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Abstract. A 3D biped with knees and a hip is naturally modeled as
a nontrivial hybrid system; impacts occur when the knee strikes and
when the foot impacts the ground causing a switch in the dynamics gov-
erning the system. Through a variant of geometric reduction—termed
functional Routhian reduction—we can reduce the dynamics on each do-
main of this hybrid system to obtain a planar equivalent biped. Using
preexisting techniques for obtaining walking gaits for 2D bipeds, and uti-
lizing the decoupling effect afforded by the reduction process, we design
control strategies that result in stable walking gaits for the 3D biped.
That is, the main result of this paper is a control law that results in 3D
bipedal walking obtained through stable walking gaits for the equivalent
2D biped.

1 Introduction

Adding knees to a bipedal robot is important from both a practical and theo-
retical perspective: knees allow for an increase in energy efficiency and for the
ability to navigate rough terrain more robustly. Yet adding knees significantly
adds to the complexity of analyzing and controlling the biped [4], [I3]. To see
this, note that bipedal robots are naturally modeled as hybrid systems; when
the foot impacts the ground, there is an instantaneous change in the velocity of
the system. Adding locking knees to the robot results in an even more complex
hybrid model since at knee lock there is another instantaneous change in the
velocity of the system. Moreover, this necessarily results in two sets of dynami-
cal equations: one where the knee is unlocked and one where the knee is locked.
Kneed walking, therefore, provides significant novel challenges, especially when
coupled with the desire for three-dimensional bipedal walking.
Three-dimensional (3D) bipedal walking provides interesting challenges not
found in its two-dimensional (2D) counterpart. In this case one must not only
achieve stable forward motion, but simultaneously stabilize the walker upright
during this motion. In addition, while 2D bipedal walking has been well-studied
(see [6], [7], [12], [18] and [14] to name a few), the results in 3D bipedal walking
are relatively limited (see [B], [9] and [§] for some results in 3D walking) and
there have yet to be results on obtaining walking for 3D bipedal robots with
knee locking. Coupling the study of 3D bipeds with the study of locking knees,
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therefore, forms a challenge that will test our understanding of the underlying
mechanisms of walking.

Fundamental to understanding 3D walking—with or without knees—is un-
derstanding the interplay between the lateral and sagittal dynamics. That is, we
must mathematically quantify how to “decouple” the dynamics of a 3D biped
into its sagittal and lateral components; this is done by exploiting inherent sym-
metries in walkers through the use of geometric reduction. Specifically, we con-
sider a form of geometric reduction termed functional Routhian reduction (first
introduced in [3] and generalized in [2]). As with classical reduction, this form
of reduction utilizes symmetries in a system, in the form of “cyclic” variables,
to reduce the dimensionality of the system. Unlike classical reduction, this is
done by setting the conserved quantities equal to an arbitrary function of the
“cyclic” variables rather than a constant, i.e., there is a functional conserved
quantity. This allows us to “control” the decoupling effect of geometric reduction
through this function, a fact that will be instrumental in the construction of our
control law.

The main result of this paper is a control law that results in stable walking for
a 3D biped with knees and a hip, which is achieved by combining three control
laws. The first control law affects the sagittal dynamics of the biped by shaping
the potential energy so that the 2D biped, obtained by constraining the 3D biped
to the sagittal plane, has stable walking gaits. The second control law shapes
the total energy of the 3D biped so that functional Routhian reduction can be
applied—the reduced system is exactly the 2D system after applying the first
control law—thus decoupling the sagittal and lateral dynamics, while allowing
us to affect the lateral dynamics through our specific choice of the functional
conserved quantity, for certain initial conditions. Finally, the third control law
stabilizes to the surface of initial conditions for which the decoupling afforded by
the second control law is valid. We verify numerically that the combined control
law results in stable walking, i.e., a locally exponentially stable periodic orbit.

2 Bipedal Model

Hybrid systems are systems that display both continuous and discrete behavior
and so bipedal walkers are naturally modeled by systems of this form; the con-
tinuous component consists of the dynamics dictated by Lagrangians modeling
mechanical systems in different domains, and the discrete component consists
of the impact equations which instantaneously change the velocity of the sys-
tem when the knees lock or when the foot contacts the ground. This section,
therefore, introduces the basic terminology of hybrid systems and introduces
the hybrid model of the biped considered in this paper.

