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4.7.1 BIPEDAL ROBOTS WITH HZD CONTROLLERS

The method of hybrid zero dynamics (HZD) offers a paradigm for designing
feedback control laws that induce reliable dynamically-stable walking and run-
ning motions on bipedal robots, all the while providing analytically tractable
guarantees of performance. The method has been introduced by Jessy Grizzle,
Eric Westervelt, and their collaborators in Grizzle et al. (2001), Westervelt et al.
(2003), Westervelt (2003), Morris and Grizzle (2009), where geometric nonlin-
ear control tools are developed to generate provably stable limit-cycle walking
motions in a class of bipedal robots by dealing directly with their underactuated
and hybrid nature; the book (Westervelt et al., 2007) provides an integrative per-
spective. At its core, the method relies on restricting the dynamics of the robot
on a lower-dimensional attractive and invariant subset of its state space. This
is achieved by defining a set of holonomic output functions with the control
objective being to drive these outputs to zero. Through this process, a lower-
dimensional dynamical system emerges from the closed-loop dynamics of the
robot that governs the existence and stability properties of its behavior.

Beyond its theoretical value, the method has been successful in experimen-
tally generating robust walking motions on the planar bipedal robot Rabbit
(shown in Fig. 4.7.1); see Chevallereau et al. (2003), Westervelt et al. (2004)
for details regarding these experiments. Rabbit’s successful walking experi-
ments prompted the extension of the HZD method to stabilize bipedal run-
ning (Chevallereau et al., 2005). However, while initial experiments have been
successful in exciting running on Rabbit, the resulting motions could not be
sustained due to actuator limitations (Morris et al., 2006). Given that elastic
energy storage elements – e.g., in the form of tendons in animals (Alexander,
1988) or springs (Raibert, 1986) in robots – play a significant role in the real-
ization of running motions, subsequent research efforts on the HZD method
concentrated on its implementation on compliant robots. Based on theoreti-
cal tools developed in Morris (2008), Morris and Grizzle (2009), the notion
of compliant hybrid zero dynamics has been introduced in Poulakakis (2008),
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FIGURE 4.7.1 A collection of robots and robotic assistive devices for which HZD-based methods
have successfully resulted in stable bipedal locomotion.

Poulakakis and Grizzle (2009b) and further refined in Sreenath (2011) to in-
duce robust walking (Sreenath et al., 2011) and running (Sreenath et al., 2013)
motions in experiments with the compliant bipedal robot MABEL4 shown in
Fig. 4.7.1. In addition to these experiments, MABEL provided an excellent
platform for validating advanced locomotion controllers for accommodating
unexpected large ground-height variations (Park et al., 2013), and for testing
alternative Lyapunov-based HZD control schemes as in Ames et al. (2014a) that
afford greater flexibility in incorporating constraints such as actuator torque sat-
uration (Galloway et al., 2015). These ideas have been translated to other robots,
including the use of Lyapunov-based HZD techniques to realize walking on the
planar robot DURUS-2D (Cousineau and Ames, 2015) (shown in Fig. 4.7.1),
along with running on the same platform (Ma et al., 2017).

Building upon the successes of HZD, which focused on underactuated
walking due to its clear separability from methods that require full actuation
(e.g., zero moment point (ZMP) based frameworks (Kajita et al., 2003, 2006;

4. MABEL and its monopedal version Thumper depicted in Fig. 4.7.1 have been designed and
constructed by Professor J. Hurst in a collaborative effort between The University of Michigan and
Carnegie Mellon University; see Grizzle et al. (2009) for an overview and Hurst et al. (2007), Hurst
and Rizzi (2008), Hurst (2008) for details relevant to the underlying design philosophy.
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Vukobratović et al., 2006; Goswami, 1999a, 1999b)), the HZD methodology
has been proven to be extensible to walking behaviors that more clearly re-
semble humans. When locomoting, humans naturally display different discrete
phases that correspond to their changes in contact with the world (Ackermann,
2007). In the context of robots, this multi-contact behavior can be represented
by a hybrid dynamical system model of walking consisting of discrete domains,
wherein dynamics of the robot change discretely as a function of its contact with
the ground; this results in phases of full, under- and over-actuation (Ames et al.,
2011; Vasudevan et al., 2013). The ability of HZD to handle underactuation
motivated its extension to this multi-domain locomotion scenario. In particular,
using human locomotion data as inspiration, the framework of human-inspired
control extended HZD to the full-actuated case through the notion of partial hy-
brid zero dynamics (PHZD) (Ames, 2014). Combining this approach with the
HZD methods for underactuated walking, e.g., on AMBER 1, resulted in the
ability to consider multi-domain HZD, thereby achieving multi-contact walking
behaviors on bipedal robots, including ATRIAS (Hereid et al., 2014), AMBER 2
(Zhao et al., 2014b, 2015a), and the prosthesis AMPRO (Zhao et al., 2016b) (see
Fig. 4.7.1). These results, both formally and experimentally, indicated that HZD
can provide a mathematical framework for realizing human-like walking behav-
iors on robotic systems.

The last frontier for HZD-based methods was their extension to three-
dimensional (3D) walking and realization on humanoid robots; the challenges
and approaches are described in detail in Grizzle et al. (2014, 2010). This will
enable us to engage dynamically moving bipeds in motion planning tasks, in-
cluding navigation in environments cluttered by obstacles as in Gregg et al.
(2012), Motahar et al. (2016), Veer et al. (2017). While 3D robot walking
utilizing HZD had long proved feasible in simulation, and had even proven
realizable on small-scale humanoids like the NAO robot (Ames et al., 2012a;
Powell et al., 2013), bridging the gap between this theory and the experimental
realization on full-scale humanoid robots is a difficult task. This is, at its core, a
function of the fact that HZD uses the entire dynamics of the robot to generate
walking gaits in the context of a constrained nonlinear programming problem.
When this optimization problem can be solved, it results in dynamic and effi-
cient gaits – yet as the complexity of the robot increases, solving the problem
becomes more difficult making the translation to hardware evermore challeng-
ing. During the design and development of the humanoid robot DURUS (shown
in Fig. 4.7.1), structure in nonlinear optimization problem necessary to generate
gaits was discovered and exploited to allow for rapid gait generation; bringing
the time needed to obtain a stable walking gait from hours to a few minutes
(Hereid et al., 2016); importantly, due to the presence of springs in the ankles
of DURUS, this was done in the context of multi-domain walking that exploits
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PHZD to achieve stability. Not only was stable walking achieved, but it was done
so in a sustained fashion with the end result being the public demonstration of
DURUS at the DARPA Robotics Challenge, wherein it walked continuously for
over 2 1/2 hours covering over 2 km – all on a single 1.1 kWh battery (Reher et
al., 2016a). Additionally, these results were extended to the case of multi-contact
walking with natural heel–toe behaviors thereby demonstrating human-like hu-
manoid locomotion (Reher et al., 2016b). Moreover, in both cases, the walking
realized on DURUS was the most efficient walking realized on a bipedal hu-
manoid robot (Collins and Ruina, 2005). The final lessons from the realization
of HZD on a variety of platforms was that it provides a powerful method for
realizing dynamic walking behaviors on bipedal and humanoid robots.

4.7.2 MODELING LEGGED ROBOTS AS HYBRID DYNAMICAL
SYSTEMS

Walking and running behaviors can be modeled as distinguished periodic orbits
of mechanical systems that are strongly nonlinear and hybrid in nature. For ex-
ample, a simplified walking cycle consists of successive phases of single support
(swing phase) and double support (impact phase). On the other hand, running
comprises phases where a leg is in contact with the ground (stance phase) and
phases where the system is in the air following a ballistic motion under the in-
fluence of gravity (flight phase). This combination of continuous dynamics and
discrete transitions among them is characteristic of legged locomotion and it
gives rise to hybrid system models, which are the focus of this section.

4.7.2.1 Continuous Dynamics

Let Q be the configuration space of a robot with n degrees of freedom, i.e., n=
dim(Q), with coordinates q ∈ Q; examples of coordinate choices for various
bipeds are shown in Fig. 4.7.2. For the sake of definiteness, it may be necessary
to choose Q to be a subset of the actual configuration space of the robot so that
global coordinates can be defined,5 i.e., such that Q is embeddable in R

n, or
more simply Q⊂R

n. Consider the equations of motion for a robot given in the
general form by the Euler–Lagrange equations (Murray et al., 1994; Spong et
al., 2006):

D(q)q̈ +C(q, q̇)q̇ +G(q)= Bu (4.7.1)

where D(q) is the mass matrix, and C(q, q̇)q̇ , G(q) are vectors containing the
centrifugal and Coriolis forces and the gravitational forces, respectively, and

5. At various points of this chapter we will assume that certain matrix functions have full rank; it
may be necessary to carefully choose Q to satisfy these conditions.
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FIGURE 4.7.2 Examples of the configuration space for a collection of bipedal and humanoid
robots; in this case, Rabbit (Westervelt et al., 2003), AMBER 2 (Zhao et al., 2014b), ATRIAS
(Hereid et al., 2014) and DURUS (Hereid et al., 2016).

B ∈Rn×m is the actuation matrix which determines the way in which the torque
inputs, u ∈ U ⊂ R

m, actuate the system (where here U is the set of admissible
control inputs). Importantly, the actuation matrix changes based upon the actua-
tion type of the robot: in the case of full actuation, this matrix is full rank, while
in the case of underactuation this matrix has rank m< n indicating that it is not
possible to actuate all of the degrees of freedom of the system, and if m > n

the system is overactuated, i.e., there is more control authority than degrees of
freedom in the system.

