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Abstract: While the focus of robotic bipedal walking to date has been the development of
anthropomorphic gait, the community has been unable to agree on a model for such gait. In this
paper, we propose a universal ordering of events for bipedal walking based on motion capture
data collected from a walking experiment. We process the motion capture data using persistent
homology to automatically determine the ordering of discrete events. Surprisingly, every subject
in the experiment had an identical ordering of such events. This universal ordering allows us to
propose a cost function based upon human data: the human-based cost.

1. INTRODUCTION

The goal of bipedal walking is typically not to minimize
a concrete cost, like torque squared or the specific cost of
transport, but rather to achieve the more ambitious goal of
obtaining human-like walking. The design of a controller to
achieve this objective is implicitly related to the discrete
ordering of events, domain breakdown, i.e. the sequence
of constraints enforced during walking. For the specific
discrete ordering of events illustrated in Fig. 1 knowing
that a controller must ensure that a transition occurs
from the left toe domain, denoted [It], to the left toe and
right heel domain, denoted [lt, rh], is inherently connected
with the domain breakdown. In fact, in a recent paper we
showed that the temporal ordering of discrete events along
with a Lagrangian model, which is purely a function of the
mechanical design of the robot, completely determines the
mathematical model of a biped Ames et al. (2011).

Given the importance of the domain breakdown for
bipedal robotic walking, one would suspect that in fact
there existed some consensus on the ordering of discrete
modes. Unfortunately, the history of robotic walking is
riddled with uncertainty on the appropriate domain break-
down. Traditional models of bipedal robots have for sim-
plicity employed a single domain model (Ames et al.
(2007); Goswami et al. (1996); Tedrake et al. (2005);
Westervelt et al. (2007)), since it assumes an instantaneous
double support phase and excludes the presence of feet.
Adding feet to the bipedal robot requires the extension of
the domain breakdown beyond a single discrete phase and
is typically done by either adding a phase where the heel
is off the ground or a double support phase where both
feet are on the ground, or any combination thereof Choi
and Grizzle (2005); Schaub et al. (2009); Tlalolini et al.
(2009). This lack of consistency among models demands
the question of if there does in fact exist a single “uni-
versal” domain breakdown to achieve anthropomorphic
walking. Implicit in this question is the desire to quantify
how human-like a certain domain breakdown truly is.
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Fig. 1. An example of a domain breakdown, where the red
dots indicate the constraints enforced in each domain.

The goal of this paper is two-fold: first to determine a
universal anthropomorphic domain breakdown for bipedal
walking and second to employ this breakdown to construct
a human-based cost that measures the anthropomorphism
of a gait. Our contributions are as follows. First, in Section
3, we develop a motion capture dataset that we make
available of nine healthy diverse people walking in a
straight line. Second, in Section 4, we develop a novel
procedure exploiting persistent homology to determine
constraint enforcement and hence a domain breakdown
and show that every subject in our experiment has an
identical domain breakdown illustrated in Fig. 1. Third,
in Section 5, we show that by considering a metric over
weighted graphs we can develop a cost function that
measures how human-like a gait is. The paper includes
a discussion of notation in Section 2 and a conclusion in
Section 6.

2. FROM CONSTRAINTS TO MODELS

Bipeds evolve in a continuous fashion according to tradi-
tional equations of motion when a fixed number of points
of the biped are in contact with the ground, e.g., when
one foot is flat on the ground while the other swings for-



ward. The discrete behavior in the system occurs when the
number of contact points change. Since our previous work
showed how to construct a hybrid system model of a biped
using the intrinsic equations of motions of a biped and the
temporal ordering of constraints Ames et al. (2011), in this
section we introduce the notation required to go from the
temporal ordering of constraints to a domain breakdown.

Graphs and Cycles. A graph is a tuple I' = (V, E),
where V is the set of vertices and £ C V x V is the set
of edges; an edge e € E can be written as e = (4,7),
and the source of e is source(e) = i and the target of e is
target(e) = j. Since steady state bipedal walking naturally
appears periodic, we are interested in hybrid systems on
a cycle and are therefore interested in graphs that contain
cycles or are themselves cycles. A directed cycle (or just
a cycle) is a graph ¢ = (V, E) such that the edges and
vertices can be written as:

V:{’Uo,’l)l,...,’l)pfl}, (1)

E= {60 = (’Uo,’Ul), ceeEp_1 = (’Up_l,’Uo)}.
Since in the case of a cycle, the edges are completely
determined by the vertices, we sometimes simply denote a
cycle by:

£:vg—=v1 = = Vp_1.

