
First Steps Toward Underactuated Human-Inspired
Bipedal Robotic Walking

Aaron D. Ames

Abstract— This paper presents the first steps toward going
from human data to formal controller design to experimental
realization in the context of underactuated bipedal robots.
Specifically, by studying experimental human walking data,
we find that specific outputs of the human, i.e., functions
of the kinematics, appear to be canonical to walking and
are all characterized by a single function of time, termed a
human walking function. Using the human outputs and walking
function, we design a human-inspired controller that drives the
output of the robot to the output of the human as represented
by the walking function. The main result of the paper is an
optimization problem that determines the parameters of this
controller so as to guarantee stable underactuated walking
that is as “close” as possible to human walking. This result is
demonstrated through the simulation of a physical underactu-
ated 2D bipedal robot, AMBER. Experimentally implementing
this control on AMBER through “feed-forward” control, i.e.,
trajectory tracking, repeatedly results in 5-10 steps.

I. INTRODUCTION

The main idea behind this work is that, to achieve truly
human-like robotic walking, one should first look to human
walking. This deceptively simple idea is fraught with com-
plication, as humans have highly developed neuromuscular
systems which they control in highly complex ways. Yet for
simple walking behaviors, such as walking on flat ground,
locomotion appears to be controlled, or at least largely
influenced, by central pattern generators in the spinal cord,
resulting in very little cognitive load [7], [8], [9], [12], [20].
This seems to imply that there are simple patterns present
in human walking which, if they can be identified, can
be exploited through robotic control to achieve human-like
robotic walking.

Given human walking as the motivation for achieving
robotic walking, this paper begins by looking at human
walking data, i.e., angles over time, achieved through motion
capture of subjects walking on flat ground and at a “natural”
pace. Viewing this data as the samples from a highly complex
system, we seek output functions of this data (functions
on the angles) that appear to characterize the system—
these should be mutually exclusive, thus providing a low
dimensional representation of the system’s behavior. The first
result of this paper is a collection of outputs of this form.
Moreover, we find that these human outputs, as computed
from the data, appear to be described by a very simple
function: the time solution to a linear spring-mass-damper
system. We thus term this function the canonical human
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bipedal robot AMBER (right), a 2D bipedal robot consisting
of 5 links with underactuation at the ankle.

walking function, and we verify that in fact this function
describes the human data by showing that it can be fit to the
human data with a remarkably high correlation coefficient.
Thus, humans appear to act like linear spring-mass-damper
systems when walking on flat ground.

The simplicity that humans display when walking mo-
tivates the construction of a human-inspired controller for
bipedal robots, especially in the case of underactuation
where dynamic stability is necessary. In particular, using
input/output linearization, we can construct an underactuated
control law that drives the output of the robot to the output
of the human, as represented by the canonical walking
functions. Building upon [2] and [17], we characterize the
zero dynamics associated with the human-inspired controller
and obtain conditions on the parameters of this controller
that guarantee hybrid zero dynamics. The problem of finding
a stable walking gait is thus reduced to a 2-dimensional
system and, through energy methods, the existence of a stable
periodic orbit can be determined through simple inequalities.
Utilizing these conditions as constraints on an optimization
problem, where the cost is the least squares fit of the human
walking functions to the human walking data, we obtain
parameters for the human-inspired controller that result in
stable underactuated robotic walking that is as close as
possible to human walking.

The formal results of this paper are demonstrated on the
model of a 2D underactuated bipedal robot AMBER (shown
in Fig. 1). In particular, we construct a hybrid model of
this system and utilize human-inspired control to obtain
stable robotic walking for this biped as demonstrated through



simulation. As a proof of concept, we conclude this paper
by discussing the first steps toward achieving real bipedal
robotic walking through the formal methods presented in
this paper. The walking trajectories found through simulation
are implemented on AMBER through trajectory tracking,
i.e., feed-forward control, wherein the robot can repeatedly
take 5-10 steps—we thereby go from human data, to formal
controller design, to experimental realization.