Selecting the state vector x to include the configuration variables and the
corresponding rates, that is x = [qT q̇T ]T ∈R2n, and noticing that

d

dt

[
q

q̇

]
=
[

q̇

−D(q)−1 (C(q, q̇)q̇ +G(q))

]
+
[

0

D(q)−1B

]
u (4.7.2)

results in the following state-space form of the continuous dynamics (4.7.1):

ẋ = f (x)+ g(x)u. (4.7.3)

4.7.2.2 Discrete Dynamics

In the basic walking model – more advanced models are discussed in Sec-
tion 4.7.2.4 below – the continuous dynamics (4.7.3) represents the swing phase,
which evolves until the leg hits the ground, thereby resulting in an impact. It is
this impact that is the basis for the hybrid dynamical system model that under-
lies walking and running motions (Westervelt et al., 2007; Grizzle et al., 2014;
Ames et al., 2011; Haddad et al., 2006). In particular, we consider the height of
the swing foot and the surface defined by this height being zero. If pv

toe denotes
the height of the toe of the swing leg, then the surface

S = {x ∈ TQ | pv
toe(q)= 0 and ṗv

toe(x) < 0} (4.7.4)
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FIGURE 4.7.3 Representation of the hybrid model of the biped as a system with “impulse” effects.

is the switching surface (or the guard in the terminology of hybrid systems).
Upon reaching the switching surface, the system undergoes an impact, which
in basic walking models represents an instantaneous double support phase. The
end result is an update law

x+ =�(x−) (4.7.5)

mapping the pre-impact states, x−, to the post-impact states, x+. This impact
model includes both a “change of coordinates” in the configuration variables
corresponding to swapping the swing and stance legs, together with a discrete
change in the velocity of the system determined by a plastic impact of the swing
foot with the ground (which causes the stance foot to leave the ground and thus
become the swing foot). More details on deriving the impact map � can be
found in the book (Westervelt et al., 2007).

4.7.2.3 Hybrid Control System

The end result of these constructions is a system with impulsive effects or a
hybrid control system:

H C :
⎧⎨⎩ ẋ = f (x)+ g(x)u, x ∈D\S,

x+ =�
(
x−
)
, x− ∈ S,

(4.7.6)

where D = {x ∈ TQ | pv
toe(q) > 0} is the domain of the system, i.e., we require

the swing foot to be above the ground. Note that the domain is often restricted to
the admissible domain through the inclusion of friction constraints. The system
(4.7.6) is depicted in Fig. 4.7.3. We also note that sometimes systems of this
form are written as a tuple

H C := (D,U,S,�, (f, g)), (4.7.7)

as is more common in the hybrid systems literature (Lygeros et al., 2003; Goebel
et al., 2009; van der Schaft and Schumacher, 2000; Lamperski and Ames, 2013).
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4.7.2.4 Advanced Models of Locomotion

The hybrid system model of a walking robot that we have considered so far in-
cludes only a single continuous and discrete domain. For robots with more com-
plex mechanical characteristics, i.e., springs and nontrivial feet, hybrid system
models with more complex discrete structure are needed. Interestingly enough,
these hybrid models naturally relate to human locomotion models, i.e., humans
tend to display a specific discrete domain structure when walking, wherein their
contact points with the ground change throughout the gait (Ames et al., 2011;
Vasudevan et al., 2011, 2013). Other examples of locomotion models evolv-
ing on multiple domains can be found in running motions, due to the al-
ternation between stance and flight phases (Poulakakis and Grizzle, 2009a;
Sreenath et al., 2013). These more complex models for locomotion can again
be modeled as a hybrid system.

The key element to advanced models of robotic walking and running is
an oriented graph, � = (V ,E), that indicates how the contact points change
throughout the course of a gait, i.e., the vertices of this graph (V ) correspond to
different collections of contact points with the ground, and the transitions (de-
scribed by edges E) occur when these contact points change; see Fig. 4.7.4 for
examples in the case of multi-contact locomotion and Fig. 4.7.8 for a running
model. The end result is a hybrid control system model of the form

H C := (�,D,U,S,�,FG) (4.7.8)

where, in this case, D = {Dv}v∈V is a collection of domains, U = {Uv}v∈V is
a collection of admissible inputs, S = {Se}e∈E is a set of switching surfaces,
� = {�e}e∈E is a set of impact maps with �e : Se ⊂ Dsource(e) → Dtarget(e)

and FG= {(fv, gv)}v∈V is a collection of control systems of the form (4.7.3).
It is important to note that the degree of actuation changes for each domain,
i.e., on some domains the system may be underactuated, on some it might be
fully actuated, and on others it can be overactuated. The specific methods for
constructing hybrid system models as they relate to the changing contact points
of the robot can be found in Ames et al. (2011).

To provide a concrete example, consider the multicontact model of the
bipedal robot AMBER 2 shown in Fig. 4.7.4. As described in Zhao et al.
(2014b, 2015a), this model consists of three domains, Dv+ , Dvi , and Dv− ,
that depend on how the robot’s contact points (heel and toe) change through-
out the course of a step. The dynamics on each of these domains changes
with the change in contact points. Importantly, each of these domains dis-
play a different actuation type: Dv+ is overactuated, Dvi is fully actuated,
and Dv− is underactuated. Other examples of multidomain walking, and the
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FIGURE 4.7.4 (Left) The discrete domains, and the percentage of the step spent in a domain, for
a human walking (as obtained from experimental data), (Middle) the discrete two domain structure
associate with the hybrid system model of ATRIAS, and (Right) the discrete three-domain structure
for AMBER 2 when walking with articulated feet (Zhao et al., 2014b).

application of hybrid zero dynamics to these systems to achieve robotic run-
ning, will be discussed in Section 4.7.6.2. Finally, an interesting class of
multidomain hybrid models emerges naturally in the context of planning the
motion of dynamically walking bipeds amidst obstacles (Gregg et al., 2012;
Motahar et al., 2016). This can be achieved through the sequential composi-
tion of primitive limit-cycle walking motions each stabilized through HZD as
in Motahar et al. (2016), Veer et al. (2017).

4.7.3 VIRTUAL CONSTRAINTS FOR LOCOMOTION

Central to the HZD approach is the introduction of virtual constraints. These
constraints represent relations among the robot’s degrees of freedom that cor-
respond to preferred postures during the realization of a walking or running
gait. They are formulated as functions of the configuration variables of the form
h(q)= 0, q ∈Q, and can thus be interpreted as holonomic constraints, the en-
forcement of which effectively restricts the robot’s motion on low-dimensional
surfaces embedded in its higher-dimensional state space. It should be empha-
sized however, that the key difference with the classical notion of holonomic
constraints from analytical mechanics (Goldstein et al., 2002) is that virtual
holonomic constraints are imposed on the system via its actuators, not via work-
less constraint forces.

4.7.3.1 Virtual Constraints

In our setting, we would like to “force” a set of coordinates – those over which
we have control – to follow desired patterns. Doing so both enforces certain pat-
terns with regard to walking motions and reduces the overall dimensionality
of the system to a reduced dimensional space, thus giving rise to a lower-
dimensional dynamical system, namely the zero dynamics. Mathematically, we
consider the difference between an actual output, ya , and a desired output, yd ,
expressed via

y(q) := ya(q)− yd(τ (q),α) ∈Rm, (4.7.9)
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where the desired function begins as a function of time, yd(t, α), dependent on
a parameter set α, and converted to a function of the configuration variables
through a parameterization of time often chosen to be of the general form,

τ(q)= θ(q)− θ+

θ− − θ+
, (4.7.10)

where θ : Q→ R is a phase variable, θ+ = θ(q+) is its value post-impact,
θ− = θ(q−) is its value pre-impact, and therefore τ :Q→[0,1] throughout the
course of a step. To provide some intuition, as Fig. 4.7.2 indicates, the phase
variable θ can be chosen to correspond to the angle of the line connecting the
hip with the toe of the support leg, which is a monotonically increasing quan-
tity that captures “progression” of the support leg into the step; see Westervelt
et al. (2007) for details. It is important to emphasize that the outputs (4.7.9)
depend only on the configuration variables, hence the term virtual holonomic
constraints.

4.7.3.2 Designing Virtual Constraints for Locomotion Tasks

Based upon the framework of virtual constraints, the main idea is to consider a
vector of output variables ya in (4.7.9), with one output for each actuator. These
outputs capture quantities that are of interest, e.g., angles in the system or other
geometric relationships, such as the position of the center of mass or the height
of the swing foot. The goal is to drive these outputs to evolve according to a
collection of desired behaviors as represented by yd , which is a function of the
phase variable τ and a set of parameters α that allow “tuning” the constraints
according to desired specifications. The art of gait design is to pick yd so that it
displays certain properties so that driving y→ 0 in (4.7.9) guarantees stability
of the system. A concrete way of selecting yd in (4.7.9) is through the use of
Beziér polynomials of degree M , i.e., for i = 1, . . . ,m,

yd(τ (q),α)i =
M∑
k=0

M!
k!(M − k)!αk,iτ (q)

k(1− τ(q))M−k. (4.7.11)

The use of Beziér polynomials is only one choice of functions for the design
of the desired evolution yd in (4.7.9), which offers some flexibility in imposing
desired boundary conditions on the different phases that compose a cyclic loco-
motion pattern. More details about certain key properties of these polynomials
and on how to use them in the context of gait design can be found in Westervelt
et al. (2007).

