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Abstract

Hybrid Model Structures

by

Aaron David Ames

Masters of Arts in Mathematics

University of California, Berkeley

Professor Mariusz Wodzicki, Chair

Hybrid systems are systems that display both continuous and discrete behavior, and so have im-

portant applications to engineering, e.g., mechanical systems undergoing impacts are naturally modeled

by systems of this form. As with dynamical systems, understanding the homotopy-theoretic properties

of hybrid systems—including topology and homology—allows for important insights into the behavior of

these systems. Unlike dynamical systems, there is currently not a mathematical framework in which to

understand hybrid systems homotopically. This dissertation provides the first steps toward establishing

such a framework.

Fundamental to our investigations is the theory of model categories, which provides a method

for “doing homotopy theory” on general categories which satisfy certain axioms. Originally formulated

by Quillen [21] in 1967, model category theory has since blossomed into a full-fledged area of research

capable of addressing homotopy-theoretic questions in a general context. Some of the quintessential

model categories are the category of topological spaces, the category of simplicial sets and the category of

chain complexes—the model structure of these categories plays a fundamental role in algebraic topology

and homology. Therefore, understanding hybrid systems in the context of model categories will allow

one to understand the homotopy-theoretic properties of these systems, laying the ground work for hybrid

homotopy theory.

The core observation of this thesis is that hybrid systems, and more generally hybrid objects,

can be represented categorically as diagrams over a category. That is, given a category M consisting of

the non-hybrid objects of interest, e.g., topological spaces, a hybrid object over this category consists of a

small category, D, that captures the discrete structure of the hybrid object together with a functor:

A : D →M,

that captures the continuous structure of this hybrid object. Therefore, given a category M, we are in-

terested in studying the functor category MD and more generally the category of hybrid objects over M,

Hy(M).
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Before delving into the relationship between hybrid objects and model structures, we lay the

groundwork for these concepts by considering adjunctions; these are fundamental in the study of model

categories. The goal is to understand the role that adjunctions play in a hybrid setting. The study of

adjunctions is first motivated by the study of limits; it is demonstrated that if a category M is complete,

i.e., limits exist, then Hy(M) is complete. Adjunctions are then formally introduced. With this concept in

mind, colimits are introduced; it is demonstrated that if M is cocomplete, i.e., colimits exist, then Hy(M) is

cocomplete. Having studied adjunctions in a “non-hybrid” setting, it is shown how an adjunction between

categories extends to an adjunction between categories of hybrid objects.

The final portion of this thesis is devoted to understanding hybrid model structures, i.e., the

model structure of diagrams in a model category. Preexisting mathematical constructions can be used

to demonstrate that if M is a model category, then so is MD ; the model structure on MD is induced by

the model structure on M. Therefore, we can understand “hybrid homotopy theory” in terms of its “non-

hybrid” counterpart. This connection is firmly established through the use of homotopy colimits, i.e., one

can define a cofibrantly homotopy meaningful model structure on MD , and the homotopy colimit is the

total left derived functor of the colimit.

Professor Mariusz Wodzicki
Dissertation Committee Chair
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Chapter 1

Hybrid Objects

The starting point for introducing the notion of a hybrid object over a category is the observation

that systems that display both continuous and discrete behavior, i.e., hybrid systems, can be represented

by a D-category, D, together with a functor:

A : D →C,

where C is an arbitrary category. This relates hybrid systems to the two most fundamental objects in

category theory: a functor and a natural transformation. More generally, it allows one to use preexisting

mathematical constructions, such as the one that defines a homotopy meaningful model structure on

diagrams in a model category, in the study of hybrid systems.

The concepts introduced in this chapter follow from [2]; here we only introduce the construc-

tions necessary to the later chapters.
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Hybrid Objects

1.1 D-categories

The notion that will be needed in order to introduce a hybrid object over a category is a D-

category, where here “D” is used in order to illustrate that these categories represent the discrete structure

of a hybrid object.

A D-category is a small category in which every diagram has the form:

• • •

•� •�
-

•
-

· · · •� •
-

That is, a D-category has as its basic atomic unit a diagram of the form:

•

•� •
-

and any other diagram in this category must be obtainable by gluing such atomic units along the target of

a morphism (and not the source). More formally, consider the following:

Definition 1.1. A D-category is a small category D satisfying the following two axioms:

AD1 Every object in D is either the domain of a non-identity morphism in D or the codomain of a non-

identity morphism but never both, i.e., for every diagram

a0
α1- a1

α2- · · · αn- an

in D, all but one morphism must be the identity (the longest chain of composable non-identity

morphisms is of length one).

AD2 If an object in D is the domain of a non-identity morphism, then it is the domain of exactly two

non-identity morphisms, i.e., for every diagram in D of the form

a0

a1
�

α1

a2
�

α 2

a3

�
α

3

· · · · · · · · ·an

α
n -

consisting of all morphisms with domain a0, either all of the morphisms are the identity or two and

only two morphisms are not the identity.

1.1.1 Important objects in D-categories. Let D be a D-category. We use Mor(D) to denote the mor-

phisms of D, i.e.,

Mor(D) = ⋃
(a,b)∈Ob(D)×Ob(D)

HomD(a, b),

and Morid� (D) to denote the set of non-identity morphisms of D, i.e.,

Morid� (D) = {α ∈Mor(D) :α 6= id}.

2



Hybrid Objects

For a morphism α : a → b in D, its domain (or source) is denoted by dom(α) = a and its codomain (or

target) is denoted by cod(α) = b.

For D-categories, there are two sets of objects that are of particular interest; these are subsets of

Ob(D). The first of these is termed the edge set of D, denoted by E(D), and defined to be:

E(D) = {a ∈Ob(D) : a = dom(α), a = dom(β), α,β ∈Morid� (D), α 6=β}.

That is, for all a ∈ E(D) there are two and only two morphisms (which are not the identity) α,β ∈Mor(D)

such that a = dom(α) and a = dom(β), so we denote these morphisms by sa and ta , respectively. Con-

versely, given a morphism γ ∈Morid� (D), there exists a unique a ∈ E(D) such that γ= sa or γ= ta . There-

fore, every object a ∈E(D) sits in a diagram of the form:

dom(sa) = a = dom(ta)

b = cod(sa)

sa

�
cod(ta) = c

ta

-
(1.1)

Note that giving all diagrams of this form (for which there is one for each a ∈E(D)) gives all the objects in

D, i.e., every object of D is the target of sa or ta , or their source, for some a ∈E(D).

Define the vertex set of D by:

V(D) = (E(D))c ,

where here (E(D))c is the complement of E(D) in the set Ob(D). It follows by definition that

E(D)∩V(D) = ;,

E(D)∪V(D) = Ob(D).

The above choice of morphisms sa and ta can be used to define an orientation on a D-category. From this

point on, we will only consider oriented D-categories. Therefore, we introduce the following:

Definition 1.2. A D-category is a small category D such that:

¦ There exist two subsets of Ob(D), E(D) and V(D), termed the edge set and vertex set, satisfying:

E(D)∩V(D) = ;,

E(D)∪V(D) = Ob(D),

¦ There exists a pair of functions:

E(D)
s-

t
- Morid� (D),

such that:

s(E(D))∩ t(E(D)) = ;,

s(E(D))∪ t(E(D)) = Morid� (D).

The pair (s,t) is termed an orientation of D.

3



Hybrid Objects

¦ The following diagram:

E(D)

E(D)
s-

t
-

id
-

Morid� (D)

dom

6

V(D)

cod

?

(1.2)

commutes.

In particular, for a D-category D, the definition of such a category implies that for every a ∈E(D),

there is a diagram of the form (1.1). To verify that the (oriented) D-categories, as defined in 1.2, satisfy the

axioms of a D-category as given in Definition 1.1, we state the following:.

Lemma 1.1. A D-category, as defined in 1.2, satisfies AD1 and AD2.

D-categories, as introduced in Definition 1.2, are oriented since a specific labeling of the mor-

phisms was chosen. From this point on, all D-categories will be oriented.

1.1.2 The category of D-categories. Define the category of D-categories, Dcat, to have objects D-categories.

A morphism between two D-categories, D and D′ (with functions (s,t) and (s′,t′), respectively), is a functor

~F : D →D′ such that

~F (E(D)) ⊆E(D′), ~F (V(D)) ⊆V(D′), (1.3)

and the following diagrams

E(D)
~F - E(D′) E(D)

~F - E(D′)

Morid� (D)

s

? ~F- Morid� (D′)

s′

?
Morid� (D)

t

? ~F- Morid� (D′)

t′

?

(1.4)

commute. By requiring these diagrams to commute, it implies that for all diagrams of the form:
a

b

sa

�
c

ta

-

in D, i.e., a ∈E(D) and b, c ∈V(D), there are corresponding diagrams:

~F (a)

~F (b)

~F (sa) = s′
~F (a)

�
~F (c)

~F (ta) = t′~F (a)

-

in D′, where ~F (a) ∈E(D′) and ~F (b), ~F (c) ∈V(D′).
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Hybrid Objects

1.1.3 D-categories and graphs. Recall that a (directed or oriented) graph is a pair Γ= (Q,E), where Q is

a set of vertices and E is a set of edges, together with a pair of functions:

E
sor -

tar
- Q

called the source and target functions; for e ∈ E , sor(e) is the source of e and tar(e) is the target of e. A

morphisms of graphs consists of a pair F = (FQ ,FE ) : Γ = (Q,E) → Γ′ = (Q′,E ′), where FQ : Q → Q′ and

FE : E → E ′, such that the following diagrams commute:

E
FE - E ′ E

FE - E ′

Q

sor

? FQ - Q′

sor′

?
Q

tar

? FQ - Q′

tar′

?

(1.5)

Thus we have defined the category of graphs, Grph.

D-categories can be essentially thought of as graphs. (Although, in the context of hybrid sys-

tems, it is not sufficient to work with graphs.) Specifically, one can associate to a D-category D a graph

ΓD = (QD ,ED) := (V(D),E(D)),

with source and target maps given by:

ED

sor= cod(s(− ))-

tar= cod(t(− ))
- QD .

Conversely, given a graph Γ, one associates to this graph a D-category DΓ by defining the objects of this

category to be:

E(DΓ) := E , V(DΓ) :=Q, Ob(DΓ) =E(DΓ)∪V(DΓ).

To define the morphisms of DΓ we define, for every e ∈ E , morphisms:

e

sor(e)

se

�
tar(e)

te

-

We complete the description of DΓ by defining an identity morphism on each object of DΓ.

A morphism of D-categories induces a morphism of graphs and, conversely, a morphism of

graphs induces a morphism of D-categories. Therefore, there are functors:

grph : Dcat → Grph

dcat : Grph → Dcat .

A more explicit formulation of this construction can be found in [2], where it was shown that:
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Hybrid Objects

Theorem 1.1. There is an isomorphism of categories:

Dcat∼=Grph,

where this isomorphism is given by the functor grph : Dcat→Grph with inverse dcat : Grph→Dcat.

Example 1.1. For the graph given by:

b1
a1 - b2

b8

a8-

b3

a2-

b7

a7

6

b4

a3

?

b6
� a5

a6
�

b5

a4
�

The associated D-category is given by:

a1

a8 a2

b1

sa1

�

ta8
-

b2

ta1

- sa2

�

b8

sa8 -

b3

ta2

�

a7

ta7 -

a3

sa3
�

b7
sa7

-
b4

ta3�

b6 b5

a6

ta6

-

sa6

-

a4

sa4

�

ta4

�

a5

sa5

-

ta5

�

and vice-versa.
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Hybrid Objects

1.2 Hybrid Objects

With the notion of a D-category in hand, we can define hybrid objects over a category C.

Definition 1.3. Let C be a category. A hybrid object over C is a pair (D,A), where D is a D-category and

A : D →C

is a functor.

The functor A can be thought of as the continuous component of the hybrid object, and the

category D its discrete component. The category CD is thus the category of hybrid objects over C with the

same “discrete structure.”

Example 1.2. Some specific examples of hybrid objects are given by:

Hybrid simplicial set K : D → SSet
Hybrid topological space X : D →Top
Hybrid chain complex A : D →Ch≥0(Ab)
Hybrid manifold M : D →Man

These will be investigated more in Chapter 3, where we will be interested in studying hybrid objects over

a general model category M, i.e., functors A : D →M.

Let A and B be D-categories. For a morphism ~F : A →B of D-categories, let

~F∗ : CB →CA

be the functor given on objects, i.e., functors B : B → C, and morphisms, i.e., natural transformations

~g : B → B′, of CB by ~F∗(B) = B◦ ~F and ~F∗(~g ) = ~g ◦ ~F .

Definition 1.4. Let (A ,A) and (B,B) be two hybrid objects over the category C. A morphism of these

hybrid objects, or just a hybrid morphism, is a pair

(~F , ~f ) : (A ,A) → (B,B),

where ~F : A →B is a morphism in Dcat and ~f : A
�→ ~F∗(B) is a natural transformation in CA .

1.2.1 Composing hybrid morphisms. Given two hybrid morphisms (~F , ~f ) : (A ,A) → (B,B) and (~G , ~g ) :

(B,B) → (C ,C), the composite morphism is given by

(~G , ~g )◦◦◦ (~F , ~f ) := (~G ◦ ~F , ~F∗(~g )• ~f ) : (A ,A) → (C ,C).

Specifically, the composite morphism is just the standard composition of functors and objectwise com-

position of natural transformations, i.e.,

~F∗(~g )• ~f : A
�→ (~G ◦ ~F )∗(C) = ~F∗(~G∗(C)),

is defined objectwise by (~F∗(~g )• ~f )a = ~F∗(~g )a ◦ ~fa = ~g~F (a) ◦ ~fa .

7



Hybrid Objects

Definition 1.5. Let C be a category. The category of hybrid objects over the category C, denoted by Hy(C),

has as

Objects: Hybrid objects over C, i.e., pairs (A ,A), where A : A →C.
Morphisms: Morphisms of hybrid objects, i.e., pairs

(~F , ~f ) : (A ,A) → (B,B),

where ~F is a morphism in Dcat and ~f : A
�→ ~F∗(B) is a morphism in CA .

For a functor G : C→D and a D-category A , this induces a functor:

G∗ : CA →DA

given on functors A : A → C by G∗(A) = G ◦A. For a natural transformations ~f : A
�→ A′ in CA , G∗(~f ) is

defined objectwise by G∗(~f )a :=G(~fa).

Using this, we can define:

1.2.2 Functors between categories of hybrid objects. A functor G : C→D between two categories in-

duces a functor:

Hy(G) : Hy(C) →Hy(D)

between categories of hybrid objects. On objects (A ,A) and morphisms (~F , ~f ) : (A ,A) → (B,B) of Hy(C),

the functor Hy(G) is given by:

Hy(G)(A ,A) = (A ,G∗(A)),

Hy(G)(~F , ~f ) = (~F ,G∗(~f )) : (A ,G∗(A)) → (B,G∗(B)).

Functors between categories of hybrid objects will be investigated in detail in Chapter 2.

8



Hybrid Objects

1.3 Hybrid Systems

The motivation for considering hybrid objects is given by hybrid systems. Systems of this form

have been well-studied in the context of engineering, and have important applications to systems un-

dergoing impacts, systems with non-smooth control laws and networks of dynamical systems. To better

understand the relationship between hybrid systems and hybrid objects, we introduce the “standard” de-

finition of a hybrid system (see [23] and the references therein).

Definition 1.6. A hybrid system is a tuple

H= (Γ,D,G ,R,X ),

where

¦ Γ= (Q,E) is an oriented graph (possibly infinite).

¦ D = {Di }i∈Q is a set of domains where Di is a smooth manifold.

¦ G = {Ge }e∈E is a set of guards, where Ge ⊆ Dsor(e) is an embedded submanifold of Dsor(e).

¦ R = {Re }e∈E is a set of reset maps; these are smooth maps Re : Ge → Dtar(e).

¦ X = {Xi }i∈Q is a collection of vector fields, i.e., Xi is a vector field on the manifold Di .

1.3.1 Hybrid spaces. As with dynamical systems, it is sometimes desirable to consider the underlying

“space" of a hybrid system. This amounts to “forgetting" about the vector field on each domain. More

specifically, we can define a smooth hybrid space to be a tuple:

H= (Γ,D,G ,R).

Moreover, forgetting about the smooth structure on the elements of D, G and R, one can view H as a

topological hybrid space. It will be seen that smooth hybrid spaces correspond to hybrid objects over the

category of manifolds: hybrid manifolds. Hence, hybrid topological spaces correspond to hybrid objects

over the category of topological spaces. We will later study hybrid topological spaces, through the no-

tion of a hybrid object over a category. First, we motivate the study of hybrid systems by considering an

example.

Example 1.3. The quintessential example of a hybrid system is given by the one-dimensional bouncing

ball; see Figure 1.1. While this system has, arguably, been over-studied, we will utilize it in order to illus-

trate non-trivial ideas in a trivial setting.

A ball bouncing in one-dimension is naturally modeled as a hybrid system:

Hball = (Γball,Dball,Gball,Rball,X ball).

9



Hybrid Objects

Figure 1.1: The bouncing ball.

That is, we consider a ball dropped from some positive height, say x1, above a surface defined by x1 = 0.

Since the velocity of the ball will reset when it impacts the floor, the graph for this hybrid system is given

by:

Γball = (Qball,Eball), Qball = {1}, Eball = {e = (1,1)}.

That is, by a graph of the form:

Since the phase space of the bouncing ball will consist of two variables, the position x1 and velocity x2,

the domain for the hybrid system is given by:

Dball
1 =


 x1

x2

 ∈R2 : x1 ≥ 0

 ,

and Dball = {Dball
1 }. The guard condition encodes the fact that a transition in the velocities of the system

should occur when the position is zero and the velocity is “downward pointing.” Therefore,

Gball
e =


 x1

x2

 ∈R2 : x1 = 0 and x2 ≤ 0

 ,

and Gball = {Gball
e }. The reset map for the system is given by:

Rball
e (x1, x2) =

 x1

−r x2

 ,

where 0 ≤ r ≤ 1 is the coefficient of restitution for the ball; this map encodes the fact that when the ball

impacts the ground, its velocity is reversed and scaled down by the amount of energy lost through impact.

Finally, the vector field for this system is given by:

X ball
1 (x1, x2) =

 x2

−g

 ,

10



Hybrid Objects

x1

x2
Dball
1

Gballe

Rballe

Figure 1.2: The hybrid model of a bouncing ball.

where g is the acceleration due to gravity. A graphical representation of this system can be seen in Figure

1.2.

1.3.2 Hybrid manifolds. We justify the notion of a hybrid object by relating hybrid manifolds to the

hybrid space associated to a hybrid system.

