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Abstract: A human-inspired method for achieving bipedal robotic wadks proposed in which a hybrid
model of a human is used in conjunction with experimentakimgl data to obtain a multi-domain
hybrid system. Walking data were collected for nine tesfestib; these data are analyzed in terms of
the kinematics of walking. In bipedal walking, certain psilon the body are constrained for various
intervals throughout the gait; this phenomenon is used nmddly break the gait into walking phases.
The results indicate that all of the nine subjects had theedareakdown with similar times spent in
each phase; in other words, this specific breakdown likglyesents @anonical human modelUsing
this canonical breakdown, a controller is designed for aticbmodel which mimics human kinematics
behaviors by tracking functions of the kinematics—thisteolfer is applied in simulation, resulting in
stable walking which is remarkably humanlike in nature.
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1. INTRODUCTION and discrete dynamics resulting from impacts—and comgiai

which are imposed on the system to model phenomena such
Bipedal robotic walking has been well-studied for over ¢hreas ground contact. We will show how constraints can be used
decades—an uncountable number of models have been studiedievelop a four domain breakdown for a hybrid model (four
with an almost endless combination of control laws appliedomain models with different domain structures have been
in an attempt to achieve stable walking. Yet true humanlikeonsidered, see Braun and Goldfarb [2009]); then we will
robotic walking has been noticeably absent in the majorfity &ombine this domain breakdown with the Lagrangian of a
research on the topic. This is likely a ramification of cohtrobipedal robot to construct a hybrid system.

design processes which lack proper cpnsideratio_n 0f hugran IUsing this formalism, we examine data from a given walking
comotion. To achieve anthropomorphic walking, it seemy onl ait. We will describe an experiment in which human walking

reasonable to study human walking patterns and create whybgata were collected for nine human subjects and how these
model based on the results of such a study. Indeed, hum

walking has been studied (see Zatsiorsky [1997], Suthdrla&g[a are used to develop a domain breakdown. We consider

) ' arious constraints on the data and fit “simple” mathemhtica
et al. [2005]) and hybrid models have been created (Seeler'z%unctions, e.g., a Gaussian, to these constrari)nts. Thé veilu

be a set of fitted functions with coefficients of correlatican
%%ty that accurately represents a human gait. We will then
describe a robotic model with mass and length parameters
derived from anthropometry of a chosen test subject. Usiag t
“human” functions, we describe a control scheme which sack
Researchers in biomechanics generally study forces and dige human functions and results in stable humanlike wal&ing
namics (see Seireg and Arvikar [1975], Winter [1990]); $pec the robotic model.
ically, forces and loading have been studied at the footAsee
et al. [2006], Rodgers [1988]) and at the hip (see Bergmann
et al. [1993], Heller et al. [2001]). Force plates and foimad- 2. HYBRID SYSTEMS AND CONSTRAINTS
ing models allow researchersto estimate musculosketetzd$é ) ] . ] )
and ground reaction forces (see Scott and Winter [199335¢h Bipedal robotic walking exhibits both discrete and contins
estimates are used with either forward-dynamic models (s€ghavior—it is, therefore, natural to model bipedal robags
Anderson and Pandy [2001], Neptune et al. [2001], Pandy afybrid systems. A walking gait will be shown to consist of
Berme [1988]) or inverse-dynamic models (see Glitsch an@ultiple domains—on each domain, the system evolves in
Baumann [1997], Siegler and Liu [1997]). a continuous fashion according to a dynamic model derived
_ L o from a Lagrangian modeling the mechanical system on that
To model bipedal walking in this paper, we will flrst_lntroduc ‘domain. This dynamic model will depend upon which points
hybrid systems—these are dynamical systems which combigg the robot are in contact with the ground. At a certain
both continuous dynamics as in traditional dynamical syste point in each domain, i.e. when the contact points change,
* R. W. Sinnet is an NSF Graduate Research Fellow. This workpsarted  the model will discretely change to another phase of walking
by NSF grant CNS-0953823 and NHARP award 00512-0184-2009. with a different dynamic model and different control. This

human-inspired bipedal robotic walking (see Srinivasaalet
[2008]). This paper, therefore, attempts to reconcileghiésas
and obtain robotic walking as graceful as a human gait.




I' = (V, E) is adirected cycle

D = {D,}vev is a set odomainswith D, C X, x U, a
smooth submanifold, wher&, represents the state space,
U = {Uy,}vev, wWith U, C R™>, is a set of admissible
controls,

S = {S.}eck is a set ofuardsor switching surfacewith
Se C Dsor(e)!