Definition 1. A hybrid control system is a tuple
H€¢ = (I,D,U,G,R, FG),

where
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Fig. 1. A graphical representation of the domains of the hybrid control system #% sp

— I' = (V,E) is an oriented graph, i.e., V and E are a set of vertices and
edges, respectively, and there ezists a source function sor : E — V and a
target function tar : E — V which associates to an edge its source and
target, respectively.

— D ={Dy,}vev is a set of domains, where D,, C R™ s a smooth submanifold
of R,

— U ={U,}vev, where U, C R* is a set of admissible controls,

— G ={G¢}eck is a set of guards, where Ge C Dyor(ey,

— R = {R.}eck is a set of reset maps, where R : Go — Diar(e) is a smooth
map,

— FG = {(fv,9v)}ver, where (fy,gv) is a control system on D,, i.e., & =
fo(x) + go(x)u for x € D, and u € U,.

A hybrid system 5 = (I, D, G, R, F) is a hybrid control system with U = {0},
in which case F = {fy,}ver-

Solutions to hybrid systems, or hybrid flows or hybrid executions, are defined in
the traditional manner (see [10]). A solution to a hybrid system is k-periodic
if it returns to the same point after passing through the domain in which it is
contained k times (in the process it may pass through an arbitrary number of
other domains of the hybrid system). One can consider the local exponential
stability of k-periodic solutions in the obvious way (see [2] for this definition in
the case of a hybrid system with one domain). One can associate to a k-periodic
solution of a hybrid system a Poincare map, and the stability of the k-periodic
solution can be determined by considering the stability of the Poincare map.
Finally, the stability can be determined numerically using approximations of the
Jacobian of the Poincare map (see [14] and [I5]). This is how we will determine
that the periodic orbit for the 3D biped produced in this paper is stable.

3D biped model. The model of interest is a controlled bipedal robot with a
hip, knees and splayed legs that walks on flat ground in three dimensions (see
Figure 2)), from which we will explicitly construct the hybrid control system:

A€ 3p = (I'sp, D3p, Usp, Gsp, Rsp, FG3p).
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Fig. 2. The sagittal and lateral planes of a three-dimensional bipedal robot

In particular, I'sp = ({u,l},{ew = (u,0),e; = (I,u)}). That is, there are two
domains u, [ and two edges e, ¢; (see Figure[Il). In the first domain the biped’s
non-stance knee is unlocked and in the second domain the biped’s knee is locked.
Transitions occur from domain « to domain [ when the knee locks, and from [ to
u when the foot strikes the ground. Note that the discrete structure of this model
enforces temporal ordering to events (kneelock and footstrike) as motivated by
the two-dimensional biped with knees considered in [4]. We will now construct
the rest of the hybrid system 7% sp beginning on the level of Lagrangians and
constraint functions (see [1I213]).

Associated with each domain, there is a configuration space Q3P = T3 x S! and
Q3P = T? x St associated with the knee being unlocked and locked, respectively.
The coordinates on Q3P are given by q, = (6, 0)T, with 0, = (65, 6, 0i)T the
vector of sagittal-plane variables with the knee unlocked, where 6 is the angle of
the stance leg from vertical, 8,4 is the angle of the non-stance leg from vertical and
O is the angle of the knee from vertical (see Figure[J), and ¢ is the lean (or roll)
from vertical. Similarly, the coordinates on Q3P are given by ¢ = (67, )T, where
0; = (s, 0ns)” is again the vector of sagittal-plane variables with the knee locked.
Note that the hip width w, leg length ¢, and leg splay angle p are held constant.

Each domain and guard are constructed from constraint functions. For the
knee unlocked domain, the unilateral constraint is given by:

HSD(Qu) = ak - 9n57

which is positive when the knee is unlocked and zero at kneestrike. For the knee
locked domain, the unilateral constraint is given by:

H}® (q1) = £ cos(p) (cos(0s) — cos(0s)) cos() + (w — 2sin(p)) sin(e),

which gives the height of the non-stance foot above the ground. Thus the domains
for the hybrid system Dsp = {D3P, D3P} are obtained by requiring that the
constraint functions be positive, i.e., for i € {u,l},
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DjP = {(q) €TQ : HiP(¢:) > 0}.

K2

We put no restrictions on the set of admissible controls except that they can
only directly affect the angular accelerations. Therefore, Usp = {U3P, UPP} with
U3P = R* and UPP = R3.