In the case when a graph I' is being considered with more
than one cycle, we denote a cycle in the graph by ¢ C T'.

Example 1. The domain graph pictured in Fig. 1 is a
directed cycle: T, = (Vi, Ey,). There are 4 vertices and
edges, which results in the cycle:

Ly [Lh, 1t) — [It] — [lt,rh] — [it, rh,rt].

Constraints. The continuous dynamics of the system
depend on which constraints are enforced at any given
time, while the discrete dynamics depend on the change
in constraints. Constraints and their enforcement are dic-
tated by the number of contact points of the system with
the ground. Specifically, we define the set of contact points
as set C = {c1,ca,...,cr}, where each ¢; is a specific type
of contact possible in the biped, either with the ground or
in the biped itself (such as the knee locking). There are
four contact points of interest given by:

C = {lh,lt,rh,rt}
where [h and It indicate the left heel and toe, and rh and
rt indicate right heel and toe, respectively. Contact points
introduce holonomic constraints on the system that must
be held constant for the contact point to be maintained.

Domain Breakdowns. A domain breakdown is a di-
rected cycle together with a specific choice of contact
points on every vertex of that graph. To define this for-
mally, we assign to each vertex a binary vector describing
which contact points are in force on that domain.

Definition 1. Let T' be a directed cycle and C =
{c1,¢a,...,c} a set of contact points. A domain break-
down is is a function B : V — Z& such that B(v); = 1 if ¢;
is in contact on v and B(v); = 0 otherwise.

Example 2. In the case of the graph I, given in Example
1 and set of contact points C = {lh,lt,rh,rt}, for the
domain breakdown given in Fig. 1, this domain breakdown
is formally given by B, : Vi, — Z3 where B,(hl) =

[1,1,0, O]Tﬂ Bu(hs) = [0,1,0, O]Tﬂ Bu(ts) =[0,1,1, O]T and
B, (tl) = [0,1,1,1]7. Note that in this case the choice of
“left” and “right” leg is arbitrary, as long as it is kept
consistent throughout the definition. The terms stance and
non-stance leg are often used in the literature as well, but
with the existence of double support phases this choice
also becomes arbitrary.

Given the importance of the domain breakdown in deter-
mining the hybrid model of a biped, part of the goal of
this paper is to determine whether there exists a common
domain breakdown for all humans.

3. EXPERIMENTAL SETUP

In this section, we describe the experimental setup em-
ployed during data collection and describe the preprocess-
ing done before determining the domain breakdown for
each individual. After reading the description presented in
this section, any interested researcher should be able to
perform analysis on the collected data®.

The data presented in this paper is collected using the
Phase Space System 2, which computes the 3D position of
LED sensors at 480 frames per second using 6 cameras.
The cameras were calibrated prior to the experiment and
were placed to achieve a 1 millimeter level of accuracy for
a space of size 4 by 4 by 4 meters cubed. In addition to
the LED sensors placed as in Fig. 2, 1 LED sensor was
placed on the sternum, 1 LED sensor was placed on the
back behind the sternum, and 1 LED sensor was placed
on the belly button. Each sensor was fastened to subjects
in a manner that ensured that they did not move during
the experiment. Each trial of the experiment required the
subject to walk 3 meters along a line drawn on the floor.
To simplify the data analysis each subject was required
to place their right foot at the starting point of the line
at the outset of the experiment and was told to walk

1 The collected data can be found at http://www.eecs.berkeley.
edu/~ramv/HybridWalker.html
2 http://www.phasespace.com/hardware.html

Fig. 2. Illustration of the experimental setup (left) and
sensor placement on each leg (right). Each subject
in the experiment was required to wear a suit with
sensors colored in red. Each sensor was placed at the
joints as illustrated with the red dots on the lateral
and anterior aspects (right) of the right leg. The same
sensors drawn from different views are connected with
red arrows.