A = {A.}ccr is aset ofeset mapsvith A, : R™sor(e) —
R™tar(e) @ smooth map,

FG = {(fv, 9v) }ver, Where(f,, g,) is acontrol system
onD,,i.e.,i = f,(z)+ g,(x)uforz € D, andu € U,,.

Toe-Lift Heel-Lift

A hybrid systenis a hybrid control system whet&, = ( for
allv € V, i.e., where feedback controllers have been applied.
In this case, we write:

H = (F7D555A5F)5

Fig. 1. An example of alomain breakdowni.e., the discrete WhereE = {fo}ver, W't.h f”,'s a (possibly non-autonomous)
phases of a walking gait with a specific temporal orderingynamical systen Dy, i..,i = fu(z, ).
The red dots indicate the constraints enforced in each
discrete phase of walking. 2.2 Obtaining Hybrid Systems from Constraints

Toe-Strike Heel-Strike

combination of continuous and discrete phenomena cotesitu

a hybrid system The remainder of this section is devoted to discussing how

a Lagrangian for a biped, together with a domain breakdown
This section formally introduces hybrid systems and disess (which determines the constraints at each vertex of thecasso
how the dynamic model of a robot together with a tempoated cycle), allows one to explicitly construct a hybrid rebd

ral ordering of discrete events, i.e., change in contaattgpi Many details are outlined due to space constraints, but more
completely determines the hybrid model of a system. Moréetail can be found in Grizzle et al. [2010].

specifically, to model bipedal robots, one need only comsid

a Lagrangian and domain breakdown. General Setup. We begin by constructing a Lagrangian for

a robot in either two or three dimensions—the discussions
in this paper apply to either case—in a general position, i.e
no assumptions on ground contact, and then enforce ground
contact through constraints as dictated by the domain graph

2.1 Formal Definition of Hybrid Systems

Hybrid systemsor systems with impulse effedfsee Morris
and Grizzle [2005]) have been studied extensively in a wideagrangians. Following the presentation in Grizzle et al.
variety of contexts and have been used to model a wide ranfg910], let Ry be a fixed inertial or world frame and l€t,

of bipedal robotic systems (see Grizzle et al. [2010]). Thibe a reference frame attached to the body of the biped with
section introduces a definition of hybrid systems applieablposition p, € R3 and orientationp, € SO(3).%2 Given a

to bipedal walking. Steady state bipedal walking is natyral configuration space for the bipe@;, i.e., a choice of body
periodic, motivating the use of multi-domain hybrid sysg&emor shape coordinates for the robot—typically, € Q, is a
with a temporal ordering of events, i.e., hybrid systemsliicly  collection of relative angles between each successivelitike

the domain graph is directed cycle robot with respect to some base configuration—géeeralized
Definition 1. A directed cyclds a grapi™ = (V, E), with V a  coordinates of the robot are found by combining the cootéa
set of vertices and a set of edges, where of the body-fixed framek;, with the shape coordinates, viz.
V:{Ul,UQ,...,Up}, (1) q:(pba¢b7QS)€ Q:R3 XSO(S)X Qs;
E ={e1 ={v1,v2},e2 = {va,v3},...,ep ={vp,v1}}, with Q the generalized configuration space.
with p the number of discrete domainsin the hybrid model. Thige | agrangian of a bipedal robdt,: T7Q — R, can be stated
is illustrated in the following example: in terms of the kinetic energ§; : T7Q — R, and the potential
Example 2.The domain breakdown pictured in Fig. 1 has arenergyV : Q — R, as:
underlying graph which is a directed cycle; the graph is give L(q,d) =T(q,9) — V(q),

byIT', = (V,, E,). There are four vertices and four edges with .
y i/ {t) . hi, hs} g with 79 the tangent bundle aP. The Euler-Lagrange equation
u = 57 ) ) )

allows one to find the dynaimc model, which, for robotic
Ey = {{ts, tl},{tl, hi}, {nl, hs}, {hs, ts}}. systems (cf. Murray et al. [1994]), takes the form

Using this notion of a directed cycle, the formulation of g D(q)i + H(q,q) = B(q)u, (2)

systems which is of interest in this paper can now be intreduc where D(q), the inertia matrix, and3(q), the torque distribu-

Definition 3. A hybrid control system in a cycle a tuple, tion matrix, depend o,  is a vector of applied torques, and
#¢ = (I',D,U,S,A, FG), H(q,q) = Clq,d)q+ G(q)

where contains terms resulting from the Coriolis effect and gravi

L We denote the source and target of an edge F by sor(e) andtar(e), 2 SO(n) represents the special orthogonal group dimensions (cf. Conway
respectively. et al. [1986)).




