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Abstract: A human-inspired method for achieving bipedal robotic walking is proposed in which a hybrid
model of a human is used in conjunction with experimental walking data to obtain a multi-domain
hybrid system. Walking data were collected for nine test subjects; these data are analyzed in terms of
the kinematics of walking. In bipedal walking, certain points on the body are constrained for various
intervals throughout the gait; this phenomenon is used to formally break the gait into walking phases.
The results indicate that all of the nine subjects had the same breakdown with similar times spent in
each phase; in other words, this specific breakdown likely represents acanonical human model. Using
this canonical breakdown, a controller is designed for a robotic model which mimics human kinematics
behaviors by tracking functions of the kinematics—this controller is applied in simulation, resulting in
stable walking which is remarkably humanlike in nature.
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1. INTRODUCTION

Bipedal robotic walking has been well-studied for over three
decades—an uncountable number of models have been studied
with an almost endless combination of control laws applied
in an attempt to achieve stable walking. Yet true humanlike
robotic walking has been noticeably absent in the majority of
research on the topic. This is likely a ramification of control
design processes which lack proper consideration of human lo-
comotion. To achieve anthropomorphic walking, it seems only
reasonable to study human walking patterns and create a hybrid
model based on the results of such a study. Indeed, human
walking has been studied (see Zatsiorsky [1997], Sutherland
et al. [2005]) and hybrid models have been created (see Grizzle
et al. [2001], Sinnet and Ames [2009]); however, only recently
have these endeavors been combined in an effort to create
human-inspired bipedal robotic walking (see Srinivasan etal.
[2008]). This paper, therefore, attempts to reconcile these ideas
and obtain robotic walking as graceful as a human gait.

Researchers in biomechanics generally study forces and dy-
namics (see Seireg and Arvikar [1975], Winter [1990]); specif-
ically, forces and loading have been studied at the foot (seeAu
et al. [2006], Rodgers [1988]) and at the hip (see Bergmann
et al. [1993], Heller et al. [2001]). Force plates and force load-
ing models allow researchers to estimate musculoskeletal forces
and ground reaction forces (see Scott and Winter [1993]); these
estimates are used with either forward-dynamic models (see
Anderson and Pandy [2001], Neptune et al. [2001], Pandy and
Berme [1988]) or inverse-dynamic models (see Glitsch and
Baumann [1997], Siegler and Liu [1997]).

To model bipedal walking in this paper, we will first introduce
hybrid systems—these are dynamical systems which combine
both continuous dynamics as in traditional dynamical systems
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and discrete dynamics resulting from impacts—and constraints,
which are imposed on the system to model phenomena such
as ground contact. We will show how constraints can be used
to develop a four domain breakdown for a hybrid model (four
domain models with different domain structures have been
considered, see Braun and Goldfarb [2009]); then we will
combine this domain breakdown with the Lagrangian of a
bipedal robot to construct a hybrid system.

Using this formalism, we examine data from a given walking
gait. We will describe an experiment in which human walking
data were collected for nine human subjects and how these
data are used to develop a domain breakdown. We consider
various constraints on the data and fit “simple” mathematical
functions, e.g., a Gaussian, to these constraints. The result will
be a set of fitted functions with coefficients of correlation near
unity that accurately represents a human gait. We will then
describe a robotic model with mass and length parameters
derived from anthropometry of a chosen test subject. Using the
“human” functions, we describe a control scheme which tracks
the human functions and results in stable humanlike walkingon
the robotic model.

2. HYBRID SYSTEMS AND CONSTRAINTS

Bipedal robotic walking exhibits both discrete and continuous
behavior—it is, therefore, natural to model bipedal robotsas
hybrid systems. A walking gait will be shown to consist of
multiple domains—on each domain, the system evolves in
a continuous fashion according to a dynamic model derived
from a Lagrangian modeling the mechanical system on that
domain. This dynamic model will depend upon which points
on the robot are in contact with the ground. At a certain
point in each domain, i.e. when the contact points change,
the model will discretely change to another phase of walking
with a different dynamic model and different control. This



Fig. 1. An example of adomain breakdown, i.e., the discrete
phases of a walking gait with a specific temporal ordering.
The red dots indicate the constraints enforced in each
discrete phase of walking.

combination of continuous and discrete phenomena constitutes
a hybrid system.

This section formally introduces hybrid systems and discusses
how the dynamic model of a robot together with a tempo-
ral ordering of discrete events, i.e., change in contact points,
completely determines the hybrid model of a system. More
specifically, to model bipedal robots, one need only consider
a Lagrangian and domain breakdown.