A hybrid manifold is a hybrid object over the category of manifolds, i.e., a D-category D together

with a functor:

M : D →Man . (1.6)

In physical systems, it often is the case that for every a ∈E(D), and hence every diagram

a

cod(sa)

sa

�
cod(ta)

ta

-

in D, the corresponding diagram in Man is given by:

Ma

Mcod(sa )

Msa = ı

�

⊃

Mcod(ta )

Mta

-
(1.7)

11



Hybrid Objects

where Ma ⊆ Mcod(sa ) is an embedded submanifold and Msa = ı is the natural inclusion. We denote hybrid

manifolds of this form by Mııı .

Although we do not explicitly assume that Msa is an inclusion, this often is the case, as the fol-

lowing proposition indicates.

Proposition 1.1. There is a bijective correspondence:

{Hybrid Spaces, H= (Γ,D,G ,R)} ↔ {Hybrid Manifolds, Mııı : D →Man)}.

Proof. Given a hybrid space H = (Γ,D,G ,R), we define the corresponding hybrid manifold by M(D,G ,R) :

DΓ → Man, where DΓ = dcat(Γ) is the D-category obtained from the graph Γ and M(D,G ,R) is defined for

every e ∈E(DΓ) = E by

M(D,G ,R)


e

sor(e)

se

�
tar(e)

te

-

 :=

M(D,G ,R)
e :=Ge

M(D,G ,R)
sor(e) := Dsor(e)

M(D,G ,R)
se

:= ı

�

⊃

M(D,G ,R)
tar(e) := Dtar(e)

M(D,G ,R)
te

:= Re

-

It is clear that M(D,G ,R) is a hybrid manifold.

Conversely, consider a hybrid manifold Mııı : D →Man. Let ΓD = grph(D) = (QD ,ED) be the graph

obtained from the D-category D. We define

H(D,Mııı ) = (ΓD ,DMııı ,GMııı ,RMııı ),

where DMııı := {Mııı
b}b∈V(D)=QD

, GMııı := {Mııı
a}a∈E(D)=ED

and RMııı := {Mııı
ta

}a∈E(D)=ED
.

Example 1.4. The hybrid space for the bouncing ball is given by:

Hball = (Γball,Dball,Gball,Rball).

We will construct the associated hybrid object (Dball,Mball). The D-category associated with the graph

Γball is given by:

a

Dball =

b

sa

?

ta

?

together with the identity morphisms ida : a → a and idb : b → b. The functor

Mball : Dball →Man

12



Hybrid Objects

x1

x2

Mball
a = Gballe

Mball
sa = ı

Mball
b = Dball

1

Mball
ta = Rballe

Figure 1.3: The hybrid manifold for the bouncing ball

takes the following values:

Mball


a

b

sa

?

ta

?

=

Mball
a =Gball

e

Mball
b = Dball

1

Mball
sa

= ı
?

Mball
ta

= Rball
e

?

A graphical representation of this hybrid manifold can be seen in Figure 1.3

The original motivation for considering D-categories can now be seen; the edge sets of these

categories serve the purpose of “pulling out the guard.” The claim is that small categories of any other

shape would not allow for the representation of hybrid systems as functors in such a clear fashion.

13



Chapter 2

Adjunctions between Categories of

Hybrid Objects

Central to category theory—and hence to all of mathematics—is the notion of a universal prop-

erty, which characterizes objects that share a certain property, i.e., objects displaying such a property are

unique up to isomorphism. Examples abound in category theory (e.g., products and limits) but also ap-

pear in engineering, although almost never recognized (e.g., stability is a universal property).

This chapter begins by reviewing some of the most fundamental universal constructions in a

category: products, equalizers, pullbacks and limits. If all of these objects exist in a category, the category

is said to be complete. We prove that Dcat is complete and Hy(C) is complete if C is complete.

The concept of a universal property is captured by adjunctions between categories. For example,

the universality of the limit implies that it defines an adjunction:

∆J : C
-� CJ : limJ.

After introducing the definition of an adjunction, we discuss the dual to limits, colimits, as defined by the

adjunction:

colimJ : CJ -� C : ∆J.

If such an adjunction exists, C is said to be cocomplete. We demonstrate that Dcat is cocomplete and

Hy(C) is cocomplete through the use of left Kan extensions. Finally, the adjunction:

hycolim : Hy(C) -
� Dcat×C : ∆hy,

is introduced; this can be thought of as the hybrid analogue of the colimit adjunction.

After establishing the completeness and cocompleteness of categories of hybrid objects, which

is the main result of this chapter, we turn our attention to adjunctions between categories of hybrid ob-

jects. Given an adjunction

L : C
-� D : R

14
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between categories, we demonstrate that there is a corresponding adjunction

Hy(L) : Hy(C) -� Hy(D) : Hy(R).

We conclude the chapter by relating categories of hybrid objects to fibered categories. This is

achieved by considering the projection functor:

Π : Hy(C) →Dcat,

which defines a fibration. In particular, a fiber of Hy(C) is given by Hy(C)D ∼= CD . This allows us to con-

clude that a pair of cartesian functors

L : Hy(C) -� Hy(D) : R

are adjoint if they are adjoint fiberwise, i.e., on each fiber.

15
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2.1 Limits in Categories of Hybrid Objects

The main objective of this section is to prove that both Dcat and Hy(C) are complete, i.e., limits

exist, if C is complete. In fact, the limit of a diagram of hybrid objects is obtained through the limit in Dcat

and the limit in C. We first review the more elementary notions of products, equalizers and pullbacks in

order to motivate the subsequent constructions.

2.1.1 Products. Let C be a category, I be a set and {Ai }i∈I a set of objects of C. The product of these ob-

jects is an object
∏

i∈I Ai of C together with projections pAi :
∏

i∈I Ai → Ai satisfying the universal property

that for any other object C of C with morphisms fi : C → Ai , there exists a unique morphism

( fi )i∈I : C →∏
i∈I

Ai

making the following diagram

C

Ai
�pAi

fi

� ∏
i∈I

Ai

( fi )i∈I

?

commute for all i ∈ I .

Given two sets of objects {Ai }i∈I and {Bi }i∈I together with morphisms fi : Ai → Bi , there is a

unique induced morphism ∏
i∈I

fi = ( fi ◦pAi )i∈I :
∏
i∈I

Ai →
∏
i∈I

Bi

making the following diagram

Ai
�pAi

∏
i∈I

Ai

Bi

fi

?
�pBi

∏
i∈I

Bi

∏
i∈I fi = ( fi ◦pAi )i∈I

?

commute.

Definition 2.1. A category C is said to have products, or products exist in C, if for any set of objects {Ai }i∈I

in C, the product
∏

i∈I Ai exists.

Remark 2.1. Products of the form given in Definition 2.1 are often referred to as small products. Some-

times finite products—I is a finite set—are often of interest.

Example 2.1. The category of sets, Set, has products. For a set of sets {Xi }i∈I , the product is the usual

cartesian product: ∏
i∈I

Xi = {(xi )i∈I : xi ∈ Xi }.

16
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The projections are defined as

pi :
∏
i∈I

Xi → Xi

(xi )i∈I 7→ xi .

To verify the universal property of the product, consider a set D and functions fi : D → Xi . From these we

obtain a function f : D →∏
i∈I Xi given by:

f (y) = ( fi (y))i∈I

for all y ∈ D.

2.1.2 Products of graphs. The category of graphs, Grph, has products. For a set of graphs {Γi = (Qi ,Ei )}i∈I ,

the product is induced from the product on sets as follows:

∏
i∈I

Γi = (
∏
i∈I

Qi ,
∏
i∈I

Ei ).

The source and target maps for the product graph
∏

i∈I Γi are defined to be the unique maps making the

following diagrams commute:

Ei
� pEi

∏
i∈I

Ei

Qi

sori

?
�pQi

∏
i∈I

Qi

∏
i∈I sori

?

Ei
� pEi

∏
i∈I

Ei

Qi

tari

?
�pQi

∏
i∈I

Qi

∏
i∈I tari

?

Specifically, for (ei )i∈I ∈∏
i∈I Ei ,

∏
i∈I

sori ((ei )i∈I ) = (sori (ei ))i∈I ,
∏
i∈I

tari ((ei )i∈I ) = (tari (ei ))i∈I .

Note that the projections are defined by:

pΓi := (pEi , pQi ) :
∐
i∈I

Γi → Γi .

Finally, we must verify the universal property of the product. Consider a graph Γ = (Q,E) together with

a collection of morphisms Fi = ((FQ)i , (FE )i ) : Γ→ Γi . It follows from the universality of products in the

category of sets that the diagrams given in Table 2.1 are commutative. So F = (FQ ,FE ) : Γ→ ∏
i∈I Γi is the

desired unique morphism.

2.1.3 Products in categories of hybrid objects. The existence of products in C relates to the existence

of products in Hy(C). In order to establish this relationship, we need to show that products exist in Dcat

and that if products exist for C then they exist for CJ for any small category J. These two results are then

“glued” together to yield products in Hy(C).
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E

Q

sor

-

∏
i∈I

Ei

FQ

?

Ei

�

(F
E

) i

�

pE i

∏
i∈I

Qi

FE

?

∏
i∈I sori

-

Qi
�

(F
Q

) i

sori
-

�
pQ i

E

Q

tar

-

∏
i∈I

Ei

FQ

?

Ei

�

(F
E

) i

�

pE i

∏
i∈I

Qi

FE

?

∏
i∈I tari

-

Qi

�
(F

Q
) i

tari
-

�
pQ i

Table 2.1: Commuting diagrams verifying the universality of the product in Grph.

Proposition 2.1. Products exist in Dcat. Specifically, for {Ai }i∈I a set of D-categories, the product
∏

i∈I Ai

exists and is given by: ∏
i∈I

Ai = dcat(
∏
i∈I

grph(Ai )),

where
∏

i∈I grph(Ai ) is the product of graphs.

Proof. This follows from the fact that dcat and grph are isomorphisms between categories (Theorem 1.1).

Specifically, the projections:

Pi :
∏
i∈I

grph(Ai ) → grph(Ai )

yield projections of D-categories:

~Pi := dcat(Pi ) :
∏
i∈I

Ai = dcat(
∏
i∈I

grph(Ai )) →Ai = dcat(grph(Ai )).

Now, to verify universality, for any other D-category D with morphisms ~Fi : D → Ai there is a graph

grph(D) and morphisms grph(~Fi ) : grph(D) → grph(Ai ). By the universality of the product in Grph, there
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exists a unique morphism F making the following diagram

grph(D)

grph(Ai ) �Pi

grph(~Fi )

� ∏
i∈I

grph(Ai )

F

?

commute. Applying the functor dcat yields a commuting diagram

D

Ai
�

~Pi

~Fi

� ∏
i∈I

Ai

dcat(F )

?

where dcat(F ) must be unique; if there were another morphisms making the diagram commute, it would

also make the corresponding diagram of graphs commute, thus violating the uniqueness of F .

Lemma 2.1. If products exist in C, then products exists in CJ for any small category J. Specifically, for a set

of functors Fi : J→C, i ∈ I, the product is given on objects and morphisms by:

(
∏
i∈I

Fi )(a) =∏
i∈I

Fi (a), (
∏
i∈I

Fi )(α) =∏
i∈I

Fi (α).

Proof. See [18], Theorem 1, page 115.

Proposition 2.2. If products exist in C, then products exist in Hy(C). Specifically, for a set of hybrid objects

{(Ai ,Ai )}i∈I , the product is given by: ∏
i∈I

(Ai ,Ai ) = (
∏
i∈I

Ai ,
∏
i∈I

~P∗
i (Ai ))

where
∏

i∈I Ai is the product of D-categories,
∏

i∈I ~P
∗
i (Ai ) is the product in C

∏
i∈I Ai with ~Pi :

∏
i∈I Ai → Ai

the projection morphisms in Dcat.

Proof. The projection morphisms are given by:

(~Pi , ~pi ) :
∏
i∈I

(Ai ,Ai ) → (Ai ,Ai ),

where ~Pi :
∏

i∈I Ai →Ai and

~pi :
∏
i∈I

~P∗
i (Ai )

�→ ~P∗
i (Ai )

is objectwise the projection in C. We must verify the universality of the product. Consider a hybrid object

(D,D) together with morphisms (~Fi , ~fi ) : (D,D) → (Ai ,Ai ). By the universality of the product in Dcat, there

exists a unique morphism ~F : D →∏
i∈I Ai yielding a commuting diagram

D

Ai
�

~Pi

~Fi

� ∏
i∈I

Ai

~F

?
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Therefore, we need only find a unique natural transformation ~f : D
�→ ~F∗(

∏
i∈I ~P

∗
i (Ai )) in CD . Since ~fi :

D
�→ ~F∗

i (Ai ) there is a commuting diagram

D

~F∗
i (Ai ) �

~F∗(~pi )

~fi

�
~F∗(

∏
i∈I

~P∗
i (Ai ))

~f

?

in CD where the existence and uniqueness of ~f follows from the universal property of the product in

CD .

2.1.4 Equalizers. For a category C and a pair of morphisms:

A
f -

g
- B

between two object A and B of C, the equalizer of this pair is an object eq( f , g ) of C together with a mor-

phism u : eq( f , g ) → B making diagram

eq( f , g )
u - A

f -

g
- B

commute, i.e., f ◦u = g ◦u. In addition, it must satisfying the universal property that for any other object

C with a morphism v : C → A such that f ◦ v = g ◦ v, there exists a unique morphism h : C → eq( f , g ) such

that the following diagram commutes:

C

eq( f , g )

h

? u - A
f -

g
-

v

-

B

Definition 2.2. A category C is said to have equalizers if for any pair of morphism f , g : A → B between

any pair of objects in C, the equalizer exists.

Example 2.2. In the category of sets, Set, equalizers exist. For two sets X and Y and two functions f , g :

X → Y , the equalizer is given by:

eq( f , g ) = {x ∈ X : f (x) = g (x)},

with u : eq( f , g ) → X the inclusion. For a set Z and a morphism h : Z → X such that f ◦h = g ◦h, then

h : Z → eq( f , g ) by the definition of eq( f , g ), and hence is unique.

2.1.5 Equalizers in Grph. For a diagram in Grph of the form:

Γ= (Q,E)
F = (FQ ,FE )-

G = (GQ ,GE )
- Γ′ = (Q′,E ′),
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the equalizer of this pair of morphisms exists. It is given by:

eq(F,Q) = (eq(FQ ,GQ),eq(FE ,GE )),

where the equalizers on the right are in the category of sets. The source and target functions for eq(F,G)

are given uniquely by requiring that the following diagrams commute:

eq(FE ,GE )
uE - E

FE -

GE

- E ′

eq(FQ ,GQ)

soreq(F,G)

? uQ - E

sor

? FQ -

GQ

- Q′

sor′

?

eq(FE ,GE )
uE - E

FE -

GE

- E ′

eq(FQ ,GQ)

tareq(F,G)

? uQ - E

tar

? FQ -

GQ

- Q′

tar′

?

Note that the uniqueness of the source and target functions are due to the universality of equalizers in

Set. It also follows from the definition of equalizers in Set that

soreq(F,G) = sor |eq(FE ,GE ), tareq(F,G) = tar |eq(FE ,GE ),

since uE and uQ are inclusions.

The universality of the equalizer in Grph is easy to verify (it is a simple exercise in diagram chas-

ing).

2.1.6 Pullbacks. Consider a category C and a diagram of the form:

B

C
g

- A

f

?

The pullback of this diagram is an object B ×A C of C together with two morphisms p and q such that the

following pullback diagram

B ×A C
p - B

C

q

?

g
- A

f

?
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commutes. It is universal in the following sense: for any other object D of C with morphisms u and v

making the following diagram commute

D
u - B

C

v

?

g
- A

f

?

there exists a unique morphism h : D → B ×A C such that the following diagram commutes:

D

B ×A C
p

-

h

-

B

u

-

C

q

?

g
-

v

-

A

f

?

Example 2.3. In the category of sets, pullbacks exists. Specifically, for a diagram of sets of the form:

X

Y
g

- Z

f

?

The pullback is given by:

X ×Z Y = {(x, y) ∈ X ×Y : f (x) = g (y)}.

2.1.7 Limits. For a category C and a functor D : J→C the limit, if it exists, is an object of C, denoted by

limJ(D), together with morphisms:

νa : limJ(D) → D(a), a ∈Ob(J),

such that for every α : a → b in J, the following diagram

limJ(D)

D(a)
D(α) -

νa

�
D(b)

νb

-
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commutes. In addition it is required to satisfy the universal property that for any object C of C with mor-

phisms ca : C → D(a), a ∈Ob(J), such that there is a commuting diagram:

C

D(a)
D(α) -

ca

�
D(b)

cb

-

there exists a unique morphism u : C → limJ(D) making the following diagram

C

limJ(D)

u

?

D(a)
D(α) -

ca

�

νa

�
D(b)

cb

-νb -

commute.

The notion of a limit perhaps can be better understood utilizing the language of natural trans-

formations. For the constant functor ∆J : C→ CJ, the limit of D is an object limJ(D) of C together with a

universal natural transformation:

ν : ∆J(limJ(D))
�→ D.

It must be universal in the following sense: for any other object C of C and natural transformation c :

∆J(C )
�→ D, there exists a unique morphism u : C → limJ(D) such that the following diagram commutes

∆J(C )

∆J(limJ(D))

∆J(u)

?
ν - D

c

-

in CJ.

Definition 2.3. A category C is complete if for every small category J and every functor D : J→C, the limit

exists.

There is the following useful lemma:

Lemma 2.2. If C is complete, then it has a terminal object.

Example 2.4. The category of sets, Set, is the canonical example of a complete category.

The category of small categories Cat is complete; this completeness is directly a result of the

completeness of Set. In fact, one might be tempted to say that the category of D-categories is complete
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since the category of small categories is complete. The problem with this logic is that there is no guarantee

that the limit of diagram in Dcat is again in Dcat.

Another example of a complete category is the category of graphs, Grph, which is again complete

because the category of sets is complete. It turns out that the completeness of this category does imply

the completeness of Dcat, which is not surprising in light of the isomorphism Dcat∼=Grph.

2.1.8 Special cases of the limit. The limit includes as a special case all of the previous universal con-

structions we have introduced. Specifically,

Products. The limit of a functor
D : I→C,

where I is the discrete category obtained from an indexing set I .
Equalizers. The limit of a functor

D : (•→→•) →C .

Pullback. The limit of a functor
D : (•→•←•) →C .

Interestingly enough, the existence of limits in a category is related to the existence of equalizers and

products.

Proposition 2.3. A category C is complete iff it has equalizers and products.

Proof. See Corollary 2, page 113, [18].

Corollary 2.1. The category of graphs, Grph, is complete.

A corollary of this is that the category of D-categories is complete. Before stating this result, we

introduce some notation.