This paper has drawn inspiration from work on dynamic
robotic walking, including but not limited to: passive walking
and controlled symmetries [10], [15], geometric reduction
[4], [5] and hybrid zero dynamics [17], [18]. It is important
to note that this is not the first paper that attempts to bridge
the gap between human and robotic walking; of special note
is the existing work that studies human data in the context
of robotic walking, optimization and virtual constraints [14],
[16], [19]; a common thread in that work is that the human
data considered consists of simply the joint angles, and
this data is fit with high order polynomials. The results in
this paper, therefore, substantially diverge from this existing
work in two important and fundamental ways: human output
data is considered, and this output data is described with
canonical walking functions, rather than being “overfit” by
polynomials. Finally, the novelty of this paper lies in the
formal extension of [2] to the case of underactuation—an
extension that is much more computationally tractable than
the method presented in [2] (requiring only a few minutes
rather than hours) and therefore more realizable on physical
robots, as evidenced by the experimental implementation
results presented in this paper.

II. BIPEDAL ROBOT MODEL (AMBER)

Hybrid systems are systems that display both continuous
and discrete behavior and so bipedal walkers are naturally
modeled by systems of this form, with continuous dynamics
when the leg swings and discrete dynamics when the foot
strikes. We forgo explicitly stating the definition of a hybrid
system used in this paper, along with the definition of
solutions of these systems, periodic orbits and Poincaré
maps, as they can be found, exactly as used in this paper,
in [2]. Also note that hybrid systems, as considered here,
are equivalent to systems with impulsive effects which have
been well-studied in the context of bipedal robotic walking
[5], [17], [18].

The formalisms of this paper are applied to the model
of a physical bipedal robot: AMBER (as seen in Fig. 1).
This robot has 5 links (2 calves, 2 thighs and a torso), is
61 cm tall with a total mass of 3.3 kg. AMBER is made
from aluminum with carbon fiber calves, powered by 4
Maxon motors and controlled through LabView software by
National Instruments. The robot has point feet, and is thus
underactuated at the ankle. In addition, this robot is supported
in the lateral plane via a boom; this boom does not provide
support to the robot in the sagittal plane. Formally, we can
model this robot as a hybrid system

H C R = (XR,UR,SR,∆R, fR,gR). (1)

The method used to construct the individual elements of this
hybrid system will now be discussed.
Continuous Dynamics: The configuration space of the robot
QR is given in coordinates by: θ = (θs f ,θsk,θsh,θnsh,θnsk)

T ,
where, as illustrated on the right, θs f is the angle of the stance
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foot, θsk is the angle of the stance
knee, θsh is the angle of the torso
with the stance thigh, θnsh is the
angle of the non-stance thigh with
the torso, and θnsk is the angle of
the non-stance (or swing) knee.
Calculating the mass and inertia
properties of each link of the robot
through a SolidWorks model of the robot (Fig. 1) allows for
the construction of the Lagrangian:

LR(θ , θ̇) =
1
2

θ̇
T D(θ)θ̇ −V (θ), (2)

where D(θ) is the inertia matrix and V (θ) is the potential
energy. Explicitly, this is done symbolically through the
method of twists and exponential maps (see [11]). The Euler-
Lagrange equations yield the equations of motion:

D(θ)θ̈ +H(θ , θ̇) = B(θ)u.

Converting the equations of motion to a first order ODE
yields the affine control system ( fR,gR):

fR(θ , θ̇)=

[
θ̇

−D−1(θ)H(θ , θ̇)

]
, gR(θ)=

[
0

D−1(θ)B(θ)

]
.