2.1 Formal Definition of Hybrid Systems

Hybrid systemsor systems with impulse effects(see Morris
and Grizzle [2005]) have been studied extensively in a wide
variety of contexts and have been used to model a wide range
of bipedal robotic systems (see Grizzle et al. [2010]). This
section introduces a definition of hybrid systems applicable
to bipedal walking. Steady state bipedal walking is naturally
periodic, motivating the use of multi-domain hybrid systems
with a temporal ordering of events, i.e., hybrid systems in which
the domain graph is adirected cycle.
Definition 1. A directed cycleis a graphΓ = (V,E), with V a
set of vertices andE a set of edges,1 where

V = {v1, v2, . . . , vp} , (1)
E = {e1 = {v1, v2}, e2 = {v2, v3}, . . . , ep = {vp, v1}} ,

with p the number of discrete domains in the hybrid model. This
is illustrated in the following example:
Example 2.The domain breakdown pictured in Fig. 1 has an
underlying graph which is a directed cycle; the graph is given
by Γu = (Vu, Eu). There are four vertices and four edges with

Vu = {ts , tl , hl , hs} ,

Eu = {{ts, tl}, {tl , hl}, {hl , hs}, {hs, ts}} .

Using this notion of a directed cycle, the formulation of hybrid
systems which is of interest in this paper can now be introduced:
Definition 3. A hybrid control system in a cycleis a tuple,

H C = (Γ,D, U, S,∆, FG),

where
1 We denote the source and target of an edgee ∈ E by sor(e) andtar(e),
respectively.

• Γ = (V,E) is adirected cycle
• D = {Dv}v∈V is a set ofdomainswith Dv ⊆ Xv × Uv a

smooth submanifold, whereXv represents the state space,
• U = {Uv}v∈V , with Uv ⊆ R

mv , is a set of admissible
controls,

• S = {Se}e∈E is a set ofguardsor switching surfaceswith
Se ⊆ Dsor(e),

• ∆ = {∆e}e∈E is a set ofreset mapswith ∆e : R
nsor(e) →

R
ntar(e) a smooth map,

• FG = {(fv, gv)}v∈E , where(fv, gv) is acontrol system
onDv, i.e.,ẋ = fv(x) + gv(x)u for x ∈ Dv andu ∈ Uv.

A hybrid systemis a hybrid control system whereUv = ∅ for
all v ∈ V , i.e., where feedback controllers have been applied.
In this case, we write:

H = (Γ,D, S,∆, F ),

whereF = {fv}v∈E, with fv is a (possibly non-autonomous)
dynamical systemonDv, i.e.,ẋ = fv(x, t).

2.2 Obtaining Hybrid Systems from Constraints

The remainder of this section is devoted to discussing how
a Lagrangian for a biped, together with a domain breakdown
(which determines the constraints at each vertex of the associ-
ated cycle), allows one to explicitly construct a hybrid model.
Many details are outlined due to space constraints, but more
detail can be found in Grizzle et al. [2010].

General Setup. We begin by constructing a Lagrangian for
a robot in either two or three dimensions—the discussions
in this paper apply to either case—in a general position, i.e.,
no assumptions on ground contact, and then enforce ground
contact through constraints as dictated by the domain graph.

Lagrangians. Following the presentation in Grizzle et al.
[2010], let R0 be a fixed inertial or world frame and letRb

be a reference frame attached to the body of the biped with
position pb ∈ R

3 and orientationφb ∈ SO(3). 2 Given a
configuration space for the biped,Qs, i.e., a choice of body
or shape coordinates for the robot—typically,qs ∈ Qs is a
collection of relative angles between each successive linkof the
robot with respect to some base configuration—thegeneralized
coordinates of the robot are found by combining the coordinates
of the body-fixed frame,Rb, with the shape coordinates,qs, viz.

q = (pb, φb, qs) ∈ Q = R
3 × SO(3)×Qs,

with Q the generalized configuration space.

The Lagrangian of a bipedal robot,L : TQ → R, can be stated
in terms of the kinetic energy,T : TQ → R, and the potential
energy,V : Q → R, as:

L(q, q̇) = T (q, q̇)− V (q),

with TQ the tangent bundle ofQ. The Euler-Lagrange equation
allows one to find the dynaimc model, which, for robotic
systems (cf. Murray et al. [1994]), takes the form

D(q)q̈ +H(q, q̇) = B(q)u, (2)

whereD(q), the inertia matrix, andB(q), the torque distribu-
tion matrix, depend onq, u is a vector of applied torques, and

H(q, q̇) = C(q, q̇)q̇ +G(q)

contains terms resulting from the Coriolis effect and gravity.