Virtual constraints, designed via Beziér polynomials, provides a computa-
tionally efficient way of constructing virtual constraints. Yet, since the desired
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behavior is given by polynomials, they do not necessarily capture the virtual
constraints present in human walking. That is, we could instead seek human-
inspired virtual constraints whose design is inspired by human locomotion data.
In this light, human data suggests that for certain collections of outputs, ya , ap-
pear to act like the time solution to a mass–spring–damper system, i.e., humans
appear to display simple “linear” behavior when the proper collection of virtual
constraints are considered (Sinnet et al., 2011a; Ames, 2012; Powell et al., 2012;
Huihua et al., 2012; Zhao et al., 2014b). This motivates the following mass–
spring–damper desired output:

yd(τ (q),α)i = yMSD(τ (q),α)i

:= e−α4,i τ (q)(αk,i cos(αk,iτ (q))+ αk,i sin(αk,iτ (q)))+ αk,i

(4.7.12)

for i = 1, . . . ,m, which is simply the time solution to a linear mass–spring–
damper system, i.e., a second order linear system. Human data has been calcu-
lated from a variety of actual output combinations, ya , and it has been shown
that yMSD accurately describes (with high correlation) these outputs; examples
include the position of the hip, the position of the center of mass, and the knee
angles (Ames, 2014; Sinnet et al., 2014).

Another class of virtual constraints developed for fully actuated walking
robots considers both velocity modulating and position modulating virtual con-
straints. More specifically, in this case we can modulate both the position of
the robot – through the virtual constraints defined in (4.7.9) – and its traveling
speed. Moreover, we would like to do this in a general fashion that will allow for
different collections of virtual constraints depending on the bipedal robot being
considered and the desired behavior to be achieved. To regulate the velocity of
the robot in an explicit fashion, we consider the following virtual constraints
(Ames, 2014):

y1(q, q̇)= ∂θ(q)

∂q
q̇ − v, (4.7.13)

y2(q)= y2,a(q)− y2,d (τ (q),α) (4.7.14)

where y2 are the position modulating outputs as defined in (4.7.9), θ :Q→R is
the phase variable of the virtual constraint (4.7.9), and v is the desired velocity.
For example, we may wish to explicitly control the forward velocity of the center
of mass to regulate the robot’s speed; in this case θ would be the position of the
center of mass, and v would be the desired velocity. In doing so, it is often useful
to consider the following modified form for the parameterizations of time:

τ(q)= θ(q)− θ(q+)
v

, (4.7.15)
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where q+ is the post-impact configuration of the robot. Therefore, τ directly
couples the phase of the robot to the forward progression of the velocity mod-
ulating output. As in the case of purely position modulating virtual constraints
(4.7.9), the goal is to construct a controller that drives y1 → 0 and y2 → 0 to
force the robot to progress forward in a desired fashion while displaying the
coupling dictated by y2.

4.7.4 USING FEEDBACK CONTROL TO IMPOSE VIRTUAL
CONSTRAINTS

As discussed in Section 4.7.3, the goal is to drive y→ 0 in order to force the
actual outputs, ya , to the desired outputs, yd , i.e., in order to achieve ya→ yd .
This objective can be achieved through the use of a core tool in nonlinear con-
trol: feedback linearization (Sastry, 1999). The end result is a controller that
drives the system to the zero dynamics surface and renders this surface invariant
through the continuous dynamics. Therefore, applying this control law implies
that the full dynamics of the robot will ultimately evolve on a low dimensional
space for the continuous dynamics. The next section will discuss how to achieve
this through the full hybrid dynamics of the robot and, thereby, realize periodic
walking and running motions in the hybrid models of Section 4.7.2.

4.7.4.1 Feedback Linearization

The goal of feedback linearization is to uncover a relationship between the out-
put and the control input. This is achieved by differentiating the output until
this relationship is revealed. To be concrete, let us consider differentiating y in
(4.7.9) along solutions of the continuous dynamics (4.7.3). We have

ẏ(q, q̇)= ∂y(q)

∂q
q̇ . (4.7.16)

Since none of the inputs appear in this equation, we differentiate a second time
to obtain

ÿ(q, q̇)= ∂

∂q

(
∂h(q)

∂q
q̇

)
q̇ + ∂y(q)

∂q
q̈ (4.7.17)

and substituting in the dynamics (4.7.1) yields

ÿ(q, q̇)= ∂

∂q

(
∂h(q)

∂q
q̇

)
q̇ + ∂y(q)

∂q

[
−D−1(q) (C(q, q̇)q̇ +G(q))

]
︸ ︷︷ ︸

L2
f y(q,q̇)
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+ ∂y(q)

∂q
D−1(q)B︸ ︷︷ ︸

LgLf y(q,q̇)

u (4.7.18)

where, since we differentiated y twice to obtain the input, the virtual constraint
is a relative degree two output in the terminology of nonlinear control (Isidori,
1995; Sastry, 1999). In the context of the mixed position and velocity modulat-
ing outputs (4.7.13)–(4.7.14), the result will be a mixed relative degree, as will
be discussed in more detail in Section 4.7.4.3 below.

To obtain a controller that drives y→ 0 we consider (4.7.18) which can be
written in terms of x as

ÿ(x)= L2
f y(x)+LgLf y(x)u , (4.7.19)

where LgLf y(x) ∈Rm×m is the decoupling matrix that is assumed to be invert-
ible. Therefore, selecting

u(x,μ)= (LgLf y(x)
)−1

[
−L2

f y(x)+μ
]
, (4.7.20)

where μ ∈ Rm is an auxillary input, results in a linear relationship between the
second derivative of y and the new input μ, as in

ÿ = μ. (4.7.21)

That is, the end result is a linear control system of the form[
ẏ

ÿ

]
=
[

0 I

0 0

]
︸ ︷︷ ︸

F

[
y

ẏ

]
+
[

0
I

]
︸︷︷︸
G

μ (4.7.22)

where I ∈Rm×m is the identity matrix. Therefore, the control law

με(y, ẏ)=−KP

ε2
y − KD

ε
ẏ ⇒

[
ẏ

ÿ

]
= 1

ε

[
0 εI

− 1
ε
KP −KD

]
︸ ︷︷ ︸

Fcl(ε)

[
y

ẏ

]

(4.7.23)

where KP and KD are chosen so that Fcl(ε) is stable (Hurwitz) for all 0 < ε < 1.
Note that here ε forces the system to converge at a user defined rate. Therefore,
the control law

u∗(x)= (LgLf y(x)
)−1

[
−L2

f y(x)−
KP

ε2
y − KD

ε
ẏ

]
(4.7.24)
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FIGURE 4.7.5 Illustration of the key concepts related to hybrid zero dynamics: continuous con-
vergence to a low dimensional zero dynamics surface Z, coupled with a hybrid invariance condition:
�(S ∩Z)⊂ Z.

drives the output y and its derivative ẏ to zero exponentially fast at a rate of 1
ε

.

4.7.4.2 Zero Dynamics

The control law introduced in Section 4.7.4.1 drives y(x)→ 0 and ẏ(x)→ 0.
That is, it drives the continuous dynamics to the zero dynamics surface, illus-
trated in Fig. 4.7.5 and defined by

Z := {x ∈D | y(x)= 0 and ẏ(x)= 0} , (4.7.25)

where the dimension of the surface is the degree of underactuation of the sys-
tem 2(n − m); it is reminded that n is the number of the degrees of freedom
of the robot and m is the number of actuators. One can find (local) coordi-
nates for the zero dynamics surface, Z, given by z : D→ R

2(n−m) such that
(z, y, ẏ) : D→ R

2n is a (local) diffeomorphism. To provide a concrete exam-
ple, suppose that m= n− 1 and the angle between the robot and the ground is
the first coordinate, q1. Then, necessarily, θ(q) is a function of q1 and y(q) is
independent of q1. We can, therefore, pick coordinates for the zero dynamics as
follows (Westervelt et al., 2007):

z1(q)= θ(q),

z2(q)=D(q)(1,∗)q̇

where D(q)(1,∗) is the first row of the inertia matrix in (4.7.1).
Utilizing the coordinates for the zero dynamics and letting η= (y, ẏ) be the

coordinates for the dynamics transversal to Z, the system can be represented as

η̇= f̂ (η, z)+ ĝ(η, z)u, (4.7.26)

ż=w(η, z)
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where

f̂ (η(x), z(x))=
[

ẏ(x)

L2
f y(x)

]
, ĝ(η(x), z(x))=

[
0

LgLf y(x)

]
,

which are written here in the original x coordinates by using the fact that η
is defined in terms of y and ẏ, which, in turn, are functions of x; note that
these expressions can be converted to the (η, z) coordinates through the (local)
diffeomorphism relating (η, z) with x. Additionally, the control law (4.7.20)
with the auxiliary input μ chosen as in (4.7.23) and expressed in terms of the
η coordinates results in a linear, time-invariant system η̇ = Fcl(ε)η describing
the dynamics transversal to Z. Effectively, the feedback control law (4.7.24)
of Section 4.7.4.1 ensures that the zero dynamics surface Z is attractive and
invariant under the continuous time dynamics of the system – that is, η→ 0 and
η(0) = 0 implies that η(t) ≡ 0 for all future times t ≥ 0. As a result, the zero
dynamics – that is, the maximal dynamics compatible with the output being
identically equal to zero – can be written as

ż=w(0, z) . (4.7.27)

