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Abstract— This paper extends Routhian reduction to a hybrid  the authors are unaware of any results regarding the reduction
setting, i.e., to systems that display both continuous and discrete of hybrid systems, although in [9], “Lagrangian hybrid
behavior. We begin by considering a Lagrangian together with systems” of a more general form than considered here are

a configuration space with unilateral constraints on the set of -
admissible configurations. This naturally yields the notion of a  Studied, [8] and [15] uses control to reduce the phase space

hybrid Lagrangian, from which we obtain a Lagrangian hybrid ~ Of @ hybrid system modeling a bipedal robotic walker, and
system in a way analogous to the association of a Lagrangian hybrid mechanical systems are studied in [6].
vector field to a Lagrangian. We first give general conditions The definition of a hybrid Lagrangian motivates the defi-
on when it is possible to reduce a cyclic Lagrangian hybrid nition of aLagrangian hybrid system#, which is a simple
system, and explicitly compute the reduced Lagrangian hybrid hvbrid t isti f a sinal d, . d t
system in the case when it is obtained from a cyclic hybrid y rd sys me ((’tons's Ing Ot a single domain an re_se map)
Lagrangian. with dynamics dictated by the Euler-Lagrange equations of a
Lagrangian. We introduce the notion oftgclic Lagrangian

|. INTRODUCTION hybrid system-a Lagrangian hybrid system whose dynamics

Reduction of mechanical systems with symmetries playd'e dictated by a cyclic Lagrangian—and give conditions
a fundamental role in understanding these systems. The fie§t When it is possible to reduce systems of this form. The
form of reduction was discovered by Routh in around 186¢esult of this reduction process isRouthian hybrid system
[13]—now understood to be an abelian form of Lagrangiar?., With dynamics dictated by the Routhian associated to
reduction—which is concerned wittyclic Lagrangiansi.e., the cyclic Lagrangian describing the dynamics.4f. We
Lagrangians that are independent of certain coordinates Bfove that hybrid flows (or executions) of” project to
the configuration space. The symmetries of systems of thigybrid flows of 7, and that hybrid flows ot#” can be
form are characterized by these variables. Given a cycli€constructed from hybrid flows of),.

Lagrangian, the phase space of the system (the tangenf cyclic hybrid Lagrangianis a hybrid Lagrangian in
bundle of the configuration space) can be reduced, flowshich L is cyclic. We demonstrate explicitly how a La-
of the original system can be projected down to flows ofrangian hybrid systemys,, can be obtained from a hybrid
the reduced system, and flows of the reduced system chfdrangianL; in the case whel is cyclic, 74, is cyclic and

be reconstructed to yield flows of the full-order system. Th#/€ can carry out Routhian reduction on this hybrid system
purpose of this paper is to mirror these constructions in ¥ obtain a Routhian hybrid syste(w,),,. This process is

hybrid setting. described graphically by the following diagram:
We begin by considering a configuration spageand a association reduction
LagrangianL : TQ — R; for the most part, we will be L - A, > (S)u
interested_in the case v_vhen this L_agrangian is obtained fromternately, a cyclic hybrid Lagrangian can be reduced to
a mechanical system, i.e., when it has the form: obtain a hybrid RouthiarL,,, and to this hybrid Routhian
] 1.p . we can associate a Lagrangian hybrid systéff), ; this is
L(q,4) = 54 M(q)q —V(a), again described graphically by
where 47 M(q)q is the kinetic energy and'(q) is the po- L reduction [, 2ssociation 3
n T

tential energy. Ahybrid Lagrangianis a tupleL = (Q, L, h),
where h : Q — R defines unilateral constraints on theWe are able to prove that the processes of “association” and
configuration space (often dictated by physical constraints dreduction” commute, i.e., the order in which they are taken
system), i.e., the set of admissible configurations is given big irrelevant. This can be visualized in a commuting diagram
Ql{n(q)>0}- Systems of this form have been widely studiedf the form:

in the literature (cf. [5], and the more than 1000 references association

therein), although the authors are unaware of any results L - A
regarding the reduction of these systems—except for their reduction reduction
own recent work [3], which deals with a more general form association

of reduction: hybrid Hamiltonian reduction. More generally, L,

IAQ,) = 4,

n



This result yields an explicit method for computing Routhian
hybrid systems from cyclic hybrid Lagrangians.