2 SO(n) represents the special orthogonal group inn dimensions (cf. Conway
et al. [1986]).



Constraints. The dynamic model depends on which con-
straints are enforced on a given domain or transition—in other
words, which contact points are in contact with the ground.
Formally, we define thecontact setC = {c1, c2, . . . , ck}
with eachci representing a specific type of contact possible
in the biped. Assuming that foot contact is restricted to the
toe or heel edge, there are four contact points of interest:
C = {csh, cst, cnsh, cnst}, where these constraints represent the
stance heel, stance toe, non-stance heel, and non-stance toe,
respectively.3 We specialize to this set of contact points in this
paper for reasons that become clear after our data analysis.

Contact points introduceholonomic constraints, ηc for c ∈ C,
on the system; this vector must be held constant for the contact
point to be maintained. To construct these constraints, consider
a reference frame,Rc, at the contact pointc such that the axis
of rotation about this point (either the heel or toe) is alongthe
y-axis. LetRc

0 : Q → SO(3) be a transformation betweenR0

andRc, pc : Q → R
3 be the Cartesian position of the frame,

andvc(q, q̇) = ṗc(q, q̇) be the velocity of the frame. The body-
fixed angular velocity (see Jazar [2007]) is then given by

Ωc(q, q̇) = (Rc
0(q))

T ∂Rc
0(q)

∂q
q̇ =

[

0 −ωz
c ωy

c
ωz
c 0 −ωx

c
−ωy

c ωx
c 0

]

.

Note that this skew-symmetric matrixΩc(q, q̇) is dual to the
angular velocity vectorωc = (ωx

c , ω
y
c , ω

z
c ). 4 Then, define

ηc(q, q̇) =

[

vc(q, q̇)
ωx
c (q, q̇)

ωz
c (q, q̇)

]

= Jc(q) q̇,

whereJc(q) is a Jacobian matrix. In the case of 2D bipeds, as
in this paper, the treatment is exactly the same butηc(q, q̇) =
(vxc (q, q̇), v

z
c (q, q̇)). By choosing the given holonomic con-

straint, one can impose the conditionηc(q, q̇) = constant,
which fixes the contact point to the ground but allows rotation
about the heel or toe edge. It is useful to express the collection
of all holonomic constraints in a matrix,η(q, q̇) ∈ R

20×4, as
η(q, q̇) = blockdiag (ηsh , ηst , ηnsh , ηnst ) ,

where we have suppressed dependence onq andq̇.

Another class of constraints that is important is the class of
unilateral constraints,hc(q) for c ∈ C, since they dictate the set
of admissible configurations of the system. Assuming that the
walking is on flat ground, these constraints represent the height
of a contact point above the ground, i.e.,hc(q) = pzc(q), and can
be put in the form of a matrixh(q) ∈ R

4×4 in the same manner
as holonomic constraints:h(q) = diag (hsh , hst , hnsh , hnst ).

Domain Breakdowns. A domain breakdownis a directed cy-
cle with a specific choice of contact points on every vertex.
Formally, we assign to each vertex a binary vector describing
which contact points are enforced on that domain.
Definition 4. LetC = {c1, c2, . . . , ck} be a set of contact points
andΓ be a directed cycle. Adomain breakdownis a function
B : V → Z

k
2 such thatBi(v) = 1 if ci is constrainted onv and

Bi(v) = 0 otherwise.

Example 5.Using the domain breakdown in Fig. 1 with graph
Γu from Example 2 andC = {csh, cst, cnsh, cnst}, the break-
down is formally given byBu : Vu → Z

4
2 where

3 Sometimes the non-stance heel and toe are referred to as the swing heel and
toe. We prefer the notation non-stance due to the existence of double support
phases where there is no “swinging” behavior. In this case, the stance leg is the
leg holding most of the weight of the biped.
4 By an abuse of notation, we have suppressed the dependence ofωc on(q, q̇).

Bu(ts) = [ 1 0 0 1 ]
T
, Bu(tl) = [ 1 1 0 1 ]

T
,

Bu(hl) = [ 1 1 0 0 ]
T
, Bu(hs) = [ 0 1 0 0 ]

T
.

2.3 Hybrid System Construction

In this section, we demonstrate that, given a Lagrangian, a
directed cycle, and a domain breakdown, a hybrid model can
be explicitly constructed. Since the Lagrangian is intrinsic to
the robot being considered, a domain breakdown alone dictates
the mathematical model of the biped.