Congtraints. The dynamic model depends on which con- Bu(ts) =[1001]", Bu(tl)=[1101]"
straints are enforced on a given domain or transition—imioth T ’ - ’
words, which contact points are in contact with the ground. Bu(hl) =[1100]", By(hs)=[0100] .
Formally, we define thecontact setC = {ci,ca,...,ck}

with eachc; representing a specific type of contact possible 3 Hyprid System Construction

in the biped. Assuming that foot contact is restricted to the

toe or heel edge, there are four contact points of interesy this section, we demonstrate that, given a Lagrangian, a

Ct: {CST], cstl,cntsh,cnstt}, where tr:ese Cantlrath represtent thEirected cycle, and a domain breakdown, a hybrid model can
stance heel, stance o€, non-stance heel, and non-stance explicitly constructed. Since the Lagrangian is infdrte

respectively’ We specialize to this set of contact points in .thi§he robot being considered, a domain breakdown alone dgctat
paper for reasons that become clear after our data analysis. the mathematical model of ,the biped

Contact points introduckolonomic constraints;. for ¢ € C,
on the system; this vector must be held constant for the cont
point to be maintained. To construct these constraintssiden
a reference frameR,, at the contact point such that the axis
of rotation about this point (either the heel or toe) is altimg
y-axis. LetR§ : Q %35‘0(3) be a transformation betwedg, (0. d)
andR., p. : @ — R° be the Cartesian position of the frame, _ . Mu\q, q
andv.(q, ) = p.(q, ¢) be the velocity of the frame. The body- Ju(g) = Basis (ROWSP ( dq )) ' 3)
fixed angular velocity (see Jazar [2007]) is then given by

Continuous Dynamics. We explicitly construct the control
ystemi = f,(z) + g,(z)u through the constraints imposed
on each domain by the domain breakdown. For domanV/,
the holonomic constraints am,(¢,¢) = n(q,q)B(v). The
Jacobian is found by differentiating (¢, ¢) viz.

By considering a basis for the row space of the Jacobian,
ORC 0 —w; wf redundant constraints are removedfgg) has full row rank.
-\ C T O(Q) . z x . . . .
Qc(q,9) = (R5(q))” ——¢=| we 0 —uwg Using (3), one can write theonstrained dynamic modas
9 —wy w0 .. .
e e D(q)q + H(q,q) = B(q)u + Ju(q) F, 4)

Note that this skew-symmetric matriR.(q, ¢) is dual to the

angular velocity vectap, — (wZ,wY, w?).4 Then, define whereD, H and B are as in (2) and, is wrenchcontaining

forces and moments expressed in the reference flamgee

) U?;(CL Q) ] Murray et al. [1994]). The wrench;, : TQ x U, is found by
nea:4) = | wg(a:q) | = Je(a) d; differentiating the constraink,(¢)j = constant,
we(g,4) 0 (0Ju(q)
whereJ.(q) is a Jacobian matrix. In the case of 2D bipeds, as Jo(q)d + 9 ( 5q q) qg=0,

in this paper, the treatment is exactly the samerpu, ) = o o _
(v¥(q,q),v?(q,q)). By choosing the given holonomic con-and combining this with (4) to obtain
straint, one can impose the conditign(q,¢) = constant, CoN 1 T -1 Ny

which fixes the contact point to the ground but allows rotatio v (4@ %) = —(Jo(e)D™H(9) ]y (9)) (JU(CL @)g (5

about the heel or toe edge. It is useful to express the cullect -1 _ .
of all holonomic constraints in a matrix(q, ¢) € R?°*4, as +Jo()D™ (9)(Blg)u — Hg, q)))'

n(q, §) = blockdiag (sh, Nst, Tnsh, Tnst) 5 This wrench is commonly referred to as a Lagrange multiplier
where we have suppressed dependencgandg. (see Murray et al. [1994]). Combining (4) and (5) allows one