The set of guards is given by Gsp = {G:P,G3P} where G2P is the set of
states where the leg is locking and GZ’P is the set of states in which the height
of the swing foot is zero and infinitesimally decreasing. That is, for i € {u,},

Gep = {(q) eTQM : HP(¢;) =0, dHP(g,)ds < o} :

3

with B (q;) = (227 (g))"
The set of reset maps is given by Rsp = {R2P, R3P}. The reset map R3P is
given by
aQ
P(Qu» Qu)l
P(Qu» Qu)2
P(Qu» Qu)4

RS? (quv Qu) =

where

3D .
P(qu: 4u) = du ~ grmgirt ey Ma- (@) dH P (gu)"

with M?2P(q,) the inertia matrix given in (). This reset map models a perfectly

plastic impact at the knee.

The reset map RS’ZD similarly models a perfectly plastic impact at the foot.
This is obtained through the same process outlined in [3] and [7] (see [4] for
a nice explanation of the computation of the impact equations for a 2D kneed
walker) but space constraints prevent the inclusion of this equation. Also, note
that the signs of w and p are flipped during impact to model the change in
stance leg.

Finally, the dynamics for 5% sp are obtained from the Euler-Lagrange equa-
tions for the two mechanical systems in each domain. Specifically, the Lagrangian
describing each system is given by, for i € {u,l},

1

Q(J;‘FM?D(%)% — VP (a),

L3P (i, ¢i) =
where M3?P(g;) is the inertial matrix and V;*P(g;) is the potential energy (these
are large matrices and so space constraints prevent the inclusion of them in this
paper), where M3?P(g;) can be expressed in block matrix form as follows:

N M8y MEO(6:)T
1260 = (o) “mrto) ) W

K2
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where M3P(g;) € R™*mi MO(6;) € Rvi=Dx(i=1) pre0(g,) ¢ RIX(ni=1) and
mf(@i) € R where n, = 4 and n; = 3. The reason for this block matrix repre-
sentation will become clear when the control laws are introduced.

Using the controlled Euler-Lagrange equations, the dynamics for the walker
are given by:

MPP(g:)di + CP (g, 4i)gi + NP (q;) = BiP;,

BVIBD

where v; € URP, C3P(q;,4;) is the Coriolis matrix, NP = ~ge—(a:), and
100 1 000
BP=|-110 g~ | 7L 100
l oo1) 0-110 |
0 001

which converts the torque from relative coordinates to absolute.
Thus for FGsp = {FG3P, FG3P}, we have for i € {u,l}

3D( . ) _ q;
J e ) (ME’D(Q)I (—C3(air 4i)di — NE’D(%))) ’
. On; xns
Q?D(Qi,%‘) = <M§D(q5—1BE,D) )

where Op, xn; is @ n; X n; matrix of zeros.

3 Control Law Construction

This section presents the control law for the 3D biped with a knee and hip, the
construction of which is motivated by the control law for the 3D biped (without
a knee) successfully utilized in [2]. In particular, the control law is obtained by
combining three control laws on each domain, u and [, of the hybrid system. The
first control law acts on the sagittal dynamics of the walker on each domain in
a way analogous to the controlled symmetries control law used for 2D walkers,
the second control law transforms the Lagrangians of the 3D walker into almost-
cyclic Lagrangians so that we can utilize functional Routhian reduction (see [2]),
and the third control law utilizes zero dynamics techniques to stabilize to the set
of initial conditions where the decoupling effect afforded by functional Routhian
reduction is in effect. The result of combining these control laws is a control law
on each domain of the hybrid system that results in stable walking; the specific
attributes of this walking will be discussed in the next section.

Reduced dynamics controller. The first control law affects the dynamics of
the 3D biped’s sagittal plane by shaping the potential energy of the Lagrangian
describing these dynamics on each domain of the hybrid system as motivated
by the controlled symmetries method of [17]. The end result is a hybrid system
modeling the 2D dynamics of the biped that walks on flat ground.
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We can view the 2D sagittal restriction of the 3D biped as a hybrid control
system:
A€ = (I'sp, Dap, Uap, Gap, Rop, FGap)

where Isp = I'sp. To obtain this hybrid system we consider two configuration
spaces Q2P = T3 and Q?P = T? with coordinates 6, = (s, Ons, 0x)? and 6, =
(05, 0ns)T and let

DY = {(Z) e TQ® : H{P(6;) > 0},

0; :
62 ={(§) e T@®: 100 = 0,412 (06, <0
for i € {u,l}, with H2P(6;) = H?P(6;,0). We obtain the reset maps R2P and
REZD by similarly projecting the reset maps to the ¢ = 0 subspace. For the set
of admissible controls, we take U2P = R? and Ul2D = R?. Finally, the dynamics
(f2P,g2P), i € {u,l}, are obtained from the Lagrangians given by:

. 1. .
L2P(6;,6;) = §9¢TMZ-2D(91')9¢ - V2(6:),

where M?2P = M? as in () and V2P (0;) = V;3P(6;,0), through the Euler La-
grange equations as was done in the 3D model, where in this case B2P and B?P
are the 3 x 3 and 2 x 2 upper-left submatrices of B2 and Bl3D, respectively.