Continuous Dynamics. We explicitly construct the control
systemẋ = fv(x) + gv(x)u through the constraints imposed
on each domain by the domain breakdown. For domainv ∈ V ,
the holonomic constraints areηv(q, q̇) = η(q, q̇)B(v). The
Jacobian is found by differentiatingηv(q, q̇) viz.

Jv(q) = Basis

(

RowSp

(

∂ηv(q, q̇)

∂q

))

. (3)

By considering a basis for the row space of the Jacobian,
redundant constraints are removed soJv(q) has full row rank.
Using (3), one can write theconstrained dynamic modelas

D(q)q̈ +H(q, q̇) = B(q)u + Jv(q)Fv, (4)

whereD, H andB are as in (2) andFv is wrenchcontaining
forces and moments expressed in the reference frameRc (see
Murray et al. [1994]). The wrenchFv : TQ × Uv is found by
differentiating the constraintJv(q)q̇ = constant,

Jv(q)q̈ +
∂

∂q

(

∂Jv(q)

∂q
q̇

)

q̇ = 0,

and combining this with (4) to obtain

Fv(q, q̇, u) = −
(

Jv(q)D
−1(q)JT

v (q)
)−1

(

J̇v(q, q̇) q̇ (5)

+ Jv(q)D
−1(q)

(

B(q)u−H(q, q̇)
)

)

.

This wrench is commonly referred to as a Lagrange multiplier
(see Murray et al. [1994]). Combining (4) and (5) allows one
to eliminateFv(q, q̇, u) and obtain the fields associated to the
control systeṁx = fv(x) + gv(x)u. Forx = (q, q̇),

fv(q, q̇) =









q̇

D−1(q)
(

(

JT
v (q)Ξ(q)Jv(q)D

−1(q)

−I)H(q, q̇
)

− JT
v (q)Ξ(q)J̇T

v (q, q̇)q̇
)









, (6)

gv(q) =

[

0

D−1(q)
(

I − JT
v (q)Ξ(q)Jv(q)D

−1(q)
)

B(q)

]

,

where, for simplicity,Ξ(q) :=
(

Jv(q)D
−1(q)JT

v (q)
)−1

.

Discrete Dynamics. We now construct the domains, guards,
and reset maps for a hybrid system using the domain break-
down. Given a vertexv ∈ V , the domain is the set of admissible
configurations of the system factoring in both friction, ground
torque limitations, and a unilateral constraint. Specifically, from
the wrenchFv(q, q̇, u), one can ensure that the foot does not slip
by considering inequalities on friction which can be stated:

µv(q)Fv(q, q̇, u) ≥ 0, (7)

with µv(q) a matrix of friction parameters and constants defin-
ing the geometry of the foot (see Grizzle et al. [2010] for
more details). It was shown in Vukobratović et al. [1990],
Chevallereau et al. [2009] that the moment produced by the
ground is limited; this limitation has the form:



Fig. 2. Experimental setup (left) and sensor placement (right).
Each subject wore a suit with affixed sensors. Sensors
were placed at the joints as illustrated with the red dots on
the right lateral and anterior aspects of the legs. The same
sensors from different views are connected with red arrows
(right) and the labeled blue arrows are used to illustrate the
diversity of subjects in Table 1.

νv(q)Fv(q, q̇, u) ≥ 0, (8)
whereνv(q) depends on the physical parameters and state of
the system. Combining (7) and (8) with a unilateral constraint
hv(q) = h(q)B(v) (if present) yields

Av(q, q̇, u) =

[

µv(q)Fv(q, q̇, u)
νv(q)Fv(q, q̇, u)

hv(q)

]

≥ 0. (9)

Using (9) allows one to express the domain of admissibility:
Dv = {(q, q̇, u) ∈ TQ× Uv : Av(q, q̇, u) ≥ 0} . (10)

The guard is just the boundary of this domain with the addi-
tional assumption that set of admissible configurations is de-
creasing, i.e., the vector field is pointed outside of the domain,
or, for an edgee = (v, v′) ∈ E,

Se =
{

(q, q̇, u) ∈ TQ× Uv : Av(q, q̇, u) = 0

and Ȧv(q, q̇, u) ≤ 0
}

.

The impact model is derived by considering the constraints on
the target domain. For an edgee = (q, q′) ∈ E, the post-impact
velocity q̇+ is given in terms of the pre-impact velocityq̇−:

q̇+ = Pe(q, q̇
−) = (I −D−1JT

q′ (Jq′D
−1Jq′ )

−1Jq′)q̇
−

with I the identity matrix. In order to obtain periodic behavior,
the “left” and “right” leg must be “swapped” at one of the
transitions; this trick is common throughout the literature (see
Grizzle et al. [2001]). This is done with a coordinate transfor-
mationR switching the role of the left and right legs, i.e., a
state relabeling procedure; using this, the reset map is written

∆e(q, q̇) =

[

Re 0

0 Re

] [

q
Pe(q, q̇)

]

.