Notation 2.1. To differentiate, when necessary, between limits in different categories, we sometimes write

limC
J

for the limit of a functor D : J→C. Similarly, we sometimes write ∆C
J

.

Theorem 2.1. The category of D-categories, Dcat, is complete. Specifically, for a functor D : J → Dcat, J

small, the limit is given by:

limDcat
J (D) = dcat

(
limGrph

J
(grph∗(D))

)
.

Proof. Follows from the fact that dcat and grph are isomorphisms of categories; the proof is analogous to

the proof of Proposition 2.1.

2.1.9 The limit as a functor. If C is a complete category, then the limit exists for every diagram over a

small category J, i.e., for every functor D : J→C. In fact, the universality of the limit implies that it defines

a functor

limJ : CJ →C .
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Specifically, consider two functors D,D′ : J → C together with the corresponding universal natural trans-

formations:

ν : ∆J(limJ(D))
�→ D,

ν′ : ∆J(limJ(D′))
�→ D′.

The object function of the limit (as a functor) associates to these functors their limit. For a morphism

f : D
�→ D′, the limit of this morphism is the unique morphism limJ( f ) : limJ(D) → limJ(D′) making the

following diagram:

∆J(limJ(D))
ν - D

∆J(limJ(D′))

∆J(limJ( f ))

?
ν′ - D′

f

?

commute.

Proposition 2.4. If C is complete, then CK is complete for every small category K. Specifically, for D : J →
CK, the limit is given on objects and morphisms of K by:

limCK

J
(D)(a) = limC

K
(D(a)), limCK

J
(D)(α) = limC

K
(D(α)).

Proof. See [18], Theorem 1, page 115.

2.1.10 Diagrams in categories of hybrid objects. By slight abuse of notation, we denote a diagram in

Hy(C) by

(DJ,DJ) : J→Hy(C).

That is, for every α : a → b in J, there are corresponding hybrid objects and morphisms:

(DJ(a),DJ(a))
(DJ(α),DJ(α))- (DJ(b),DJ(b)).

In particular, DJ(α) : DJ(a) →DJ(b) is a morphism of D-categories and

DJ(α) : DJ(a)
�→ (DJ(α))∗(DJ(b))

is a morphism in CDJ(a).

Note that by the definition of a hybrid object, we can without ambiguity write DJ : J → Dcat;

note that DJ is not a D-category, but a diagram of such categories. Since the category of D-categories is

complete, there exists a D-category limDcat
J (DJ) together with a universal natural transformation:

~V : ∆Dcat
J (limDcat

J (DJ))
�→DJ.
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The motivation for denoting this natural transformation by ~V is that for every diagram of the form α : a →
b in J, there is a diagram of D-categories:

limDcat
J (DJ)

DJ(a)
DJ(α) -

~Va

�
DJ(b)

~Vb

-
(2.1)

For the diagram (DJ,DJ) : J→Hy(C) in Hy(C), the limit of DJ : J→Dcat yields a functor:

~V ∗(DJ) : J→ClimDcat
J (DJ)

defined on objects and morphisms of J by:

~V ∗(DJ)(a) := ~V ∗
a (DJ(a)), ~V ∗(DJ)(α) := ~V ∗

dom(α)(DJ(α)).

Note that ~V ∗(DJ) is well-defined because of the commutativity of (2.1).

Using this notation, we can now prove that categories of hybrid objects are complete and give

an explicit formula for the limit of a diagram.

Theorem 2.2. If C is complete, then Hy(C) is complete. Specifically, for (DJ,DJ) : J → Hy(C), the limit is

given by:

limHy(C)
J

(DJ,DJ) =
(
limDcat

J (DJ), limC
limDcat

J
(DJ)

J
(~V ∗(DJ))

)
.

Proof. The first step is to find the universal natural transformation in Hy(C)J

ν : ∆Hy(C)
J

(
limHy(C)

J
(DJ,DJ)

)
�→ (DJ,DJ).

There are universal natural transformations

~V : ∆Dcat
J

(
limDcat

J (DJ)
)

�→ DJ

~ν : ∆C
limDcat

J
(DJ)

J

(
limC

limDcat
J

(DJ)

J
(~V ∗(DJ))

)
�→ ~V ∗(DJ)

in DcatJ and (ClimDcat
J (DJ))J.

The claim is that the universal transformation ν is given by ν = (~V ,~ν). To verify this, first note

that for an object a of J,

νa = (~Va ,~νa) : limHy(C)
J

(DJ,DJ) =
(
limDcat

J (DJ), limC
limDcat

J
(DJ)

J
(~V ∗(DJ))

)
�→ (DJ(a),DJ(a))

since ~V ∗
a (DJ(a)) = ~V ∗(DJ)(a). Now, we need to verify that defining ν= (~V ,~ν) in fact yields a natural trans-

26



Adjunctions between Categories of Hybrid Objects

formation. That is, for α : a → b in J, we need to show that there is a commuting diagram:(
limDcat

J (DJ), limC
limDcat

J
(DJ)

J
(~V ∗(DJ))

)

(DJ(a),DJ(a))
(DJ(α),DJ(α)) -

(~Va ,~νa)

�
(DJ(b),DJ(b))

(~Vb ,~νb)

-

By the commutativity of (2.1), this follows from the fact that

~V ∗
a (DJ(α))•~νa = ~V ∗(DJ)(α)•~νa =~νb ,

which is implied by the naturality of ~ν and the definition of ~V ∗(DJ).

To conclude, we need only show the universality of ν = (~V ,~ν). Suppose that there is a hybrid

object (C ,C) together with a collection of morphisms (~Ca ,~ca) : (C ,C) → (DJ(a),DJ(a)) of hybrid objects

making the following following diagram

(C ,C)

(DJ(a),DJ(a))
(DJ(α),DJ(α))-

(~Ca ,~ca)

�
(DJ(b),DJ(b))

(~Cb ,~cb)

-

commute. This yields commuting diagrams and unique morphisms:

C

limDcat
J (DJ)

~U
?

DJ(a)
DJ(α) -

~Ca

�

~Va
�

DJ(b)

~Cb

-~Vb -

C

~U∗(limC
limDcat

J
(DJ)

J
(~V ∗(DJ)))

~u

?

~U∗(~V ∗
a (DJ(a)))

~U∗(~V ∗
a (DJ(α))) -

~ca

�

~U∗(~νa)

�
~U∗(~V ∗

b (DJ(b)))

~cb

-

~U∗(~νb)

-
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That is, we obtain a unique morphism of hybrid objects:

(~U , ~u) : (C ,C) → limHy(C)
J

(DJ,DJ)

that makes the following diagram

(C ,C)

limHy(C)
J

(DJ,DJ)

(~U , ~u)

?

(DJ(a),DJ(a))
(DJ(α),DJ(α)) -

(~Ca ,~ca)

�

(~Va ,~νa)

�
(DJ(b),DJ(b))

(~Cb ,~cb)

-

(~Vb ,~νb)

-

commute as desired.
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2.2 Adjunctions

Adjunctions between categories capture the notion of universality, and are one of the most fun-

damental constructions in category theory. All of the previous universal objects:

Products, Equalizers, Pullbacks, Limits,

can be formulated using the notion of an adjunction. In addition, adjunctions allow one to simplify many

proofs in category theory. This will be seen in the next section where proving that Dcat is cocomplete

through this use of adjunctions is a trivial matter.

Definition 2.4. Let C and D be two categories. A pair of adjoint functors L : C→D and R : D→C, denoted

by:

L : C
-� D : R

are functors such that there exists a natural bijection:

ϕX ,A : HomD(L(X ), A)
∼−→HomC(X ,R(A)).

for every object X ∈Ob(C) and A ∈Ob(D).

The functor L is termed the left adjoint to R and, equivalently, the functor R is termed the right

adjoint to L.

Notation 2.2. There are variations of notation related to adjoint functors. The most important differences

are related to the “directionality” of adjunctions; this is encoded in the fact that there are left adjoints

and right adjoints. For example, in [18], an adjunction is a tuple 〈L,R,ϕ〉 with the elements of this tuple

defined as in 2.4. The directionality of this adjunction, i.e., the fact that L is left adjoint to R (and so R is

right adjoint to L) is stressed by denoting an adjunction by:

〈L,R,ϕ〉 : C*D . (2.2)

This also serves the dual purpose of making explicit the source and target categories of the functors L and

R.

All this being said, we will denote an adjunction (or adjoint pair), as in Definition 2.4, simply by:

L : C
-� D : R (2.3)

From this notation, we infer that L is left adjoint to R (and so R is right adjoint to L). Moreover, implicit in

this notation is the existence of a natural bijection ϕ which, when necessary, may be explicitly stated. In

the case when it is too notation intensive to introduce the natural bijections associated to an adjunction,

we will write:

f ] =ϕX ,A( f ) : X → R(A), g [ =ϕ−1
X ,A(g ) : L(X ) → A,

for f : L(X ) → A and g : X → R(A).
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2.2.1 Natural bijections. It is important to understand what it means for

ϕX ,A : HomD(L(X ), A)
∼−→HomC(X ,R(A)) (2.4)

to be a natural bijection. First, the existence of such a function yields:

f : L(X ) → A ⇒ ϕX ,Y ( f ) : X → R(A),

g : X → R(A) ⇒ ϕ−1
X ,Y (g ) : L(X ) → A,

for X ∈Ob(C) and Y ∈Ob(D).

For A, A′ ∈Ob(D) and X ′,X ∈Ob(C), let

f : L(X ) → A, k : A → A′,

g : X → L(A) h : X ′ → X .

The first two conditions on the naturality of (2.4) are captured by the following requirement:

L(X ′)

L(X )

L(h)

? f - A

f ◦L(h)

-

A′

k

?
k ◦ f -

⇒

X ′

X

h

?ϕX ,A( f )- R(A)

ϕX ′,A( f ◦L(h))

-

R(A′)

R(k)

?ϕX ,A′ (k ◦ f ) -

where the implication is that the commutativity of the first diagram implies the commutativity of the

second diagram. In particular, this implies that:

ϕX ,A′ (k ◦ f ) = R(k)◦ϕX ,A( f ), (2.5)

ϕX ′,A( f ◦L(h)) = ϕX ,A( f )◦h. (2.6)

The second two conditions on the naturality of (2.4) are captured by the following requirement:

X ′

X

h

? g- R(A)

g ◦h

-

R(A′)

R(k)

?
R(k)◦ g -

⇒

L(X ′)

L(X )

L(h)

? ϕ−1
X ,A(g )

- A

ϕ−1
X ′,A(g ◦h)

-

A′

k

?ϕ−1
X ,A′ (R(k)◦ g ) -

In particular, this implies that:

ϕ−1
X ′,A(g ◦h) = ϕ−1

X ,A(g )◦L(h), (2.7)

ϕ−1
X ,A′ (R(k)◦ g ) = k ◦ϕ−1

X ,A(g ). (2.8)
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2.2.2 The limit as a right adjoint. The limit yields an adjunction:

∆J : C
-� CJ : limJ.

That is, C is complete if the constant functor ∆J has a right adjoint for every small category J. The natural

bijection

HomCJ (∆J(C ),D) ∼=HomC(C , limJ(D)) (2.9)

for C ∈Ob(C) and D ∈Ob(CJ) is defined for f : ∆J(C )
�→ D and g : C → limJ (D) by requiring that there are

commuting diagrams:

∆J(C )

∆J(limJ(D))

∆J( f ])

?
ν - D

f

-

∆J(C )

∆J(limJ(D))

∆J(g )

?
ν - D

g [

-

for ν the universal natural transformation associated with limJ(D).
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2.3 Colimits in Categories of Hybrid Objects

Since the limit is right adjoint to the constant functor:

∆J : C
-� CJ : limJ

the natural question to ask is: what is the left adjoint to the constant functor? The answer is that, if the left

adjoint exists, it is the dual of the limit: the colimit. Specifically a category is cocomplete if for every small

category J, the left adjoint to the constant functor exists, i.e., if there is an adjunction:

colimJ : CJ -� C : ∆J.

We have proven that if C is a complete category, the Hy(C) is complete. To goal is to prove that:

If C is cocomplete, then Hy(C) is cocomplete.

In order to prove this, we will introduce left Kan extensions.

2.3.1 Colimits. The dual to the limit is the colimit. Let C be a category, J a small category and D : J→
C a functor. The colimit of D, if it exists, is an object colimJ(D) of C together with a universal natural

transformation:

µ : D
�→∆J(colimJ(D)).

The universality of the colimit is captured by the condition that for any other object C of C with a natural

transformation c : D
�→ ∆J(C ) there exists a unique morphism h : colimJ(D) → C making the following

diagram:

D
µ- ∆J(colimJ(D))

∆J(C )

∆J(h)

?
c

-

commute.

More explicitly, the definition of the colimit implies that for every α : a → b in J, the following

diagram

D(a)
D(α) - D(b)

colimJ(D)

µb�µa
-

commutes. The universality of the colimit implies that the unique morphism h : colimJ(D) → C makes
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the following diagram commute

D(a)
D(α) - D(b)

colimJ(D)

µb

�

µa

-

C

h

?

cb

�

ca

-

Definition 2.5. A category C is cocomplete if for every small category J and every functor D : J → C, the

colimit of D exists.

There is the following useful lemma related to the cocompleteness of a category:

Lemma 2.3. If C is cocomplete, then it has an initial object.

Example 2.5. The category of sets, Set, is cocomplete.

2.3.2 Special cases of the colimit. There are many special cases of the colimit that are often of interest.

Here we enumerate the most important of these.

Coproducts. The colimit of a functor
D : I→C,

where I is the discrete category obtained from an indexing set I . These are dual to products.
Coequalizers. The colimit of a functor

D : (•→→•) →C .

These are dual to equalizers.
Pushouts. The colimit of a functor

D : (•←•→•) →C .

These are dual to pullbacks.

To understand the implications of these definitions, and because they will be important when discussing

model categories, we discuss coproducts and pushouts in more detail.

2.3.3 Coproducts. Let I be a set and {Ai }i∈I a set of objects of C. The coproduct of these objects is an

object
∐

i∈I Ai in C together with inclusions ıAi : Ai →∐
i∈I Ai . It again must satisfy the universal property

that for any other object D of C together with morphisms fi : Ai → D, there exists a unique morphism h

making the diagram:

Ai
ıAi-

∐
i∈I

Ai

D

h

?
fi -
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commute. The morphism h is typically denoted by 〈 fi 〉i∈I .

If {Ai }I and {Bi }I are two sets of objects in C and fi : Ai → Bi is a collection of morphisms. Then,

by the universality of the coproduct, there exists a unique morphism

∐
i∈I

fi := 〈ıBi ◦ fi 〉i∈I :
∐
i∈I

Ai →
∐
i∈I

Bi

making the following diagram

Ai
ıAi -

∐
i∈I

Ai

Bi

fi

? ıBi -
∐
i∈I

Bi

∐
i∈I fi := 〈ıBi ◦ fi 〉i∈I

?

commute.

Example 2.6. The coproduct of a collection of sets is the disjoint union of the sets.

2.3.4 Pushouts. Consider a category C and a diagram of the form:

A
f - B

C

g

?

The pushout of this diagram, if it exists, is an object of B qA C of C together with two morphisms p and q

such that the following pushout diagram

A
f - B

C

g

? q- B qA C

p

?

commutes. It is universal in the following sense: for any other object D of C with morphisms u and v

making the following diagram commute

A
f - B

C

g

? v - D

u

?
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there exists a unique morphism h : B qA C → D such that the following diagram commutes:

A
f - B

C

g

? q- B qA C

p

?

D

u

-
h

-v
-

Pushouts are very useful conceptual objects when considering D-categories, and more generally

hybrid objects, since for every a ∈E(D) for a D-category D, there is a corresponding diagram:

a
sa - b

c

ta

?

This indicates, rightly so, that colimits will be of more interest then limits when considering categories of

hybrid objects.

2.3.5 The colimit as a functor. If C is a cocomplete category, then the colimit defines a functor

colimJ : CJ →C .

We already have defined the object function—it is the colimit of a functor. To define the morphism func-

tion, consider a natural transformation τ : D
�→ D′. In this case, there are universal natural transformations

µ : D
�→ ∆J(colimJ(D))

µ′ : D′ �→ ∆J(colimJ(D′))

which yield a natural transformation:

µ′ •τ : D
�→∆J(colimJ(D′)).

This implies there is a unique morphism colimJ(D) → colimJ(D′) which is defined to be colimJ(τ). That

is, there is a commuting diagram:

D
µ- ∆J(colimJ(D))

D′

τ

?
µ′
- ∆J(colimJ(D′))

∆J(colimJ(τ))

?
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Coupling this with the definition of the limit as a functor yields the following commutative diagram:

∆J(limJ(D))
ν - D

µ- ∆J(colimJ(D))

∆J(limJ(D′))

∆J(limJ( f ))

?
ν′ - D′

f

?
µ′
- ∆J(colimJ(D′))

∆J(colimJ( f ))

?

2.3.6 The colimit as a left adjoint. The colimit yields an adjunction:

colimJ : CJ -� C : ∆J. (2.10)

That is, C is cocomplete if the constant functor ∆J has a left adjoint for every small category J. The natural

bijection

HomC(colimJ(D),C ) ∼=HomCJ (D,∆J(C )) (2.11)

for D ∈Ob(CJ) and C ∈Ob(C) is defined for f : colimJ(D) →C and g : D
�→∆J(C ) by requiring that it make

the following diagrams commute

D
µ- ∆J(colimJ(D))

∆J(C )

∆J( f )

?
f ]

-

D
µ- ∆J(colimJ(D))

∆J(C )

∆J(g [)

?
g

-

2.3.7 Preservation of colimits. The fact that the colimit is left adjoint to the constant functor allows us

to understand the relationship between colimits in different categories based upon adjunctions between

these categories. First, recall that a functor L : C → D induces a functor L∗ : CJ → DJ between functor

categories.

Theorem 2.3. Let C be a cocomplete category. If the functor L : C→D has a right adjoint, then colimJ(L∗(D))

exists and

L(colimJ(D)) = colimJ(L∗(D))

for all D : J→C,

Proof. Dual of the statement given in Theorem 1, page 119, [18].

Corollary 2.2. Let C be a cocomplete category. If D is isomorphic to C, then D is cocomplete.

2.3.8 Completeness of Dcat. There is an isomorphism of categories:

Grph∼= Set•
→→•,

which sends a graph Γ= (Q,E) to a functor D : (•→→•) → Set given by:

D(•→→•) =
(

E
sor -

tar
- Q

)
.

Utilizing the fact that:
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Proposition 2.5. If C is cocomplete, then CJ is cocomplete for every small category J.