The hybrid control system 7% op is similar, but not equivalent, to the typical
2D kneed walker (cf. [4]) (since the splayed legs affects the height of the planar
robot) which motivates the control law to be introduced. That is, we utilize
controlled symmetries of [I7] by “rotating the world” via a group action in order
to shape the potential energy of both LZP and L?P to obtain stable walking gaits
on flat ground for 7% op.

Consider the group action ¥; : St x Q?P — Q2P| i € {u,l}, given by:

s+
W(é’l) = (:b —:"YY) ) szwu) = | s+
ns 0k+")/

for slope angle v € St. Using this, define the following two feedback control laws:

2D 2D
kR0 = (532 (Zom 00 - Zom @ 00)). ©)

for i € {u,l}. Applying these control laws to the control systems (fZP, g2P)

yields the dynamical systems:
F7(05,0:) := [7°(0:,6:) + g7° (04, 6:) KR] (6y),

which are just the vector fields associated to the Lagrangians

. 1. .
L3 (0:,6:) = 507 M (0:)0; = V2P (2] (63)- (3)



Three-Dimensional Kneed Bipedal Walking: A Hybrid Geometric Approach 23

TN
\::§

Fig. 3. A walking gait of the 2D biped obtained by restricting the 3D biped

We have thus defined a hybrid control system:
o1, = (I'np, Dop, Gap, Rop, F7),

where FY = {f], f'}.

As with the typical kneed 2D biped, it can be verified that for certain -, this
hybrid system has a stable periodic orbit. An example of the 2D walking that is
obtained for this 2D biped under this control law can be seen in Figure Bl Note
that for this simulation, v = 0.0504 (and the same model constants as used in
Section M) motivated by [4].

Lagrangian shaping controllers. The fundamental tool used in the con-
struction of the second control law is functional Routhian reduction (see [2] for
a complete discussion of this type of reduction). This is a variant of standard
Routhian reduction [11]], and allows one to reduce the dimensionality of dynami-
cal systems obtained from “almost-cyclic” Lagrangians. Moreover, it differs from
standard reduction techniques in that one can set the cyclic variables equal to a
function, rather than a constant, thus affecting the behavior of these cyclic vari-
ables. This type of reduction is fundamental in the construction of our control
law since the cyclic variable is the lean angle, so applying this reduction allows
for the decomposition of the walker into its sagittal and lateral components.
More concretely, we introduce controllers to shape both the kinetic and poten-
tial energy of L3P, i € {u,l} so as to render them “almost-cyclic.” This shaping
is done so that the functional Routhians (the Lagrangians for the reduced sys-
tems) associated with these almost-cyclic Lagrangians are just the Lagrangians
for the 2D kneed walker considered in the construction of the first control laws.
Consider the following almost-cyclic Lagrangians for ¢ € {u,[}:

a, . 1 A . @ 01 @ 2 «,
LE ’Y)(ei?(p?ei?@) = 5 (ezT 50) Mi (91) (‘P) - Wi (eiv(pvei) - Vi( ’Y)(eia@)a

where

M2P(0;) 4 MO MET0) o0
M7 (0;) my (6;)

M (6;) = (
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. a(p .6 .
wo 91 91 = — Mw 91 91
7 ( 7807 ) m:&(el) 7 ( )
a, 1 a?p®
VI Bi0) = VP (09) = 575G
with M/ %(0;), MZP(0;) = M?(0;), and m?(0;) as defined in ({)—the last two
are positive definite since M; sb (g:) > 0. Referrlng to [2], for these almost-cyclic

Lagrangians, we have taken /\( ) = —agp. It follows that the functional Routhi-
ans associated with these cyclic Lagrangians are L] as given in (3).