The end result is that given a domain breakdown and a bipedal
robot, the hybrid model is completely determined. The goal of
this paper is to determine the domain breakdowns that humans
use and this section demonstrated the importance of the domain
breakdown in determining the unique model of a system.

3. DOMAIN BREAKDOWN FROM HUMAN DATA

We now determine the domain breakdown for nine test subjects.
We begin by discussing the experiment; see Fig. 2. We then

(a) Heel height and fit. (b) Toe height and fit.

Fig. 3. The data for the heel and toe heights with the fittings
of a constant, Gaussian, and constant for the heel and a
constant, fourth order polynomial, and constant for the toe.

present a method for determining the times during which the
constraint for a given contact point is enforced through a
method that fits a simple function to the motion of the contact
point when it is unconstrained; when it is constrained, it is
constant. This procedure yields a temporal ordering of events
which leads to a domain breakdown. The result is a single
universaldomain breakdown for all of the subjects, which is
used to construct the hybrid model studied in this paper.

Walking Experiment. Data were collected on nine subjects
using the PhaseSpace Motion Capture System, which computes
the 3D position of19 LED sensors at480 frames per second
using 12 cameras at a one millimeter level of accuracy. The
cameras were calibrated prior to the experiment and were
placed to observe a space of size five by five by five meters.
Eight LED sensors were placed on each leg at the joints and the
heel and toe, one on the sternum, one on the back behind the
sternum, and one on the umbilicus. Each trial required a subject
to walk three meters along a line on the floor. Each subject
performed12 trials, which constituted a single experiment.
Three female and six male subjects were tested; the variation
in subjects is best seen in Table 1. The data for each individual
are rotated so the walking occurs in thex direction and, for
each subject, the 12 walking trials are averaged, resultingin
a single trajectory for each constraint for at least two steps
(one step per leg); see Fig. 3. The data are available online;
see URL:Supplementary Material.

Function Fitting. The domain breakdown for each subject is
obtained by determining the times when the enforced contact
points change or theevent times. Instead of using force sensors,
we assume a given contact point is fixed when constrained and
look for a simple function that it follows when unconstrained.

Table 1. Table describing each of the subjects. The subject
number is in the left column and theL1, L2, L3, L4 measure-
ments correspond to the lengths in Fig. 2. The measurements in
column 4 are in kilograms and in columns 5–9 are centimeters.

Sex Age Weight Height L1 L2 L3 L4

1 M 30 90.7 184 14.5 8.50 43.0 44.0
2 F 19 53.5 164 15.0 8.00 41.0 44.0
3 M 17 83.9 189 16.5 8.00 45.5 55.5
4 M 22 90.7 170 14.5 9.00 43.0 39.0
5 M 30 68.9 170 15.0 8.00 43.0 43.0
6 M 29 59.8 161 14.0 8.50 37.0 40.0
7 M 26 58.9 164 14.0 9.00 39.0 41.0
8 F 77 63.5 163 14.0 8.00 40.0 42.0
9 F 23 47.6 165 15.0 8.00 45.0 43.0



Fig. 4. An overview of the domain breakdown procedure. Top:
heights of the toes and heels over one step along with
the lift and strike time for each constraint (vertical lines).
Middle: active constraints. Bottom: domain breakdown
with enforced constraints drawn as green circles.

To formalize this procedure, given a set of contact pointsC,
let sc(t, ac) be ahumanfunction that a contact pointc ∈ C
follows when not in contact with the ground; hereac ∈ Rnc

are function parameters. Denote the indexed human data forc
by yc[k], with τ [k] the time corresponding to datumyc[k] for
discrete index variablek ∈ {1, . . . , T }. When the contact point
is constrained, it is constant, and when it is unconstrained, it
follows sc(t, ac). Therefore, we consider the function

fc(t) = fc(t, k
ℓ
c, k

s
c , ac)