Il. HYBRID LAGRANGIANS

In this section, we introduce the notion of a hybrid
Lagrangian. This definition is not meant to be all-inclusive—
many different forms of “hybrid Lagrangians” have appearegig. 1
in the literature (cf. [5], [6], [7], [9] to name a few), although (right).
not under this specific name—but rather concrete enough
to allow for explicit constructions, while general enough
to include an interesting class of systems (such as bipedale Q is the configuration space,
robotic walkers [2]). The definition of a hybrid Lagrangian « L:7Q — R is a hyperregular Lagrangian,
motivates the definition of a Lagrangian hybrid system; we « i : @ — R provides unilateral constraints on the con-
explicitly construct Lagrangian hybrid systems from hybrid  figuration space; we assume that*(0) is a manifold.
Lagrangians.

Ball bouncing on a sinusoidal surface (left). Pendulum on a cart

Example 1 (Ball): Our first running example of the paper
Lagrangians. Let Q be aconfiguration spaceassumed to s a ball bouncing on a sinusoidal surface (cf. Fig. 1). In this
be a smooth manifold, an@'@ the tangent bundle t@). case
SupposeL : TQ — R is a hyperregularLagrangian (cf. B = (QB, L, hB),
[1], [11]). In this case, there is a Lagrangian vector field
fL onTQ, fr : TQ — T(TQ), associated td; that is, WhereQs =R and forz = (21,72, 73),

there is a dynamical system associated to the Lagrangian. . 1 0
Ly(z,2) = —m||%]|* — mgxs.

Fort € [to, t1], we say thak(t) = (¢q(t), ¢(t)) is a solution 9
to fr, with initial condition c(to) = o if Finally, we make the problem interesting considering the
é(t) = frlc(t)). sinusoidal constraint function

This is equivalent to the curve(t) satisfying the classical hg (21,22, 23) = 3 — sin(za).

Euler-Lagrange equations: So for this example, there are trivial dynamics and a non-
d oL oL trivial constraint function.
——(q(t),q(t)) — =—(q(t),q(t)) = 0. 1
o aq(q( ),4(t)) aq(q( ):4(t)) (6

In this paper, we will mainly consider Lagrangians de- Example 2 (Cart): Our second running example is a con-

scribing mechanical, or robotic, systems; that is, Lagrangiar%ra'ned peqdulum on a cart (cf. Fig. 1); this is a varlatlon
on the classical pendulum on a cart, where the pendulum is

of the form ; ,
1 not allowed to “pass through” the cart, i.e., the cart gives
L(g,q) = §qTM(q)q - V(g), (2) physical constraints on the configuration space. In this case
where M (g) is the inertial matrix,2 47 M (q)q is the kinetic C = (Qc, Lc, he),

energy andV (q) is th_e pote_ntial energy. I_n this case, thewherch = S' xR, ¢ = (,2), and L¢ is the standard
Euler-Lagrange equations yield the equations of motion fqragrangian associated to this system. Finally, the constraint

the system: that the pendulum is not allowed to pass through the cart is
M(q)i+ C(q,d)q + N(q) =0, manifested in the constraint functidi: (6, x) = cos(9).
whereC(g, ¢) is the Coriolis matrix (cf. [12]) and N (q) = Definition 2: A simple hybrid systeris a tuple:
%—‘;(q). Settingz = (g, ¢), the Lagrangian vector fieldf,
associated td. takes the familiar form A = (D, f,G, R),
b= o) = ( q ) where
M(q)"'(~=C(g,4)g — N(q)) ) « D is a smooth manifold called theéomain

This process of associating a dynamical system to a La-* ./ is & vector field on that manifold,
grangian will be mirrored in the setting of hybrid systems. ¢ G is an embedded submanifold &f called theguard
First, we introduce the notion of a hybrid Lagrangian. R is a smooth embeddin§ : G — D called thereset
map
Definition 1: A simple hybrid Lagrangians defined to

be a tuple Domains from constraints. Given a smooth (constraint)

L= (Q,L,h) function b : @ — R on a configuration spac€ such that
IR h=1(0) is a smooth manifold, i.e., 0 is a regular value of
where h, we can construct a domain and a guard explicitly. To



this constraint function we have an associated dom@jn, Hybrid flows. A hybrid flow (or executiol is a tuple
defined to be the manifold (with boundary):

