LagrangianL : TQ → R; for the most part, we will be
interested in the case when this Lagrangian is obtained from
a mechanical system, i.e., when it has the form:

L(q, q̇) =
1
2
q̇T M(q)q̇ − V (q),

where 1
2 q̇T M(q)q̇ is the kinetic energy andV (q) is the po-

tential energy. Ahybrid Lagrangianis a tupleL = (Q,L, h),
where h : Q → R defines unilateral constraints on the
configuration space (often dictated by physical constraints on
system), i.e., the set of admissible configurations is given by
Q|{h(q)≥0}. Systems of this form have been widely studied
in the literature (cf. [5], and the more than 1000 references
therein), although the authors are unaware of any results
regarding the reduction of these systems—except for their
own recent work [3], which deals with a more general form
of reduction: hybrid Hamiltonian reduction. More generally,

the authors are unaware of any results regarding the reduction
of hybrid systems, although in [9], “Lagrangian hybrid
systems” of a more general form than considered here are
studied, [8] and [15] uses control to reduce the phase space
of a hybrid system modeling a bipedal robotic walker, and
hybrid mechanical systems are studied in [6].

The definition of a hybrid Lagrangian motivates the defi-
nition of aLagrangian hybrid system, H , which is a simple
hybrid system (consisting of a single domain and reset map)
with dynamics dictated by the Euler-Lagrange equations of a
Lagrangian. We introduce the notion of acyclic Lagrangian
hybrid system—a Lagrangian hybrid system whose dynamics
are dictated by a cyclic Lagrangian—and give conditions
on when it is possible to reduce systems of this form. The
result of this reduction process is aRouthian hybrid system
Hµ, with dynamics dictated by the Routhian associated to
the cyclic Lagrangian describing the dynamics ofH . We
prove that hybrid flows (or executions) ofH project to
hybrid flows of Hµ, and that hybrid flows ofH can be
reconstructed from hybrid flows ofHµ.

A cyclic hybrid Lagrangianis a hybrid Lagrangian in
which L is cyclic. We demonstrate explicitly how a La-
grangian hybrid system,HL, can be obtained from a hybrid
Lagrangian,L; in the case whenL is cyclic,HL is cyclic and
we can carry out Routhian reduction on this hybrid system
to obtain a Routhian hybrid system(HL)µ. This process is
described graphically by the following diagram:

L
association- HL

reduction- (HL)µ

Alternately, a cyclic hybrid Lagrangian can be reduced to
obtain a hybrid RouthianLµ, and to this hybrid Routhian
we can associate a Lagrangian hybrid systemHLµ

; this is
again described graphically by

L
reduction- Lµ

association- HLµ

We are able to prove that the processes of “association” and
“reduction” commute, i.e., the order in which they are taken
is irrelevant. This can be visualized in a commuting diagram
of the form:

L
association - HL

Lµ

reduction
? association- (HL)µ = HLµ

reduction
?



This result yields an explicit method for computing Routhian
hybrid systems from cyclic hybrid Lagrangians.

II. H YBRID LAGRANGIANS

In this section, we introduce the notion of a hybrid
Lagrangian. This definition is not meant to be all-inclusive—
many different forms of “hybrid Lagrangians” have appeared
in the literature (cf. [5], [6], [7], [9] to name a few), although
not under this specific name—but rather concrete enough
to allow for explicit constructions, while general enough
to include an interesting class of systems (such as bipedal
robotic walkers [2]). The definition of a hybrid Lagrangian
motivates the definition of a Lagrangian hybrid system; we
explicitly construct Lagrangian hybrid systems from hybrid
Lagrangians.

Lagrangians. Let Q be aconfiguration space, assumed to
be a smooth manifold, andTQ the tangent bundle toQ.
SupposeL : TQ → R is a hyperregularLagrangian (cf.
[1], [11]). In this case, there is a Lagrangian vector field
fL on TQ, fL : TQ → T (TQ), associated toL; that is,
there is a dynamical system associated to the Lagrangian.
For t ∈ [t0, t1], we say thatc(t) = (q(t), q̇(t)) is a solution
to fL with initial condition c(t0) = x0 if

ċ(t) = fL(c(t)).