This implies that Grph is cocomplete. Moreover, it was demonstrated that Dcat∼=Grph. There-

fore, we have the following:

Theorem 2.4. The categories of D-categories, Dcat, is cocomplete. Specifically, for a diagram D : J→Dcat,

J small, the colimit is given by:

colimJ(D) = dcat(colimJ(grph∗(D)))

where colimJ(grph∗(D)) is the colimit in the category of graphs.

Note that the same argument can be utilized to show that Dcat is complete. This provides a

simpler proof than the “by hand” proof performed in the beginning of this chapter.

We now introduce left Kan extensions; these will be instrumental in proving the cocompletness

of Hy(C) given the cocompletness of C.

2.3.9 Left Kan extensions. Given a morphism of D-categories ~F : A → B, the Left Kan extension of ~F ,

denoted by:

~F k : MA →MB ,

is left adjoint to the pullback functor F∗. Specifically, for a functor A : A → M, there is an associated

functor

~F k (A) : B →M

together with a natural transformation

~u : A
�→ ~F∗(~F k (A))

that is universal, i.e., for any other functor B : B →M and natural transformation ~v : A
�→ ~F∗(B), there exist

a unique ~h : ~F k (A)
�→ B such that the following diagram:

A
~u- ~F∗(~F k (A))

~F∗(B)

~F∗(~h)

?
~v -

commutes. To see that ~F k defines a functor, let ~f : A
�→ A′. Then ~F k (~f ) : ~F k (A)

�→ ~F k (A′) is the unique

morphism making the following diagram commute:

A
~u- ~F∗(~F k (A))

A′

~f

?
~u′
- ~F∗(~F k (A′))

~F∗(~F k (~f ))
?
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whose existence is asserted by the morphism ~u′ • ~f .

The definition of left Kan extensions implies that there is an adjunction

~F k : MA �
- MB : ~F∗ (2.12)

if C is cocomplete. The bijection of Hom sets:

HomCB (~F k (A),B) ∼=HomCA (A, ~F∗(B)) (2.13)

is given for:

~f : ~F k (A)
�→ B, ~g : A

�→ ~F∗(B)

by defining ~f ] and ~g [ as outlined in the following diagrams:

A
~u- ~F∗(~F k (A))

~F∗(B)

~F∗(~f )

?
~f ]

-

A
~u- ~F∗(~F k (A))

~F∗(B)

~F∗(~g [)

?
~g -

It is easy to verify that (~G ◦ ~F )k = ~Gk ◦ ~F k .

Notation 2.3. At this point, we again use the notation

colimC
J

: CJ →C, ∆C
J

: C→CJ

for the colimit and constant functors.

2.3.10 Diagrams in categories of hybrid objects (revisited). As in Paragraph 2.1.10, we again denote a

diagram in Hy(C) by (DJ,DJ) : J→Hy(C). Again, we can without ambiguity write DJ : J→Dcat. Since the

category of D-categories is cocomplete, there exists a D-category colimDcat
J (DJ) together with a natural

transformation:

~U : DJ �→∆Dcat
J (colimDcat

J (DJ)).

Note that for every diagram of the form α : a → b in J there is a corresponding diagram:

DJ(a)
DJ(α) - DJ(b)

colimDcat
J (DJ)

~Ub
�

~Ua -
(2.14)

in Dcat.

For the diagram (DJ,DJ) : J→Hy(C) in Hy(C), the colimit of DJ : J→Dcat yields a functor:

~U k (DJ) : J→CcolimDcat
J (DJ)
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defined for every diagram of the form α : a → b in J by:

~U k (DJ)(a) := ~U k
a (DJ(a)), ~U k (DJ)(α) := ~U k

b (DJ(α)[),

where

DJ(α)[ : DJ(α)k (DJ(a))
�→ DJ(b)

is obtained from DJ(α) : DJ(a)
�→DJ(α)∗(DJ(b)) via the natural bijection (2.13). Note that ~U k (DJ) is well-

defined because of the commutativity of (2.14).

Using this notation, we can now prove that categories of hybrid objects are cocomplete and give

an explicit formula for the colimit of a diagram.

Theorem 2.5. If C is cocomplete, then Hy(C) is cocomplete. Specifically, for (DJ,DJ) : J→Hy(C), the colimit

is given by:

colimHy(C)
J

(DJ,DJ) =
(
colimDcat

J (DJ),colimC
colimDcat

J
(DJ)

J
(~U k (DJ))

)
.

Proof. The first step is to find the universal natural transformation in Hy(C)J

µ : (DJ,DJ)
�→∆

Hy(C)
J

(
colimHy(C)

J
(DJ,DJ)

)
.

There are universal natural transformations

~U : DJ �→ ∆Dcat
J

(
colimDcat

J (DJ)
)

~µ : ~U k (DJ)
�→ ∆C

colimDcat
J

(DJ)

J

(
colimC

colimDcat
J

(DJ)

J
(~U k (DJ))

)
in DcatJ and (CcolimDcat

J (DJ))J. Since for a ∈Ob(J),

~µa : ~U k (DJ)(a) = ~U k
a (DJ(a))

�→ colimC
colimDcat

J
(DJ)

J
(~U k (DJ))

in CcolimDcat
J (DJ), the natural bijection (2.13) yields a morphism:

~µ
]~Ua
a : DJ(a)

�→ ~U∗
a

(
colimC

colimDcat
J

(DJ)

J
(~U k (DJ))

)
in CDJ(a); here, the notion “]~Ua

” is used to indicate that this morphism is obtained via the natural bijection

for the adjunction ~U k
a : CDJ(a) -� CcolimDcat

J (DJ) : ~U∗
a . Define the natural transformation µ objectwise,

i.e., for all a ∈Ob(J), by:

µa = (~Ua ,~µ
]~Ua
a ) : (DJ(a),DJ(a)) → colimHy(C)

J
(DJ,DJ) =

(
colimDcat

J (DJ),colimC
colimDcat

J
(DJ)

J
(~U k (DJ))

)
Now, we need to verify that µ is in fact a natural transformation. That is, for α : a → b in J, we

need to show that there is a commuting diagram:

(DJ(a),DJ(a))
(DJ(α),DJ(α)) - (DJ(b),DJ(b))

(
colimDcat

J (DJ),colimC
colimDcat

J
(DJ)

J
(~U k (DJ))

)(~Ub ,~µ
]~Ub
b )

�
(~Ua ,~µ

]~Ua
a ) -
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This is equivalent to showing that there is a commuting diagram:

DJ(a)
DJ(α) - DJ(α)∗(DJ(b))

~U∗
a

(
colimC

colimDcat
J

(DJ)

J
(~U k (DJ))

)DJ(α)∗(~µ
]~Ub
b )

�
~µ
]~Ua
a -

DJ(α)∗ ◦ ~U∗
b

(
colimC

colimDcat
J

(DJ)

J
(~U k (DJ))

)

wwwwwwwwww

(2.15)

by the commutativity of (2.14). To show this, we begin with the commutative diagram

~U k
a (DJ(a)) = ~U k

b ◦DJ(α)k (DJ(a))
~U k

b (DJ(α)[DJ(α) )
- ~U k

b (DJ(b))

colimC
colimDcat

J
(DJ)

J
(~U k (DJ))

~µb

�
~µa -

whose existence is implied by the fact that ~µ is a natural transformation coupled with the definition of

~U k (DJ). The adjunction ~U k
b : CDJ(b) -� CcolimDcat

J (DJ) : ~U∗
b implies that their is a corresponding com-

muting diagram:

DJ(α)k (DJ(a))
DJ(α)[DJ(α) - DJ(b)

~U∗
b

(
colimC

colimDcat
J

(DJ)

J
(~U k (DJ))

)~µ
]~Ub
b

�
~µ
]~Ub
a -

The adjunction DJ(α)k : CDJ(a) -
� CDJ(a) : DJ(α)∗ implies that there is a commuting diagram:

DJ(a)
DJ(α) - DJ(α)∗(DJ(b))

DJ(α)∗ ◦ ~U∗
b

(
colimC

colimDcat
J

(DJ)

J
(~U k (DJ))

)DJ(α)∗(~µ
]~Ub
b )

�
(~µ

]~Ub
a )]DJ(α) -

Finally, it follows that (~µ
]~Ub
a )]DJ(α) = ~µ

]~Ua
a by the fact that ~Ub ◦DJ(α) = ~Ua .
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To conclude, we need only show the universality of µ. Suppose that there is a hybrid object

(C ,C) together with a collection of morphisms (~Ca ,~ca) : (DJ(a),DJ(a)) → (C ,C) of hybrid objects making

the following following diagram

(DJ(a),DJ(a))
(DJ(α),DJ(α))- (DJ(b),DJ(b))

(C ,C)

(~Cb ,~cb)
�

(~Ca ,~ca) -
(2.16)

commute for every α : a → b in J. This yields commuting diagrams and unique morphisms:

DJ(a)
DJ(α) - DJ(b)

colimDcat
J (DJ)

~Ub

�

~Ua

-

C

~H

?

~Cb
�

~Ca

-

(2.17)

By the universality of the colimit in Dcat. Using the commutativity of this diagram, from the natural

transformations:

~ca : DJ(a)
�→ ~C∗

a (C) = ~U∗
a ◦ ~H∗(C)

~cb : DJ(b)
�→ ~C∗

b (C) = ~U∗
b ◦ ~H∗(C)

we obtain natural transformations:

~c
[~Ua
a : ~U k

a (DJ(a))
�→ ~H∗(C)

~c
[~Ub
b : ~U k

b (DJ(b))
�→ ~H∗(C)

By the commutativity of (2.16), this implies that there is a commuting diagram:

~U k
a (DJ(a))

~U k
b (DJ(α)[DJ(α) )

- ~U k
b (DJ(b))

colimC
colimDcat

J
(DJ)

J
(~U k (DJ))

~µb

�

~µa

-

~H∗(C)

~h

?

~c
[~Ub
b

�

~c
[~Ua
a

-

(2.18)
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where the natural transformation ~h exists and is unique by the universality of the colimit in CcolimDcat
J (DJ).

Therefore, we have produced a unique morphism of hybrid objects:

( ~H ,~h) : colimHy(C)
J

(DJ,DJ) → (C ,C)

Now, we need only verify that for this morphism, the following diagram:

(DJ(a),DJ(a))
(DJ(α),DJ(α)) - (DJ(b),DJ(a))

colimHy(C)
J

(DJ,DJ)

(~Ub ,~µ
]~Ub
b )

�

(~Ua ,~µ
]~Ua
a )

-

(C ,C)

( ~H ,~h)

?

(~Cb ,~cb)
�

(~Ca ,~ca)

-

commutes. To do this, we need only show that the diagram:

DJ(a)
DJ(α) - DJ(α)∗(DJ(b))

~U∗
a

(
colimC

colimDcat
J

(DJ)

J
(~U k (DJ))

)

DJ(α)∗(~µ
]~Ub
b )

�

~µ
]~Ua
a

-

~C∗
a (C)

~U∗
a (~h)

?

DJ(α)∗(~cb)

�

~ca

-

commutes. We have already demonstrated that the inner triangle of this diagram commutes and the outer

triangle commutes by definition. Therefore, we need only show that:

~ca = ~U∗
a (~h)• ~µ]~Ua

a , DJ(α)∗(~cb) = ~U∗
a (~h)•DJ(α)∗(~µ

]~Ub
b ). (2.19)

42



Adjunctions between Categories of Hybrid Objects

The equality on the left follows from the naturality of the adjunction ~U k
a : CDJ(a) -� CcolimDcat

J (DJ) : ~U∗
a

coupled with the commutativity of (2.18). To verify that the equality on the right holds, consider the

following diagram:

DJ(b)
~µ
]~Ub
b- ~U∗

b

(
colimC

colimDcat
J

(DJ)

J
(~U k (DJ))

)

~C∗
b (C)

~U∗
b (~h)

?
~cb -

which commutes because of the naturality of ~U k
b : CDJ(b) -� CcolimDcat

J (DJ) : ~U∗
b coupled with the com-

mutativity of (2.18). Moreover, applying DJ(α)∗ to this diagram again yields a commuting diagram which

is just equality on the right of (2.19) by the commutativity of (2.17).

2.3.11 Change of D-category. Let B : B →C and

µ : B
�→∆B(colimB(B))

be the colimit of this diagram. For a morphism of D-categories ~F : A → B, we obtain a natural transfor-

mation:

~F∗(µ) : ~F∗(B)
�→ ~F∗(∆B(colimB(B))) =∆A (colimB(B))

in CA . This implies that there is a unique morphism

colim~F := ~F∗(µ)[ : colimA (~F∗(B)) → colimB(B)

which makes the following diagram

F∗(B)
µ′
- ∆A (colimA (~F∗(B)))

∆A (colimB(B))

colim~F

?
~F∗(µ) -

commute.

2.3.12 Hybrid colimits. Using the colimit, we can construct a functor from Hy(C) to C. Define the

functor, also denoted by colim but without the subscript,

colim : Hy(C) →C .

on objects (A ,A) of Hy(C) by

colim(A ,A) = colimA (A).

On morphisms (~F , ~f ) : (A ,A) → (B,B), where again ~f : A
�→ ~F∗(B), we obtain a morphism

colim(~F , ~f ) : colimA (A) → colimB(B),
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by defining it to be the unique morphism making the following diagram

colimA (A)
colimA (~f )- colimA (~F∗(B))

colimB(B)

colim~F

?
colim(~F , ~f ) -

commute.

There is a canonical projection functor:

Π : Hy(C) →Dcat

given on objects by Π(A ,A) = A and on morphisms by Π(~F , ~f ) = ~F . Coupling this functor with the colim

functor yields a functor, termed the hybrid colimit, and given by:

hycolim := (Π,colim) : Hy(C) →Dcat×C .

In fact, like the colimit functor, this functor is left adjoint to the hybrid constant functor, given by:

∆hy := ( − ,∆ − ( · )) : Dcat×C→Hy(C).

That is, for A ∈Ob(Dcat) and A ∈Ob(C), the corresponding object in Hy(C) is given by (A ,∆A (A)).

These functors yield the analogy of the colimit adjunction for categories of hybrid objects.

Theorem 2.6. If C is cocomplete, then the pair of functors:

hycolim = (Π,colim) : Hy(C) -� Dcat×C : ( − ,∆ − ( · )) =∆hy

form an adjoint pair.

2.3.13 The natural bijection. In order to construct the natural bijection for this adjunction, we use the

natural bijection (2.11) for the adjunction (2.10).

Denote the natural bijection for the adjunction given in Theorem 2.6 by:

HomDcat×C((Π,colim)(X ,X), (A , A)) ∼=HomHy(C)((X ,X), (A ,∆A (A))) (2.20)

and define it for

(~F , f ) : (Π,colim)(X ,X) → (A , A),

(~G , ~g ) : (X ,X) → (A ,∆A (A)),

where, again,

~F : X →A , f : colim(X ,X) = colimX (X) → A,

~G : X →A , ~g : X
�→ ~G∗(∆X (A)) =∆A (A),
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by

(~F , f )] := (~F , f ]), (~G , ~g )[ := (~G , ~g [)

where the “]” and “[” operations on the right are with respect to the natural bijection given in (2.11) which

is well-defined since:

f ] : X
�→∆X (A) = ~F∗(∆A (A)).

The construction of the bijection (2.20) makes the proof of Theorem 2.6 a simple matter.

45



Adjunctions between Categories of Hybrid Objects

2.4 Adjunctions between Categories of Hybrid Objects

The goal of this section is to prove the existence of adjunctions between categories of hybrid

objects given an adjunction on the target categories. That is, for an adjunction L : C
-� D : R there is

an adjunction

Hy(L) : Hy(C) -� Hy(D) : Hy(R).

Before proving the existence of adjunctions between categories of hybrid objects, recall that

there is the following easy result ([18]).

Lemma 2.4. If L : C
-� D : R is an adjunction, then for a D-category D,

L∗ : CD -� DD : R∗

is an adjunction.

2.4.1 The natural bijection. Consider the natural bijection

ϕX ,A : HomD(L(X ), A)
∼−→HomC(X ,R(A)) (2.21)

given by the adjunction L : C
-� D : R. From this we obtain a natural bijection:

~ϕX,A : HomD(L∗(X),A)
∼−→HomC(X,R∗(A)), (2.22)

where X : D →C and A : D →D. For a natural transformation: ~f : L∗(X)
�→ A, the natural transformation:

~ϕX,A(~f ) : X
�→ R∗(A)

is given objectwise by:

~ϕX,A(~f )a :=ϕXa ,Aa (~fa) : Xa → R(Aa) = R∗(A)a .

It is easy to see that ~ϕ is a bijection since, for ~g : X → R∗(A), it has inverse

~ϕ−1
X,A(~g ) : L∗(X) → A

defined objectwise by ~ϕ−1
X,A(~g )a =ϕ−1

Xa ,Aa
(~ga). Similarly, the naturality of ~ϕ follows from the naturality of ϕ.

We are now in a position to prove:

Theorem 2.7. If L : C
-

� D : R is an adjunction, then

Hy(L) : Hy(C) -� Hy(D) : Hy(R)

is an adjunction.
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2.4.2 The natural bijection. In order to prove this theorem we produce, explicitly, the natural bijection

associated to the adjunction between categories of hybrid objects based on the natural bijection for the

corresponding “non-hybrid” adjunction. We begin with the natural bijection (2.22), from which we obtain

a natural bijection

HomHy(D)(Hy(L)(X ,X), (A ,A))

HomHy(C)((X ,X),Hy(R)(A ,A))

Φ(X ,X),(A ,A) ∼
?

(2.23)

for (X ,X) ∈Ob(Hy(C)) and (A ,A) ∈Ob(Hy(D)). The function Φ is defined using the function ~ϕ. Explicitly,

consider a hybrid morphism:

(~F , ~f ) : Hy(L)(X ,X) = (X ,L∗(X)) → (A ,A)

that is:

~F : X →A , ~f : L∗(X)
�→ ~F∗(A).

Using the bijection ~ϕ we obtain a natural transformation:

~ϕX,~F∗(A)(
~f ) : X

�→ R∗(~F∗(A)) = ~F∗(R∗(A)).

It follows that:

Φ(X ,X),(A ,A)(~F , ~f ) := (~F , ~ϕX,~F∗(A)(
~f ))

is the desired morphism, i.e.,

Φ(X ,X),(A ,A)(~F , ~f ) : (X ,X) →Hy(R)(A ,A) = (A ,R∗(A)).

In a similar manner, for

(~G , ~g ) : (X ,X) →Hy(R)(A ,A)

define

Φ−1
(X ,X),(A ,A)(~G , ~g ) := (~G , ~ϕ−1

X,~G∗(A)
(~g )).

It can be readily verified that Φ and Φ−1 are inverses of one another.