. Xﬁf = (Aajve)a
Dy, ={(¢;4) € TQ : h(q) > 0}.
_ . . where
Similarly, we have an associated guaé€d,, defined as the
following submanifold ofD,: « A ={0,1,2,...} C N is a finite or infinite indexing
set,

Gn={(¢;4) € TQ : h(q) =0 and dhqq < 0}, o 7= {L;}ica is ahybrid intervalwhere I; = [r;, 7;11]

where ifi,i+1leAandly_1 = [TNfl,TN} or [TNfl,TN) or

oh [TN_l,OO) if A| = N, N finite, with Tiy Tit1, TN eR

dhq:F(Q): ( g—th(q) (%’:(q) ) andTi§7i+1,_ _ ) )
q e C = {c¢;}ien is a collection of solutions off, i.e.,

These constructions will be utilized throughout the course of  ¢;(t) = f(c;(t)) for all i € A,

the paper. such that the following conditions hold for eveiyi+1 € A,
Definition 3: A hybrid system is said to be lsagrangian (i) ¢i(Tit1) € G,
hybrid systemwith respect to a hybrid Lagrangiabh = (ii) R(ci(1i11)) = cix1(Tit1)-

(Q, L, h) if it is of the form:
The initial condition for the hybrid flow iscy = c¢o(70).

H = (Dy, fr,Gn, R), When we wish to make explicit the initial condition §F*

H W
where D, and G;, are the domain and guard associated t§'€ Wrggx (z0)- . _ , _
h and f, is the vector field associated fa If X7 (z0) = (A,J,€) is a hybrid flow of 7, then this
definition implies that;(t) must satisfy the Euler-Lagrange

Special Lagrangian Hybrid Systems. There is a class of equations ofL for eachi € A.
Lagrangian hybrid systems that are of special interest; these
model unilaterally constrained systems undergoing impacts

[5], and so have reset maps obtained fridewtonian impact  Ill. A REVIEW OF CLASSICAL ROUTHIAN REDUCTION
equations. . . . . . -
Given a hybrid Lagrangiah = (Q, L, h), theLagrangian In this section, we review classical (or “non-hybrid”)
hybrid system associated Tois the hybrid system Routr_nan reductloq (cf. [111 anq the references to the subj_ect
therein). The motivation: it will be seen that the hybrid
1, = (Dv, fu,GL, Rp), version of Routhian reduction nicely mirrors the classical

version and that the construction and definitions needed

where Dy, = Dy, fu = f1, Gr = Gy and for classical Routhian reduction are also needed for hybrid

Ri(q,4) = (¢, P(q,9)), Routhian reduction.
with Classical Routhian Reduction. We begin by considering a
dhgg Lie group

q

G=(S' xS!' x--- xS') xRP

m—times

Of course, the Lagrangian hybrid system associated to a

hybrid Lagrangian is a Lagrangian hybrid system w.r.t. thigith 1 = 1 +p = dim(G); hereS" is the circle. The starting

hybrid Lagrangian. The converse statement is not true. Gepoint for classical Routhian reduction is a configuration space
eral Lagrangian hybrid systems, as introduced in Definitiogf the form

3, describe a much larger class of systems, e.g., it is not O=SxG
assumed that the reset map is continuous in the configuration - ’

variables. An important class of systems that general Lazhere S is called theshape spacewe denote an element
grangian hybrid systems describe are bipedal robotic Walkfg6 Q by ¢ = (0, ) whered € S andp € G. Note that

(cf. [8], [14], [15]). In fact, the results of this paper are useq; is an abelian Lie group, with Lie algeba= R¥; this

in [2] to reduce the dimensionality of bipedal walkers. ltypservation relates Routhian reduction to more general “non-
is then possible to use results relating to two-dimensionahajian” forms of reduction (cf. [1], [10], [11]).

bipedal walkers to allow three-dimensional bipedal walkers fL:TQ— R

is a Lagrangian—as given in (2)—then in
to walk while stabilizing to the upright position. grang g (2)

order to carry out Routhian reduction, we must assume that

Li lic, that is, i :
Example 3: The method for constructing Lagrangian hy- 's cyclic, that is, independent of

brid systems from hybrid Lagrangians can be used to con- oL

struct hybrid systems#g and % from B and C. % =0.