to eliminateF,(q, ¢, v) and obtain the fields associated to the
Another class of constraints that is important is the cldss @ontrol systemi: = f,(x) + g,(z)u. Forz = (¢, q),
unilateral constraintsh.(gq) for ¢ € C, since they dictate the set r

of admissible configurations of the system. Assuming that th ) r )

walking is on flat ground, these constraints represent tighbe 1, (4, 4) = [P~ (Q)((Jv (9)E(q)Ju(q)D™ (q) . (6)

of a contact point above the ground, ife.(q) = pZ(g), and can B N T (o T (o s

be put in the form of a matrik(q) € R*** in the same manner | —DH(g q) = Jy (@E@)J; (g, Q)Q)

as holonomic constrainté(q) = diag (hsn, hst, nsh, Fnst)- @ [ 0 ]
gu\q) = - = - )

Domain Breakdowns. A domain breakdowis a directed cy- D) (I = I (9)E(9)Ju(9) D" () B(g)

cle with a specific choice of contact points on every verte i N 1 T -1
ﬁNhere, for simplicity=(q) := (J.(¢)D~*(¢)J 1 (q)) .

Formally, we assign to each vertex a binary vector desaibi
which contact points are enforced on that domain. Discrete Dynamics. We now construct the domains, guards,
Definition 4. LetC = {c1, s, . . ., ¢ } be aset of contact points @nd reset maps for a hybrid system using the domain break-
andT be a directed cycle. Alomain breakdowis a function down. Givenavertex € V, the domainiis the set of admissible

B:V — Zk such thatB;(v) = 1 if ¢; is constrainted om and ~ configurations of the system factoring in both friction, gnad
B;(v) = 0 otherwise. torque limitations, and a unilateral constraint. Spedifjcerom

. . L ) the wrenchF, (¢, ¢, u), one can ensure that the foot does not slip
Example 5.Using the domain breakdown in Fig. 1 with graphyy considering inequalities on friction which can be stated
T, from Example 2 and” = {csh, Cst, Cnsh, Cnst | the break-

down is formally given by3,, : V,, — Z3 where to(@)Fo (g, g, u) > 0, )

3 Sometimes the non-stance heel and toe are referred to asitigetseel and Wlth #v(g) @ matrix of friction paramete(s and constants defin-
toe. We prefer the notation non-stance due to the existehdeuble support "9 the geometry of the foot (see Grizzle et al. [2010] for
phases where there is no “swinging” behavior. In this camestance leg is the More details). It was shown in Vukobratovic et al. [1990],
leg holding most of the weight of the biped. Chevallereau et al. [2009] that the moment produced by the
4 By an abuse of notation, we have suppressed the dependeng@nfq,¢).  ground is limited; this limitation has the form:
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(a) Heel height and fit. (b) Toe height and fit.

Fig. 3. The data for the heel and toe heights with the fittings
of a constant, Gaussian, and constant for the heel and a
constant, fourth order polynomial, and constant for the toe

Fig. 2. Experimental setup (left) and sensor placemenhiyig
Each subject wore a suit with affixed sensors. Sensopsesent a method for determining the times during which the
were placed at the joints as illustrated with the red dots otonstraint for a given contact point is enforced through a
the right lateral and anterior aspects of the legs. The samgethod that fits a simple function to the motion of the contact
sensors from different views are connected with red arrowsint when it is unconstrained; when it is constrained, it is
(right) and the labeled blue arrows are used to illustrage titonstant. This procedure yields a temporal ordering of &ven

diversity of subjects in Table 1. which leads to a domain breakdown. The result is a single
r . w) >0 8 universaldomain breakdown for all of the subjects, which is
vo(@)Fo (g, 4,u) 20, (8)  used to construct the hybrid model studied in this paper.

wherev, (¢) depends on the physical parameters and state of

the system. Combining (7) and (8) with a unilateral conatrai Walking Experiment. Data were collected on nine subjects
hy(q) = h(q)B(v) (if present) yields using the PhaseSpace Motion Capture System, which computes

(Q)Fs(q, d, ) the 3D position of19 LED sensors at80 frames per second
A Loy Hotd FU 49 >0 g) using 12 cameras at a one millimeter level of accuracy. The
o(a,¢,u) = V”(q)h”(q’q’u) =0 (9 cameras were calibrated prior to the experiment and were
) v(9) _ ~ placed to observe a space of size five by five by five meters.
Using (9) allows one to express the domain of admissibility: Eight LED sensors were placed on each leg at the joints and the
D, ={(q,¢,u) € TQx U, : Ay(q,q,u) > 0}. (10) heel and toe, one on the sternum, one on the back behind the
The guard is just the boundary of this domain with the addgténum, and one on the umbilicus. Each trial required aestibj

tional assumption that set of admissible configurationseis dt© Walk three meters along a line on the floor. Each subject
creasing, i.e., the vector field is pointed outside of the aiom performed12 trials, which constituted a single experiment.