Since the robot is underactuated at the ankle, UR = R4 and
B(θ) ∈ R5×4.
Domain and Guard: The domain specifies the allowable
configuration of the system as specified by a unilateral
constraint function hR; for the biped considered in this paper,
this function specifies that the non-stance foot must be above
the ground, i.e., hR is the height of the non-stance foot. In
particular, the domain XR is given by:

XR =
{
(θ , θ̇) ∈ T QR : hR(θ)≥ 0

}
,

where T QR is the tangent space of QR. The guard is just the
boundary of the domain with the additional assumption that
the unilateral constraint is decreasing:

SR =
{
(θ , θ̇) ∈ T QR : hR(θ) = 0 and dhR(θ)θ̇ < 0

}
,

where dhR(θ) is the Jacobian of hR at θ .
Discrete Dynamics. The discrete dynamics of the robot
determine how the velocities of the robot change when the
foot impacts the ground, while simultaneously switching the
“stance” and “non-stance” legs. In particular, the reset map
∆R is given by:

∆R : SR→ XR, ∆R(θ , θ̇) =

[
∆θ θ

∆
θ̇
(θ)θ̇

]
, (3)

where ∆θ is the relabeling which switches the stance and
non-stance leg at impact (by appropriately changing the
angles). Here, ∆

θ̇
determines the change in velocity due to

impact; we forgo the detailed discussion on its computation,
but such descriptions can be found in [2], [5] and [6].



III. HUMAN-INSPIRED CONTROL

By considering data from a human walking experiment,
and looking at functions of the kinematics of the human, i.e.,
human output functions, we find that certain outputs of the
human are described by the solution to a linear spring-mass-
damper system which we term canonical walking functions.
Using these outputs and their time-based representation
through the canonical walking functions, we construct a
human-inspired controller that drives the outputs of the robot
to the outputs of the human (as represented by canonical
walking functions). Moreover, we are able to make this
control law autonomous through a parameterization of time
based upon the position of the hip. The end result is a
feedback control that is used to obtain stable underactuated
bipedal robotic walking.
Human Outputs. The human walking data used in this paper
was collected from 9 subjects: 2 females and 7 males with
ages ranging from 17 to 30, heights ranging from 160.0 cm
to 188.5 cm, and weights ranging from 47.7 kg to 90.9 kg.
The subjects walked 3 meters along a line drawn on the floor
at a “natural” pace, with each subject performing 11 trials.
Specific details on the experiment and data analysis can be
found in [2].

By studying the human walking data, the goal is to find
specific outputs of the angles of a human over the course of a
step, i.e., functions of the kinematics, that can be used for the
purposes of robotic control. With this goal in mind, consider
five outputs that appear to characterize walking in the case
of the robot model and control objectives of this paper: the
linearization of the x-position of the hip, phip, given by:

δ phip(θ) = Lc(−θs f )+Lt(−θs f −θsk) (4)

with Lc and Lt the length of the calf and thigh, the lineariza-
tion of the slope of the non-stance leg mnsl , (the tangent of
the angle between the z-axis and the line on the non-stance
leg connecting the ankle and hip), given by:

δmnsl(θ) =−θs f −θsk−θsh−θnsh +
Lc

Lc +Lt
θnsk, (5)

the angle of the stance knee, θsk, the angle of the non-stance
knee, θnsk, and the angle of the torso from vertical,

θtor(θ) = θs f +θsk +θsh. (6)

These outputs were computed from the experimental hu-
man walking data for each subject, and the mean of the
output data for all subjects was taken1, with the results given
in Fig. 2. Note that the motivation for considering the lin-
earization of the position of the hip and the non-stance slope
(rather than their original nonlinear formulations, as was
considered in [2]) will be seen later in the paper—it allows
for a simple representation of the zero dynamics especially
suited to formally obtaining underactuated walking.

1We do not normalize the human data to the parameters of AMBER
because it is fairly human-like in proportions. For robots with less human-
like measurements, normalization may be necessary (as was the case for
NAO in [3]).
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Fig. 2: The mean human output data for the nine subjects,
with error bands showing one standard deviation from the
mean, and the canonical walking function fits.