This is equivalent to the curveq(t) satisfying the classical
Euler-Lagrange equations:

d

dt

∂L

∂q̇
(q(t), q̇(t))− ∂L

∂q
(q(t), q̇(t)) = 0. (1)

In this paper, we will mainly consider Lagrangians de-
scribing mechanical, or robotic, systems; that is, Lagrangians
of the form

L(q, q̇) =
1
2
q̇T M(q)q̇ − V (q), (2)

whereM(q) is the inertial matrix,12 q̇T M(q)q̇ is the kinetic
energy andV (q) is the potential energy. In this case, the
Euler-Lagrange equations yield the equations of motion for
the system:

M(q)q̈ + C(q, q̇)q̇ + N(q) = 0,

whereC(q, q̇) is the Coriolis matrix (cf. [12]) andN(q) =
∂V
∂q (q). Settingx = (q, q̇), the Lagrangian vector field,fL,
associated toL takes the familiar form

ẋ = fL(x) =
(

q̇
M(q)−1(−C(q, q̇)q̇ −N(q))

)
.

This process of associating a dynamical system to a La-
grangian will be mirrored in the setting of hybrid systems.
First, we introduce the notion of a hybrid Lagrangian.

Definition 1: A simple hybrid Lagrangianis defined to
be a tuple

L = (Q,L, h),

where

yy

xx

ẋ̇x

zz
θθ

Fig. 1. Ball bouncing on a sinusoidal surface (left). Pendulum on a cart
(right).

• Q is the configuration space,
• L : TQ → R is a hyperregular Lagrangian,
• h : Q → R provides unilateral constraints on the con-

figuration space; we assume thath−1(0) is a manifold.

Example 1 (Ball): Our first running example of the paper
is a ball bouncing on a sinusoidal surface (cf. Fig. 1). In this
case

B = (QB, LB, hB),

whereQB = R3, and forx = (x1, x2, x3),

LB(x, ẋ) =
1
2
m‖ẋ‖2 −mgx3.

Finally, we make the problem interesting considering the
sinusoidal constraint function

hB(x1, x2, x3) = x3 − sin(x2).

So for this example, there are trivial dynamics and a non-
trivial constraint function.

Example 2 (Cart): Our second running example is a con-
strained pendulum on a cart (cf. Fig. 1); this is a variation
on the classical pendulum on a cart, where the pendulum is
not allowed to “pass through” the cart, i.e., the cart gives
physical constraints on the configuration space. In this case

C = (QC, LC, hC),

whereQC = S1 × R, q = (θ, x), and LC is the standard
Lagrangian associated to this system. Finally, the constraint
that the pendulum is not allowed to pass through the cart is
manifested in the constraint functionhC(θ, x) = cos(θ).

Definition 2: A simple hybrid systemis a tuple:

H = (D, f,G, R),

where

• D is a smooth manifold called thedomain,
• f is a vector field on that manifold,
• G is an embedded submanifold ofD called theguard,
• R is a smooth embeddingR : G → D called thereset

map.

Domains from constraints. Given a smooth (constraint)
function h : Q → R on a configuration spaceQ such that
h−1(0) is a smooth manifold, i.e., 0 is a regular value of
h, we can construct a domain and a guard explicitly. To



this constraint function we have an associated domain,Dh,
defined to be the manifold (with boundary):

Dh = {(q, q̇) ∈ TQ : h(q) ≥ 0}.

Similarly, we have an associated guard,Gh, defined as the
following submanifold ofDh:

Gh = {(q, q̇) ∈ TQ : h(q) = 0 and dhq q̇ ≤ 0},

where

dhq =
∂h

∂q
(q) =

(
∂h
∂q1

(q) · · · ∂h
∂qn

(q)
)

.

These constructions will be utilized throughout the course of
the paper.

Definition 3: A hybrid system is said to be aLagrangian
hybrid systemwith respect to a hybrid LagrangianL =
(Q,L, h) if it is of the form:

H = (Dh, fL, Gh, R),

whereDh and Gh are the domain and guard associated to
h andfL is the vector field associated toL.