Sex | Age | Weight | Height | L1 Lo Ls Ly
1| M 30 90.7 184 14.5 | 8.50 | 43.0 | 44.0
2 F 19 53.5 164 15.0 | 8.00 | 41.0 | 44.0
3| M 17 83.9 189 16.5 | 8.00 | 45.5 | 55.5
4| M 22 90.7 170 14.5 | 9.00 | 43.0 | 39.0
5| M 30 68.9 170 15.0 | 8.00 | 43.0 | 43.0
6| M 29 59.8 161 14.0 | 8.50 | 37.0 | 40.0
7| M 26 58.9 164 14.0 | 9.00 | 39.0 | 41.0
8| F Yt 63.5 163 14.0 | 8.00 | 40.0 | 42.0
9| F 23 47.6 165 15.0 | 8.00 | 45.0 | 43.0

Fig. 3. Table describing each of the subjects. The measure-
ments in column 4 are in kgs and the measurements
in columns 5 — 9 are in cms. The labels in columns
6 — 9 correspond to those illustrated in Fig. 2.

in a natural manner. Each subject performed 12 trials,
which constituted a single experiment. Fig. 3 describes the
measurements of each of the subjects.

To make the data collected from walking experiment
amenable to analysis, it was processed through a three-
step procedure: interpolation, data rotation and averaging.
Since the motion capture information drops out periodi-
cally due to self-occlusions, we first interpolate the data
to compensate for sensors dropping out of contact with
the camera. From each of the trials, at least two steps
are isolated (one with the right leg and another with the
left leg) by ensuring that the data repeats. The data is
then rotated so that the walking occurs in the z-direction.
Since we are only interested in the data corresponding
to constraint enforcement, only the sensor data for the
heel and toe on each leg are considered (this is shown in
Fig.4(a)). For each subject, this data is considered for all
12 walking trials and averaged (after appropriately shifting
the data in time) which results in a single trajectory for
each constraint for each subject for at least two steps (one
step per leg); this is the data that is used to determine the
domain breakdown and is drawn in Fig.4(b).

4. DOMAIN BREAKDOWN

In this section, we present our approach to determining
when and which constraints are enforced through the
course of a step. Doing so allows for a temporal ordering of
events, yielding a domain breakdown. This would appear
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(a) Original Data

(b) Postprocessed Data

Fig. 4. (a) The data for the height (in mm) of the heel and
toe for each leg for all 12 trials of a single individual
and (b) the data after it has been shifted (drawn at
the bottom of the plot) and averaged (drawn at the
top of the plot after it has been shifted to have zero
mean). Each color corresponds to a different sensor.

to be a simple task—for example, in the case of the heel,
one need only determine when it is or is not on the
ground—but this turns out to be non-trivial.

The obvious approach to determining the domain break-
down based upon the human data is to threshold the
data, i.e., below the threshold a given constraint (heel or
toe) is enforced and above it, it is not. Due to the noisy
nature of the data for the constraints “near the ground,”
choosing a proper threshold occurs at the scale of the noise.
Smoothing the data aggressively can “essentially” solve
this problem, but then there becomes too many subject
specific defined parameters in the domain fitting, i.e. the
degree of smoothing and the threshold. It is desirable to,
instead, have a domain breakdown that is chosen “auto-
matically,” i.e., a domain breakdown that is independent of
choices on thresholds and other parameters. To overcome
this problem, we employ the notion of persistent homology
which was introduced by Carlsson et al. (2004).

4.1 Persistent Homology

We begin by defining simplicial complexes and homology.
The reader is encouraged to read Hatcher (2002) for a more
complete introduction.

Definition 2. A simplicial complex is a set K, to-
gether with a collection 2 of subsets of K called simplices
such that for all v € K, {v} € Q, and if 0 C w € Q, then
o € Q. We call the sets {v} the vertices of K.

Definition 3. We say w € (Q is a k-simplex of dimen-
sion k if |w| = k+1 where |w| denotes the cardinality of the
set w. An orientation of a k-simplex w = {vg,...,vx}, is
an equivalence class of orderings of the vertices of w, where
{vo, - sk} ~ {vr)s -+ Vrky }- We denote an oriented
simplex by (w).

Definition 4. The kth chain group Cj of K is the
free Abelian group on its set of oriented k-simplices. An
element ¢ € C}, is a k-chain, ¢ = ), n;(w;), w € K with
coefficients n; € Z.

Homology provides a means for an algebraic description of
each simplicial complex.

Definition 5. The boundary operator 0y : Cy —
Ci—1 is a homomorphism defined linearly on a chain ¢ €
Ck by its action on any simplex w = (v, v1,...,0%) € ¢,
Opw = >, (=1)(vo,v1, ..., 0i,...,vx), where ¥; indicates
that v; is deleted from the sequence. The boundary oper-
ator connects the chain groups into a chain complex C.,.
We may also define subgroups of C using the boundary
operator: the cycle group Z; = ker 0, and the bound-
ary group Bj = im 0x11 The k-th homology group
is the quotient group Hj, := Z/Bj. The homology of a
complex is the collection of all homology groups. The rank
of Hy, is the k-th Betti number §;.