=







sc(τ [k
ℓ
c], ac), t ≤ τ [kℓc],

sc(t, ac), τ [kℓc] < t < τ [ksc ],
sc(τ [k

s
c ], ac), τ [ksc ] ≤ t,

whereτ [kℓc], τ [k
s
c ] ∈ {τ [k]}Tk=1 are the event times indicating

whenc becomes unconstrained (lift) and constrained (strike),
respectively. We assumekℓc < ksc ; if this is not true, thenfc
would consist of the human function, followed by a constant,
followed by the human function.5 To calculate the event times,
we solve the following optimization problem

min
kℓ
c,k

s
c∈{1,...,T}

min
ac∈Rnc

T
∑

k=1

(

fc(t, k
ℓ
c, k

s
c , ac)− yc(t)

)2

for eachc ∈ C. Assuming the foot is rigid and flat, there are
four relevant constraints: one at the heel and one at the toe for
both the left and right feet. Since each constraint has a liftand
strike time, we have eight domains in one whole step. However,
in robotics, we typically consider stance and non-stance legs;
without the distinction of left and right, the model is reduced
to four domains. Doing so allows one to exploit the symmetry
inherent in bipedal walking to simplfy controller design.

To illustrate this procedure, consider the averaged data for the
heel and toe in Fig. 3. The height of the heel appears to follow
a constant, followed by a Gaussian, followed by a constant;
therefore, we claim that the human function which the heel
follows when unconstrained is a Gaussian. Similarly, the toe
height appears to follow a constant, followed by a fourth order
polynomial, followed by a constant. We fit the averaged heel
and toe data to these functions using the described procedure.

5 After the construction of thefc functions in this paper, the optimization
parameters are supressed, but it is assumed they have been determined.

Fig. 5. The domain breakdown for subject 4 and the times spent
in each domain. Each tile shows the configuration at the
beginning of the domain and the contact points enforced.

The results are shown in Fig. 3 with the transition pointsτ [kℓc]
andτ [ksc ] indicated by vertical lines. The fits quite accurately
represent the data; indeed, the coefficients of correlationfor the
heel and toe are0.9968 and0.9699, respectively.

For the contact pointc ∈ C, we determine the lift and strike
times, τ [kℓc] and τ [ksc ] for c ∈ C = {c1, c2, c3, c4} =
{clh, clt, crh, crt}, over the time interval of the averaged data,
[

τ [1], τ [T ]
]

. Since the data comprise at least two steps (one
step with each leg), there are multiple lift and strike timesin
one period. Denote byJc ⊂

[

τ [1], τ [T ]
]

the period wherec is
constrained, i.e.,t ∈ Jc if fc(t) = constant with fc the fitting
function for the contact pointc ∈ C; these intervals are shown
in blue in Fig. 4 over the course of one step (not the entire data
period) in the case ofC = {clh, clt, crh, crt}. Analogous to the
definition of a domain breakdown (Definition 4), we define a
binary vector,b(t) ∈ Z

|C|
2 , with |C| representing the cardinality

of C, encoding which contact points are constrained at any given
time by lettingbi(t) = 1 if t ∈ Jci for i ∈ {1, . . . , |C|}.

Determining the Domain Breakdown. First, define the di-
rected cycleΓ (if it exists, which is not guaranteed). Then,b(t)
takes on only a finite number of values, say,N values; denote
these values byd[n] for n ∈ {1, . . . , N}. For the walking to be
periodic, there must exist a positivep ∈ Z satisfying

d[n+ p] =

[

0 I
I 0

]

d[n] (11)

for n ∈ {1, . . . , p} with I the identity matrix and0, I ∈
R

|C|/2×|C|/2. If the data constitute multiple steps, there will be
more than one possible value forp; in this case, the proper
value of p is the smallest of these values as this represents
one step. The matrix that is premultiplied byd[n] serves the
purpose of reordering the right leg and left leg. If thisp can be
found, periodic walking over the course of two steps has been
discovered in the data with the behavior of the left leg mirroring
the behavior of the right leg. In this case, one constructs a
directed cycle withp domains (as in (1)) and this is the graphΓ.
The corresponding domain breakdownB is given byB(vn) =
d[n] for n ∈ {1, . . . , p}. The application of this procedure to
subject 4 can be seen in Fig. 4.

Results. We perform the process outlined for the set of contact
pointsC = {csh, cst, cnsh, cnst} on the nine subjects. The end
result showed each subject had the sameuniversal domain
breakdown; this can be seen in Fig. 1. In the context of this
paper, a single subject (subject 4) was chosen for study based
upon the completeness of the sensor data; the domain break-
down and the time spent in each domain are shown in Fig. 5.