Special Lagrangian Hybrid Systems. There is a class of
Lagrangian hybrid systems that are of special interest; these
model unilaterally constrained systems undergoing impacts
[5], and so have reset maps obtained fromNewtonian impact
equations.

Given a hybrid LagrangianL = (Q, L, h), theLagrangian
hybrid system associated toL is the hybrid system

HL = (DL, fL, GL, RL),

whereDL = Dh, fL = fL, GL = Gh and

RL(q, q̇) = (q, P (q, q̇)),

with

P (q, q̇) = q̇ − (1 + e)
dhq q̇

dhqM(q)−1dhT
q

M(q)−1dhT
q .

Of course, the Lagrangian hybrid system associated to a
hybrid Lagrangian is a Lagrangian hybrid system w.r.t. this
hybrid Lagrangian. The converse statement is not true. Gen-
eral Lagrangian hybrid systems, as introduced in Definition
3, describe a much larger class of systems, e.g., it is not
assumed that the reset map is continuous in the configuration
variables. An important class of systems that general La-
grangian hybrid systems describe are bipedal robotic walkers
(cf. [8], [14], [15]). In fact, the results of this paper are used
in [2] to reduce the dimensionality of bipedal walkers. It
is then possible to use results relating to two-dimensional
bipedal walkers to allow three-dimensional bipedal walkers
to walk while stabilizing to the upright position.

Example 3: The method for constructing Lagrangian hy-
brid systems from hybrid Lagrangians can be used to con-
struct hybrid systemsHB andHC from B andC.

Hybrid flows. A hybrid flow (or execution) is a tuple

χH = (Λ, I,C),

where

• Λ = {0, 1, 2, . . .} ⊆ N is a finite or infinite indexing
set,

• I = {Ii}i∈Λ is a hybrid interval whereIi = [τi, τi+1]
if i, i+1 ∈ Λ andIN−1 = [τN−1, τN ] or [τN−1, τN ) or
[τN−1,∞) if |Λ| = N , N finite, with τi, τi+1, τN ∈ R
andτi ≤ τi+1,

• C = {ci}i∈Λ is a collection of solutions off , i.e.,
ċi(t) = f(ci(t)) for all i ∈ Λ,

such that the following conditions hold for everyi, i+1 ∈ Λ,

(i) ci(τi+1) ∈ G,
(ii) R(ci(τi+1)) = ci+1(τi+1).

The initial condition for the hybrid flow isx0 = c0(τ0).
When we wish to make explicit the initial condition ofχH

we write χH (x0).
If χHL(x0) = (Λ, I,C) is a hybrid flow ofHL, then this

definition implies thatci(t) must satisfy the Euler-Lagrange
equations ofL for eachi ∈ Λ.

III. A R EVIEW OF CLASSICAL ROUTHIAN REDUCTION

In this section, we review classical (or “non-hybrid”)
Routhian reduction (cf. [11] and the references to the subject
therein). The motivation: it will be seen that the hybrid
version of Routhian reduction nicely mirrors the classical
version and that the construction and definitions needed
for classical Routhian reduction are also needed for hybrid
Routhian reduction.

Classical Routhian Reduction. We begin by considering a
Lie group

G = (S1 × S1 × · · · × S1)︸ ︷︷ ︸
m−times

×Rp

with k = m+p = dim(G); hereS1 is the circle. The starting
point for classical Routhian reduction is a configuration space
of the form

Q = S ×G,

where S is called theshape space; we denote an element
q ∈ Q by q = (θ, ϕ) whereθ ∈ S and ϕ ∈ G. Note that
G is an abelian Lie group, with Lie algebrag ∼= Rk; this
observation relates Routhian reduction to more general “non-
abelian” forms of reduction (cf. [1], [10], [11]).

If L : TQ → R is a Lagrangian—as given in (2)—then in
order to carry out Routhian reduction, we must assume that
L is cyclic, that is, independent ofϕ:

∂L

∂ϕ
= 0.