The Betti numbers of a chain group carry an important
topological meaning. By is equal to the number of con-
nected components in a chain group and Sy for £ > 0
is equal to the number of k-dimensional holes in a chain
group. The Betti numbers in a topological sense fully
characterize a simplicial complex since they are preserved
under continuous deformation. Suppose we now construct
a simplicial complex by thresholding an image over its
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Fig. 5. The collection of thresholded images (top) start
with two connected components which merge at 7 =
0.4 as shown in the By diagram. A hole is present until
7 = 0.15 as depicted in the 5; diagram.

intensity values and treating each pixel in the image as
a node in the complex. Edges between nodes would arise
when neighboring pixels in the thresholded image shared
the same intensity value. An example of the application of
this procedure to an image as a function of a threshold, 7,
can be found in Fig. 5.

It is possible to track the Betti numbers as a function
of the parameter 7. This information is depicted as a
persistence diagram at the bottom of Fig. 5. Notice that
for any threshold greater than 7 = 0.4 corresponds to the
most persistent topologically identical description of the
image (i.e. the number of connected components and the
number of holes are unchanged by choosing any larger
threshold). We employ the sensor data to construct a
simplicial representation as a function of a threshold for
the contact constraints that are enforced and search for the
threshold corresponding to the most persistent topological
description of the data.

4.2 Determining the Domain Breakdown

We now describe how given a set of distinct thresholds
for each motion capture sensor we construct a simplicial
complex. Let the two toe and two heel sensors time series

200

150 _— ~ —"'n

. I .
0z 0.25 0.3
Time(s)

. 6. An illustration of the procedure to construct a
simplicial complex from motion capture sensor data
(top) via C(-,t) (bottom) where we have transformed
each combination of contact points, from Z3 to its
decimal expansion.

data be denoted as fin,fit,fre,frn @ [0,T] — R. Given
a set of thresholds for each sensor, 7 = (Tin,Tit,TrhsTrt),
and encoding each combination of contact points as an
element of Z3 (as we did in Example 2), we can define a
function, C' : R* x [0, 7] — Z3, which describes which set
of constraints is active at a given time:

I{fin(t) < 7in}
C(,t; fin, fies fres frn) = ]11{{]{1283 z Zth}} . (2
]l{fmf(t) < Trt}

Fig. 6 illustrates C for a given threshold. Given this func-
tion and a threshold, 7 we can define a simplicial complex,
Q7. The 0—simplices of Q7 correspond to all combinations
of contact points (i.e. we would have sixteen 0—simplices).
The 1—simplices of Q7 correspond to transitions within
the function C. That is, if C(-,¢t7) = vy and C(-,t+) = vy
where v; # vg, then we include the 1—simplex {v1,v2} in
Q7. For the illustration in Fig. 6 the 1—simplices in Q7 are
{1tk 1), 0] A[0t], [, ]}, {10, ), 28, i, ]

As we described earlier, we can compute the Betti numbers
for each of these simplicial complex, Q7.We employ the
persistence homology argument to search over the space of
thresholds to find the most topologically persistent domain
breakdown (i.e. the threshold which corresponds to the
most persistent number of connected components and
cycles) and treat this as the domain graph corresponding
to the walker. Some care must be taken in choosing an
interval of interest over which to perform the thresholding.
Since the subjects performed a walking experiment, at any
instance at least one toe constraint was active and at least
once each toe constraint was inactive which allows us to
immediately restrict the space of thresholds for each toe
over which to perform the analysis. Similarly each heel
constraint was active and inactive at least once during the
experiment allowing us to restrict the space of thresholds
for each heel.

After performing the aforementioned procedure, we con-
sider the domain breakdowns for the various subjects.
We notice as illustrated in Fig. 7 that in spite of the
vast differences in age, height, and weight all subjects
exhibit the universal domain breakdown shown in Fig. 1.
This is particularly surprising, since we made no a priori
assumptions about the ordering of constraint enforcement
and did not demand simultaneous constraint enforcement
between legs.