Proof. Let, for (X ,X), (X ′,X′) ∈Ob(Hy(C)) and (A ,A), (A ′,A′) ∈Ob(Hy(D)),

(~F , ~f ) : Hy(L)(X ,X) → (A ,A), (~K ,~k) : (A ,A) → (A ′,A′), ∈Hy(D)

(~G , ~g ) : (X ,X) →Hy(R)(A ,A) ( ~H ,~h) : (X ′,X′) → (X ,X). ∈Hy(C)

We will verify the first two conditions on the naturality of Φ, i.e., (2.5) and (2.5). One verifies the last two

conditions, (2.7) and (2.8), in an analogous way.
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Condition 1 (2.5): For the diagram

L∗(X)
~f - ~F∗(A)

(~K ◦ ~F )∗(A′)

~F∗(~k)

?
~F∗(~k)• ~f -

in DX , the naturality of ~ϕ implies that the following diagram

X
~ϕX,~F∗(A)(

~f )
- R∗(~F∗(A))

R∗((~K ◦ ~F )∗(A′))

R∗(~F∗(~k))

?~ϕX,(~K◦~F )∗(A′)(
~F∗(~k)• ~f ) -

in CX commutes. Using this, by direct calculation we have:

Φ(X ,X),(A ′,A′)((~K ,~k)◦◦◦ (~F , ~f )) = Φ(X ,X),(A ′,A′)(~K ◦ ~F , ~F∗(~k)• ~f )

= (~K ◦ ~F , ~ϕX,(~K◦~F )∗(A′)(
~F∗(~k)• ~f ))

= (~K ◦ ~F ,R∗(~F∗(~k))• ~ϕX,~F∗(A)(
~f ))

= (~K ◦ ~F , ~F∗(R∗(~k))• ~ϕX,~F∗(A)(
~f ))

= (~K ,R∗(~k))◦◦◦ (~F , ~ϕX,~F∗(A)(
~f ))

= Hy(R)(~K ,~k)◦◦◦Φ(X ,X),(A ,A)(~F , ~f ).

Condition 2 (2.6): For the diagram

L∗(X′)

L∗( ~H∗(X))

L∗(~h)

? ~H∗(~f )- (~F ◦ ~H)∗(A)

~H∗(~f )•L∗(~h)

-

in DX ′
, by the naturality of ~ϕ, we have the following commuting diagram

X′

~H∗(X)

~h

?

~ϕ ~H∗(X),(~F◦ ~H)∗(A)(
~H∗(~f ))

- R∗((~F ◦ ~H)∗(A))

~ϕX′,(~F◦ ~H)∗(A)(
~H∗(~f )•L∗(~h))

-

in CX ′
. It addition:

~ϕ ~H∗(X),(~F◦ ~H)∗(A)(
~H∗(~f )) = ~H∗(~ϕX,~F∗(A)(

~f )).
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Therefore, a direct calculation thus yields:

Φ(X ′,X′),(A ,A′)((~F , ~f )◦◦◦Hy(L)( ~H ,~h)) = Φ(X ′,X′),(A ,A′)(~F ◦ ~H , ~H∗(~f )•L∗(~h))

= (~F ◦ ~H , ~ϕX′,(~F◦ ~H)∗(A)(
~H∗(~f )•L∗(~h)))

= (~F ◦ ~H , ~ϕ ~H∗(X),(~F◦ ~H)∗(A)(
~H∗(~f ))•~h)

= (~F ◦ ~H , ~H∗(~ϕX,~F∗(A)(
~f ))•~h)

= (~F , ~ϕX,~F∗(A)(
~f ))◦◦◦ ( ~H ,~h)

= Φ(X ,X),(A ,A)(~F , ~f )◦◦◦ ( ~H ,~h).
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2.5 Categories of Hybrid Objects as Fibered Categories

It is important to understand how categories of hybrid objects fit within the broad context of

category theory. In this section, we demonstrate that categories of hybrid objects are fibered categories.

We refer the reader to [4] for more on categories of this form. An additional motivation for understanding

how categories of hybrid objects fit within the framework of fibered categories is that the are preexisting

results on the model structure of these categories [1].

2.5.1 Fiber bundles. Fibered categories generalize the notion of fiber bundles in topology. That is, one

begins with a topological space, B, termed the base space, a topological space E termed the total space,

and a continuous surjection:

p : E → B

termed the projection map. In addition, for each point x ∈ B, there is a set Yx , termed the fiber over x, and

given by:

Yx = p−1(x).

In addition, there are some additional “consistency conditions” that this data is required to satisfy for it to

be considered a fiber bundle.

2.5.2 Fibrations. The notion of a fibration in the framework of category theory follows along much the

same lines—except, topological spaces are replaced by categories and maps are replaced by functors.

Specifically, one begins with a category, B, termed the base category, a category E, termed the

total category and a functor:

P : E→B

termed the projection functor. In addition, there is the notion of a fiber over I for I ∈ Ob(B); this is a

category

EI = P−1(I).

By this, formally, we mean that EI is a subcategory of E satisfying, for X ,Y ∈Ob(E),

X ∈Ob(EI ) if P(X ) = I

f : X → Y ∈EI if P( f ) = idI

In addition, some consistency conditions are required; these are manifested through the notion of a carte-

sian morphism.

Definition 2.6. Let P : E → B be a functor and α : J → I a morphism in B. A morphism f : Y → X in E is

cartesian over α if:

(i) P( f ) =α,
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(ii) For every morphism g : Z → X such that there exists aβ : P(Z ) → P(X ) making the following diagram

commute:

P(Z )

P(Y )

β

?
α- P(X )

P(g )

-

there exists a unique h making the following diagram

Z

Y

∃! h

? f - X

g

-

commute.

Definition 2.7. A functor P : E→B is a fibration if for every morphismα : J → I and every X ∈Ob(EI ) there

exists a morphism f : Y → X that is cartesian over α. In this case, E is fibered over B.

2.5.3 Categories of hybrid objects as fibered categories. It will be seen that Hy(C) has the structure of

a fibered category with the fibration given by the projection functor (see Paragraph 2.3.12)

Π : Hy(C) →Dcat .

For a D-category X , the fiber of Hy(C) at X is characterized by:

Hy(C)X ∼=CX

since the objects in Hy(C)X are of the form (X ,X) and the morphisms in this fiber are of the form (~IdX , ~f ) :

(X ,X) → (X ,X′), so ~f : X
�→ X′ and the isomorphism with CX is given by projecting onto the second

component:

(X ,X) 7→ X, (~IdX , ~f ) 7→ ~f .

We now describe cartesian morphisms in Hy(C).

2.5.4 Cartesian morphisms. We demonstrate that there are cartesian morphisms. Let ~F : Y → X . An

object in the fiber Hy(C)X is of the form (X ,X), from which we obtain the object

(X ,X)~F := (Y , ~F∗(X))

in Hy(C)Y . This yields a canonical morphism:

~F(X ,X) := (~F , ~F∗(~idX)) : (X ,X)~F → (X ,X) (2.24)
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which is a cartesian morphism over ~F . It clearly satisfies (i) in Definition 2.6. To verify (ii), consider an

object (Z ,Z) and a morphism (~G , ~g ) : (Z ,Z) → (X ,X) such that there exists a commuting diagram

Z

Y

~H

? ~F - X

~G

-

in Dcat. This yields a morphism

( ~H , ~g ) : (Z ,Z) → (X ,X)~F ,

which is unique by construction and makes the following diagram:

(Z ,Z)

(X ,X)~F

( ~H , ~g )

? ~F(X ,X) - (Y ,Y)

(~G , ~g )

-

commute. That is, we have demonstrated:

Proposition 2.6. Π : Hy(C) →Dcat is a fibration, i.e., Hy(C) is fibered over Dcat.

The reason for establishing the relationship between categories of hybrid objects and fibered

categories is that we can leverage results relating to fibered categories. For example, we know that for a

small category J, the functor:

Π∗ : Hy(C)J →DcatJ

is a fibration.

2.5.5 Cartesian functors. At this point, the natural question to ask is: what are “morphisms” of carte-

sian categories? This question is addressed through the following definition.

Definition 2.8. Let P : E→B and Q : F→B be two fibrations. A functor H : E→ F is cartesian if

(i) The following diagram commutes:

E
H - F

B

Q
�

P -

(ii) If f is a cartesian morphism for P : E→B, then H( f ) is a cartesian morphism for Q : F→B.

2.5.6 Functors between categories of hybrid objects as cartesian functors. An important observation

regarding categories of hybrid objects is that functors between categories of hybrid objects are always

cartesian.
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Proposition 2.7. Let H : C→D be a functor. The corresponding functor:

Hy(H) : Hy(C) →Hy(D)

is cartesian.

Proof. To verify (i), we note that the diagram1

Hy(C)
Hy(H)- Hy(D)

Dcat

Π
�

Π -

trivially commutes. Now, we know from the construction given in Paragraph 2.5.3 that, for Hy(C), carte-

sian morphisms over ~F : Y →X have the form:

~F(X ,X) : (X ,X)~F → (X ,X).

Applying Hy(H) to (X ,X)~F and ~F(X ,X) yields:

Hy(H)((X ,X)~F ) = (Y ,H∗(~F∗(X)))

= (Y , ~F∗(H∗(X)))

= (X ,H∗(X))~F

Hy(H)(~F(X ,X)) = Hy(H)(~F , ~F∗(~idX))

= (~F ,H∗(~F∗(~idX)))

= (~F , ~F∗(H∗(~idX)))

= (~F , ~F∗(~idH∗(X)))

= ~F(X ,H∗(X)).

That is
Hy(H)(~F(X ,X)) : Hy(H)((X ,X)~F ) →Hy(H)(X ,X)

=

~F(X ,H∗(X)) : (X ,H∗(X))~F → (X ,H∗(X)),

which is cartesian since it takes the canonical form of a cartesian morphism.

We can also give the following characterization of cartesian functors between categories of hy-

brid objects.

Lemma 2.5. If F : Hy(C) →Hy(D) is a cartesian functor, then it restricts to a functor

FD : CD →DD

for every D-category D.

1Note that we use the symbol “Π” to denote the projection functor for both Hy(C) and Hy(D) since is is the “canonical” projection
onto the first factor in both cases.

53



Adjunctions between Categories of Hybrid Objects

2.5.7 Cartesian adjunctions. We can use the alternative perspective afforded by viewing categories

of hybrid objects as fibered categories to better understand adjunctions between categories of hybrid

objects.

Theorem 2.8. Let L : Hy(C) →Hy(D) and R : Hy(D) →Hy(C) be a pair of cartesian functors. If the restriction

of these functors:

LD : CD -� DD : RD

is an adjunction for every D-category D, then

L : Hy(C) -
� Hy(D) : R

is an adjunction.

Proof. Analogous to the proof of Theorem 2.7, except now one constructs the natural bijection for the

adjunction L : Hy(C) -� Hy(D) : R by using the natural bijection for the fiberwise adjunctions.
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Hybrid Model Structures

Model categories provide a method for doing “homotopy theory” on general categories. They

were first introduced by Quillen [21] in order to axiomatize homotopy theory, i.e., a model category is a

category with three types of distinguished morphisms—weak equivalences, fibrations and cofibrations–

that satisfy certain axioms. Since his seminal paper in 1967, model category theory has blossomed into

a full-fledged area of research capable of addressing homotopy-theoretic questions in a general context.

Some of the quintessential model categories are the category of topological spaces, the category of sim-

plicial sets and the category of chain complexes—the model structure of these categories plays a funda-

mental role in algebraic topology and homology.

We are interested in exploring the theory of model categories in the light of hybrid objects. This

amounts to, for a D-category D, finding a homotopy meaningful model structure on MD given a model

structure on M. The homotopy theories for MD and M can then be related via homotopy colimits, i.e.,

one can relate “hybrid homotopy theory” to “non-hybrid homotopy theory” through the use of homotopy

colimits. Therefore, the problem that must be addressed in order to understand hybrid model structures

was first raised, in a more general form, by Grothendieck:

If M is a model category and J a small category, find a homotopy meaningful model structure(s)
on MJ.

The word “homotopy meaningful” in this statement needs some explanation, as it forms a central con-

cept. In particular, there are two distinct homotopy meaningful model structures in which we are partic-

ularly interested, termed cofibrantly homotopy meaningful and fibrantly homotopy meaningful; these are

related to the construction of homotopy colimits and homotopy limits, respectively.

In the first case, the goal is a model category structure that yields homotopy colimits—the total

left derived functor of colim. That is, we want a model category structure on MJ in which:

For every weak equivalence f : X
�→ Y between cofibrant objects X and Y in MJ, colimJ( f ) is a

weak equivalence.
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The model structure on MJ is thus said to be cofibrantly homotopy meaningful. For such a model struc-

ture, the colimit induces a functor

hocolimJ : Ho(MJ) →Ho(M)

between homotopy categories, termed the homotopy colimit, which is given by

hocolimJ(X ) ∼= colimJ(X ′)

with X ′ any cofibrant object weakly equivalent to X .

In the second case, the goal is a model category structure that yields homotopy limits—the total

right derived functor of lim. That is, we want a model category structure on MJ in which:

For every weak equivalence f : X
�→ Y between fibrant objects X and Y in MJ, limJ( f ) is a weak

equivalence.

The model structure on MJ is thus said to be fibrantly homotopy meaningful. For such a model structure,

the limit induces a functor:

holimJ : Ho(MJ) →Ho(M)

termed the homotopy limit and given by

holimJ(X ) ∼= limJ(X ′)

with X ′ any fibrant object weakly equivalent to X .

The problem posed by Grothendieck has received a lot of attention. In its full generality, and

according to Dwyer [10]:

If J is an arbitrary small category, “it seems unlikely that MJ has a natural model category
structure for a general model category M.”

This has spawned a variety of approaches to understanding the model structure of MJ—the three most

prominent being:

¦ Considering small categories J with special shapes. This is the approach taken in the expository pa-

per by Dwyer [10] where he puts a model category structure on very small categories J; this structure

has appeared in papers relating to dérivateurs(cf. [12] and [13]). A similar approach is taken in [8],

[16] and [17], where Reedy categories are considered. Similarly, the work by [7] considers small cat-

egories J obtained from simplicial sets; the authors are then able to define homotopy colimits and

homotopy Kan extensions through the use of model approximations.

¦ Considering model categories M with special structures. This is, for example, the approach taken by

[14] where the author considers cosimplicial model categories.

¦ Considering modified notions of model categories. This approach modifies the notion of a model

category so that it is possible to extend this structure to functor categories. In [8] the notion of a

homotopical category is defined, and it is shown how to construct homotopy colimits. Similarly, in

[27], Thomason model categories are introduced with the goal of defining homotopy colimits.
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Fortunately, in the case when J is a D-category, the partial answers to Grothendieck’s question

are sufficient for our purposes. Given a model category M, there is a cofibrantly homotopy meaningful

model structure on MD . Therefore, the homotopy colimit:

hocolimD : Ho(MD) →Ho(M)

exists, and thus relates “hybrid homotopy theory” to “non-hybrid homotopy theory.” The connection

between hybrid objects and hybrid systems allows for the formulation of a homotopy theory of hybrid

systems (with the same discrete structure). This is the main contribution of this thesis, applications of

which are discussed in the context of topology and homology.
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3.1 Model Categories

This section introduces the basics of model categories, including the axioms defining a model

category together with the homotopy category associated to a model category. Examples will follow in the

next section.

3.1.a Basics

We begin by reviewing the definition of a model category; the one introduced here follows from

[10]. Note that this definition of a model category corresponds to the notion of a closed model category as

introduced by Quillen [21], except that we strengthen MC1 by assuming that M is complete and cocom-

plete, i.e., small limits and colimits exist in M.

3.1.1 Model categories. A model category M is a category with three special classes of morphisms:

¦ weak equivalences (denoted by
∼- ),

¦ fibrations (denoted by -- ),

¦ cofibrations (denoted by- - ),

which are closed under composition and contain all identity morphisms. In addition, the following five

axioms must be satisfied:

MC1: M is complete and cocomplete.

MC2: For two morphisms f and g in M such that g ◦ f is defined, if any two of the three
morphisms f , g , g ◦ f are weak equivalences then so is the third.

MC3: For every commuting diagram of the form:

X
id - X

Y

r
-

i

-

X ′

f

?
id - X ′

f

?

Y ′

g

?

r ′
-

i ′

-

in which g is a weak equivalence, fibration or cofibration, f is a weak equivlance, fibration
or cofibration, respectivly.
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MC4: For every commutative diagram of the form:

A
f - X

B

i

? g - Y

p

?

(3.1)

if either of the following conditions hold:

(1) i is a cofibration and p is an acyclic fibration,

(2) i is an acyclic cofibration and p is a fibration.

then there exists a u : B → X such that the following diagram

A
f - X

B

i

? g -

u
-

Y

p

?

commutes.
MC5: Any morphism f can be factored in the following two ways:

(1) f = p ◦ i where i is a cofibration and p is an acyclic fibration,

(2) f = p ◦ i where i is an acyclic cofibration and p is a fibration.

To provide evidence of the tight coupling between the different axioms in the definition a model

category, we introduce some fundamental statements related to the characterization and stability prop-

erties of fibrations and cofibrations.

3.1.2 Lifting properties. For the commutative square given in (3.1) we say that:

LLP: i : A → B has the left lifting property (LLP) with respect to p if a lift u : B → X exists.
RLP: p : X → Y has the right lifting property (RLP) with respect to i if a lift u : B → X exists.

Lifting properties can be used to characterize cofibrations and fibrations.

To provide a specific example of this, let i : A → B be a morphism with the LLP with respect to all

acyclic fibrations. This morphism factors as:

A
i - B

X

∼
p
--

f

-

-

Which yields a commutative diagram

A-
f - X

B

i

? id -

q
-

B

∼ p
??
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The end result is a retract diagram:

A
id - A

A

id
-

id

-

B

i

? id - B

i

?

X

f

?

?

p
-

q

-

It follows from MC3 that i : A → B is a cofibration. Therefore, i is a cofibration iff it has the LLP with

respect to acyclic fibrations. Similar arguments show (cf. [10]) that:

Proposition 3.1. If M be a model category, then a morphism i : A → B is

(i) A cofibration iff it has the LLP with respect to all acyclic fibrations.

(ii) An acyclic cofibration iff it has the LLP with respect to all fibrations.

Dually, a morphism p : X → Y is

(i) A fibration iff it has the RLP with respect to all acyclic cofibrations.

(ii) An acyclic fibration iff it has the RLP with respect to all cofibrations.

3.1.3 Stability properties. Cofibrations are stable under cobase change and fibrations are stable under

base change. Specifically, consider the pushout square:

A
f - B

C

g

?

?

p- B qA C

q

?

where g is a cofibration. The claim is that q is a cofibration, i.e., for every diagram of the form:

B - X

B qA C

q

?
- Y

∼
??

a lift exists (see Proposition 3.1). To see this, note that the two above diagrams yield a commuting diagram:

A
f - B - X

C

g

?