Now we can define two feedback control laws that transform L3P to Ll(-a”).
In particular, for ¢ € {u, 1}, let

KS (g5, 41) = (BI®)"H(CPP (g1, 4o)ds + NP () (4)
+MEP(g)) M (45) " (~C2(gi, 60)ds — N7 (@),

(a,7)
where C7* is the shaped Coriolis matrix and N (@) - WB— Note that these

control 1aws 1mphcltly use the two first control laws. Applylng these to the
control systems (f3P, g3P) yields the dynamic systems:

fi(aﬁ)(Qi»qi) = fP(q, &) + ggD(Qi»Qi)KSi(aﬁ)(inqi)» (5)

which are just the vector fields associated to the Lagrangians Ll(-a”). Moreover
we have the following relationship between the behavior of f*7 and f; on each
domain of the hybrid system; this result follows directly from Theorem 1 in [2].

Theorem 1. Let i € {u,l}, then (0:(t), o(t),0;(t), o(t)) is a solution to the
vector field fi(a"Y) on [to,tr) with

¢(to) = m(mﬂ(to) + MP(0:(t)) 05 (t0)), (6)
if and only if (0:(t),6;(t)) is a solution to the vector field f; and (p(t), p(t))
satisfies:

() = —g— (ap(t) + M7 (0:(1))0:(1))- (7)

This result implies that on each domain, for certain initial conditions, i.e., those
satisfying (@), the dynamics of the biped can effectively be decoupled into the
sagittal and lateral dynamics. Moreover, according to (@), the lateral dynamics
must evolve in a very specific fashion. These fundamental points will allow us
to use the walking gait for the 2D biped obtained by restricting the biped to
obtain walking gaits for the 3D biped. But first, we must address how to handle
situations where (@) is not satisfied.
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Zero dynamics controller. The decoupling effect of Theorem [ can only be
enjoyed when (@) is satisfied; this set of initial conditions forms a hypersurface
in each domain. Since most initial conditions will not satisfy this constraint, i.e.,
lie on this surface, we will use the classical method of output linearization in
non-linear systems to stabilize to this hypersurface (see [16] for the continuous
case and [7], [14] for the hybrid analogue).

Before introducing the third control law, we define a new hybrid control system
that implicitly utilizes the first two control laws. Specifically, let

%(gé%’” = (F3D7 D3D, R, G3D7 R3D7 FG(‘L'Y))
where I'3p, D3p, G3sp and R3p are defined as for 7% 3p and

FGE = {(£1*7 g N} icuay-

Each control system (fi(a"Y),gga"Y)) is given by:

S @) + 9.7 (@i di)vi = £ (46, 60) + 930 (s Gi) b i
f( 7)( )+ ( 7)( ) f( 7)( ) + 3D( )b

where v; € R and b, is the n'jh basis vector in R™ with n, =4 and n; = 3 and
fi(a"Y) as given in (@)).

Motivated by our desire to satisfy (@l), we define the following two functions
for i € {u,l},

. . 1 :
hi(qi, 4i) == ¢ + —z (@ + Mf’e(ei)ei)-

mf (0;)
The main idea in the construction of the third control law is that we would like
to drive h;(q:, ;) to zero, i.e., we would like to drive the system to the surface

Z, = {(gl) €TQP : hi(gi, d;) = 0}-

K2

With this in mind, and motivated by the standard method for driving an output
function to zero in a nonlinear control system, we define the following feedback
control laws:

_ eoleam .y —1 PO TRV
vi = K2 0, i) = L oohi(gi, i) (Lffa'”h*q“ql) + ehl(q“ql)) ’

where nga,w)hi is the Lie derivative of h; with respect to gl(a”), Lfgcm) h; is the
Lie derivative of h; with respect to fi(a"Y) and KZl-(E’a"Y) is well-defined since
ngow) hi(gi,4i) # 0. Note that under these control laws, each h; will decay
exponentially when the solution is in domain ¢ since its evolution will be governed
by the differential equation:

: 1
hi = —=h,.
€
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Fig. 4. A walking gait for the 3D biped

Utilizing the feedback control law KZ§€’0"7), we obtain a new hybrid system:
jﬁg,([;,a77) = (F3D7 D3D7 G3D7 R3D7 F(E’aﬁ))v
where F(67) = {fi(e’aﬁ)}ie{u,l} with

fi(ﬁ’am(qz'» 4i) == fi(aﬂ)(qiv 4i) + g§"’”)(q¢, qz‘)KZi({’aﬂ)(qz', Gi)-

Note that €, @ and v can be thought of as control gains, as long as they are
chosen so that € > 0, & > 0, and v such that /], has a stable periodic orbit.

We now proceed to examine the behavior of %@%’a”).