_ / Three female and six male subjects were tested; the variatio
or, for an edge = (v, v') € £, in subjects is best seen in Table 1. The data for each individu
S, = {(q,q,u) eTQxU,: Ay(q,¢,u) =0 are rotated so the walking occurs in thedirection and, for
. each subject, the 12 walking trials are averaged, resuiting
and A4,(g, ¢, u) < 0}- a single trajectory for each constraint for at least two step

done step per leg); see Fig. 3. The data are available online;

The impact model is derived by considering the constraints .
b y g see URL:Supplementary Material.

the target domain. For an edge- (¢, ¢’') € E, the post-impact
velocity g™ is given in terms of the pre-impact velocigy : Function Fitting. The domain breakdown for each subject is
§" =Plq,q7) = (I =D g (Jy D™ y) "y )d™ obtained by determining the times when the enforced contact
points change or thevent timeslnstead of using force sensors,
We assume a given contact point is fixed when constrained and
look for a simple function that it follows when unconstraine

with I the identity matrix. In order to obtain periodic behavior
the “left” and “right” leg must be “swapped” at one of the
transitions; this trick is common throughout the literat(see
Grizzle et al. [2001]). This is done with a coordinate tramsf

mation’R switching the role of the left and right legs, i.e., araple 1. Table describing each of the subjects. The subject
state relabeling procedure; using this, the reset map t&awri .\ beris in the left column and they, Lo, L3, Ly, measure-
Au(g,d) = Re O q ments correspond to the lengths in Fig. 2. The measurements i
ALY =0 R.||P. q,49) | ° column 4 are in kilograms and in columns 5-9 are centimeters.
g

The end result is that given a domain breakdown and a bipedat
robot, the hybrid model is completely determined. The gdal o 7
this paper is to determine the domain breakdowns that humarys;
use and this section demonstrated the importance of theidoma|
breakdown in determining the unique model of a system.

x

Age | Weight | Height | L; Lo L3 Ly
30 90.7 184 145 | 850 | 43.0 | 44.0
19 53.5 164 15.0 | 8.00 | 41.0 | 44.0
17 83.9 189 16.5| 8.00 | 45.5 | 55.5
22 90.7 170 145 | 9.00 | 43.0 | 39.0
30 68.9 170 15.0 | 8.00 | 43.0 | 43.0
29 59.8 161 14.0 | 850 | 37.0 | 40.0
26 58.9 164 14.0 | 9.00 | 39.0 | 41.0
77 63.5 163 14.0 | 8.00 | 40.0 | 42.0
23 47.6 165 15.0 | 8.00 | 45.0 | 43.0

3. DOMAIN BREAKDOWN FROM HUMAN DATA

We now determine the domain breakdown for nine test subjects
We begin by discussing the experiment; see Fig. 2. We the
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Fig. 5. The domain breakdown for subject 4 and the times spent
[ ] Left Heel | in each domain. Each tile shows the configuration at the
| Right Toe | ] beginning of the domain and the contact points enforced.
Right o [ i .
| AL The results are shown in Fig. 3 with the transition poirfig]
andr[kZ] indicated by vertical lines. The fits quite accurately
represent the data; indeed, the coefficients of correlé&iote
heel and toe are.9968 and0.9699, respectively.
X B For the contact point € C, we determine the lift and strike

) . ) times, 7[k] and 7[k5] for ¢ € C = {e1,c2,¢3,c4} =

Fig. 4. An overview of the domain breakdown procedure. Topc,, ¢, ., c:t }, over the time interval of the averaged data,
heights of the toes and heels over one step along with[1], 7[T]. Since the data comprise at least two steps (one
the lift and strike time for each constraint (vertical lines step with each leg), there are multiple lift and strike tinires
Middle: active constraints. Bottom: domain breakdowrpne period. Denote by, C [7[1], 7[T7]] the period where is
with enforced constraints drawn as green circles. constrained, i.et, € 7, if f.(t) = constant with f. the fitting