Human Walking Functions. The simple form that the
outputs take in Fig. 2 motivates the consideration of a spe-
cial class of walking functions. In particular, the linearized
position of the hip appears to be essentially a linear function
of time:

δ pd
hip(t,v) = vhipt. (7)

The remaining human outputs, δmnsl , θsk, θnsk, θtor appear to
be described by the solution to a linear mass-spring-damper
system, which motivates the definition of the canonical
human walking function:

yH(t,α) := e−α4t(α1 cos(α2t)+α3 sin(α2t))+α5. (8)

This function can be related to the more standard form of
the solution to a linear mass-spring- damper system as by
setting α1 = c0, α2 = ωd , α3 = c1, α4 = ζ ωn and α5 = g,
where ζ is the damping ratio, ωn is the natural frequency,
ωd = ωn

√
1−ζ 2 is the damped natural frequency, c0 and c1

are determined by the initial conditions of the system, and g
is a “gravity” related constant. Performing a least squares fit
of the canonical walking functions with the mean output data
results in the parameters stated in Table I. The correlations,
as given in the same table, show that the fitted walking
functions very closely model the human output data, i.e.,
the chosen human walking functions appear to be, in fact,
canonical. Indeed, the coefficients of correlation are all very
high, ranging from 0.9862 and 0.9997. The accuracy of the
fits can be seen in Fig. 2.

Output Functions. Based upon the canonical human walk-
ing functions, we define relative degree two outputs for the
bipedal robot being considered. In particular, with the goal



yH(t) = e−α4t(α1 cos(α2t)+α3 sin(α2t))+α5
Fun. vhip α1 α2 α3 α4 α5 Cor.
δ phip 0.9337 * * * * * 0.9991
δmnsl * 0.0117 8.6591 0.1153 -2.1554 0.2419 0.9997

θsk * -0.1739 13.6644 0.0397 3.3222 0.3332 0.9934
θnsk * -0.3439 10.5728 0.0464 -0.8606 0.6812 0.9996
θtor * -0.0166 10.4416 -0.0033 3.2976 0.0729 0.9862

TABLE I: Table containing parameter values of the canonical
human walking functions obtained from fitting the mean
human data, together with the correlations of the fits.

of the robot tracking the human outputs, we consider the
following actual and desired outputs:

ya(θ) =


δmR

nsl(θ)
θsk
θnsk

θ R
tor(θ)

 , yd(t) =


yH(t,αnsl)
yH(t,αsk)
yH(t,αnsk)
yH(t,αtor)

 , (9)

where δmR
nsl and θ R

tor are the functions given in (5)
and (6) computed with the parameters of the robot, and
yd consists of the human walking function given in (8)
with parameters specific to each output, e.g., αnsl =
(αnsl,1,αnsl,2,αnsl,3,αnsl,4,αnsl,5), in (8), in which case the
desired non-stance slope is δmd

nsl(t,αnsl) = yH(t,αnsl). The
parameters of all of the outputs considered can be combined
to yield a single vector: α = (vhip,αnsl ,αnsk,αsk,αtor) ∈R21.
Control Law Construction. The goal is to drive ya → yd ,
i.e., to drive the outputs of the robot to the outputs of the
human. Since yd depends on time, this could be done through
standard tracking control laws [13]. With a view towards
robustness, we instead parameterize time in order to obtain
an autonomous control law (as motivated by both the human
data and the constructions in [17], [18]). Using the fact that
the forward position of the hip of the human is described by
δ pd

hip(t,vhip) = vhipt, i.e., for the human t ≈ δ phip
vhip

, define:

τ(θ) =
δ pR

hip(θ)−δ pR
hip(θ

+)

vhip
, (10)

where here pR
hip(θ

+) is the position of the hip of the robot at
the beginning of a step2 with θ+ assumed to be a point where
the height of the non-stance foot is zero, i.e., hR(θ

+) = 0.
Using the parameterization of time, we define the follow-

ing human-inspired output:

y(θ) = ya(θ)− yd(τ(θ)), (11)

which depends on the specific choice of parameters, α , for
the human walking functions. For the affine control system
( fR,gR) associated with the robotic model (1), we define the
following control law:

u(θ , θ̇) = (12)