This implies that we can writé as IV. HYBRID ROUTHIAN REDUCTION

L(#, 0, ©0,¢) In this section we carry out reduction, first on Lagrangian
1/ 3§ 6)  MT,(0) hybrid systems associated to hybrid Lagrangians, and then on
= = ( i ) ( My ©,0 ) ( > general Lagrangian hybrid systems. In both cases we derive
2\ @ Myp(0) My (8) conditions on when “hybrid” Routhian reduction can be
. —V(9) carried out. In the first case, these conditions are concrete and
_ (g7 y o o T easily verifiable, and in the later case, they are more general
2 <9 Mo(0)0 + ¢ MQ(GW) + 9T M, o(6)6 but also more abstract. Finally, Routhian hybrid systems are
=V(6). related to Lagrangian hybrid systems obtained from hybrid

Here My(60) € R™*™ and M,,(0) € R*** are both symmet- Routhians.

ric positive definite matrices antt/, ¢(0) € RF*".
Fundamental to reduction is the notion of a momentun Hybrid Routhians
mapJ : TQ — g* = R* which makes explicit the

conserved quantities in the system. In the framework we are P&finition 4: A cyclic hybrid Lagrangianis a hybrid
considering here, Lagrangian,L. = (Q, L,h), such thatQ = S x G, L is

a cyclic Lagrangian and is cyclic, i.e.,

. , oL, . ,
J(070a§07§0) = %(‘9"9’%@) @ —0
= M,0(0)0 + M,(6)). Op

Hybrid Routhians. For a cyclic hybrid Lagrangianl. =

TheRouthianL,, : TS — R is given by, foru € R, (Q =S x G, L,h), we obtain a reduced constraint function

0,6) = [ 0,6, 0,p) — /JTC/-D} ) h, : § — R, whereh,, is the functionh viewed as a function
’ ’ () on S; this makes sense becausds assumed to be cyclic.
Because From the cy_clic LagrangiarL., define the corresponding
. hybrid Routhianby:
J(0.0,0.¢) =n
( ) 1 A L,u: (SaLﬂah#)7
= =M, (0)(n— Mpp(6)0),

which is again a hybrid Lagranigan. From this hybrid

i lculati he Routhian is gi . . . : .
by direct calculation, the Routhian is given by Routhian, we obtain a Routhian hybrid system associated

. 1. B . i ; .
LH<9, 9) _ 59T (M9(9) _ M;"Q(H)Mw 1(9)M%9(9)) 6 to the hybrid ROUthIaI’Lu.
+ﬂTMs;1(9)M¢,9(0)é - Vu(e) %M = (DLH’fLH7GLu’RLM)’
- %GTMM(H)@' +uTAB)0 —V,(9), (3 With Dy, =Dy, Gy, =Gy, fu, = fi, and
where . Ry, (0,0) = (6, P.(6,0)),
V.(0) =V(6) + §MTM£1(9M where

is theamended potential P.(8, 0) =

From the vector fieldf;, on T'Q, we obtain a vector ) d(h,) i
field f,, on TS obtained from the Routhian via the Euler- 0—(1+e) b 0_1 =M, (0)" d(hy)g -
Lagrange equations (1); see [11] for more detalils. d(hy)oM,u(0) " d(hy.)g

Note that we have a projection map Here M,,(6) is defined as in (3).

T TQ - TS, Theorem 1: LetL be a cyclic hybrid LagrangianL,, the
(0,0,0,9) — (0,0). associated hybrid Routhian, with4, and 4., the associ-
ated Lagrangian hybrid systems. ¥t (zo) = (A,J,€) is

The main result of Routhian reduction is flows roject
fof proj a hybrid flow of.s4, with zq € J~1(u), then

to flows of f,, i.e., we have the following proposition (see
(L)) X (w(o)) = (A,9,7(€))

Proposition 1: Let L be a cyclic Lagrangian,L,, the is a hybrid flow of.7,, , wherer(€) = {n(c;) : ¢; € C}.
associated Routhian, witlf;, and fz, the associated La-
grangian vector fields. I&(¢) is a flow of thef; such that Proving this theorem essentially amounts to establishing
c(to) € J'(u), thenm(c(t)) is a flow of fz, with initial  the following proposition which says that the conserved
condition(c(tp)). quantities are preserved by the reset map.