. . . , function for the contact point € C; these intervals are shown

l: LozzrfnslI)Z%éhzlashE:r?gﬁguurrgt’i(?r:vt%nataasgz)r?t];g?gﬁ(r:ttt peo@ts in blue in Fig. 4 over the course of one step (not the entira dat
e\n e period) in the case af = {cm, cit, ¢rn, 1t - Analogous to the

follows vv_hen not in contact with the ground; herg € R" definition of a domain breakdown (Definition 4), we define a
are function parameters. Denote the indexed human data for

. C . . . .
by y.[k], with 7[k] the time corresponding to datuga[k] for binary vectorp(t) € Z|2 |, with C| representing the cardinality
discrete index variable € {1, ..., T}. When the contact point of C, encoding which contact points are constrained at any given

is constrained, it is constant, and when it is unconstraiited time by lettingb;(¢) = 1if t € J, fori € {1,...,|C|}.
follows s.(t, ac). Therefore, we consider the function Determining the Domain Breakdown. First, define the di-
fe(t) = folt, k£7 kS, a.) rected cycld” (if it_ e_xists, which is not guaranteed). Théit)

’ ’ takes on only a finite number of values, sayvalues; denote
se(rlkel, ac), t Sﬂk’c]’ . these values by[n] for n € {1,..., N}. For the walking to be
sc(t, ac), Tlke] <t <[k, periodic, there must exist a positiyec Z satisfying
se(T[kZ]; ac), Tk <t 01

wherer[k!], 7[ks] € {r[k]}1_, are the event times indicating d[n +p] = {] 0} d[n] (11)

when ¢ becomes unconstrained (lift) and constrained (strike? . . . .

: el CNE orn € {1,...,p} with I the identity matrix andd, I €
respectively. We assurmie. < ke If this Is not true, thery ICI/2xIC1/2 |f the data constitute multiple steps, there will be
would consist of the human function, followed by a constan® . p ps,

followed by the human functiod. To calculate the event times, Mmore than one possible value fpr in this case, the proper
we solve the following optimization problem value of p is the smallest of these values as this represents

one step. The matrix that is premultiplied bjn] serves the
. . 0 s 2 purpose of reordering the right leg and left leg. If thisan be
K kse{l..T) accRre (fe(ts ke, k2, ac) = ye(t)) found, periodic walking over the course of two steps has been
o k=1 o discovered in the data with the behavior of the left leg nminmg
for eachc € C. Assuming the foot is rigid and flat, there arethe pehavior of the right leg. In this case, one constructs a
four relevant constraints: one at the heel and one at theotoe {jrected cycle withy domains (as in (1)) and this is the graph
both the left and right feet. Since each constraint has atit The corresponding domain breakdoris given byB(v,,) =

strike time, we have eight domains in one whole step. Howeveyy,) for n € {1,...,p}. The application of this procedure to
in robotics, we typically consider stance and non-stangs;le gypject 4 can be seen in Fig. 4.

without the distinction of left and right, the model is reédc )
to four domains. Doing so allows one to exploit the symmetriResults. We perform the process outlined for the set of contact
inherent in bipedal walking to simplfy controller design. poiNtsC = {cqn, Cst, Cnsh, Cust } ON the nine subjects. The end

) ) ] result showed each subject had the samésersal domain
To illustrate this procedure, consider the averaged datthéd preakdown; this can be seen in Fig. 1. In the context of this
heel and toe in Fig. 3. The height of the heel appears to folloyaper, a single subject (subject 4) was chosen for studydbase
a constant, followed by a Gaussian, followed by a constanipon the completeness of the sensor data; the domain break-

follows when unconstrained is a Gaussian. Similarly, thee to

height appears to follow a constant, followed by a fourtheord )
polynomial, followed by a constant. We fit the averaged heel 4. HUMAN-INSPIRED CONTROLLER DESIGN

and toe data to these functions using the described proeedu][he goal of this section is to find functions that are

T

“canaliic
5 After the construction of thef. functions in this paper, the optimization t0 human walking, i.e., functions that seem intrinsic tokirad.
parameters are supressed, but it is assumed they have hieemided. These functions are used to generate a controller usingée&d
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Fig. 6. Human data over the course of one step with one leghanfitted functions. The plots start at the beginning of domai
with vertical lines indicating transitions between donsaifihe plotted variables are shown in Fig. 8(b).