It is worth mentioning that, to arrive at (4.7.27), the number of outputs equals
the number of inputs. In other words, all the inputs available for control are
“slaved” to drive the outputs to zero. Depending on the controller’s objectives,
however, it is possible to define the vector of outputs y so that its dimension
is smaller than the dimension of the input vector u, and keep the remaining
control inputs for additional control within the zero dynamics, which now be-
comes controlled. This may increase the dimension of the zero dynamics, but
it provides greater flexibility for developing control action. Examples of this
approach include the stabilization of running motions on compliant robots by
“shaping” compliance within the zero dynamics (Poulakakis and Grizzle, 2007a,
2007b, 2009b), or by incorporating active force control (Sreenath et al., 2013);
see Section 4.7.6.4 below for more details. On a final note, the presence of ex-
ogenous inputs in the zero dynamics may result from externally applied forces,
giving rise to forced zero dynamics, as in Veer et al. (2015, 2016). For exam-
ple, this is the case when a bipedal robot physically collaborates with a leading
external agent – another robot or a human – to transport an object in their
workspace (Motahar et al., 2015b). In this case, the objective of the feedback
controller is to adapt the robot’s locomotion pattern to the externally applied
force (Veer et al., 2015, 2016).
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4.7.4.3 Partial Zero Dynamics

We can also consider the case in which there is a velocity modulating output
(Ames, 2014), i.e., where there are virtual constraints of the form (4.7.13) and
(4.7.14). In this case, differentiating y1 until the control input appears, as was
done in (4.7.18) yields

ẏ1(q, q̇)= ∂

∂q

(
∂θ(q)

∂q
q̇

)
q̇ + ∂θ(q)

∂q

[
−D−1(q) (C(q, q̇)q̇ +G(q))

]
︸ ︷︷ ︸

Lf y1(q,q̇)

+ ∂θ(q)

∂q
D−1(q)B︸ ︷︷ ︸

Lgy1(q,q̇)

u (4.7.28)

because y1 depends on the angular velocity in (4.7.13). Since the control in-
put appears after differentiating once, it implies that y1 has relative degree one.
Therefore, in the case of human-inspired output combinations we mixed relative
degree one and relative degree two outputs. That is, we can combine (4.7.28)
with (4.7.18) (with y replaced by y2) to obtain[

ẏ1

ÿ2

]
=
[
Lf y1(q, q̇)

L2
f y2(q, q̇)

]
︸ ︷︷ ︸

Lf (x)

+
[

Lgy1(q, q̇)

LgLf y2(q, q̇)

]
︸ ︷︷ ︸

A(x)

u (4.7.29)

where A(x) is the decoupling matrix that must be full rank. Therefore, analo-
gously to (4.7.20), we have

u(x,μ)=A(x)−1 (−Lf (x)+μ
)

⇒
[
ẏ1

ÿ2

]
= μ (4.7.30)

⇒
⎡⎢⎣ẏ1

ẏ2

ÿ2

⎤⎥⎦=
⎡⎢⎣0 0 0

0 0 I

0 0 0

⎤⎥⎦
︸ ︷︷ ︸

F

⎡⎣y1

y2

ẏ2

⎤⎦+
⎡⎢⎣1 0

0 0
0 I

⎤⎥⎦
︸ ︷︷ ︸

G

μ .

Here μ=
[
μ1

μ2

]
where μ1 is the input to ẏ1 and μ2 is the input to ÿ2. As in

(4.7.23), we can pick

μ(y1, y2, ẏ2)=
[

− 1
ε
y1

−KP
ε2 y2 − KD

ε
ẏ2

]
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⇒
⎡⎢⎣ẏ1

ẏ2

ÿ2

⎤⎥⎦= 1

ε

⎡⎢⎣−1 0 0
0 0 εI

0 − 1
ε
KP −KD

⎤⎥⎦
︸ ︷︷ ︸

Fcl(ε)

⎡⎣y1

y2

ẏ2

⎤⎦ (4.7.31)

such that Fcl(ε) is Hurwitz. Therefore, we have defined a controller that achieves
y1→ 0, y2→ 0 and ẏ2→ 0 (at a rate of 1

ε
). Moreover, because we considered

the velocity modulating virtual constraint, we have that θ̇ (q)→ v. Hence, the
velocity of the system – as it is captured by the rate θ̇ (q) of the phase variable –
converges to the desired value.

As was discussed in Section 4.7.4.2, we can consider the surface that the
system converges to under the feedback control law introduced in (4.7.29). In
this case, while our virtual constraints consist of both relative degree one and
relative degree two outputs, we will only consider the surface that the relative
degree two outputs converge to, and then study the behavior of the relative de-
gree one outputs on this surface. In particular, consider the partial hybrid zero
dynamics surface given by Ames (2014)

PZ := {x ∈D | y2(x)= 0 and ẏ2(x)= 0} , (4.7.32)

which is rendered attractive by (4.7.31). Writing η= (y2, ẏ2), then we can again
write the system in the form given by (4.7.26). The advantage of the partial zero
dynamics can be seen easiest in the case of full actuation, i.e., when n=m, as is
the case for many humanoid robots. In this fully-actuated case, the z dynamics
in (4.7.26) become controlled with the ankle torque of the robot available to
propel the robot forward. This is evidenced by the fact that, in this case, the
coordinates for z can be chosen as z1 = θ(q) and z2 = θ̇ (q, q̇) wherein, by
(4.7.30) and (4.7.31), the q dynamics become linear:

ż1 = z2 . (4.7.33)

ż2 =−1

ε
(z2 − v) .

That is, on the surface PZ the system evolves according to linear dynamics that
drive θ̇ → v. It will be seen later that this ensures a stable walking gait in the
case of full actuation.

4.7.5 GENERATING PERIODIC MOTIONS

The goal of gait synthesis is to generate periodic walking gaits for a bipedal
robot, along with the feedback controller that enforces these periodic motions.
This is where hybrid zero dynamics (HZD) provides a powerful framework
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(Grizzle et al., 2001; Westervelt et al., 2003; Westervelt, 2003; Morris and Griz-
zle, 2009). In particular, the feedback controller introduced in Section 4.7.4
rendered the zero dynamics surface, Z, both attractive and invariant for the con-
tinuous dynamics. Yet, when the system reaches the switching surface S it will
be “thrown away” from the zero dynamics surface. This has the potential to
destabilize the system even if the dynamics in Z are stable. That is, the dis-
crete dynamics in the hybrid system can destroy continuous-time invariance and
destabilize the system, even if the continuous dynamics is well behaved. This
is the core idea behind hybrid zero dynamics. By ensuring hybrid invariance of
the zero dynamics (see Fig. 4.7.5),

�(S ∩Z)⊂Z, (4.7.34)

it prevents the system from being destabilized through impact – in fact, the main
result of hybrid zero dynamics is that the condition (4.7.34) implies stability of
the overall dynamics provided that the zero dynamics are stable. This section
will establish the fundamental results related to hybrid zero dynamics.

4.7.5.1 Hybrid Zero Dynamics

Under the influence of the controllers discussed in Section 4.7.4, the “open-
loop” hybrid control system (4.7.6) takes the form of the “closed-loop” hybrid
dynamical system

H :
⎧⎨⎩ ẋ = fcl(x), x ∈D\S,

x+ =�
(
x−
)
, x− ∈ S,

(4.7.35)

where

fcl(x)= f (x)+ g(x)u(x)

and u(x) is the feedback controller given in (4.7.24).
Recall that the feedback controller in (4.7.24) rendered the zero dynamics

surface, Z, given in (4.7.25) exponentially stable. Yet, it may be the case that for
x− ∈Z, the post-impact state of the system x+ =�(x−) /∈ Z. This implies that
the pre-impact state is “thrown-away” from the zero dynamics surface. There-
fore, if the impacts occur at a rate faster than the controller can stabilize the
system, the end result is that the impacts will destabilize the system. Therefore,
the core condition that we enforce is hybrid invariance, i.e.,

�(S ∩Z)⊂Z or, equivalently, x− ∈ S ∩Z ⇒ x+ =�(x−) ∈Z.
(4.7.36)
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Enforcing (4.7.36) requires the proper choice of virtual constraints. In par-
ticular, recall that the controller in (4.7.24) was synthesized from the virtual
constraints given in (4.7.9) which, in turn, depended on the parameter set α ∈Rk

with k the total number of parameters of the desired outputs, yd(τ (q),α). There-
fore, the zero dynamics surface Z depends on the parameters α so that changing
the values of these parameters changes the shape of the surface. This allows us
to explicitly shape the zero dynamics surface to enforce the hybrid invariance
condition (4.7.36), and it can be done systematically in the context of a nonlinear
constrained optimization problem of the form

α∗ = argmin
α∈Rk

Cost(α) (HZD Optimization)

s.t. �(S ∩Z)⊂Z (HZD)

where Cost is a user defined cost function that can be chosen to produce walking
gaits with desirable properties. The details of the optimization problem are be-
yond the scope of this chapter, but can be found in Westervelt et al. (2007), Ames
(2014). We only mention here that any physically relevant constraints – such
as constraints on torque, angular velocity, ground reaction forces and friction
limitations – can be added to the optimization. Adding such constraints en-
sures the physical realizability of the resulting walking gait (Zhao et al., 2014b;
Hereid et al., 2016).

The choice of cost function in (HZD Optimization) can determine the
“shape” of the resulting gait, i.e., the overall behavior of the gait. For exam-
ple, a common choice is a cost function that minimizes the overall torque while
maximizing the distance traveled, i.e.,

Cost(α)= 1

step length

∫ T

0
‖u(α)‖2dt (4.7.37)

where u(α) is the feedback controller calculated for a given parameter set.
Another common choice of cost function, especially in the context of human-
inspired control (Ames, 2014), is to use the difference between the outputs
as calculated from human data and the desired functions with parameters, α,
seeded from human data (Ames, 2012); the end result is typically “human-like”
walking gaits. It is interesting to note that, with the proper choice of constraints,
one often sees similar gaits independent of specific cost functions as the con-
straints tend to be a large factor in the resulting look of the gait. Finally, if
efficiency is the goal, a cost function that minimizes the cost of transport can be
selected (Reher et al., 2016a).