4 Simulation Results

In this section we present simulation results supporting our claim that %’g(];’a’v)

has a stable periodic orbit, i.e., that we obtain stable walking for the 3D biped.
We first choose model parameters m. = 0.05kg, m; = 0.5kg, M; = 0.5kg,

p = 0.0188rad, w = 10cm, £ = 1m, r. = 0.372m, r; = 0.175m, v = 0.0504rad,

%, and « = 10. The walking gait and stable limit cycle for our model with

initial condition

€ =

:1:0:(0.000628 0.236309 0.236309 —0.238929 —0.238929
0.016716 1.513716 1.513716 1.590103 1.590103)T

and these parameters is shown in Figuredl Bl and [6 respectively. Note that each
jump in the phase portraits shown corresponds to a jump from one vertex in
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Fig. 5. A stable limit cycle of the 3D biped (top)

the graph I'sp to another and that, by inspection, the system appears to have a
stable 2-periodic limit cycle.

We show that this limit cycle is (locally) exponentially stable by verifying
that the eigenvalues of the linearized Poincare map at a fixed point of the limit
cycle all have magnitude less than one [I5]. Since our hybrid system consists of
multiple domains we choose a fixed point right before footstrike, run the model
forward two strides, and obtain five stable eigenvalues from the Jacobian of the
Poincare map. The linearized Poincare map will always yield n — 1 eigenvalues,
where n is the dimension of the configuration space where the Poincare section of
the Poincare map is located, since the Poincare section is by definition taken to
be an n — 1 dimensional hypersurface. Since our fixed point is in the knee-locked
domain, our configuration space is Q?D, of dimension 6. Thus, the 5 eigenvalues
are 0.060149 + 0.5936692, 0.000010, 0.004772 and 0.029407. The fact that these
eigenvalues have magnitude much less than 1 suggests that the periodic orbit is
both stable and that our third control law is effective at rejecting perturbations
that might prevent the system from reaching a stable limit cycle.

The zero dynamics controller ensures that during the continuous evolution
of the biped, solutions will converge exponentially to the surface Z; where the
sagittal and lateral dynamics are decoupled. What is interesting is that after
each kneestrike or footstrike, the dynamics are thrown off the surface Z; where-
after the zero dynamics controller again drives the system to the surface (this
behavior can be seen in Figure[7]). This could theoretically destroy the stability
of walking in the sagittal plane, but fortunately does not due to two main facts:
the perturbations away from the surface Z; are not large, and the zero dynamics
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Fig. 7. The evolution of h, and h; for a walking gait of the 3D biped (top) and angles
over time for the walking gait of the 3D biped (bottom)
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brings the system close to the surface very quickly (exponentially fast) where
again the decoupling effects are enjoyed. As a final note, the functions h, and
h; will only decay exponentially when the solution is in domain » and I, respec-
tively. This can be seen in the plot of h;, where this function does not decay
exponentially when the knee is unlocked, but does after kneestrike which occurs
at the smaller jumps in the function.

The results of our simulation also indicate that we are able to obtain very
natural walking using our three control laws. Looking at the time evolution of
the knee angle 0y in Figure [l we see that in the knee-unlocked domain the
leg swings naturally due to the passive dynamics, and then locks briefly before
footstrike. It was shown in [2] that the natural side-to-side swaying, evident in the
phase portrait of ¢ in Figure[@] is induced by the functional Routhian reduction
used in the second control law. When the third control law brings the system
close to the surface Z;, the phase portraits of the sagittal dynamics appear very
similar to those of the 2D biped. As a result the stance and non-stance angles
evolve like the 2D biped. In other words we have obtained stable, energy-efficient
and natural walking gaits by virtue of the decoupling of the sagittal and lateral
dynamics.

5 Conclusion

This paper presented a hybrid control law yielding stable walking for a three-
dimensional biped with a hip and knees; while the result of this control law
was natural-looking walking, indicating that it captures the natural dynamics
of walking, there are numerous future research questions that result from this
work. First, while the stability of the walking gait was verified numerically, the
question is: can similar results be proven analytically? More importantly, in or-
der to obtain these results, it was necessary to assume full actuation; since more
complex walking involves phases of underactuation, dealing with underactua-
tion in the context of the control scheme outlined here presents very interesting
challenges. Finally, considering more complex bipedal robots is of fundamental
importance, e.g., bipeds with feet. In considering these models, the correspond-
ing hybrid systems will become increasingly complex with many more discrete
domains and transitions between them. The final goal is to apply the general
control strategy presented here to these more complex models in order to design
bipedal walkers that display human looking walking.
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