This implies that we can writeL as

L(θ, θ̇, ϕ, ϕ̇)

=
1
2

(
θ̇
ϕ̇

)T (
Mθ(θ) MT

ϕ,θ(θ)
Mϕ,θ(θ) Mϕ(θ)

) (
θ̇
ϕ̇

)
−V (θ)

=
1
2

(
θ̇T Mθ(θ)θ̇ + ϕ̇T Mϕ(θ)ϕ̇

)
+ ϕ̇T Mϕ,θ(θ)θ̇

−V (θ).

HereMθ(θ) ∈ Rn×n andMϕ(θ) ∈ Rk×k are both symmet-
ric positive definite matrices andMϕ,θ(θ) ∈ Rk×n.

Fundamental to reduction is the notion of a momentum
map J : TQ → g∗ ∼= Rk, which makes explicit the
conserved quantities in the system. In the framework we are
considering here,

J(θ, θ̇, ϕ, ϕ̇) =
∂L

∂ϕ̇
(θ, θ̇, ϕ, ϕ̇)

= Mϕ,θ(θ)θ̇ + Mϕ(θ)ϕ̇.

The RouthianLµ : TS → R is given by, forµ ∈ Rk,

Lµ(θ, θ̇) =
[
L(θ, θ̇, ϕ, ϕ̇)− µT ϕ̇

]∣∣∣
J−1(µ)

.

Because

J(θ, θ̇, ϕ, ϕ̇) = µ

⇒ ϕ̇ = M−1
ϕ (θ)(µ−Mϕ,θ(θ)θ̇),

by direct calculation, the Routhian is given by

Lµ(θ, θ̇) =
1
2
θ̇T

(
Mθ(θ)−MT

ϕ,θ(θ)M
−1
ϕ (θ)Mϕ,θ(θ)

)
θ̇

+µT M−1
ϕ (θ)Mϕ,θ(θ)θ̇ − Vµ(θ)

:=
1
2
θ̇T Mµ(θ)θ̇ + µT A(θ)θ̇ − Vµ(θ), (3)

where

Vµ(θ) = V (θ) +
1
2
µT M−1

ϕ (θ)µ

is theamended potential.
From the vector fieldfL on TQ, we obtain a vector

field fLµ
on TS obtained from the Routhian via the Euler-

Lagrange equations (1); see [11] for more details.
Note that we have a projection map

π : TQ → TS

(θ, θ̇, ϕ, ϕ̇) 7→ (θ, θ̇).

The main result of Routhian reduction is flows offL project
to flows of fLµ

, i.e., we have the following proposition (see
[11]).

Proposition 1: Let L be a cyclic Lagrangian,Lµ the
associated Routhian, withfL and fLµ

the associated La-
grangian vector fields. Ifc(t) is a flow of thefL such that
c(t0) ∈ J−1(µ), then π(c(t)) is a flow offLµ

with initial
conditionπ(c(t0)).

IV. H YBRID ROUTHIAN REDUCTION

In this section we carry out reduction, first on Lagrangian
hybrid systems associated to hybrid Lagrangians, and then on
general Lagrangian hybrid systems. In both cases we derive
conditions on when “hybrid” Routhian reduction can be
carried out. In the first case, these conditions are concrete and
easily verifiable, and in the later case, they are more general
but also more abstract. Finally, Routhian hybrid systems are
related to Lagrangian hybrid systems obtained from hybrid
Routhians.

A. Hybrid Routhians

Definition 4: A cyclic hybrid Lagrangian is a hybrid
Lagrangian,L = (Q,L, h), such thatQ = S × G, L is
a cyclic Lagrangian andh is cyclic, i.e.,

∂h

∂ϕ
= 0.

Hybrid Routhians. For a cyclic hybrid Lagrangian,L =
(Q = S ×G, L, h), we obtain a reduced constraint function
hµ : S → R, wherehµ is the functionh viewed as a function
on S; this makes sense becauseh is assumed to be cyclic.
From the cyclic LagrangianL, define the corresponding
hybrid Routhianby:

Lµ = (S, Lµ, hµ),

which is again a hybrid Lagranigan. From this hybrid
Routhian, we obtain a Routhian hybrid system associated
to the hybrid RouthianLµ:

HLµ = (DLµ , fLµ , GLµ , RLµ),

with DLµ = Dhµ , GLµ = Ghµ , fLµ = fLµ and

RLµ
(θ, θ̇) = (θ, Pµ(θ, θ̇)),

where

Pµ(θ, θ̇) =

θ̇ − (1 + e)
d(hµ)θ θ̇

d(hµ)θMµ(θ)−1d(hµ)T
θ

Mµ(θ)−1d(hµ)T
θ .