4. HUMAN-INSPIRED CONTROLLER DESIGN

The goal of this section is to find functions that are “canonical”
to human walking, i.e., functions that seem intrinsic to walking.
These functions are used to generate a controller using feedback
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Fig. 6. Human data over the course of one step with one leg and the fitted functions. The plots start at the beginning of domain ts,
with vertical lines indicating transitions between domains. The plotted variables are shown in Fig. 8(b).

linearization for a robot with anthropomorphic measurements.
This technique is shown to result in stable walking despite the
differences between the robotic and human locomotive systems.

4.1 “Canonical” Walking Functions.

Instead of tracking human trajectories, we seek functions which
have simple representations (e.g., heel and toe height), yet
describe fundamental behaviors of human walking. From the
perspective of control, the functions must not conflict withthe
constraints of the system on each domain as dictated by the
enforcement of robot-ground contact points.

With these goals in mind, we consider the walking data from
subject 4 obtained through the process outlined in Sec. 3.
Inspection of various kinematic relationships indicates that
functions describing the behavior of the torso, leg angles (see
Fig. 8(b), knee angles, and the heel and toe heights seem to
encode the most fundamental behaviors associated to human
walking. The humanlike behavior of these different functions
through the course of the walking gait of a human can be seen
in Fig. 6, where the data begin at the start of domaints.

Knee. Inspecting the behavior of the human knee (see Fig. 6(a)),
we find that the knee angle appears to follow a Gaussian when
swinging (the non-stance leg) and a second order system re-
sponse when supporting the weight of the person (the stance
leg). We thus fit the following functions for the angles of the
stance and non-stance knees:

yd,sk∠ = −A2,1
cos(A2,2 t)−A2,3 sin(A2,2 t)

exp(A2,4 t)
+A2,5,

yd,nsk∠ = A5,1 exp

(

−(t−A5,2)
2

2(A5,3)2

)

+A5,4.

In other words, the stance leg is essentially a spring-damper
system responding to the impulse of the body weight of the
person as he or she puts his or her weight on that leg whereas
the non-stance leg is free to swing.

Leg. For the leg slopes as in Fig. 6(b), i.e., the slope of the
line between the ankle and the hip (see Fig. 8(b)), the stance
leg slope appears to move forward linearly in time and the non-
stance leg slope follows a sinusoid:

yd,slm = A3,1 t+A3,2,

yd,nsl = A6,1 sin(A6,2 t+A6,3) +A6,4.

Intuitively, this means that the stance leg moves forward mono-
tonically forcing the motion of the biped forward, while the
non-stance leg swings freely much like the non-stance knee.

Foot. The behaviors of the heel and toe are more complicated
(see Fig. 6(c)): the functions describing these heights arequite
simple (see Fig. 3), yet it is generally not be feasible to follow
these exact functions as doing so would create conflicts with
the holonomic constraints enforced on certain domains causing
singularities in the controller. Therefore, we segment thebehav-
ior of the feet based upon the domain breakdown of the human
subject. In particular, in domaints, the goal of walking is to
cause the toe to strike the ground. We find the height of the toe
nearly follows a linear function,

yd,sth = A7,1 t+A7,2,

after which point the toe is fixed to the ground. In a similar
light, in domainhs, the goal is to effect heel lift. As such, the
non-stance heel lifts according to a Gaussian:

yd,shh = A1,1 e

−(t−A1,2)2

2(A1,3)2 +A1,4.

Torso and Ankle. It is desirable to keep the torso upright. We
find from the data that the angle of the torso with respect to
the world frame follows a sinusoid with small amplitude; we
approximate this with a constant:

yd,T∠ = A4,1.

Finally, when the leg is swinging, we approximate the behavior
of the ankle angle with a constant:

yd,nsa∠ = A8,1.

Fitting. The paramaters of the human functions are found
by minimizing the error between the human data and the
corresponding functions; see Fig. 6. The correlation coefficients
for the fits can be found in Table 2; in all cases (with the
exceptions of the torso and ankle) the fits are very good.

4.2 Robotic Hybrid Model & Controllers

We now consider the robot shown in Fig. 8(a) and attempt to
design controllers using the human functions.

Robotic Model. It was shown in Sec. 2 that one can explicitly
construct a hybrid control system for a set of contact points
and a domain breakdown. Using the procedure from Sec. 3, we
obtain the domain breakdown,Bu, representing human walking
(see Example 5), defined on the cycleΓu = (Qu, Vu) (given in
Example 2). Using the construction in Sec. 2, we obtain:

H C = (Γu,D, U, S,∆, FG).

The configuration space,Qr, is chosen to be the relative angles
between successive links. The parameters of the system are
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Fig. 8. (a) The configuration of the robot. (b) The configuration-
based variables of the human functions.

unknowns; these are obtained from the data for subject 4 in
Table 1. The point masses (see Fig. 8(a)) are estimated usinga
standard mass distribution (see Winter [1990]).