Given constraint parameters that yield well-defined hybrid zero dynamics,
the end result is that the system evolves on the zero dynamics surface during the



310 PART | II Control

continuous dynamics and this surface is invariant through impact. Therefore,
when supplied with initial conditions in Z, the dynamics of the system evolves
according to the restricted hybrid system:

H |Z :
⎧⎨⎩ ż=w(0, z), z ∈Z\S ∩Z ,

z+ =�Z

(
z−
)
, z− ∈ S ∩Z ,

(4.7.38)

with w the zero dynamics given in (4.7.27), and �|z : S ∩Z→ Z the restriction
of the impact map to Z. This system is low-dimensional, e.g., for one degree of
underactuation it is a two-dimensional system, and the behavior of this system
dictates the behavior of the full order dynamics, H , regardless of the dimension
of the full order dynamics. For example, for a 23 degree of freedom humanoid
robot (as is the case for DURUS), H will be a 46 dimensional hybrid system,
but its behavior will still be completely determined by the behavior of the re-
stricted hybrid system, which may have dimension as low as two (Reher et al.,
2016b).

To examine how the behavior of the restricted hybrid system H |Z affects
the behavior of the full-order hybrid model H , we consider periodic orbits cor-
responding to walking gaits of interest. In particular, for the full-order dynamics
(4.7.6), let φfcl

t (x0) be the (unique) solution to the continuous dynamics ẋ =
fcl(x) at time t ≥ 0 with initial condition x0 (where we assume local Lipschitz
continuity of fcl(x)). For x∗ ∈ S we say that φfcl

t is hybrid periodic if there exists
a T > 0 such that φfcl

T (�(x∗)) = x∗. Given a hybrid periodic solution, we are
interested in considering the stability of the corresponding hybrid periodic orbit,

O = {φfcl
t (�(x∗)) : 0≤ t ≤ T } .

To study the stability of this orbit, we first consider the time-to-impact function

TI (x)= inf{t > 0 : φfcl
t (�(x)) ∈ S, with x ∈ S},

which is well defined by the implicit function applied to the function H(t, x)=
pv

toe(φ
fcl
t (�(x))) (where pv

toe is the vertical position of the toe used to define S in
(4.7.4)) since it satisfies H(T ,x∗)= 0. The end result is the Poincaré map which
is a P : S→ S which is well defined in a neighborhood of x∗, and is given by

P(x)= φ
fcl
TI (x)

(x).

Importantly, the stability of the periodic orbit O is equivalent to the stability of
the Poincaré map viewed as a discrete time dynamical system xn+1 = P(xn)

with fixed point x∗ = P(x∗), i.e.,
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O is exponentially stable

⇔ x∗ is an exponentially stable equilibrium point of P ,

see Morris and Grizzle (2009) for a proof, and Sastry (1999), Wendel and
Ames (2010, 2012), Burden et al. (2011) for more details on Poincaré maps.
These constructions can also be applied to the restricted hybrid system given in
(4.7.38). That is, given a hybrid periodic orbit OZ ⊂ Z, there is the associated
restricted Poincaré map PZ : Z ∩ S→ Z ∩ S which determines the stability of
OZ . Moreover, given a hybrid periodic orbit OZ , since Z is an invariant sub-
space of D it follows that O = ι(OZ) is a hybrid periodic orbit; here ι : Z ↪→D

is the canonical embedding.
We now have the technical machinery to state the main result for hybrid zero

dynamics. Intuitively, this results states that

OZ is exponentially stable ⇒ O = ι(OZ) is exponentially stable.

More formally, we have the following fundamental theorem of hybrid zero dy-
namics (Westervelt et al., 2007, 2003; Grizzle et al., 2001; Morris and Grizzle,
2009):

Theorem 1 (Hybrid Zero Dynamics). Consider the hybrid control system H C

given in (4.7.6) with the control law in (4.7.24) applied to obtain the hybrid
system H given in (4.7.35), and assume hybrid zero dynamics (4.7.34), �(S ∩
Z) ⊂ Z. If there exists a locally exponentially stable hybrid periodic orbit OZ

of the restricted hybrid system H |Z , then there exists an ε > 0 such that for all
ε > ε > 0 the hybrid periodic orbit O = ι(OZ) is locally exponentially stable
for the full-order hybrid system H .

The importance of this result is that the zero dynamics provides a substan-
tially lower dimensional surface in which to search for stable periodic orbits. In
fact, in the case when the robot has one degree of underactuation (m= n− 1)
closed form expressions can be obtained that guarantee the existence and stabil-
ity of a hybrid periodic orbit OZ ; this can be added directly to the optimization
problem in (HZD Optimization) as a constraint to guarantee that any parameter
set produced by the optimization is exponentially stable for the full-order dy-
namics of the system. In the case of full actuation, even stronger conclusions
can be reached.

4.7.5.2 Partial Hybrid Zero Dynamics

In the context of gait generation for humanoid robots, one often has the luxury
of dealing with a fully actuated system; in this case, partial hybrid zero dynam-
ics (PHZD) provides a useful tool for gait generation. In particular, for PHZD
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we consider virtual constraints of the form (4.7.13) and (4.7.14) that allow for
virtual configuration constraints on the robot via y2, along with the ability to
regulate the forward progression of the robot via y1. Applying this controller
developed in Section 4.7.4.3 to the hybrid control system H C given in (4.7.6)
results in a closed-loop hybrid dynamical system H as in (4.7.35) except, in this
case, u(x) is given in (4.7.30). Additionally, we established that this controller
resulted in the corresponding partial zero dynamics surface PZ being both at-
tractive and invariant. Therefore, if this surface is invariant through impact:

�(S ∩ PZ)⊂ PZ (PHZD)

the end result is partial hybrid zero dynamics. As in the case of hybrid zero
dynamics, we can consider the optimization problem (HZD Optimization) with
the constraint (HZD) replaced with (PHZD). Given a parameter set that solves
this optimization problem, we have the corresponding restricted hybrid system
H |PZ. The advantage, in this case, is that the dynamics ż = w(0, z) take the
simple linear form given in (4.7.33). Since the y2 dynamics are also linear by
choice of controller, the entire hybrid system becomes a linear hybrid dynam-
ical system. The structural properties associated with the PHZD motivates the
following key partial hybrid zero dynamics result (Ames, 2014).

Theorem 2 (Partial Hybrid Zero Dynamics). Let H C given in (4.7.6) be fully
actuated, with the control law in (4.7.30) applied to obtain a hybrid system H ,
and assume partial hybrid zero dynamics (PHZD): �(S ∩ PZ) ⊂ PZ. Then,
there exists a locally exponentially stable hybrid periodic orbit OPZ of the re-
stricted hybrid system H |PZ , and an ε > 0 such that for all ε > ε > 0 the
hybrid periodic orbit O = ι(OPZ) is locally exponentially stable for the full-
order hybrid system H .

That is, in the case of fully actuated robots (such as traditional humanoids),
we have the following intuitive representation of Theorem 2:

Fully Actuated+�(S ∩ PZ)⊂ PZ

⇒ O = ι(OPZ) is exponentially stable

or, equivalently, the existence of parameters α in (4.7.14) that yield partial hy-
brid zero dynamics implies a stable walking gait for fully actuated robots. It
is important to note that PHZD can also be applied to robots with compliance
(or underactuation) – e.g., the humanoid robot DURUS (Hereid et al., 2016;
Reher et al., 2016a) – provided that these compliant elements are “normal” to
the actuators that allow for forward progression of the robot. In this case, there
will exist nontrivial passive dynamics in the partial zero dynamics surface and,
therefore, a periodic orbit must be found in this surface to guarantee the exis-
tence of a stable periodic orbit in the full-order dynamics.
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4.7.5.3 Control Lyapunov Functions

The methods presented thus far involved using feedback to linearize the dynam-
ics of the robotic systems, wherein a linear system was defined to stabilize the
virtual constraints. Yet, the control law presented intrinsically ignores the natu-
ral dynamics of the system – the main component of the feedback linearization
process is to cancel out the dynamics using (4.7.20). Instead of canceling out the
nonlinear dynamics, we can leverage them in the context of control Lyapunov
functions. This has the benefit of yielding an entire class of controllers that sta-
bilize the system. Additionally, these controllers will stabilize periodic orbits in
the system in a pointwise optimal fashion.