HereMµ(θ) is defined as in (3).

Theorem 1: Let L be a cyclic hybrid Lagrangian,Lµ the
associated hybrid Routhian, withHL and HLµ

the associ-
ated Lagrangian hybrid systems. IfχHL(x0) = (Λ, I,C) is
a hybrid flow ofHL with x0 ∈ J−1(µ), then

χHLµ (π(x0)) = (Λ, I, π(C))

is a hybrid flow ofHLµ , whereπ(C) = {π(ci) : ci ∈ C}.

Proving this theorem essentially amounts to establishing
the following proposition which says that the conserved
quantities are preserved by the reset map.



Proposition 2: If L is cyclic, then the following diagram

Rk

GL
RL

-

J |G
L

-

DL

� J |D
L

J−1(µ)|GL

∪

6

RL|J−1(µ)|GL- J−1(µ)|DL

∪

6

GLµ

π
?

RLµ

- DLµ

π
?

(4)

commutes for allµ ∈ Rk.

B. Hybrid Routhian Reduction of Lagrangian Hybrid Sys-
tems

Definition 5: A Lagrangian hybrid systemH =
(Dh, fL, Gh, R) w.r.t. a hybrid LagrangianL = (Q,L, h)
is a cyclic Lagrangian hybrid systemif L is a cyclic hybrid
Lagrangian and the following diagram

Rk

Gh
R

-

J |G
h -

Dh

� J |D
h (5)

commutes.

Routhian hybrid systems. From a cyclic Lagrangian hybrid
system,H , we can construct aRouthian hybrid system, Hµ,
which is a Lagrangian hybrid system with respect to the
hybrid RouthianLµ. We define this hybrid system as follows:

Hµ = (Dµ, fµ, Gµ, Rµ) = (Dhµ
, fLµ

, Ghµ
, Rµ),

whereRµ : Ghµ → Dhµ (possibly dependent onµ) is the
induced map defined by the requirement that it make the
following diagram

J−1(µ)|Gh

R|J−1(µ)|Gh- J−1(µ)|Dh

Ghµ

π
? Rµ - Dhµ

π
?

(6)

commute for allµ ∈ Rk.

Theorem 2: Let H be a cyclic Lagrangian hybrid sys-
tem, and Hµ the associated Routhian hybrid system. If
χH (x0) = (Λ, I,C) is a hybrid flow ofH with x0 ∈
J−1(µ), then

χHµ(π(x0)) = (Λ, I, π(C))

is a hybrid flow ofHµ, whereπ(C) = {π(ci) : ci ∈ C}.

It follows from Proposition 2, and specifically from the
fact that the commutativity of (4) implies the commutativity
(5) and (6), that the operation of “reduction” commutes.
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Fig. 2. Positions over time (top) and velocities over time (bottom).

Proposition 3: Let HL be the Lagrangian hybrid system
associated to a cyclic hybrid LagrangianL, thenHL is a
cyclic Lagrangian hybrid system and

(HL)µ = HLµ

whereHLµ is the Routhian hybrid system associated to the
hybrid RouthianLµ.

Hybrid reconstruction. Suppose thatχHµ(cµ
0 (τ0)) =

(Λ, I,Cµ) is a hybrid flow ofHµ. Then we can construct a
hybrid flow χH (c0(τ0)) = (Λ, I,C) of H by reconstructing
the flow recursively. Writingcµ

i (t) = (θi(t), θ̇i(t)), we define

ci(t) = (θi(t), θ̇i(t), ϕi(t), ϕ̇i(t))

recursively to be:

ϕ̇i(t) = M−1
ϕ (θi(t))(µ−Mϕ,θ(θi(t))θ̇i(t)),

ϕi(t) = Rϕ(ci−1(τi)) +
∫ t−τi

τi

ϕ̇i(s)ds,

where t ∈ [τi, τi+1] and Rϕ(ci−1(τi)) is the ϕ-component
of R(ci−1(τi)).