linearization for a robot with anthropomorphic measuretsen Foot. The behaviors of the heel and toe are more complicated
This technique is shown to result in stable walking despige t (see Fig. 6(c)): the functions describing these heightg)aite
differences between the robotic and human locomotive syste simple (see Fig. 3), yet it is generally not be feasible ttofel
these exact functions as doing so would create conflicts with
4.1 “Canonical” Walking Functions. the holonomic constraints enforced on certain domainsiegus
singularities in the controller. Therefore, we segmenbibieav-
Instead of tracking human trajectories, we seek functidmishv ior of the feet based upon the domain breakdown of the human
have simple representations (e.g., heel and toe height), eibject. In particular, in domaits, the goal of walking is to
describe fundamental behaviors of human walking. From theause the toe to strike the ground. We find the height of the toe
perspective of control, the functions must not conflict wfte  nearly follows a linear function,
constraints of the system on each domain as dictated by the Yasih = Azt + Aqo,

enforcement of robot-ground contact points. after which point the toe is fixed to the ground. In a similar

With these goals in mind, we consider the walking data frorfight, in domainhs, the goal is to effect heel lift. As such, the
subject 4 obtained through the process outlined in Sec. Bon-stance heel lifts according to a Gaussian:

Inspection of various kinematic relationships indicatbatt —(1— Ay )2

functions describing the behavior of the torso, leg angleg ( Yashn = Ar1e 217 LAy

Fig. 8(b), knee angles, and the heel and toe heights seem to

encode the most fundamental behaviors associated to huniaso and Ankle. It is desirable to keep the torso upright. We
walking. The humanlike behavior of these different funatio find from the data that the angle of the torso with respect to
through the course of the walking gait of a human can be se#te world frame follows a sinusoid with small amplitude; we
in Fig. 6, where the data begin at the start of dontain approximate this with a constant:

Knee. Inspecting the behavior of the human knee (see Fig. 6(a)), Yars = VRE _ _
we find that the knee angle appears to follow a Gaussian wheinally, when the leg is swinging, we approximate the bebravi
swinging (the non-stance leg) and a second order system afthe ankle angle with a constant:

sponse when supporting the weight of the person (the stance Ydmsar = Asg 1.
leg). We thus fit the following functions for the angles of the
stance and non-stance knees: Fitting. The paramaters of the human functions are found
cos(Agat) — Az gsin(Az o t) by minimizing the error between the human data and the
Yasks = — Az exp(Aa.a 1) + Azs, corresponding functions; see Fig. 6. The correlation atiefits
(-4 )’2 for the fits can be found in Table 2; in all cases (with the
Yamsks = As.1 €xp (ﬁ) + Asy. exceptions of the torso and ankle) the fits are very good.
5,3

In other words, the stance leg is essentially a spring-damp&.2 Robotic Hybrid Model & Controllers

system responding to the impulse of the body weight of the

person as he or she puts his or her weight on that leg whereg® now consider the robot shown in Fig. 8(a) and attempt to
the non-stance leg is free to swing. design controllers using the human functions.

Leg. For the leg slopes as in Fig. 6(b), i.e., the slope of thRobotic Model. It was shown in Sec. 2 that one can explicitly
line between the ankle and the hip (see Fig. 8(b)), the stanggnstruct a hybrid control system for a set of contact points
leg slope appears to move forward linearly in time and the noand a domain breakdown. Using the procedure from Sec. 3, we

stance leg slope follows a sinusoid: obtain the domain breakdow8,,, representing human walking
Yd,sim = Azt + Az 2, (see Example 5), defined on the cyElg = (Q,, V4,) (givenin
Yamst = Ag1 sin(Agat+ Ags) + Ag.a. Example 2). Using the construction in Sec. 2, we obtain:
Intuitively, this means that the stance leg moves forwardoro A€ = (I'y,D,U,S,A, FG).

tonically forcing the motion of the biped forward, while theThe configuration spac€,., is chosen to be the relative angles
non-stance leg swings freely much like the non-stance knee.between successive links. The parameters of the system are
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Fig. 7. Snapshots of simulated walking gait.