−A−1(θ , θ̇)
(
L2

fR y(θ , θ̇)+2εL fR y(θ , θ̇)+ ε
2y(θ)

)
,

2Note that we can assume that the initial position of the human is zero,
while this cannot be assumed for the robot since the initial position of the
hip will depend on the specific choice of configuration variables for the
robot.

with A(θ , θ̇) = LgRL fR y(θ , θ̇) the decoupling matrix and L
the Lie derivative. Note that the decoupling matrix is non-
singular exactly because of the choice of output functions,
i.e., care was taken when defining the human outputs so
that they were “mutually exclusive.” It follows that for a
control gain ε > 0, the control law u renders the output
exponentially stable [13]. That is, the human-inspired output
y→ 0 exponentially at a rate of ε; in other words, the outputs
of the robot will converge to the canonical human walking
functions exponentially.

Applying the feedback control law in (12) to the hybrid
control system modeling the bipedal robot being considered,
H C R as given in (1), yields a hybrid system:

H
(α,ε)

R = (XR,SR,∆R, f (α,ε)
R ), (13)

where, XR, SR, and ∆R are defined as for H C R, and

f (α,ε)
R (θ , θ̇) = fR(θ , θ̇)+gR(θ , θ̇)u(θ , θ̇),

where the dependence of f (α,ε)
R on the vector of parameters,

α , and the control gain for the input/output linearization
control law, ε , has been made explicit.

IV. HUMAN-INSPIRED HYBRID ZERO DYNAMICS

The goal of this section is to find control parameters that
result in hybrid zero dynamics (HZD) while best fitting the
human walking data. The main result is that we are able
to formulate an optimization problem, only depending on
the parameters α , that guarantees HZD while simultaneously
generating a stable walking gait. This optimization is demon-
strated with the mean human walking data, where it is shown
that surprisingly good agreement between the human outputs
and robot outputs can be obtained.
Problem Statement. The goal of the human-inspired con-
troller (12) is to drive the outputs of the robot to the outputs
of the human: ya→ yd . In other words, the controller renders
the zero dynamics surface:

Zα = {(θ , θ̇) ∈ T QR : y(θ) = 0, L fR y(θ , θ̇) = 0} (14)

exponentially stable; moreover, this surface is invariant for
the continuous dynamics of the hybrid system H

(α,ε)
R . Note

that here 0 ∈ R4 is a vector of zeros and we make the de-
pendence of Zα on the set of parameters explicit. It is at this
point that continuous systems and hybrid systems diverge:
while this surface is invariant for the continuous dynamics,
it is not necessarily invariant for the hybrid dynamics. In
particular, the discrete impacts in the system cause the state
to be “thrown” off of the zero dynamics surface. Therefore, a
hybrid system has hybrid zero dynamics if the zero dynamics
are invariant through impact: ∆R(SR∩Zα)⊂ Zα .

From the mean human walking data (discussed in Sect.
III), we obtain discrete times, tH [k], and discrete val-
ues for the human output data, yH

i [k], for i ∈ Output =
{hip,msl,sk,nsk, tor}; for example, yH

msl [k] = δmH
nsl [k]. De-

fine the following human-data-based cost function:

CostHD(α) =
K

∑
k=1

∑
i∈Output

(
yH

i [k]− yH(tH [k],αi)
)2

(15)



which is simply the sum of squared residuals. The goal of
human-inspired HZD is to find parameters α∗ that solve the
following constrained optimization problem:

α
∗ = argmin

α∈R21
CostHD(α) (16)

s.t ∆R(SR∩Zα)⊂ Zα (HZD)

with results in the least squares fit of the human walking
functions to the human output data, but subject to constraints
that ensure HZD. In other words, we seek to “shape” the
zero dynamics surface so that it as “human-like” as possible
while simultaneously being hybrid invariant. The formal goal
of this section is to restate (HZD) in such a way that it can
be practically solved.
Zero Dynamics. This section utilizes the fact that the human
outputs were specifically chosen to be linear in order to
explicitly construct the zero dynamics. In particular, we
utilize the constructions in [17], reframed in the context of
canonical human walking functions. Because of the specific
choice of ya in (9), we begin by picking the following
representation of the zero dynamics:

ξ1 = δ pR
hip(θ) =: cθ (17)

ξ2 = D(θ)1,1θ̇ =: γ0(θ)θ̇

where c ∈ R5×1 is obtained from (4), and D(θ)1,1 is the
first entry of the inertia matrix in (2). Moreover, since ξ1
is just the linearized position of the hip, which was used to
parameterized time (10), we can write yd(τ(θ)) = yd(ξ1).

Due to the fact that we considered linear output functions,
we can write ya(θ) = Hθ for H ∈ R4×5 with full row rank.
Therefore, picking the coordinates

η1 = ya(θ) = Hθ (18)
η2 = L fRya(θ , θ̇) = Hθ̇

and defining

Φ(ξ1) =

[
c
H

]−1(
ξ1

yd(ξ1)

)
Ψ(ξ1) =

[
γ0(Φ(ξ1))

H− ∂yd(ξ1)
∂ξ1

c

]−1(
1
0

)
it follows that for θ = Φ(ξ1) and θ̇ = Ψ(ξ1)ξ2 that (θ , θ̇) ∈
Zα . Finally, the zero dynamics evolve according to the ODE:

ξ̇1 = κ1(ξ1)ξ2 κ1(ξ1) := cΨ(ξ1) (19)

ξ̇2 = κ2(ξ1) κ2(ξ1) :=
∂V (θ)

∂θs f

∣∣∣∣
θ=Φ(ξ1)

with V the potential energy of the robot (2).
The advantage of the zero dynamic representation intro-

duced is that it allows for the existence and stability of a
fixed point of the zero dynamics to be determined without
integrating the ODE [17]. This is achieved by considering the
energy of the zero dynamics, and in particular the potential
energy. Given a point on the guard (θ−, θ̇−) ∈ SR with its
pre-impact state (θ+, θ̇+) = ∆R(θ

−, θ̇−), we can compute

ξ
−
1 = δ pR

hip(θ
−) and ξ

+
1 = δ pR

hip(θ
+). From this, the change

in ξ2 due to this impact can be determined through:

∆Z(θ
−) = γ0(θ

+)∆
θ̇
(θ−)Ψ(δ pR

hip(θ
−)) (20)

wherein ξ
+
2 = ∆Z(θ

−)ξ−2 . In essence, since the hybrid zero
dynamics is 2-dimensional, when considering the stability of
a limit cycle in this surface the hyperplane ξ1 = ξ

−
1 can be

chosen as the Poincaré section. As a result, the stability of
the periodic orbit can be characterized by a 1-dimensional
discrete time dynamical system which updates according to
∆Z(θ

−), so this constant is intricately tied to the stability of
a limit cycle in the zero dynamics surface and can be fixed
ahead of time by the choice of θ−.

The potential energy of the zero dynamics (19), given by:

VZ(ξ1) :=−
∫

ξ1

ξ
+
1

κ2(ξ )

κ1(ξ )
dξ

can be used to determine when the robot will take a full step
in the zero dynamics surface through the constant:

DZ(θ
−) =

∆Z(θ
−)2

1−∆Z(θ−)2 VZ(δ pR
hip(θ

−))+V max
Z

with V max
Z = max

ξ
+
1 ≤ξ≤ξ

−
1

VZ(ξ ). Specifically, if DZ(θ
−)<

0, it will imply the existence of a limit cycle in the hybrid
zero dynamics surface, and if 0 < ∆Z(θ