Controller Design. Our goal now is to design a controller to
track the human functions given in Sec. 4.1. We will perform
this tracking using feedback linearization (see Sastry [1999]).

We begin by considering a control system of the form(fv, gv),
with v ∈ Vu, as given in (6) for a single domain. Letyav (q)
represent the vector of “actual” outputs on the system (e.g., the
height of the stance heel)—these can be found from the forward
kinematics—and letydv(t) represent the vector of “desired”
output functions we wish to track consisting of combinations
of the human functions. Letn = dim(Q) and letm be the
number of constraints imposed on a given domain. A control
law which drivesyav(q(t)) → ydv(t) ast → ∞ is the following:

u(q, q̇, t) = −A−1
v (q, q̇)

(

LfvLfvy
a
v(q) − ÿdv(t)

+ 2ǫ(Lfvy
a
v(q) − ẏdv(t)) + ǫ2(yav (q)− ydv(t))

)

,

with Av(q, q̇) the decoupling matrix given by

Av(q, q̇) = LgvLfvy
a
v (q),

Applying this control law yields the closed-loop system

fcl,v (q, q̇, t) = fv(q, q̇) + gv(q)u(q, q̇, t).

The vectoryav consists of the robotic constraints in Fig. 8(b)
computed from the forward kinematics. The specific choice of
functions is shown in Table 2, with black dots indicating which
functions are used on which domain; this choice is based on
the discussion in Sec. 4.1. Applying these controllers to each
domain results in the non-autonomous hybrid system

H = (Γu,D, S,∆, F ).

5. SIMULATIONS AND CONCLUDING REMARKS

Simulation ofH shows that the biped exhibits stable walking.
Stability is verified by finding a fixed point and applying the
Poincaré map technique. We use the physical model parameters
found at URL:Supplementary Material and the control gain
ε = 100. The resulting fixed point is then:
q∗s = (−0.3969, 0.2431, 0.2133,−0.4159, 0.3314, 0.0525),

q̇∗s = (−1.2331, 0.4907, 0.7423, 0.1118,−2.7557, 14.0877)

which is on the guard of domainhl . The presence of this fixed
point verifies that a walking gait exists.

In the context of bipedal walking, a stable limit cycle or an
exponentially stable periodic orbit implies stable walking. We
would, therefore, like to show that our system has a stable
limit cycle. We will do this by examining the Jacobian of
the Poincaré map linearized about the fixed point(q∗, q̇∗) (cf.
Parker and Chua [1989]). This Poincaré map will be stable if
all the eigenvalues of the Jacobian have magnitude below unity.
Then, stability of the Poincaré map implies stability of the
limit cycle. The Jacobian can be approximated by perturbing
about the fixed point with respect to the coordinatesq andq̇. A
numerical approximation yields eigenvalues with magnitudes:

|λ| ∈ {1.1× 10−1, 1.1× 10−4, 4.0× 10−6,09}.

where eigenvalues with magnitude less than10−6 are approxi-
mated as the zero vector09. We start on the guard correspond-
ing to heel lift so(q0, q̇0) = (0, 0), with q0 the angle between
the stance foot and ground, and thus these eigenvalues are not
present. If we were to find the fixed point in a domain where
these coordinates were allowed to be nonzero, we would find
an extra two eigenvalues, but these would have magnitude zero
(cf. Wendel and Ames [2010]).

Since the eigenvalues have magnitude below unity, we have a
locally exponentially stable periodic orbit. These phase por-
traits shown in Fig. 9 are continuous so we have a periodic
orbit. Snapshots of the walking gait are shown in Fig. 7. These
simulation results imply that, through a choice of functions
intrinsic to human walking, we were able to obtain surprisingly
anthropomorphic walking on a bipedal robot model.

Table 2. Correlations and choice of functions on each domain.

Eq. Constraint r ts tl hl hs

yd,shh Stance heel height 0.73671 •

yd,ska Stance knee angle 0.99213 • • • •

yd,slm Stance leg slope 0.99534 • • • •

yd,T∠ Torso absolute angle * • • • •

yd,nsk∠ Non-stance knee angle 0.99301 • • • •

yd,nsl Non-stance leg slope 0.99971 •

yd,sth Stance toe height 0.99971 •

yd,nsa∠ Non-stance ankle angle * • •
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Fig. 9. Phase portraits showing results from the simulationof H . These phase portraits are closed, indicating that they represent
limit cycles or periodic orbits. In the context of bipedal locomotion, this means we have stable walking.
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