Let us return to the canonical form of the dynamics obtained before the sys-
tem was feedback linearized, i.e., the nonlinear system given in (4.7.26). Recall
that, for the dynamics in this form, η = (y, ẏ) characterizes the controlled vari-
ables of the system while z describes the dynamics encompassed the passive
component of the robot. Let us denote by Y the space with η as coordinates
so that D = Y × Z. A continuously differentiable function Vε : Y → R≥0 is a
rapidly exponentially stabilizing control Lyapunov function (RES-CLF) (Ames
et al., 2012b, 2014a) if there exist positive constants c1, c2, c3 > 0 such that for
all 1 > ε > 0,

c1‖η‖2 ≤ Vε(η)≤ c2

ε2
‖η‖2, (4.7.39)

inf
u∈U

[
Lf̂ Vε(η, z)+LĝVε(η, z)u+ c3

ε
Vε(η)

]
≤ 0 (4.7.40)

for all (η, z) ∈ Y ×Z.
The existence of a RES-CLF yields a family of controllers that rapidly ex-

ponentially stabilize the system to the zero dynamics. In particular, we can
consider the control values

Kε(η, z)= {u ∈U : Lf̂ Vε(η, z)+LĝVε(η, z)u+ c3

ε
Vε(η)≤ 0}, (4.7.41)

wherein it follows that

uε(η, z) ∈Kε(η, z) ⇒ ‖η(t)‖ ≤ 1

ε

√
c2

c1
e−

c3
2ε t‖η(0)‖. (4.7.42)

Therefore, picking ε > 0 to be a small value increases the rate of convergence
of η, i.e., increases the rate of convergence to the zero dynamics surface Z. In
addition, this yields specific feedback controllers, e.g., the min-norm controller
(Freeman and Kokotović, 1996),

mε(η, z)= argmin{‖u‖ : u ∈Kε(η, z)}. (4.7.43)
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The importance of RES-CLFs is made apparent by the following theorem, which
says that any controller uε ∈ Kε results in a stable orbit for the full-order dy-
namics if one exists in the reduced order dynamics:

uε(η, z) ∈Kε(η, z)+OZ exponentially stable

⇒ O = ι(OZ) exponentially stable.

Or, more formally, we have the following result on RES-CLF + HZD (Ames et
al., 2014a):

Theorem 3 (Control Lyapunov Functions+HZD). Consider the hybrid control
system H C given in (4.7.6) with any Lipschitz continuous uε(η, z) ∈Kε(η, z)

applied to obtain a hybrid system H , and assume hybrid zero dynamics
(4.7.34), �(S ∩ Z) ⊂ Z. If there exists a locally exponentially stable hybrid
periodic orbit OZ of the restricted hybrid system H |Z , then there exists an
ε > 0 such that for all ε > ε > 0 the hybrid periodic orbit O = ι(OZ) is locally
exponentially stable for the full-order hybrid system H .

To provide a specific example of an RES-CLF, we can utilize the construc-
tions in Section 4.7.4.1 to obtain a specific RES-CLF. In particular, recall that
the feedback linearizing controller resulted in η dynamics of the form (4.7.22),
or in η notation,

η̇= Fη+Gμ. (4.7.44)

For this linear control system, we can consider the continuous-time algebraic
Riccati equations (CARE),

FT P + PF − PGGT P +Q= 0, (4.7.45)

with solution P = PT > 0. One can use P to construct a RES-CLF that can be
used to exponentially stabilize the output dynamics (4.7.44) at a user defined
rate of 1

ε
. In particular, define

Vε(η)= ηT MεPMε︸ ︷︷ ︸
Pε

η, with Mε = diag(εI, I ), (4.7.46)

wherein it follows that

V̇ε(η,μ)= LFVε(η)+LGVε(η)μ

with
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LFVε(η)= ηT (FT Pε + PεF )η,

LGVε(η)= 2ηT PεG.

Note that it is easy to verify that V (η) = ηT Pεη is an RES-CLF with c1 =
λmin(P ), c2 = λmax(P ), and c3 = γ = λmin(Q)

λmax(P )
. This can be seen by noting that,

from (4.7.45) and the form of F and G, Pε solves the CARE (Ames et al.,
2014a),

FT Pε + PεF − 1

ε
PεGGT Pε + 1

ε
MεQMε = 0, (4.7.47)

and noting that γPε ≤MεQMε so

inf
μ

[
LFVε(η)+LGVε(η)μ+ γ

ε
Vε(η)

]
≤ ηT PεG(

1

ε
GT Pε + 2μ)≤ 0,

which is satisfied, for example, by μ(η)=− 1
ε
GT Pεη. And, therefore, Vε is an

RES-CLF. We can convert this back to a control law uε via (4.7.20):

uε(x)=
(
LgLf y(x)

)−1
[
−L2

f y(x)+με(η(x))
]
∈Kε(η(x), z(x)) (4.7.48)

for με(η(x)) satisfying

V̇ε(η(x))= LFVε(η(x))+LGVε(η)με(η(x))≤ γ

ε
Vε(η(x)) (4.7.49)

where we converted back to the x coordinates, i.e., η(x) = (y(x), ẏ(x)). This
gives concrete conditions that can be checked to stabilize walking gaits in the
hybrid system H according to Theorem 3.

It is important to note that RES-CLFs can also be constructed in the case
of partial hybrid zero dynamics. In this case, the linear control system for the
output dynamics (4.7.30) is described by η= (y1, y2, ẏ2). From these dynamics,
(4.7.45) can be used to construct an RES-CLF as in (4.7.46). The end result is
a reformulation of Theorem 2 so that a stable periodic orbit is guaranteed for
the full order dynamics for any uε(η) ∈Kε(η). That is, we obtain stable walk-
ing through the entire class of controllers that satisfy the inequality constraint
obtained via the CLF condition.

4.7.6 EXTENSIONS OF HYBRID ZERO DYNAMICS

The goal of this section is to consider extensions of the HZD framework with
a view toward more rich application domains. In particular, we consider the
HZD framework developed in this chapter in the context of optimization-based
controllers via CLFs, multidomain hybrid system models, their application to
powered prostheses and compliant hybrid zero dynamics.
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4.7.6.1 CLF-Based QPs

The advantage of the control Lyapunov functions introduced in Section 4.7.5.3
is that they give a family of controllers which stabilize the system. That is, for
any uε(η, z) ∈ Kε(η, z) the system has a stable periodic gait (given a stable
periodic orbit in the zero dynamics); a specific example of this is given by the
traditional feedback linearizing controller. The importance of CLFs goes beyond
simply producing a class of controllers – it suggests an optimization-based con-
trol framework for bipedal robots and, in fact, nonlinear systems in general.
This allows for these control methods to be extended to a variety of application
domains from robotic walking, to prostheses to manipulation to safety-critical
control methods.

To see how control Lyapunov functions yield optimization-based controllers,
we can consider the set (4.7.41) giving the family of stabilizing controllers.
Note that this set is affine in the control input u and, therefore, the min-norm
controller (4.7.43) can be equivalently stated as a quadratic program (QP) of the
form:

m(η, z)= argmin
u∈U=Rm

uT u (4.7.50)

s.t. Lf̂ Vε(η, z)+LĝVε(η, z)u+ c3

ε
Vε(η)≤ 0 (CLF)

where we assume that U = R
m to ensure solvability of the QP. Not only is this

QP guaranteed to have a solution, but the solution can be written in closed form
(see Ames et al., 2014a) and is Lipschitz continuous. Moreover, one can utilize
the RES-CLF given in (4.7.46) to explicitly construct the inequality constraint
in this QP. Finally, because it is a QP it can be solved in real-time; in fact, the
CLF-based QP has been implemented in real-time (e.g., at a 1 kHz loop rate) on
MABEL (Galloway et al., 2015) and DURUS-2D (Cousineau and Ames, 2015)
to achieve dynamic walking. Additionally, it was implemented at over 5 kHz
as an embedded level controller on series elastic actuators in Ames and Holley
(2014).

The advantage of the QP formulation of CLFs, as opposed to simply utiliz-
ing the closed form min-norm solution, is that it allows for additional constraints
and objectives to be unified with the CLF. To provide a concrete example, sup-
pose that we have torque bounds on the actuators given by a scalar umax (similar
ideas extend to actuators with different max torques). While one might typi-
cally simply saturate the control input, doing so prevents the controller from
taking these torque saturations into account. Therefore, through the CLF-based
QP framework, we can incorporate the torque bounds directly into the controller
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via the quadratic program:

u∗(η, z)= argmin
(δ,μ)∈Rn+1

uT H(η, z)u+ pδ2 (4.7.51)

s.t. Lf̂ Vε(η, z)+LĝVε(η, z)u+ c3

ε
Vε(η)≤ δ, (CLF)

u≤ umax1, (Max Torque)

−u≤ umax1 (Min Torque)

where H(η, z) is positive-definite and p > 0 is a large value that penalizes for
violations of the CLF constraint. That is, we relax the CLF condition to ensure
satisfaction of the physical constraints of the system. While this takes away
guarantees on achieving the control objective, it will try to achieve convergence
of the CLF in a pointwise optimal fashion when at all possible – the result is
that the robot is able to accommodate tighter torque bounds than if one was
to simply saturate the control input (see Galloway et al., 2015 for a detailed
discussion, and experimental implementation). Note that as one expands the
number of constraints in the QP, it is important to be aware of the impact on
the resulting solvability and, as a byproduct, the continuity of the solutions to
the QP; a discussion can be found in Morris et al. (2013), and conditions on
continuity in Morris et al. (2015a).