?

p-

(I)

-

B qA C -

(II)

-

Y

∼
??

60



Hybrid Model Structures

where this existence of (II) follows from the existence of the (I) by the universality of the pushout. Through

similar arguments, one concludes that:

Lemma 3.1. For the pushout square:

A
f - B

C

g

? p- B qA C

q

?

(i) If f is a (acyclic) cofibration, then p is a (acyclic) cofibration.

(ii) If g is a (acyclic) cofibration, then q is a (acyclic) cofibration.

The dual of this statement is:

Lemma 3.2. For the pullback square:

B ×A C
j - B

C

i

? g - A

f

?

(i) If f is a (acyclic) fibration, then i is a (acyclic) fibration.

(ii) If g is a (acyclic) fibration, then j is a (acyclic) fibration.

3.1.b The Homotopy Category

With the concept of a model category in hand, we introduce the associated homotopy category.

In order to do so, the fundamental concept of cofibrant and fibrant replacements must be introduced.

3.1.4 Cofibrant and fibrant objects. An object A of M is said to be cofibrant if the morphism from the

initial object of M to A is a cofibration: ;- - A. An object B of M is fibrant if the morphism from B to

the terminal object is a fibration: B -- ∗.

Given an object A of M, we can use MC5 to define its cofibrant replacement. That is, for the

morphism ;→ A, there is a factorization:

; - A

QA

∼
pA

--

iA

-

-

Therefore, QA is a cofibrant object weakly equivalent to A, termed the cofibrant replacement of A.
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Similarly, for an object B of M and the morphism B →∗, there is a factorization:

B - ∗

RB

pB

--∼
iB

-

-

Therefore, RB is a fibrant object weakly equivalent to B, termed the fibrant replacement of B.

Fibrant and cofibrant replacements are functorial in the following sense: let f : A → B, then

there is a commuting diagram:

;- - QB

QA
?

?

∼ -- A
f - B

∼
??

It follows from MC4 and MC2 that:

Lemma 3.3. For f : A → B there exists a morphism Q f : QA →QB making the following diagram commute:

QA
Q f- QB

A

∼
?? f - B

∼
??

and f is a weak equivalence iff Q f is a weak equivalence.

The dual of this statement also can be given:

Lemma 3.4. For f : A → B there exists a morphism R f : RA → RB making the following diagram commute:

RA
R f - RB

A

∼

6

6

f - B

∼

6

6

and f is a weak equivalence iff R f is a weak equivalence.

3.1.5 Left homotopies. Consider the morphism 〈id, id〉 : AqA → A. A cylinder object, denoted by Cyl(A),

is any object such that there is a factorization:

Aq A
〈id, id〉 - A

Cyl(A)

∼
-

i

-

-
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Cylinder objects exist by MC5. A left homotopy from f : A → B to g : A → B is a morphism H : Cyl(A) → B

making the following diagram

Aq A
〈 f , g 〉- B

Cyl(A)

i

?

?

H

-

commute. In this case, we write f
l' g .

3.1.6 Right homotopies. Consider the morphism (id, id) : B → B×B. A path object, denoted by Path(B),

is any object such that there is a factorization:

B
(id, id) - B ×B

Path(B)

p

--
∼

-

A right homotopy from f : A → B to g : A → B is a morphism G : A →Path(B) making the following diagram

commute:

A
( f , g )- B ×B

Path(B)

p

66

G -

In this case, we write f
r' g .

The notions of left and right homotopies agree in certain cases (Lemma 4.21, [10]):

Lemma 3.5. If f , g : A → B, with A cofibrant and B fibrant, then f
r' g iff f

l' g .

3.1.7 The homotopy category. If f , g : A → B, with A cofibrant and B fibrant, then because of the above

proposition we write f ' g , and say that f is homotopic to g . This forms an equivalence relation on

HomM(A,B); therefore, define

π(A,B) =HomM(A,B)/ ∼

where [ f ] ∈π(A,B) is given by [ f ] = {g ∈HomM(A,B) : f ' g }.

Before defining the homotopy category, note that the fibrant-cofibrant replacement RQA of an
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object of A is simultaneously fibrant and cofibrant. To see this, note that there is a commuting diagram:

; - A

QA -

∼ --
-

-

∗

RQA

--∼
-

-

So, in fact, RQA is weakly equivalent to A. We now define:

Definition 3.1. The homotopy category Ho(M) of a model category M is a category with the same objects

as M and with

HomHo(M)(A,B) =π(RQA,RQB).

Recall that for f : A → B (A and B arbitrary objects of M), we have a commuting diagram:

RQA
RQ f- RQB

QA

∼

6

6

Q f- QB

∼

6

6

A

∼
?? f - B

∼
??

Therefore, we can define a functor

γ : M→Ho(M)

with γ(A) = A for all objects of A of M and γ( f ) = [RQ f ]. (See [21] for more on the structure of homotopy

categories.)

The following lemma relates homotopies with weak equivalences:

Lemma 3.6. If f : A → B with A and B both fibrant and cofibrant, then f is a weak equivalence iff f is

homotopic to the identity, i.e., there exists a morphism g : B → A such that f ◦ g ' idB and g ◦ f ' idA.

From which, we get the related result:

Lemma 3.7. f : A → B is a weak equivalence in M iff γ( f ) : A → B is an isomorphism in Ho(M).
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3.2 Examples

This section introduces a few of the fundamental examples of model categories: simplicial sets,

topological spaces and chain complexes; all of these examples of model categories have been well-studied,

even back to Quillen’s original work [21] on model categories. While it is possible to state in a concise fash-

ion the model structure of these categories, proving that the axioms hold is no trivial matter. In the case of

topological spaces and chain complexes, we refer the reader to [10]. Bousfield and Kan [5] provide a nice

summary of the model structure on simplicial sets.

3.2.a Topological Spaces

We begin by considering the category of topological spaces and (one of) its model structures;

there are other model structures, but it is fair to say that the one introduced here is the “standard” one.

Our treatment of the model structure of topological spaces follows closest to [10] and [17].

3.2.1 A model structure on Top. Let Top be the category of topological spaces. Let X and Y be topo-

logical spaces with basepoints x and y , i.e., X and Y are pointed topological spaces. A map of pointed

topological spaces is a continuous function f : X → Y such that f (x) = y . Two maps f , g : X → Y of

pointed topological spaces are homotopic if there exists a map H : X × I → Y such that H(x ′,0) = f (x ′),

H(x ′,1) = g (x ′) for all x ′ ∈ X and H(x, t ) = y for all t ∈ I (with x the basepoint of X and y the basepoint of

Y ). This defines an equivalence relation.

For a topological space X , pick a basepoint x ∈ X . The nth homotopy set of X at x, πn(X , x) is the

set of homotopy classes of pointed maps:

(Sn ,∗= (1,0, . . . ,0)) → (X , x).

This is a group for n ≥ 1. A map f : X → Y of topological spaces is said to be a weak homotopy equivalence

if for all x ∈ X the induced map:

πn( f , x) :πn(X , x) →πn(Y , f (x)),

is a bijection of sets for n = 0 and an isomorphism of groups for n ≥ 1.

A map p : X → Y is a Serre fibration if it has the RLP (3.1.2) with respect to the maps:

in : Dn → Dn × [0,1]

x 7→ (x,0),

for n ≥ 0; here Dn is the standard n-disk and D0 = {0}, i.e., for every commuting diagram:

Dn f - X

Dn × [0,1]

in

? g -

u
-

Y

p

?
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the map u exists and is unique for all n ≥ 0.

With these definitions in hand, it has been shown (cf. [10]) that there is the following model

structure on Top.

Theorem 3.1. The category of topological spaces, Top, is a model category with the following choices of

weak equivalences, fibrations and cofibrations: f : X → Y is

We. A weak equivalence if it is a weak homotopy equivalence,

Fib. A fibration if it is a Serre fibration,

Cof. A cofibration if it has the LLP with respect to acyclic fibrations.

3.2.b Simplicial Sets

We now turn our attention toward simplicial sets; it is sometimes easier to work with this cat-

egory as it essentially consists of “combinatorial” data. Moreover, and although Top and SSet are very

different categories, it will be seen that their “homotopy theories” are equivalent. For more on simplicial

sets, we refer the reader to the excellent references [5] and [19] on the subject.

3.2.2 Simplicial objects. Let C be a category. A simplicial object K over C consists of a sequence of

objects Kn , n ≥ 0, together with face morphisms, ∂i : Kn → Kn−1, and degeneracy morphisms, σi : Kn →
Kn+1, for i = 0,1, . . . , n, such that these morphisms satisfy the classical simplicial identities:

∂i∂ j = ∂ j−1∂i if i < j

σiσ j = σ jσi−1 if i > j

∂iσ j =


σ j−1∂i

id

σ j∂i−1

if

if

if

i < j

i = j or i = j +1

i > j +1.

(3.2)

Simplicial objects can be visualized as follows:

K0

� ∂1
� ∂0

σ0
-

K1

� ∂2
� ∂1
� ∂0

σ1
-

σ0
-

K2

� ∂3
� ∂2
� ∂1
� ∂0

σ2
-

σ1
-

σ0
-

K3

� ∂4
� ∂3
� ∂2
� ∂1
� ∂0

σ3
-

σ2
-

σ1
-

σ0
-

K4

� ∂5
� ∂4
� ∂3
� ∂2
� ∂1
� ∂0

σ4
-

σ3
-

σ2
-

σ1
-

σ0
-

K5 · · ·

A morphism of simplicial objects K and L, f : K → L, is just a collection of morphisms fn : Kn →
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Ln (n ≥ 0) in C such that the following diagrams

Kn−1
�
∂K

i Kn Kn
σK

i- Kn+1

Ln−1

fn−1

?
�
∂L

i Ln

fn

?
Ln

fn

? σL
i- Ln+1

fn+1

?

commute.

Specific examples of simplicial objects that are of interest are simplicial sets, SSet, and simplicial

abelian groups, SAb. In the case of a simplicial set K , an element of Kn is termed an n-simplex.

3.2.3 Geometric realization. Recall (see [5], [19] and [20]) that taking the geometric realization of a

simplicial set results in a functor

| − | : SSet→Top

In particular, a morphism f : K → L of simplicial sets induces a morphism | f | : |K | → |L| of topological

spaces.

There is the following model structure on SSet established by [5] (see also [10] and [21]).

Theorem 3.2. The category of simplicial sets, SSet, is a model category with the following choices of weak

equivalences, fibrations and cofibrations: f : K → L is a

We. A weak equivalence if | f | : |K |→ |L| is a weak homotopy equivalence,

Fib. A fibration if f has the RLP with respect to acyclic cofibrations,

Cof. A cofibration if each fn : Kn → Ln (n ≥ 0) is injective.

3.2.4 Singular functor. To every topological space, there is an associated simplicial set; this defines a

functor

sing : Top→ SSet .

The singular and realization functor relate the model structure on Top and SSet as follows (see [5]):

Proposition 3.2. For the model structure on Top given in Theorem 3.1 and the model structure on SSet

given in Theorem 3.2, the following conditions hold:

¦ The functors | − | and sing preserve weak equivalences.

¦ The functor | − | preserves fibrations and cofibrations.
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3.2.5 Simplicial sets from small categories. Given a small category J, we can associate to this small

category a simplicial set called the nerve of J and denoted by N J (this exposition follows [11], but this

construction is widely known and also can be found in [5],[14],[22],[24]-[25]). In particular, define the

nerve functor as a functor

N : Cat→ SSet,

where for every sequence of n composable morphisms

a0
α1−→ a1

α2−→ ·· · αn−1−→ an−1
αn−→ an

in J, we define the n-simplex α= (a0
α1−→ ·· · αn−→ an) in N Jn ; N Jn is the set of all n-simplicies of this form.

The 0-simplicies in N J, i.e., the elements of N J0, are the objects of J. The face morphisms are defined by

α ∈ N J1 ∂0α= ∂0(a0
α1−→ a1) = a1

∂1α= ∂1(a0
α1−→ a1) = a0

α ∈ N Jn ∂0α= ∂0(a0
α1−→ a1

α2−→ ·· · αn−→ an) = (a1
α2−→ ·· · αn−→ an)

0 < i < n ∂iα= ∂i (a0
α1−→ ·· · αn−→ an)

= (a0
α1−→ ·· · αi−1−→ ai−1

αi+1◦αi−→ ai+1
αi+2−→ ·· · αn−→ an)

∂nα= ∂0(a0
α1−→ ·· · αn−1−→ an−1

αn−→ an) = (a0
α1−→ ·· · αn−1−→ an−1)

and the degeneracy morphisms are defined by

σi (a0
α1−→ ·· · αn−→ an) = (a0

α1−→ ·· · αi−→ ai
id−→ ai

αi+1−→ ·· · αn−→ an).

For simplicity when refereing to n-simplicies in N J, for α ∈ N Jn , let

dom(α) = dom(a0
α1−→ ·· · αn−→ an) = a0.

A functor F : J→ J′ induces a morphism NF : N J→ N J′ in the obvious manner, i.e.,

NFn(α) = NFn(a0
α1−→ ·· · αn−→ an) = F (a0)

F (α1)−→ ·· · F (αn )−→ F (an).

The importance of this construction is that it allows us to apply techniques utilized in the study

of simplicial sets to small categories. For example, one can consider the geometric realization of the nerve

of a small category, |N J |. This yields a topological space termed the classifying space of J.

3.2.c Chain Complexes

The third, and final, example of a model category is the category of (non-negative) chain com-

plexes of abelian groups. Note that we could instead consider general abelian categories, but this would

result in an unnecessary level of abstraction for the constructions that will be considered.
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3.2.6 Chain complexes. Let Ab be the category of abelian groups. The category of non-negative chain

complexes Ch≥0(Ab) has as objects chain complexes A• consisting of a family of abelian groups, {An}n≥0,

together with morphisms dn : An → An−1 (typically denoted by d, with the index understood) such that

d2 = d ◦d = 0; here d0 = 0. Therefore, A• can be visualized as follows:

A• : · · · � d
An−1

�d
An

� d
An+1

�d · · ·

A morphisms of chain complexes, f : A• → B• is a collection of morphisms (in Ab) fn : An → Bn

for n ≥ 0 such that the following diagram:

A• : · · · � d
An−1

�d
An

� d
An+1

�d · · ·

B• : · · · � d
Bn−1

fn−1

?
�d

Bn

fn

?
� d

Bn+1

fn+1

?
�d · · ·

commutes.

For a chain complex A•, its nth homology group is given by:

Hn(A•) = Ker(dn)

Im(dn+1)
.

This is well-defined because d ◦d = 0. Also note that a morphism of chain complexes f : A• → B• induces

a morphism of homology groups: Hn( f ) : Hn(A•) → Hn(B•). This implies that Hn is a functor:

Hn : Ch≥0(Ab) →Ab .

for all n ≥ 0.

With these definitions, there is the following model category.

Theorem 3.3. The category of non-negative chain complexes of abelian groups, Ch≥0(Ab), is a model cate-

gory with the following choices of weak equivalences, fibrations and cofibrations: f : A• → B• is

We. A weak equivalence if for all n ≥ 0, Hn( f ) : Hn(A•) → Hn(B•) is an isomorphism,

Fib. A fibration if for each n ≥ 1, fn : An → Bn is an epimorphism,

Cof. A cofibration if for each n ≥ 0, fn : Kn → Ln is a monomorphism with a free abelian group as its

cokernal.

The model structure on Ch≥0(Ab) was first introduced in [21]; see also [10]. In these references,

chain complexes over abelian categories and R-models were considered, respectively. In these cases, cofi-

brations are monomorphisms with projective objects as cokernals. Part of the motivation for considering

abelian groups is that in Ab an object is projective iff it is free.
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3.2.7 The homology of simplicial abelian groups. Consider the category SAb of simplicial abelian

groups. For every simplicial abelian group A there is an associated complex called the Moore complex

which will be denoted by A•. In particular, we have

A• : · · · � d
An−1

�d
An

� d
An+1

�d · · ·

where

d =
n∑

i=0
(−1)i∂i : An → An−1.

From the simplicial identities it follows that d2 = 0. The homology of A is thus given by Hn(A) := Hn(A•).

The Moore complex allows one to consider the homology of a simplicial set. Let Z〈 − 〉 : Set →
Ab be the functor that associates to a set the free abelian group generated by the elements of the set.

This induces a functor Z〈 − 〉 : SSet → SAb, denoted by the same symbol. Therefore, the homology of a

simplicial set, K , is defined to be

Hn(A) := Hn(Z〈K 〉•),

where Z〈K 〉• is the chain complex associated to the simplicial abelian group Z〈K 〉.
Through these constructions, one can define the homology of a topological space. Given a topo-

logical space X , its (singular) homology is defined to be

Hn(X ) := Hn(Z〈sing(X )〉•).

This defines a functor Hn : Top→Ab.

In a similar manner, composing the functors:

Cat
N- SSet

Z〈 − 〉- SAb

allows one to define the homology of a small category:

Hn(J) := Hn(Z〈N J〉•).

In fact, since the morphism N J→ sing(|N J |) is a weak equivalence (see Example 3.1), and because weak

equivalences in the category of topological spaces induce isomorphisms on homology,

Hn(J) ∼= Hn(|N J |).

That is, one obtains the homology of a small category by composing the functors:

Cat
N- SSet

| − |- Top
Hn- Ab

This nicely demonstrates the interplay between the different concepts involved.

The following construction is related to associating to a simplicial abelian group its Moore com-

plex.
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3.2.8 The homology of a small category with coefficients in a functor. Given a functor L : J → Ab, a

simplicial abelian group can be constructed; denote this simplicial abelian group by JL and define

JL
n = ⊕

α∈N Jn

L(dom(α)).

The face morphisms, ∂i , and the degeneracy morphisms, σi , are given by requiring that the following

diagrams

⊕
α∈N Jn−1

L(dom(α)) � ∂i ⊕
α∈N Jn

L(dom(α))

L(dom(∂N J
i α))

ı
∂N J

i α
6

�

 L(α1) if i = 0

id if 0 < i ≤ n


L(dom(α))

ıα6

⊕
α∈N Jn

L(dom(α))
σi -

⊕
α∈N Jn+1

L(s(α))

L(dom(α))

ıα 6

id - L(dom(σN J
i α))

ı
σN J

i α
6

commute; here ∂N J
i and σN J

i are the face and degeneracy morphisms of N J and ıα are the inclusion

morphisms into the direct sum. This allows us to define the homology of a small category with coefficients

in a functor.

Definition 3.2. For a functor L : J→Ab,

Hn(J,L) := Hn(JL
• ).