−)< 1, it will imply
the stability of that limit cycle [17]. Before relating these
ideas back to human data and human-inspired control, it
is necessary to construct the point θ−, in terms of the
parameters α , that will be considered in the optimization.
Inverse Kinematics. To acheive the goal of restating (16) in
a way that is independent of state variables (position and
velocity), we can use the outputs and guard functions to
explicitly solve for the configuration of the system ϑ(α) ∈
QR on the guard in terms of the parameters. In particular, let

ϑ(α) = θ s.t
[

y(∆θ θ)
hR(θ)

]
=

[
0
0

]
, (21)

where ∆θ is the relabeling matrix (3). Note that ϑ(α) exists
because of the specific structure of the outputs, y(∆θ θ),
chosen. In fact, the reason for considering y at the point
∆θ θ is because this implies that the configuration at the
beginning of the step is θ+ = ∆θ θ and thus τ(∆θ θ) = 0
implying that: y(∆θ θ) =H∆θ θ−yd(0), or there is a solution
to (21) because of the simple form that y takes at ∆θ θ .

Using ϑ(α), we can explicitly solve for a point
(ϑ(α), ϑ̇(α)) ∈ Zα ∩SR such that the velocity of the hip at
that point is vhip; thus the speed of the robot can be controlled
through the choice of parameters. In particular, for

Y (θ) =
[

dδ pR
hip(θ)

dy(θ)

]
, (22)

with dδ pR
hip(θ) and dy(θ) the Jacobian of phip and y,

respectively, define

ϑ̇(α) = Y−1(ϑ(α))

[
vhip
0

]
, (23)

where Y is invertible because of the choice of outputs.



Main Result. We now present the main result of this paper.
Using ϑ(α) and ϑ̇(α), we can restate the optimization
problem (16) in terms of only parameters of the system.
Moreover, by solving the restated optimization problem, we
automatically obtain an initial condition corresponding to
stable periodic walking. Note that space constraints prevent
the inclusion of a proof, but it essentially follows from com-
bining the results of [17] and [2] (see [3] for an additional
formal results in the case of full actuation).

Theorem 1: The parameters α∗ solving the constrained
optimization problem:

α
∗ = argmin

α∈R21
CostHD(α) (24)

s.t y(ϑ(α)) = 0 (C1)

dy(∆θ ϑ(α))∆
θ̇
(ϑ(α))ϑ̇(α) = 0 (C2)

dhR(ϑ(α))ϑ̇(α)< 0 (C3)
DZ(ϑ(α))< 0 (C4)
0 < ∆Z(ϑ(α))< 1 (C5)

yield hybrid zero dynamics: ∆R(SR∩Zα∗)⊂ Zα∗ . Moreover,
there exists an ε̂ > 0 such that for all ε > ε̂ the hybrid
system H

(α∗,ε)
R has a stable periodic orbit with fixed point

(θ ∗, θ̇ ∗) ∈ SR∩Zα∗ given by:

θ
∗ = ϑ(α), θ̇

∗ = Ψ(cϑ(α))

(
−
√
−VZ(ϑ(α))

1−∆Z(ϑ(α))

)
.

V. SIMULATION, EXPERIMENTATION & CONCLUSIONS

This section applies the results of this paper, and specif-
ically the main result, to the bipedal robot AMBER. This
is done both in simulation and through experimentation.
In the context of simulation, we are able to demonstrate
that Theorem 1 can be effectively applied to the formal
model of AMBER to obtain “human-like” robotic walking.
Moreover, the walking found in simulation is implemented
on the physical robot, where 5 unsupported steps were
achieved; therefore, while we do not obtain sustainable
robotic walking, these experimental results indicate that the
formal theory appears to be practically applicable.
Simulation Results. We apply Theorem 1 to the hybrid
model of AMBER H C R using the mean human data to cal-
culate the cost; specifically, the optimization is numerically
solved in MATLAB. The end result of this optimization is
a collection of control parameters for the α∗ resulting in
a hybrid system H