Utilizing the observation that CLFs (and hence control objectives) can be
represented as affine constraints in a QP results in a new paradigm for the con-
trol of walking robots. In particular, going beyond simply adding torque bounds,
one can consider multiobjective controllers consisting of multiple CLF wherein
each control objective results in an additional constraint in the QP (Ames and
Powell, 2013); for example, in the context of unifying locomotion and ma-
nipulation objectives. Additionally, ground reaction forces on the robot also
appear in an affine fashion in the dynamics; thus one can use the CLF-based
QP framework in the context of force control. Finally, a recent line of work
aimed at safety-critical control makes the observation that safety conditions,
i.e., set invariance, can be stated in the context of control barrier functions
which again are affine in the control input (originally formulated in Ames et
al. (2014b) and studied in detail in Ames et al. (2016)); this framework has
been applied in the context of robotic walking (Nguyen and Sreenath, 2016;
Nguyen and Sreenath, 2015, 2016), automotive safety systems (Xu et al., 2015;
Ames et al., 2016; Mehra et al., 2015) and swarm robotics (Borrmann et al.,
2015; Wang et al., 2016a, 2016b). Therefore, safety conditions can be unified
with control objectives, physical constraints, force objectives and safety con-
straints all in the context of a single optimization-based controller that can be
realized in realtime on robotic systems.
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4.7.6.2 Multidomain Hybrid Zero Dynamics

The analysis thus far has focused on hybrid system models of walking robots
with a single continuous and discrete domain, i.e., single domain hybrid sys-
tems. Yet, in the context of advanced walking and running behaviors, it is
necessary to consider multidomain hybrid systems models as introduced in Sec-
tion 4.7.2.4. As indicated in this section, and as motivated by human walking,
throughout the course of a step humans naturally display heel–toe behavior in
their feet while locomoting (see Fig. 4.7.4). In the context of these types of walk-
ing behaviors, the end result is the multi-domain hybrid system model given in
(4.7.8); specific examples of this model are shown in Fig. 4.7.4 for the bipedal
robots AMBER 2 and ATRIAS (see Zhao et al., 2015a for the specific hybrid
system constructions for these robots).

In the context of multidomain hybrid systems, we can extend the concept
of hybrid zero dynamics. In particular, we now have a collection of contin-
uous domains D = {Dv}v∈V on which we have associated control systems:
ẋ = fv(x)+gv(x)uv . Note that the domains may be of different actuation types,
e.g., some may be underactuated while others may be fully actuated or over ac-
tuated. For each of these domains, we can define virtual constraints of the form
(4.7.9), denoted by y2,v ; in the case of full (and over) actuation, yv = (y1,v, y2,v)

as in (4.7.13) and (4.7.14)), and in the case of over actuation, care must be
taken to define constraints that result in a nonsingular decoupling matrix A(x)

in (4.7.29). Therefore, we can construct controllers, uv(x) for each v ∈ V as in
(4.7.20) for the underactuated domains and as in (4.7.30) for the full (and over)
actuated domains.

We can consider the zero dynamic surfaces (and partial zero dynamics sur-
faces) denoted, for notational simplicity, uniformly by

Zv =
{
x ∈Dv | y2,v(x)= 0 and ẏ2,v(x)= 0

}
.

Correspondingly, the control laws uv(x) drive the system to the surface Zv for
each v ∈ V and, in addition, renders each of these surfaces attractive. To ensure
stability of the overall dynamics, we must ensure hybrid zero dynamics for all
of the discrete transitions, i.e., multidomain hybrid zero dynamics (MDHZD):

�e(Se ∩Zsource(e))⊂Ztarget(e), ∀ e ∈E (Multidomain HZD)

where source(e) and target(e) are the source and target of the edge e ∈ E of
the oriented graph � in (4.7.8), respectively. As in Section 4.7.5, if the multido-
main hybrid system (4.7.8) has MDHZD, then if there is an exponentially stable
periodic orbit contained in Zv for v ∈ V , then there exists an exponentially sta-
ble hybrid periodic in the full order dynamics when the control laws uv(x) are
applied in each domain.
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FIGURE 4.7.6 Multicontact walking and running utilizing multidomain hybrid system models
realized on the DURUS-2D running robot and the humanoid robot DURUS.

This framework has been applied to numerous bipedal robots to obtain sta-
ble walking and running. Specific examples of walking robots include MABEL
(Sreenath et al., 2011), AMBER 2 (Zhao et al., 2014b), ATRIAS (Hereid et
al., 2014), and DURUS (Hereid et al., 2016). In the case of DURUS, due to
the passive springs in the ankles, a two domain hybrid system model was con-
sidered. The end result was stable 3D robotic walking, demonstrated publicly
during the DARPA Robotics Challenge, where the motion was sustained for
over 5 hours with the robot traversing almost 4 km on a treadmill. Impor-
tantly, this was the most efficient walking ever realized on a bipedal humanoid
robot (Reher et al., 2016a). This can be attributed to the fact that the MDHZD
allows for the full dynamics of the robot to be utilized in the generation of
walking gaits (through the shaping of the surfaces Zv) and, importantly for the
compliant elements in the system, e.g., springs, to be fully utilized during the
walking gait. Recently, these methods were extended to yield a four-domain
model of DURUS capturing the natural heel-toe behavior of the foot that hu-
mans display when locomoting; the end result was dynamic walking that is
efficient and human-like (Reher et al., 2016b) (tiles of this walking gait are
shown in Fig. 4.7.6). Finally, note that running motions provide natural ex-
amples of two-domain models (Chevallereau et al., 2005; Morris et al., 2006;
Poulakakis and Grizzle, 2009b) – see also Fig. 4.7.8 below – and that additional
domains can be introduced depending on the control action to enhance control
authority over the system, as in the control of running on Thumper (Poulakakis
and Grizzle, 2009a), MABEL (Sreenath et al., 2013) and the DURUS-2D runner
(Ma et al., 2017) (shown in Fig. 4.7.6).
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4.7.6.3 Application to Prostheses

The concepts presented throughout this chapter have natural application to pow-
ered prostheses. In particular, a prosthetic device can be simply viewed as a
component of a bipedal robot and, with proper representation of the human and
the interaction of the human with the device, one can generate controllers for the
device via HZD-based methods (Zhao et al., 2011). The core idea to synthesiz-
ing prosthetic controllers is to first model the human and the prosthesis as two
robotic systems that are coupled at the prosthetic attachment (see Fig. 4.7.7);
the parameters of the “human” are taken from measurements of the human and
used to generate a corresponding model, and the model of the prosthesis is then
added on the affected leg to yield an overall model of the combined human–
robot system. This robotic model can then be approached in the same way one
would approach generating walking gaits for bipedal robots: the hybrid sys-
tem model is constructed based upon the desired foot behavior, and gaits are
generated through an optimization problem that enforces the HZD conditions
together with physical constraints. This idea was first explored in the context of
human-inspired control (Sinnet et al., 2011b), and was experimentally validated
through the application on both bipedal robots (wherein one leg of the robot
plays the role of the prosthesis) (Zhao et al., 2014a), followed by the evaluation
with an amputee subject (Zhao et al., 2011). The advantage of the HZD-based
approach to designing controllers for powered prostheses is that all of the ad-
vanced control and locomotion related concepts of this chapter can be translated
to this domain. In particular, multi-domain hybrid system models of locomotion
can be utilized to achieve advanced foot behaviors on the device (Zhao et al.,
2016b). Additionally, CLF-based QP controllers (as in Section 4.7.6.1) can be
realized on prosthetic devices in realtime through a novel model-independent
variant (Zhao et al., 2015b); this allows for efficient locomotion that leverages
the use of compliant elements as in AMPRO 3 shown in Fig. 4.7.6.

4.7.6.4 Compliant Hybrid Zero Dynamics

To recover part of the energy required to sustain cyclic walking or running
motions in legged robots and to ensure safe interaction with the ground sur-
face, compliant elements in the form of mechanical springs have been in-
corporated in the legs of many such platforms; in the context of robotic
bipeds, Thumper (Hurst and Rizzi, 2008), MABEL (Grizzle et al., 2009), and
ATRIAS (Hubicki et al., 2016) are just few examples of robots in this fam-
ily. The role of elastic energy storage in compliant elements becomes more
prominent in running motions (McMahon and Cheng, 1990; Alexander, 1990).
However, the inclusion of physical springs in a robot’s structure poses additional
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FIGURE 4.7.7 Illustration of the application of HZD methods to prostheses; in this case, in the
context of the third generation AMPRO device utilized to achieve multidomain walking (Zhao et
al., 2016a, 2017).

challenges to control design. More specifically, in the pursuit of closed-loop sta-
bility, the control action must actively exploit open-loop compliance instead of –
as is usual in the control of flexible mechanisms – working to replace it. The con-
cept of compliant hybrid zero dynamics introduced in Poulakakis (2008) extends
HZD controllers so that open-loop compliance is “preserved” in the closed-loop
system and determines its behavior. To avoid complexity, we first discuss the
main ideas of this method in the context of a simplified hopping model – namely,
the asymmetric spring-loaded inverted pendulum (ASLIP) (Poulakakis and Griz-
zle, 2007a, 2009b) – and then provide some information on its application to
the control of walking and running motions in MABEL (Sreenath et al., 2011,
2013).

The Asymmetric Spring-Loaded Inverted Pendulum

The ASLIP shown in Fig. 4.7.8 was originally proposed in Poulakakis and Griz-
zle (2007a) as an intermediate model to bridge the gap between point-mass
SLIP-like models and monopedal robots with significant torso pitch dynamics.
The ASLIP includes a torso nontrivially coupled to the leg motion,6 an issue
not addressed in the widely studied SLIP, or in its straightforward extensions in
which the torso COM coincides with the hip joint. As in the SLIP, the ASLIP
features a massless leg and the contact between the leg end and the ground is
modeled as an unactuated pin joint.

6. Along the same lines with the ASLIP, the Virtual Pivot Point (VPP) model was introduced
in Maus et al. (2010) as a template for studying torso stabilization in running; see Subchapters 2.3
and 3.6 for more details.
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FIGURE 4.7.8 (A) The asymmetric spring-loaded inverted pendulum (ASLIP). Running com-
prises stance and flight phases, separated by touchdown and liftoff events. (B) The structure of the
SLIP embedding controller.