Given the relationships established in Paragraph 3.2.7, one can define the homology of a small

category with coefficients in more general diagrams. For example, if L : J → Top, then we can consider

the homology group Hn(J,Hp(L)), with Hp(L) the composite of L and Hp . This will be discussed in further

detail in Paragraph 3.3.8.
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3.3 Quillen Adjunctions

We now introduce the notion of a Quillen adjunction which is fundamental in understanding

the interplay between different model categories. This follows from the fact that adjunctions of this form

imply the existence of total (left and right) derived functors and thus induce an adjunction between ho-

motopy categories. These concepts are solidified by considering the categories Top and SSet.

3.3.a Derived Functors

Consider a functor F : M→D with M a model category. In general, this functor does not factor

through the homotopy category of M, i.e., there does not exist a factorization:

M
F - D

Ho(M)

-

γ
-

Left and right derived functors are introduced in order to find the “closest approximation” to such a fac-

torization “from the left” or “from the right.”

Following from [10] and [21], we define:

3.3.1 Left derived functors. Let F : M→D be a functor, with M a model category. A left derived functor

of F is a pair (LF, t ) where LF : Ho(M) →D and t : LF ◦γ �→ F where, again, γ : M→Ho(M). In addition, it

must satisfy the universal property that for any G : Ho(M) →D and any s : G ◦γ �→ F there exists a unique

s′ : G
�→ LF such that the following diagram

G ◦γ s′ ◦γ - LF ◦γ

F

t

�

s
-

commutes. The following result (cf. [21]) is very useful:

Proposition 3.3. Let F : M→D with M a model category. If F ( f ) is an isomorphism whenever f is a weak

equivalence between cofibrant objects, then the left derived functor (LF, t ) of F exists and for every cofibrant

object A of M, the morphism tA : LF (A) → F (A) is an isomorphism.

3.3.2 Total left derived functors. A total left derived functor of a functor F : M → N between model

categories is a functor

LF : Ho(M) →Ho(N)
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such that LF is a left derived functor of the composite:

M
γN ◦F - Ho(N)

N

γN

-

F
-

We have the following very important corollary to Proposition 3.3.

Corollary 3.1. If F : M→N preserves weak equivalences between cofibrant objects, then the total left derived

functor LF : Ho(M) →Ho(N) exists and can be computed by:

LF (A) ∼= F (A′)

for any cofibrant object A′ weakly equivalent to A.

Right derived functors and total right derived functors are defined dually. If a functor F : M →
N between model categories preserves weak equivalences between fibrant objects, then the total right

derived functor RF : Ho(M) →Ho(N) exists and can be computed by:

RF (A) ∼= F (A′)

for any fibrant object A′ weakly equivalent to A.

3.3.b Quillen Adjunctions

Quillen adjunctions are related to the existence of total left and right derived functors, and thus

play a fundamental role in model category theory.

Definition 3.3. A Quillen adjunction is an adjunction between model categories:

F : M
-� N : G (3.3)

such that

(i) F preserves cofibrations and acyclic cofibrations,

(ii) G preserves fibrations and acyclic fibrations.

To better understand when an adjunction F : M
-

� N : G is a Quillen adjunction, suppose

that F preserves acyclic cofibrations. Consider a commutative diagram

A - G(X )

B

∼ i

?

?

- G(Y )

G(p)

?
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with p : X → Y a fibration. Because F and G are adjoint functors, we have a commutative diagram

F (A) - X

F (B)

∼ F (i )

?

?

- Y

p
??

and so there exists a lift F (B) → X . This implies the existence of a lift B →G(X ) and so G(p) is a fibration.

Therefore, this and a similar argument imply that:

Lemma 3.8. If F : M
-� N : G is an adjunction, then the following statements are equivalent:

(i) F preserves cofibrations and acyclic cofibrations,

(ii) G preserves fibrations and acyclic fibrations.

The definition of a Quillen adjunction is motivated by the following proposition:

Proposition 3.4. Let M and N be model categories, and

F : M
-� N : G

be a pair of adjoint functors. Then if either of the following conditions hold:

(i) F preserves cofibrations and acyclic cofibrations,

(ii) G preserves fibrations and acyclic fibrations,

then the total derived functors:

LF : Ho(M) -� Ho(N) :RG

exist and form an adjoint pair.

Related to the proposition (and the proof thereof, see [10]), is the following lemma due to K.

Brown:

Lemma 3.9. Let F : M→N be a functor between model categories. If F carries acyclic cofibrations to weak

equivalences, then F preserves weak equivalences between cofibrant objects.

Dually, if F carries acyclic fibrations to weak equivalences, then F preserves weak equivalences

between fibrant objects.

From which we have the following:

Corollary 3.2. If F : M
-� N : G is a Quillen adjunction, then

(i) F preserves weak equivalences between cofibrant objects,

(ii) G preserves weak equivalences between fibrant objects.
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3.3.3 Quillen equivalences. It follows from Proposition 3.4 and Corollary 3.2 that, for a Quillen adjunc-

tion (3.3), the total derived functors:

LF : Ho(M) -� Ho(N) :RG (3.4)

exist and form an adjoint pair. A Quillen adjunction is said to be a Quillen equivalence if (3.4) is an adjoint

equivalence of categories. That is, for idF (A) : F (A) → F (A) with A in M and idG(X ) : G(X ) →G(X ) for X in N,

the morphisms:

id]
F (A) : A →G(F (A)), id[

G(X ) : F (G(X )) → X ,

are weak equivalences.

Example 3.1. In [19], J. P. May proved that there is an adjunction:

| − | : SSet
-� Top : sing.

That is, there is a natural bijection

HomTop(|K |,X ) ∼=HomSSet(K , sing(X ))

for every simplicial set K and topological space X . Proposition 3.2 implies that this adjunction is a Quillen

adjunction. Moreover, the morphisms:

X → sing(|X |), |sing(Y )|→ Y ,

are weak equivalences for all X ∈Ob(SSet) and Y ∈Ob(Top). Therefore, the adjunction is a Quillen equiva-

lence. This implies, to quote Bousfield and Kan, that there is an “equivalence between homotopy theories

of the categories SSet and Top.”

3.3.c Homotopy Meaningful Model Category Structures

Let M denote a model category and J a small category. The goal is to give conditions on the

model structure of MJ, if such a structure exists, so that it is cofibrantly or fibrantly homotopy mean-

ingful. This indicates that there are two sperate homotopy meaningful model category structures for MJ

depending on whether one is interested in considering homotopy colimits or homotopy limits. Of course,

one could consider other functors F : MJ →M, and so define a more general notion of a homotopy mean-

ingful model structure on MJ. This added generality does not seem to yield much additional benefit; for

this reason, we will restrict our attention to the functors colim and lim. Examples will follow in the next

subsection.

Definition 3.4. A model category structure on MJ is said to be:

¦ Cofibrantly homotopy meaningful if colimJ preserves weak equivalences between cofibrant objects,

¦ Fibrantly homotopy meaningful if limJ preserves weak equivalences between fibrant objects.
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3.3.4 Cofibrantly homotopy meaningful model category structures. Since there is an adjunction:

colimJ : MJ -� M : ∆J,

for a model category structure on MJ to be cofibrantly homotopy meaningful, we need this adjunction

to be a Quillen adjunction, i.e., we need ∆J to preserve fibrations and acyclic fibrations. This leaves very

little choice as to the model category structure of MJ. That is:

Lemma 3.10. A model category structure on MJ is cofibrantly homotopy meaningful if:

(i) The weak equivalences are objectwise weak equivalences,

(ii) The fibrations are objectwise fibrations.

In this case, the total left derived functor of colimJ exists and is termed the homotopy colimit:

hocolimJ := LcolimJ : Ho(MJ) →Ho(M).

Moreover,

hocolimJ(X ) ∼= colimJ(X ′)

for any cofibrant object X ′ weakly equivalent to X .

3.3.5 Fibrantly homotopy meaningful model category structures. Since there is an adjunction:

∆J : M
-� MJ : limJ,

for a model category structure on MJ to be fibrantly homotopy meaningful, we need this adjunction to be

a Quillen adjunction, i.e., we need ∆J to preserve cofibrations and acyclic cofibrations. This, again, leaves

very little choice as to the model category structure of MJ. That is:

Lemma 3.11. A model category structure on MJ is fibrantly homotopy meaningful if:

(i) The weak equivalences are objectwise weak equivalences,

(ii) The cofibrations are objectwise cofibrations.

In this case, the total right derived functor of limJ exists and is termed the homotopy limit:

holimJ :=RlimJ : Ho(MJ) →Ho(M).

Moreover,

holimJ(X ) ∼= limJ(X ′)

for any fibrant object X ′ weakly equivalent to X .
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3.3.d Homotopy Colimits and SSet

Let J be any small category. Dwyer and Kan (see [5] and [9]) have introduced a model structure

on SSetJ displaying the properties that:

(i) The weak equivalences are objectwise weak equivalences,

(ii) The fibrations are objectwise fibrations.

(iii) The cofibrations are morphisms with the LLP with respect to acyclic fibrations.

That is, they introduce a cofibrantly homotopy meaningful model structure on SSetJ; although in [9], they

termed this model structure “natural with respect to J” since for a functor F : J′ → J, the induced functor

F∗ : SSetJ → SSetJ
′

preserves weak equivalences.

The dual to this construction also can be introduced so as to define a fibrantly homotopy mean-

ingful model structure on SSetJ. We will focus on the former case rather than the latter.

For the cofibrantly homotopy meaningful model structure on SSetJ, homotopy colimits have

been well-studied by Bousfield and Kan, see [5]. In fact, a very concrete method for computing them was

introduced. As it sheds insight into homotopy colimits, we briefly review this construction. First, we must

introduce the notion of a bisimplicial object.

3.3.6 Bisimplicial objects in a category. In a category C a bisimplicial object is a simplicial object in

the category of simplicial objects over C. More concretely, a bisimplicial object is given by a sequence of

objects Km,n , for m, n ≥ 0, as well as “vertical” and “horizontal” face and degeneracy morphisms:

Km−1,n
�
∂h

i Km,n Km,n+1
σh

i- Km+1,n+1

Km−1,n−1

∂v
j

?
�
∂h

i Km,n−1

∂v
j

?
Km,n

σv
j

6

σh
i- Km+1,n

σv
j

6

for 0 ≤ i ≤ n and 0 ≤ j ≤ m such that these diagrams commute and both ∂v
j , σv

j and ∂h
i , σh

i satisfy the

simplicial identities given in (3.2).

Of special interest is the category of bisimplicial sets, S2Set, and the category of bisimplicial

abelian groups, S2Ab.

3.3.7 The simplicial replacement functor. Given a functor X : J → SSet for a small category J, define

the simplicial replacement functor

qJ : SSetJ → S2Set

by

qJ(X )m,n = ∐
α∈N Jm

X (dom(α))n .
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The horizontal face morphisms, ∂h
i , are given by requiring that

∐
α∈N Jm−1

X (dom(α))n
�

∂h
i ∐

α∈N Jm

X (dom(α))n

X (dom(∂N J
i α))n

ı
∂N J

i α

6

�

 X (α1)n if i = 0

id if 0 < i ≤ n


X (dom(α))n

ıα
6

commute. The degeneracy morphisms, σh
i , are given by the commuting diagram

∐
α∈N Jm

X (dom(α))n
σh

i -
∐

α∈N Jm+1

X (dom(α))n

X (dom(α))n

ıα
6

id - X (dom(σN J
i α))n

ı
σN J

i α

6

The vertical face morphisms, ∂v
i , and the degeneracy morphisms, σv

i , are given by requiring that the fol-

lowing diagrams

X (dom(α))n
ıα-

∐
α∈N Jm

X (dom(α))n X (dom(α))n+1
ıα-

∐
α∈N Jm

X (dom(α))n+1

X (dom(α))n−1

∂X (dom(α))
i

? ıα-
∐

α∈N Jm

X (dom(α))n−1

∂v
i

?
X (dom(α))n

σX (dom(α))
i

6

ıα-
∐

α∈N Jm

X (dom(α))n

σv
i

6

commute. Here ∂X (dom(α))
i and σX (dom(α))

i are the face and degeneracy morphisms of X (dom(α)).

3.3.8 The diagonal functor. The diagonal functor associates to a bisimplicial set a simplicial set, i.e.,

diag : S2Set→ SSet .

For a bisimplicial set X ,

diag(X )n = Xn,n ,

and the face and degeneracy morphisms for diag(X ) are given by ∂i = ∂h
i ∂

v
i andσi =σh

i σ
v
i ; the degeneracy

morphisms can be visualized by considering the diagram

Xm−1,n
�
∂h

i Xm,n

Xm−1,n−1

∂v
i

?
�
∂h

i

∂i

�
Xm,n−1

∂v
i

?

78



Hybrid Model Structures

hence the name “diagonal.”

Using the simplicial replacement functor, one can explicitly define simplicial homotopy colim-

its.

Definition 3.5. The simplicial homotopy colimit:

hocolimSSet
J : SSetJ → SSet,

is given by the the composite:

SSetJ
qJ- S2Set

diag- SSet .

The usefulness of considering homotopy colimits is that one can make statements like:

Lemma 3.12. Let X ,Y : J→ SSet are two functors, with J small. If f : X
�→ Y is objectwise a weak equiva-

lence, then

hocolimSSet
J ( f ) : hocolimSSet

J (X ) → hocolimSSet
J (Y )

is a weak equivalence in SSet.

3.3.9 The Bousfield-Kan spectral sequence. Recall from Definition 3.2 that for a functor L : J→Ab, we

defined the homology of J with coefficients in L, denoted by Hn(J,L). Given a functor X : J → SSet, we

obtain a functor Hp(X ) : J→Ab defined as the composite:

J
X- SSet

Hp- Ab

and can thus consider the homology group Hn(J,Hp(X )).

Spectral sequences provide a method for computing the homology group of a chain complex in

terms of the homology of another chain complex, i.e., they capture the notion of “convergence in homol-

ogy.” We refer the reader to [6] and [28] for more on this subject. In [5] the following spectral sequence

was introduced:

Theorem 3.4. For X : J→ SSet there is a spectral sequence:

E2
p,q = Hp(J,Hq (X )) ⇒ Hp+q (hocolimSSet

J (X )).

3.3.10 Topological homotopy colimits. Using the Quillen equivalence:

| − | : SSet
-
� Top : sing,

one can use the formulation of homotopy colimits for simplicial sets to define topological homotopy col-

imits. That is, one can define the topological homotopy colimit to be the composite of:

TopJ sing∗- SSetJ
hocolimSSet

J - SSet
| − |- Top,
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where sing∗ is the functor on functor categories induced from the singular functor. Instead, we opt for the

simpler approach of directly defining the homotopy colimit.

In [26], Vogt studies topological homotopy colimits and relates them to the constructions in [5];

in particular, he introduces an explicit formula for the topological homotopy colimit which will be useful

for making calculations. For n ≥ 1, let

Morn(a, b) = {(αn , . . . ,α1) ∈ (Mor(J))n :αn ◦ · · · ◦α1 : a → b in J},

where Mor(J) is the set of morphisms in J, and

Mor0(a, a) = {ida}, Mor0(a, b) =;, a 6= b.

Then the topological homotopy colimit is given by

hocolimTop
J

(X ) =
∐

a,b∈Ob(J)
∐∞

n=0 Morn(a, b)× In ×X (a)

∼
where I is the unit interval and ∼ is the equivalence relation given by

(tn ,αn , . . . , t1,α1; x) ∼



(tn ,αn , . . . , t2,α2; x) α1 = id

(tn ,αn , . . . ,αi+1, ti ti−1,αi−1, . . . ,α1; x) αi = id, 1 < i

(tn ,αn , . . . , ti+1,αi+1 ◦αi , ti−1, . . . ,α1; x) t1 = 1, i < n

(tn−1,αn−1, . . . ,α1; x) tn = 1

(tn ,αn , . . . ,αi+1;X (αi ◦ · · · ◦α1)(x)) ti = 0

There is again a spectral sequence (also termed the Bousfield-Kan spectral sequence) that allows one to

compute the homology of the homotopy colimit.

Theorem 3.5. For X : J→Top there is a spectral sequence:

E2
p,q = Hp(J,Hq (X )) ⇒ Hp+q (hocolimTop

J
(X )).
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3.4 The Model Structure of Diagrams

One does not always have the luxury afforded in SSet and Top, i.e., for a general model category

M, it is not known whether there exists a model structure on MJ. In this section, we determine condi-

tions on a small category J so that there exists a cofibrantly homotopy meaningful model structure on

MJ. Rather than proceeding directly to the most general result, we begin by considering a simple small

category so as to illustrate the general principles involved.

3.4.a The Simplest Nontrivial Diagram

In this subsection, we will consider small categories of shape 0 → 1, i.e., the simplest diagrams

in M that are nontrivial (not discrete) and have no cycles. For diagrams of this form, we are able to de-

fine both cofibrantly and fibrantly homotopy meaningful model category structures. The more general

constructions that we will later introduce can be intuitively understood through this simple example.

3.4.1 A cofibrantly homotopy meaningful model structure on M0→1. Let f : X
�→ Y be a morphism in

M0→1, i.e., we have a commuting diagram:

X (0) - X (1)

Y (0)

f0

?
- Y (1)

f1

?

This yields a commuting diagram:

X (0) - X (1)

Y (0)

f0 = i0( f )

?
- Y (1)

f1

?

Y (0)qX (0) X (1)

-

�

i1 ( f )
-

Using the morphisms i0( f ) and i1( f ) there is the following:

Proposition 3.5. The category M0→1 has a cofibrantly homotopy meaningful model category structure with

the following choices of weak equivalences, fibrations and cofibrations: a morphism f : X
�→ Y is

We. A weak equivalence if f0 and f1 are weak equivalences in M,

Fib. A fibration if f0 and f1 are fibrations in M,

Cof. A cofibration if i0( f ) and i1( f ) are cofibrations in M.
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It is important to understand which objects are cofibrant given this model structure. Consider

an object X (0) → X (1) in M0→1. This object is cofibrant in M0→1 if it is of the form:

X (0)- - X (1)

with X (0) cofibrant. To see this, consider the commuting diagram:

; - ;

X (0)
?

- X (1)
?

Then, this morphism in M0→1 is a cofibration if the dashed morphism in the following diagram

; - ;

X (0)
?

- X (1)
?

X (0)q;;= X (0)

-

�

-

is a cofibration in M, but this morphism is exactly the morphism X (0) → X (1).

3.4.2 A fibrantly homotopy meaningful model structure on M0→1. The dual of Proposition 3.5 can be

given. In this case we consider the commuting diagram:

X (0)×Y (0) Y (1)

X (0) �
�

X (1)

p 1(
f )

-

Y (0)

f0 = p0( f )

?
� Y (1)

f1

?�

and we have the following fibrantly homotopy meaningful model category structure on M0→1.