Example 4 (Ball): For the ball bouncing on a sinusoidal
surface, the LagrangianLB has two cyclic variables:x1 and
x2. SincehB is only independent of one of these variables,
the only “hybrid” cyclic variable isx1. That is, through
continuous reduction we could reduce the dimensionality of
the phase space by four, while through hybrid reduction we
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Fig. 3. Positions over time (top) and velocities over time (bottom), as
reconstructed from the reduced system.

can only reduce the dimensionality of the phase space by
two. Therefore, we will carry out hybrid Routhian reduction
on the system withG = R.

Specifically, our hybrid Routhian is given by

Bµ = (QBµ
, LBµ

, hBµ
),

whereQBµ = R2, and fory = (y1, y2),

LBµ(y, ẏ) =
1
2
m‖ẏ‖2 −mgy2 −

1
2

µ2

m
.

Finally, hBµ(y1, y2) = y2− sin(y1). The method outlined in
this section can be used to calculateHBµ

from Bµ.
A simulation of the reduced systemHBµ

can be seen in
Fig. 2. Note that this system is Zeno (both the reduced and
full-order system display Zeno behavior, see [4] for more
on this interesting phenomena). In fact, [4] discusses how to
extend the hybrid flows of hybrid Lagrangians; this process
is illustrated on this example.

Example 5 (Cart): For the pendulum on a cart, thex
variable is a cyclic variable for both the LagrangianLC

and the hybrid LagrangianC. Therefore, we can carry out
Routhian reduction withG = R. In this case

Cµ = (QCµ
, LCµ

, hCµ
),

whereQCµ = S1, and

J(θ, θ̇, x, ẋ) = mR cos(θ)θ̇ + (M + m)ẋ,

So

LCµ
(θ, θ̇) =

1
2
MCµ(θ)θ̇2 + µACµ(θ)θ̇ − VCµ(θ),

with

MCµ(θ) = mR2 − m2R2 cos(θ)2

M + m
, A(θ) =

mR cos(θ)
M + m

,

VCµ
(θ) = mgR cos(θ) +

µ2

2(M + m)
.

Finally, hCµ(θ, ) = cos(θ). We obtainHCµ from Cµ.
The positions and velocities of the full-order system, as

reconstructed from the reduced systems, can be see in Fig.
3; in this simulationm = 5, M = 50, R = 10, e = 0.9
and µ = 0.1. In this example, both the reduced and full
order model are Zeno; again, [4] discusses how to extend
the hybrid flow of this system past the Zeno point.

V. ACKNOWLEDGEMENTS

The first author would like to thank Francesco Bullo for
encouraging the author to look into this topic, and Jessy
Grizzle for first introducing the author to the importance of
symmetries in mechanical systems.

REFERENCES

[1] R. Abraham and J. E. Marsden,Foundations of Mechanics. Ben-
jamin/Cummings Publishing Company, 1978.

[2] A. D. Ames, R. D. Gregg, E. Wendel, and S. Sastry, “Towards the
geometric reduction of controlled three-dimensional bipedal robotic
walkers,” submitted to the 3rd Workshop on Lagrangian and Hamil-
tonian Methods for Nonlinear Control (LHMNL’06), Nagoya Japan.

[3] A. D. Ames and S. Sastry, “Hybrid cotangent bundle reduction of
simple hybrid mechanical systems with symmetry,” inProceedings of
the 25th American Control Conference, Minneapolis, MN, 2006.

[4] A. D. Ames, H. Zheng, R. D. Gregg, and S. Sastry, “Is there life
after Zeno? Taking executions past the breaking (Zeno) point,” in
Proceedings of the 25th American Control Conference, Minneapolis,
MN, 2006.

[5] B. Brogliato, Nonsmooth Mechanics. Springer-Verlag, 1999.
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