The ASLIP alternates between stance and flight phases – denoted by “s”
and “f”, respectively – resulting in a multidomain hybrid system of the type de-
scribed in Section 4.7.6.2. Let � = (V ,E), where V = {s, f} and E = {ef

s, e
s
f },

be the oriented graph that captures the contact state of the model; in this
notation, ef

s and es
f denote transition from stance to flight and vice versa, re-

spectively. The model consists of two domains Ds and Df, within which the
dynamics FG= {(fv, gv)v∈V } of the ASLIP evolve until the state intersects the
corresponding switching surface S = {Se}e∈E ; at this point, a switching map
� = {�e}e∈E is triggered to provide initial conditions for the ensuing phase.
During stance, the ASLIP is controlled by two inputs: the force u1 acting along
the leg and the torque u2 applied at the hip; (u1, u2) ∈Us, where Us is the set of
the admissible stance inputs. As in Poulakakis and Grizzle (2007b, 2009b), the
leg force u1 is modeled as a spring in parallel with a prismatic force source. Dur-
ing flight, on the other hand, the assumption of a massless leg implies that the
ASLIP follows a ballistic motion. Furthermore, the leg attains its desired con-
figuration αf = (ltd, ϕtd) ∈ Af in anticipation to touchdown kinematically, just
like the SLIP; see also Fig. 4.7.8. The inherently hybrid nature of the dynamics
of the ASLIP can then be represented by a system of the form (4.7.8) as

H C ASLIP := (�,D,U,A,S,�,FG) (4.7.52)

where U = {Us,∅} and A = {∅,Af} include the inputs available in continuous
and in discrete time, respectively. The system (4.7.52) can be brought in the
standard form of a system with impulse effects by integrating the flight phase
dynamics until touchdown, thereby obtaining a map � : Sef

s
→Ds that takes the

liftoff conditions x−s ∈ Sef
s

together with the desired configuration αf ∈Af of the
leg at touchdown to the initial conditions x+s ∈Ds of the next stance phase. The
details can be found in Poulakakis and Grizzle (2009b), and the resulting form
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is

H C ASLIP :
⎧⎨⎩ ẋs = fs(xs)+ gs(xs)us, xs ∈Ds \ Sef

s
,

x+s =�
(
x−s , αf

)
, x−s ∈ Sef

s
, αf ∈Af.

(4.7.53)

It should be emphasized that the initial condition x+s ∈Ds of the ensuing stance
phase does not only depend on the exit condition x−s ∈ Sef

s
of the previous stance

phase. It also depends on the parameter αf that determines the configuration
of the leg at touchdown, thereby strongly influencing the ensuing stance phase.
Clearly, updating αf in an event-based fashion provides a powerful control input.

Embedding the SLIP in the Dynamics of the ASLIP

As was mentioned in Chapter 3, a growing body of evidence in biomechanics
indicates that, when running, diverse species tune their musculoskeletal system
so that their center of mass bounces along as if it is following the dynamics of a
SLIP (Holmes et al., 2006). In the light of this evidence, the SLIP is construed as
a canonical model of running, and can be used as a behavioral control target for
legged robots or robot models. In what follows, we describe a feedback control
law that organizes the ASLIP so that its closed-loop dynamics is governed by the
dynamics of a variant of the SLIP; namely, the energy-stabilized SLIP (ES-SLIP)
shown in Fig. 4.7.9. The ES-SLIP is a modification of the standard SLIP that
admits exponentially stable7 hopping motions (Poulakakis and Grizzle, 2007a,
2009b). The dynamics of the ES-SLIP in closed loop with an exponentially
stabilizing feedback controller – see Poulakakis and Grizzle (2007a, 2009b) for
details – can be written as

HES−SLIP :
{

ż= fz(z), z /∈ Sz,

z+ =�z
(
z−
)
, z− ∈ Sz,

(4.7.54)

where Sz corresponds to the stance-to-flight switching surface and the rest of
the components of (4.7.54) are defined in a similar fashion to those in (4.7.53);
see Poulakakis and Grizzle (2007a, 2009b) for details.

The goal of the SLIP embedding controller is to render any8 exponentially
stable periodic running orbit of the ES-SLIP exponentially stable in the ASLIP.
As Fig. 4.7.8B shows, control action is distributed over continuous and discrete
time as follows. The continuous-time feedback law us = �c(xs) is employed

7. The standard SLIP is energy conservative and thus it cannot reject perturbations that shift the
total energy of the system.
8. Provided, of course, that the physical constraints associated with ground reaction forces and
actuator limitations are respected.
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FIGURE 4.7.9 The energy-stabilized SLIP (ES-SLIP), a variant of the standard SLIP which
features a prismatic leg actuator in parallel with the spring. The leg actuator can develop nonconser-
vative forces capable or rejecting perturbations that alter the total energy of the system.

during stance with the purpose of (i) creating an invariant and attractive sub-
manifold Zs embedded in the stance state space, Ds, and (ii) rendering the
restriction of the closed-loop stance dynamics of the ASLIP on Zs diffeomor-

phic to the ES-SLIP stance dynamics; formally,
(
fs(xs)+ gs(xs)�c(xs)

) ∣∣∣
Zs

∼=
fz(z). The discrete-time feedback law αf = �d(x

−
s ) is employed at transitions

from stance to flight with the purpose of updating the leg configuration αf at
touchdown so that (i) Zs is hybrid invariant, i.e., invariant under the closed-
loop transition map �cl(x

−
s ) := �

(
x−s ,�d(x

−
s )
)

as defined in Section 4.7.5.1,
and (ii) the restricted closed-loop reset map �cl|Zs of the ASLIP is equivalent to
the transition map �z of the ES-SLIP; formally, �cl|Zs

∼=�z. More details on
the design of the feedback laws (�c,�d) can be found in Poulakakis and Grizzle
(2007a, 2009b).

Implications to the Control of Robots

The approach described above essentially combines the practical advantages
of compliant reductive models typically used to intuitively tune empirical con-
trollers – the SLIP is a classical example – with the analytical tractability offered
by constructive feedback synthesis methods. But, how can we leverage these
feedback constructions to introduce a general control synthesis framework for
compliant legged robots?

Clearly, the direct implementation of the SLIP embedding controller in
legged robots like Thumper and MABEL depicted in Fig. 4.7.1 is far from being
a straightforward task. The primary reason is that the ASLIP is based on a num-
ber of simplifying assumptions that do not faithfully capture the structural and
morphological characteristics of these robots. More specifically, the assumption
of a massless leg together with the requirement that the HZD is equivalent –
in a strict mathematical sense – to the SLIP severely limit the applicability of
the SLIP embedding controller to Thumper and MABEL. Yet, the following
lessons learnt from the SLIP embedding controller are important: (i) the HZD
is an explicitly compliant system, possessing more than one degrees of free-
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dom, thus capturing not only the progression of the leg’s sweep angle – as in the
classical HZD method (Westervelt et al., 2003) – but also leg compression and
decompression in a way that respects compliance; (ii) control authority is avail-
able within the zero dynamics – which is now controlled – thus allowing the
development of additional feedback action to realize compliance “shaping” and
active force control for greater flexibility; and (iii) although keeping the torso
at a constant angle – which is in fact a necessary condition for embedding the
SLIP in the ASLIP (Poulakakis, 2010) – is restricting, commanding zero pitch
velocity during the late stage of the stance phase ensures that the angular mo-
mentum associated with the torso is small when the system switches to flight so
that excessive pitching during flight is eliminated. These three considerations,
which underlie the SLIP embedding controller, can be encoded in a set of suit-
ably parametrized outputs of the form (4.7.9) and enforced on the dynamics
of Thumper and MABEL though feedback linearization as in Section 4.7.4.1;
see Poulakakis (2008, Chapter VI) and Poulakakis and Grizzle (2009a) for the
development of the method. Skipping details, we only note that, similar to the
block diagram of Fig. 4.7.8B, the continuous-time control action introduces a set
of parameters which are updated in discrete time using event-based feedback.
A refined version of this method was implemented in Sreenath et al. (2011) to
generate experimentally dynamically stable, fast and efficient walking motions
on MABEL at top sustained speeds 1.5 m/s. Beyond walking, the notion of com-
pliant hybrid zero dynamics is at the core of stabilizing running on MABEL
(Sreenath et al., 2013). Running presents unique challenges due to the presence
of substantial flight phases that limit control authority over the system. Address-
ing these challenges calls for active force control within the compliant HZD as
detailed in Sreenath et al. (2013). This method resulted in MABEL running at
an average speed of 1.95 m/s and a peak speed of 3.06 m/s.

4.7.7 SUMMARY

Most traditional legged locomotion control approaches heavily rely on heuris-
tic methods which do not provide stability and performance guarantees, thus
hindering the use of legged robots in real-life applications. The hybrid zero dy-
namics (HZD) method described in this chapter has been proposed as a general
framework for the synthesis of feedback control laws that induce provably sta-
ble, fast, and reliable walking and running motions in legged robots. At the
core of the method is the idea of encoding desired locomotion behaviors via
a set of suitably parametrized virtual constraints, which effectively coordinate
the higher-dimensional robot plant into a lower-dimensional hybrid subsystem
– namely, the HZD – that governs the robot’s locomotion behavior. This chap-
ter briefly discussed the main concepts as well as key implementation aspects
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underlying the applications of the method, pointing to the relevant literature
for detailed accounts. Beyond its theoretical value, perhaps the most impressive
feature of the HZD method is its versatile nature. This feature supports imple-
mentation on robots with different structural and morphological characteristics,
ranging from rigid walking to compliant running bipeds and to prostheses.
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