Proposition 3.6. The category M0→1 has a fibrantly homotopy meaningful model category structure with

the following choices of weak equivalences, fibrations and cofibrations: a morphism f : X
�→ Y is

We. A weak equivalence if f0 and f1 are weak equivalences in M,

Fib. A fibration if p0( f ) and p1( f ) are fibrations in M.

Cof. A cofibration if f0 and f1 are cofibrations in M,
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3.4.b Direct Categories

We now introduce a result that will be central in defining fiberwise model structures for cate-

gories of hybrid objects—it allows one to define a cofibrantly homotopy meaningful model structure on

MJ for certain small categories J.

3.4.3 Direct categories. To every natural number n, there is an associated category n with Ob(n) =
{0, . . . , n −1} and for every two objects i and j of n, there is one morphism between these objects iff i ≤ j .

Definition 3.6. A functor deg : J→ n is called a linear extension if the image of a non-identity morphism

is a non-identity morphism; in this case J is said to have degree n.

Definition 3.7. A small category J is a direct category if there is a linear extension deg : J→ n.

3.4.4 A cofibrantly homotopy meaningful model category structure on MJ. In the case when J is a

direct category, MJ can be given a cofibrantly homotopy meaningful model category structure (as well

as a fibrantly homotopy meaningful model structure although this will not be discussed). Moreover, this

model category structure directly generalizes the one previously given. Our introduction of this construc-

tion follows from [17].

We begin by considering the overcategory (J ↓ a) for an object a of J. Consider the subcategory

Ja of this category given by removing the object (ida , a), i.e., it is the category of all nonidentity morphisms

with codomain a. Specifically, the objects of Ja are pairs ( f , b) where f : b → a and b 6= a. A morphism

h : ( f , b) → (g , c) is a morphism h : b → c such that g ◦h = f .

There is a functor Sa : Ja → J defined on objects by Sa( f , b) = b and on morphisms by Sa(h) = h.

This induces a functor S∗
a : MJ →MJa with S∗

a (X ) = X ◦Sa . Define the latching space functor La : MJ →M

as the composite:

MJ S∗
a- MJa

colimJa- M .

Now, let f : X
�→ Y in MJ. Then for every object a of J, we have a commuting diagram:

S∗
a (X ) - ∆Ja (X (a))

S∗
a (Y )

S∗
a ( f )

?
- ∆Ja (Y (a))

∆Ja ( fa)

?

which yields a commuting diagram:

La(X ) - X (a)

La(Y )

La( f )

?
- Y (a)

fa

?
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Corresponding to this diagram, we have a morphism ia( f ) defined uniquely as follows:

La(X ) - X (a)

La(Y )

La( f )

?
- Y (a)

fa

?

La(Y )qLa (X ) X (a)

-

�

ia ( f )
-

With this construction in hand, there is the following important theorem (see [17]).

Theorem 3.6. For J a direct category, the category MJ has a cofibrantly homotopy meaningful model cat-

egory structure with the following choices of weak equivalences, fibrations and cofibrations: a morphism

f : X
�→ Y is

We. A weak equivalence if f is objectwise a weak equivalence in M,

Fib. A fibration if f is objectwise a fibration in M,

Cof. A cofibration if ia( f ) : La(Y )qLa (X ) X (a) → Y (a) is a cofibration in M for all objects a of J.
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3.5 Fiberwise Hybrid Homotopy Theory

The motivation for the title of this section, “fiberwise hybrid homotopy theory,” is that, using the

previous constructions relating to the model structure of diagrams, we can construct a model structure

on fibers of Hy(M), Hy(M)D ∼=MD , for every D-category D. This allows us to relate the model structure on

MD to the model structure on M. For example, given a hybrid object X : D →M, we can take its homotopy

colimit to obtain an object of M that is well-behaved with respect to weak equivalences. Applications of

these ideas are discussed in the context of topology and homology.

3.5.a The Model Structure of MD

We begin by using Theorem 3.6 to find a cofibrantly homotopy meaningful model structure on

the fibers of Hy(M). The motivation for considering cofibrantly homotopy meaningful model structures

is that, again, the basic diagram in a D-category is of the form:

a

b

sa

�
c

ta

-

for a ∈ E(D) and b, c ∈ V(D). That is, the structure of D-categories imply that we would like a model

structure on MD that admits homotopy colimits.

3.5.1 The degree functor. Recall that the category 2 consists of two objects and a single (non-identity)

morphism: 0 → 1. Define the degree functor deg : D → 2 on objects a ∈D by

deg(a) =
 0 if a ∈E(D)

1 if a ∈V(D)

This functor sends every (non-identity) morphism in D to the single (non-identity) morphism in 2. Since

deg is thus a linear extension:

Lemma 3.13. Every D-category D is a direct category.

3.5.2 The latching space functor. We now produce the latching space functor for D-categories. Note

that the axioms of a D-category imply that Da is a discrete category for every object a of D; in fact, Da =;
if a ∈E(D). In the case when b ∈V(D), Db is the category of all arrows pointing to b, i.e. it can be visualized

as follows:

• • • · · · • •

b
��

---
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where all the objects • are in E(D). Therefore, for b ∈V(D), define

E(D)b = {a ∈E(D) : ∃ α : a → b in D} = {a ∈E(D) : b = cod(sa) or b = cod(ta)}.

Let ~f : X
�→ Y in MD . Using the construction in the previous subsection (see Paragraph 3.4.4), we define

the following morphisms:

¦ For every a ∈E(D), define ia(~f ) = ~fa .

¦ For every b ∈V(D), define ib(~f ) to be the unique morphism induced by the following pushout dia-

gram:

∐
a∈E(D)b

Xa
〈Xsa ,Xta 〉a∈E(D)b- Xb

∐
a∈E(D)b

Ya

∐
a∈E(D)b

~fa

? 〈Ysa ,Yta 〉a∈E(D)b- Yb

~fb

?

( ∐
a∈E(D)b

Ya

)
q(∐

a∈E(D)b
Xa

) Xb

-

�
ib ( ~f )

-

(3.5)

where 〈Xsa ,Xta 〉a∈E(D)b and 〈Ysa ,Yta 〉a∈E(D)b are the unique morphisms induced by the coproduct;

for example, 〈Xsa ,Xta 〉a∈E(D)b is the unique morphism making the following diagram:

Xa
ıa -

∐
a∈E(D)b

Xa

Xb

〈Xsa ,Xta 〉a∈E(D)b

?
Xsa or Xta -

commute.

Using these definitions, we have the following theorem which is a corollary of Theorem 3.6.

Theorem 3.7. For any D-category D, the category MD has a cofibrantly homotopy meaningful model cat-

egory structure for the following choices of weak equivalences, fibrations and cofibrations: a morphism

~f : X
�→ Y is

We. A weak equivalence if ~f is objectwise a weak equivalence in M,

Fib. A fibration if ~f is objectwise a fibration in M,

Cof. A cofibration if ia(~f ) and ib(~f ) are cofibrations in M for all a ∈E(D) and b ∈V(D).

The importance of this theorem is that the model structure on MD was defined in such a way

that homotopy colimits exist. That is, we have the following:
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Corollary 3.3. For every model category M and D-category D,

hocolimD : Ho(MD) →Ho(M)

exists and

¦ hocolimD(X) ∼= hocolimD(Y) if X and Y are weakly equivalent.

¦ hocolimD(X) ∼= colimD(X′) for every cofibrant hybrid object X′ weakly equivalent to X.

This corollary implies that in order to compute homotopy colimits, we must first understand

what the cofibrant objects are in MD . This motivates the following:

Proposition 3.7. For every D-category D, an object X : D →M of MD is cofibrant if for every a ∈E(D):

¦ Xa is cofibrant,

¦ Xsa and Xta are cofibrations.

This proposition implies that X is cofibrant if for every a ∈E(D), the corresponding diagram has

the form:

Xa

Xcodsa

Xsa

�

�

Xcodta

Xta

-

-

with Xa cofibrant.

Proof. The initial object in MD is given by ∆D(;), where ; is the initial object of M. Consider a morphism

~f : ∆D(;)
�→ X. Clearly, for a ∈E(D),

ia(~f ) = ~fa : ;→ Xa

is a cofibration since Xa is cofibrant. For b ∈V(D), the diagram in (3.5), becomes:

; - ;

∐
a∈E(D)b

Xa

? 〈Xsa ,Xta 〉a∈E(D)b- Xb

~fb

?

∐
a∈E(D)b

Xa

-

�

ib ( ~f )id∐
a∈E(D)b

Xa -

Therefore, for all b ∈V(D),

ib(~f ) = 〈Xsa ,Xta 〉a∈E(D)b .
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To verify that this is a cofibration, we utilize Proposition 3.1. That is, we show that ib(~f ) has the LLP with

respect to acyclic fibrations. Consider a commuting diagram:

∐
a∈E(D)b

Xa
f - A

Xb

ib(~f )

? g - B

∼ p
??

where p is an acyclic fibration. For every b ∈E(D)a there is an associated diagram

Xa
-

∐
a∈E(D)b

Xa
f - A

Xb

ib(~f )

? g -

-

Xsa or Xta

-

-

B

∼ p

??

with the far right arrow either Xsa or Xta . In both cases, the dashed arrow exists by the assumption that

these morphisms are cofibrations. Therefore, since this holds for all a ∈E(D)b , the dashed arrow provides

the desired lift for ib(~f ).

3.5.3 Homotopy pushouts. To provide a specific application of the above theorem, we will discuss

the corresponding constructions in the context of homotopy pushouts. This amounts to considering D-

categories of a very specific form. Specifically, for the rest of this subsection we assume that

D =

a

b

sa

�
c

ta

-

We apply Theorem 3.7 to obtain a model structure on Mb←a→c ; this is a well-known result and is discussed

in detail in [10].

Let ~f : X
�→ Y be a morphism in Mb←a→c . Since E(D)b = E(D)c = {a}, the diagram in (3.5) be-

comes:

Xb
�Xsa Xa

Xta - Xc

Yb

~fb

?
�Ysa Ya

~fa = ia(~f )

? Yta - Yc

~fc

?

Xb qXa Ya

� �
i b

(~f
)
-

Ya qXa Xc

-

�

ic ( ~f )
-

Therefore, we have the following:
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Corollary 3.4. The category Mb←a→c has a cofibrantly homotopy meaningful model category structure

with the following choices of weak equivalences, fibrations and cofibrations: a morphism ~f : X
�→ Y is

We. A weak equivalence if ~fa , ~fb and ~fc are weak equivalences in M,

Fib. A fibration if ~fa , ~fb and ~fc are fibrations in M,

Cof. A cofibration if ia(~f ), ib(~f ) and ic (~f ) are cofibrations in M.

3.5.4 Computing homotopy pushouts. An important aspect of computing homotopy colimits is being

able to, given an object X of MD , compute a cofibrant object X′ weakly equivalent to X. When D = b ← a →
c this is a simple matter—for more general D-categories things become more complicated. In the simple

setting we are considering here, the goal is to find a hybrid object X′ of the form:

X′
a

X′
b

X′
sa

�

�

X′
c

X′
ta

-

-

with Xa cofibrant; proposition 3.7 implies that this is a cofibrant object in Mb←a→c .

If QXa is a cofibrant replacement of Xa , then we have a commuting diagram:

;

QXa

?

?

Xb
�Xsa
�

Xa

∼
?? Xta - Xc

-

Factoring the left and right diagonal morphisms yields a commuting diagram:

;

Msa
� �

�

�

QXa

?

?

- - Mta

-

-

Xb

∼
??

�Xsa Xa

∼
?? Xta - Xc

∼
??

Therefore, let

X′(b ← a → c) :=

QXa

Msa

�

�

Mta

-

-
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which is a cofibrant object in Mb←a→c weakly equivalent to X. Therefore, the homotopy colimit of X,

termed the homotopy pushout, is given by:

hocolimb←a→c (X) ∼= Msa qQXa Mta .

3.5.b Hybrid Topology

Let X : D →Top be a hybrid topological space. The goal is to use the constructions introduced up

to this point, and especially those given in Paragraph 3.3.10, to associate to this data a single topological

space (these constructions were first utilized in the context of hybrid systems in [3]).

If one were to take a naive approach to the problem of associating a topological space to a hybrid

topological space, one would logically take the colimit of this diagram:

colimD(X) =
∐

a∈Ob(D) Xa

x ∼ Xα(x) α ∈Mor(D)
.

This is, in fact, the construction that has been applied to “hybrid data” in the past, namely in [23], although

it was not recognized that this was actually the colimit as the categorical definition of hybrid systems was

not available, i.e., the hybrifold was defined as colimD(X). The key point is that although this construction

is the obvious way of associating a single space to a hybrid system, it is not the "correct" one. Allen Hatcher

describes this aptly in [15], to quote:

“It can easily happen that the [colimit] is rather useless because so much collapsing has oc-
curred that little of the original diagram remains.”

The framework of model categories allows us to conclude that the correct way to associate to a hybrid

topological space a single topological space is through the use of homotopy colimits. In the case of cate-

gories of hybrid objects, and in the context of topological spaces, these have a particularly simple form.

Theorem 3.8. For a hybrid topological space X : D →Top,

hocolimTop
D

(X) =
(∐

b∈V(D) Xb
)q (∐

a∈E(D) (Xa × I)
)

(x,0) ∼ Xsa (x), (x,1) ∼ Xta (x), a ∈E(D)
.

Proof. Due to the first axiom, AD1, of a D-category, the formula for the topological homotopy colimit

given in 3.3.10 becomes:

hocolimTop
D

(X) =
(∐

a∈Ob(D) Xa
)q (∐

a,b∈Ob(D) Morid� (a, b)× I ×Xa

)
(1,α1; x) ∼ x, (0,α1; x) ∼ Xα1 (x)

=
(∐

a∈Ob(D) Xa
)q (∐

(a,b)∈E(D)×V(D) Morid� (a, b)× I ×Xa

)
(1,α1; x) ∼ x, (0,α1; x) ∼ Xα1 (x)

=
(∐

a∈Ob(D) Xa
)q (∐

a∈E(D){sa}× I ×Xa
)q (∐

a∈E(D){ta}× I ×Xa
)

(1,sa ; x) ∼ x ∼ (1,ta ; x), (0,sa ; x) ∼ Xsa (x), (0,ta ; x) ∼ Xta (x)

'
(∐

b∈V(D) Xb
)q (∐

a∈E(D) I ×Xa
)

(0, x) ∼ Xsa (x), (1, x) ∼ Xta (x)

where the last equality is actually a homotopy equivalence essentially given by contracting the interval

[0,2] to the unit interval I .
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Definition 3.8. For a hybrid topological space X : D →Top, define its underlying topological space as:

top(D,X) := hocolimTop
D

(X).

hocolim

Figure 3.1: The underlying topological space of the bouncing ball.

Example 3.2. Recall that in Example 1.4 we introduced the hybrid manifold Mball : Dball →Man associated

to the bouncing ball. Let Xball : Dball → Top be the hybrid topological space obtained from this hybrid

manifold by forgetting about its smooth structure. The underlying topological space of the bouncing ball,

top(Dball,Xball), is therefore homotopic to the punctured cone; see Figure 3.1. Note that if one were to take

the colimit and not the homotopy colimit, the result would be a cone.

3.5.c Hybrid Homology

The goal of this subsection is to understand the homology of a hybrid topological space X : D →
Top through the use of the Bousfield-Kan spectral sequence. First, we introduce:

3.5.5 The normalized Moore complex. For a simplicial abelian group A, there is a subcomplex of the

Moore complex called the normalized complex (cf. [28]) and denoted by N•(A) (not to be confused with

the nerve). This is a chain complex with

Nn(A) =
n−1⋂
i=0

Ker(∂i : An → An−1)

and differential d = (−1)n∂n . The normalized complex is important because of its relation to the "degen-

erate" subcomplex of the Moore complex; this is a complex D•(A) with

Dn(A) = ⊕
0≤i≤n−1

σi (An−1).
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These two complexes are related by the fact that N•(A) ∼= A•/D•(A). Even more important is the fact that

there is an isomorphism

Hn(N•(A)) ∼= Hn(A).

A proof of these statements can be found in [28].

In the case when we are considering the simplicial abelian group JL associated to a functor L :

J → Ab, we denote the normalized complex by N•(JL) and the degenerate complex by D•(JL). With this

notation the above statements imply that we have the isomorphisms

N•(JL) ∼= JL•
D•(JL)

, Hn(N•(JL)) ∼= Hn(J,L).

For a hybrid abelian group L : D → Ab, by the axioms of a D-category and specifically AD1, it

follows that DL
n
∼= Dn(DL) for all n ≥ 2. Therefore, we have the following:

Lemma 3.14. If D is a D-category, then for any hybrid abelian group L : D →Ab, Hn(D,L) ∼= 0 for n ≥ 2.

3.5.6 Hybrid homology. The hybrid homology of a hybrid topological space is defined to be the ho-

mology of its underlying topological space:

HYn(D,X) := Hn(top(D,X)) = Hn(hocolimTop
D

(X)).

Lemma 3.14 implies that for a hybrid topological space X : D →Top, the Bousfield-Kan spectral sequence

E2
p,q = Hp(D,Hq (X)) ⇒ HYn(D,X)

consists of two columns, p = 0 and p = 1. Under these circumstances (see [28], and especially the corre-

sponding errata) it follows that we have established the following:

Theorem 3.9. For a hybrid topological space X : D →Top, there are short exact sequences

0 −→ H0(D,Hn(X)) −→ HYn(D,X) −→ H1(D,Hn−1(X)) −→ 0

for all n ≥ 0.

3.5.7 Hybrid homology and graph homology. To better understand the preceding theorem, let us re-

strict our attention to a very special case.

A hybrid topological space X : D →Top is said to be domain contractible if there is a weak equiv-

alence in TopD :

X
�→∆D(∗)

where ∗ is a point; this implies, for example, that H0(Xa) ∼=Z and Hn(Xa) ∼= 0, n ≥ 1, for every a ∈Ob(D). It

is easy to verify the following corollary of Theorem 3.9.

92



Hybrid Model Structures

Corollary 3.5. Assume that D is finite, i.e., has a finite number of objects (and hence morphisms), and that

X : D →Top is domain contractible. Then

HYn(D,X) ∼= Hn(grph(D))

for all n ≥ 0; here Hn(grph(D)) is the homology of the graph grph(D).

This rather obvious statement has some interesting connotations. Namely, it indicates that the

formulation of hybrid homology is in fact the right one; it agrees with the homology of the discrete struc-

ture of a hybrid topological space when the continuous data is trivial.

Example 3.3. For the hybrid topological space Xball : Dball →Top, the hybrid homology is given by:

HY1(Dball,Xball) ∼= HY0(Dball,Xball) ∼=Z.

Note that if one were to consider the homology of the colimit (and not the homotopy colimit), the first

homology would be trivial. One concludes that the colimit does not yield the right topology, while the

homotopy colimit does.
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