5. SIMULATIONS AND CONCLUDING REMARKS

7

Simulation of5# shows that the biped exhibits stable walking.
Stability is verified by finding a fixed point and applying the
Poincaré map technique. We use the physical model paresnete
found at URL:Supplementary Material and the control gain
¢ = 100. The resulting fixed point is then:

q: = (—0.3969,0.2431,0.2133, —0.4159, 0.3314, 0.0525),
¢ = (—1.2331,0.4907,0.7423,0.1118, —2.7557, 14.0877)

which is on the guard of domaitl. The presence of this fixed
point verifies that a walking gait exists.

‘ In the context of bipedal walking, a stable limit cycle or an
It hon P exponentially stable periodic orbit implies stable watkiwe
(a) Robot configuration (b) Robot constraints would, therefore, like to show that our system has a stable
limit cycle. We will do this by examining the Jacobian of
Fig. 8. (a) The configuration of the robot. (b) The configunati the Poincaré map linearized about the fixed péirit ¢*) (cf.
based variables of the human functions. Parker and Chua [1989]). This Poincaré map will be stable if

unknowns; these are obtained from the data for subject 4 il the eigenvalues of the Jacobian have magnitude beloy. uni

Table 1. The point masses (see Fig. 8(a)) are estimated asingnen, stability of the Poincaré map implies stability o th
standard mass distribution (see Winter [1990]). mit cycIe._The Ja_lcobl_an can be approxmat(_ad by perturbing
about the fixed point with respect to the coordinatesidg. A

Controller Design. Our goal now is to design a controller to numerical approximation yields eigenvalues with magrésid
track the human functions given in Sec. 4.1. We will perform A€ {1.1x 1071, 1.1 x 107%,4.0 x 1075, 05}

this tracking using feedback linearization (see Sastr@@1p

where eigenvalues with magnitude less than® are approxi-

We begin by considering a control system of the faifn, g,), mated as the zero vect®s. We start on the guard correspond-
with v € V,, as given in (6) for a single domain. Lef(q) ing to heel lift so(qo, Go) = (0,0), with ¢ the angle between
represent the vector of “actual” outputs on the system,(#1g. the stance foot and ground, and thus these eigenvaluestare no
height of the stance heel)—these can be found from the farwagresent. If we were to find the fixed point in a domain where
kinematics—and leyJ(t) represent the vector of “desired” these coordinates were allowed to be nonzero, we would find

output functions we wish to track consisting of combinasionan extra two eigenvalues, but these would have magnitude zer

of the human functions. Let = dim(Q) and letm be the (cf. Wendel and Ames [2010]).

number of constraints imposed on a given domain. A contral, . ) )

law which drivesy®(q(t)) — y2(t) ast — oo is the following: Since the eigenvalues have magnitude below unity, we have a
locally exponentially stable periodic orbit. These phase-p

u(g, 4,t) = —A; (g, 9) (Ls, Ly, yi(q) — dia(t) traits shown in Fig. 9 are continuous so we have a periodic
+ 2¢(Lys,y2(q) — 7i(1) + €(y(q) — yjj(t))), orbit. Snapshots of the walking gait are shown in Fig. 7. €hes
simulation results imply that, through a choice of function
) intrinsic to human walking, we were able to obtain surpggmn
Av(g:4) = Lg, Ly, y;(q), anthropomorphic walking on a bipedal robot model.
Applying this control law yields the closed-loop system

fero(@,4,t) = folg, @) + go(@ulg, ¢, 1).
The vectory? consists of the robotic constraints in Fig. 8(b)| _Ea. Constraint T || ts |t | Al | hs

with A, (g, ¢) the decoupling matrix given by

Table 2. Correlations and choice of functions on each domain

computed from the forward kinematics. The specific choice of Yd.shn | Stance heel height 0.73671 .

functions is shown in Table 2, with black dots indicating @i | _Yd.ska | Stancekneeangle | 0.99213|| o | o | o |

functions are used on which domain; this choice is based gnYd.sim ?tance Leg Is';’pe | 099534 o | o | o | @

the discussion in Sec. 4.1. Applying these controllers thea yy‘i’u N%rsos;nscc;ukr?eaenagnZE ol e T
H H H d,nskZ - .

domain results in the non-autonomous hybrid system vons | Non-stance leg siope | 0.99971 .

H =Ty, D,S,AF). Ya,stn | Stance toe height 0.99971( e
Yd,nsas | NON-stance ankle angle * ° °
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Fig. 9. Phase portraits showing results from the simulatiop?’. These phase portraits are closed, indicating that theesept
limit cycles or periodic orbits. In the context of bipedattonotion, this means we have stable walking.
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