Proposition 2: If L is cyclic, then the following diagram - FPosition

R* il |
L _ L ~ 21 1
Ry ”
| e |
Ryl y-1() I |
T e, ——— T (W), 0
l l Al l
™ ™ | | | | | | | | | | | |
4 3 2 1 0 1 2 3 4 5 6 7
GL, » Dy, y_1
" Ry, “ } Velocities

commutes for al, € R*. of i ppae
4 i
B. Hybrid Routhian Reduction of Lagrangian Hybrid Sys- 2} .
tems o — .
Definition 5: A Lagrangian hybrid systemsZ = 2f 7
(Dp, fr,Gr, R) w.rt. a hybrid Lagrangia. = (Q, L, h) 4f .
is acyclic Lagrangian hybrid systeif L is a cyclic hybrid 4\l .
Lagrangian and the following diagram 8| _
Rk o 0 2 4 6 8 10 12 14

~ Time
Fig. 2. Positions over time (top) and velocities over time (bottom).
Gh R Dh

commutes. Proposition 3: Let 73, be the Lagrangian hybrid system

Routhian hybrid systems. From a cyclic Lagrangian hybrid &ssociated to a cyclic hybrid Lagrangidh, then .71, is a
system, 7, we can construct Routhian hybrid systeywz;,, cyclic Lagrangian hybrid system and

which is a Lagrangian hybrid system with respect to the (4, = 4,
hybrid Routhiarl,,. We define this hybrid system as follows: a

% = (DuafuaG;uRu) = (thfLwGh,nRu)v

where R, : G, — Dy, (possibly dependent op) is the ] ) o
induced map defined by the requirement that it make tHdybrid reconstruction.  Suppose thaty”*(c;(10)) =

“w

where 771, is the Routhian hybrid system associated to the
hybrid RouthianL,,.

following diagram (A,J,€H) is a hybrid flow of.7,. Then we can construct a
Rl hybrid flow x 7 (co(70)) = (A, J, €) of 2 by reconstructing
T Yo T Wley, T YWl the flow recursively. Writing!' (t) = (6;(t), 6;(t)), we define
h h
G, Ry - Dy recursively to be:
commute for ally € R¥. Gi(t) = Mg (0:(t)) (1 — My p(0:(t))0i(t)),
t—Ti
Theorem 2: Let # be a cyclic Lagrangian hybrid sys- pi(t) = Ry(ci-1(m)) +/ pi(s)ds,

Ti

tem, and ., the associated Routhian hybrid system. If
X (z0) = (A,7,€) is a hybrid flow of # with =, € Wheret € [, 7;41] and R, (c;—1(7;)) is the p-component

J_l(y,), then of R(Ci_l(Ti)).
I, _
X7 (m(x0)) = (A,3,m(C)) Example 4 (Ball): For the ball bouncing on a sinusoidal
is a hybrid flow of’7,, wherer(C) = {n(c;) : ¢; € C}. surface, the Lagrangiahg has two cyclic variablest; and

xo. Sincehgy is only independent of one of these variables,

It follows from Proposition 2, and specifically from the the only “hybrid” cyclic variable isz;. That is, through
fact that the commutativity of (4) implies the commutativitycontinuous reduction we could reduce the dimensionality of
(5) and (6), that the operation of “reduction” commutes. the phase space by four, while through hybrid reduction we



Positions

T T T : . : : : : So
15F J theta ® 1
- . o .
ol [ Lc, (0.0) = 5Mc, (0)6° + pAc, (0)8 - Ve, (9),
L i with
° 2R? cos(0)? mR cos(6)
m .
3 g Mc () =mR?> — —————"2 A(f) = ———~
0.0 CH() m Mtm (9) Mtm '
05 1 12
Ve, (0) = mgR )+ ——.
A0 1 ©,(0) = mgR cos(6) + 2(M +m)
5 \ . . . . . . - Finally, hc, (0,) = cos(f). We obtainzg, from C,,.
o 5 10 15 20 25 30 35 40 The positions and velocities of the full-order system, as
Time reconstructed from the reduced systems, can be see in Fig.
- . . _Velocities _ . . . 3; in this simulationm = 5, M = 50, R = 10, e = 0.9
Sy Jredo D and p = 0.1. In this example, both the reduced and full
1i5_ - order model are Zeno; again, [4] discusses how to extend
1o _ the hybrid flow of this system past the Zeno point.
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