(α∗,ε)
R . Moreover, the same optimization

automatically generates a fixed point to a stable periodic
orbit; this is verified by picking ε = 10 and checking the
eigenvalues of the linearization of the Poincaré map for
which the maximum magnitude is 0.7761 (and hence less
than 1). Tiles of the walking obtained in simulation can be
seen in Fig. 3(e), with the periodic orbit pictured in Fig.
3(c). In 3(a),(b) the outputs of the robot (actual and desired)
are compared to the human data; from this one concludes
both that hybrid zero dynamics is achieved (the actual and
desired outputs agree) and the outputs of the robot and the
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Fig. 3: Comparison of the outputs of the human and the robot
during the course of a step (a),(b), the periodic orbit of the
walking achieved through Theorem 1 (c), the torques during
a step for the walking (d) and tiles of the walking gait.

human are surprisingly close (especially given the difference
between the robot and the human, and given the fact that the
robot is underactuated). Finally, the walking obtained uses
very low torques for the size and weight of AMBER as can
be seen in Fig. 3(d), meaning the torques are achievable by
the small motors actuating AMBER.

Experimental Results. In order to provide evidence of the
applicability of the theory presented in this paper, it was
applied to the physical bipedal robot AMBER (see Fig. 1).
The robot itself was supported in the lateral plane by a
boom, but it had no support in the sagittal plane, i.e., it can
fall. In addition, the robot was placed on a treadmill, with
the speed of the treadmill set to the average speed of the
walking found in simulation. The trajectories produced by
the simulation of AMBER were exported to LabView, and
a PD control loop was used to track these trajectories on
the robot through the use of both relative encoders on the
motor and absolute encoders on the shaft of each joint. That
is, since we were only tracking the simulation trajectories on
the robot, the control strategy was essentially “feed-forward.”
Through these methods, we were able to obtain 5-10 steps
on the robot, repeatedly over multiple experimental runs.
An example of the walking behavior achieved on the robot
during these “bursts” of walking can be seen in Fig. 4(c) and
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(c) Walking Tiles for AMBER in Experimentation and Simulation

Fig. 4: Comparison of the simulated and experimental angles
of AMBER over one step (a),(b) and tiles of the experimental
step taken (c).

at [1], which shows snapshots of the walking on the physical
robot (top) compared to snapshots of the simulated walking
that generated the trajectories that were tracked by the robot
(bottom). As can be seen, there is good agreement between
the simulated and physical behaviors; this seems to imply
that, in fact, the model of the robot and the formal methods
developed in this paper are valid approximations of reality.
That being said, while we were able to achieve “reasonable”
tracking of the simulation trajectories, we were not able to
achieve exact tracking as can be seen in Fig. 4(a),(b). We
argue that this is due to the fact that trajectory tracking
is inherently non-robust for systems with time sensitive
behavior such as robotic walkers—we were not able to
start the robot at “exactly” the same initial condition as the
simulated walking (this error can be seen in Fig. 4(a),(b)),
and the resulting disturbances could not be corrected through
trajectory tracking. We argue that this is what resulted in the
robot falling after a series of 5-10 steps, and why we were
not able to achieve sustained walking.

Conclusions. This paper describes the first steps toward
achieving human-inspired underactuated bipedal robotic
walking, specifically going from human data to formal
controller design to experimental implementation. The main
contributions of this paper are formal in nature; for an
underactuated bipedal robot, we find outputs of the human
that are characterized by “simple” walking functions which
describe the solution to a linear mass-spring-damper system,
construct a control law so that the robot and the human
display the same behavior in the output and, finally, present
an optimization problem, stated only in terms of the control
parameters, that provides the best fit of the human walking

data while simultaneously and automatically generating a
stable walking gait for the bipedal robot. These formal results
are demonstrated in simulation. Finally, we discuss the first
steps toward applying this formal work to a physical bipedal
robot, AMBER, demonstrating that through essentially feed-
forward control it is possible to obtain the precursors to
walking, “steps,” on the robot. Future work will be devoted
to achieving sustainable walking on AMBER through these
methods by implementing a feedback control strategy on the
robot.
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