5. COST OF WALKING FROM HUMAN DATA

In this section, we construct a cost function that measures
the anthropomorphic nature of robotic bipedal walking
termed the human-based cost. We do this by first defining
a metric on the space of weighted cycles, the cut distance,
which allows us to compare different walking gaits and
to construct an optimal walking cycle by minimizing the
distance between the weighted cycles observed in the
human walking data. Using the cut distance, we next
define the human-based cost which allows us to compute
the distance from a specific walking gait (either human
or robotic) to the optimal walking cycle. The remainder
of this section is devoted to using the human-based cost



to determine the extent to which popular robotic models
from the literature are anthropomorphic.

Distance Between Cycles. We employ the notion of
cut (or rectangular) distance between two weighted graphs
to compare different domain breakdowns (the definition in
its general form can be found in Borgs et al. (2008)). Since
we are only interested in the specific domains visited and
the corresponding time spent in each of these domains,
we define a notion of weighted cycle and a corresponding
distance between weighted cycles that is pertinent to the
application being considered.

Definition 6. A walking cycle is a pair (a, £) where { =
(V,E) is a cycle and o : £ — RIVl is a function such
that a(v) > 0 and ) .y «(v) = 1. Denoting a cycle by
l:vg — v — -+ = vp, we denote a walking cycle by:

a(l) :
Example 3. Each of the domain breakdowns presented in

Fig. 7 has a distinct walking cycle. For example, Subject
1 has a walking cycle S; = (a1, ¢1) given by:

a(vy) = afvi) = - = a(vp).

17.74% 17.74% 18.43% 46.08%
—1it] —Ut.rhj—  —onrnrtg—  ——I[lh,It]—
S = (@.0,) (ﬁ i P Bs
15.95% 12.07% 24.78% 47.20%
—It —trhl—  —ltrhrtl—  —[lh,It]—/
S = (. 0,) /
23.09% 21.09% 15.09% 40.73%
—t —[trhl—  —0Otrhrtl—  —[Ih,It]—
S = (a5, 1,) } / j
18.93% 7.40% 23.67% 50.00%
e —— 171 —lt,rhj— — LT, rn, ry— — L1t —
S, =(a,.1,) i / / (‘,)
16.89% 19.62% 10.07% 53.41%
—1t] —1Lit,rh] —htrnrep— —LIh,It]
S =(as.0,) / j
19.92% 14.79% 17.16% 48.13%
[1t] —t,rhl—  —Lltrhrti—  ——[Ih,It]—
S =(a.0,) j 2/
L C 4 4
19.00% 19.94% 19.94% 41.12%
—t —[It,rh] —htrartl—  —[IhIt]
S, =(a;.4,) /j ¥
s ) bl Ll
17.27% 20.03% [13.13% 49.57%
—t] —it,rh] —ltrhrtl—  ——[Ih,It]—
S = (e, 0,) j
25.59% 15.42% 14.41% 44.58%
— — —Otrhrtl—  —
S, = (@, 0,) [t [It,rh] [It,rh,rt] [Ih,1t]

Fig. 7. The domain breakdowns in each row for the 9
subjects in the order listed in Fig. 3 participating in
the experiment. Comparing with the hybrid system
illustrated in Fig. 1 the first through fourth rows cor-
respond to [lh,lt], [it], [It,rh], and [it, rh,rt], respec-
tively. Each illustration is a snapshot of the subject
in the domain and above each plot is the percentage
of the total gait spent in that domain.

0 [lt] = [lit,rh] — [lt,rh,rt] — [lh,lt]
ai(br) : 17.74% — 17.74% — 18.43% — 46.08%.
Weightings are stated in percentages to indicate the phys-
ical quantity that they represent: the time the human

spends in a domain through the course of one step.

We now introduce a definition of cut distance that is a
slight modification of the definition presented in Borgs
et al. (2008). The only differences are that we do not force
the weighted graphs to have nodes with positive weights,
and we require the weights to sum to one.

Definition 7. Let (a1,¢1) and (az,f2) be two walking
cycles. Viewing both a; and as as functions on V3 UV, by
letting a1 () = 0 if i € Vo\V1 and as(j) = 0 if j € Vi\ V4,

the cut distance between two cycles is given by:

dar, bz, le) = D far(k) — as(k)| +
keViuVs

> (ar(@)ar ()i §) — c2(i)aa(h)Ba(i, 5))
icl,jeJt
where 1 (i,7) = 1 for all edges (i,7) € Eq and Ba2(i,7) =1
for all edges (i,j) € E».

max
I,JCViuUVs

It is straightforward to check that the modified cut dis-
tance satisfies the requirements of a metric (i.e. non-
negativity, identity of indiscernibles, symmetry and the
triangle inequality). Intuitively, the cut distance compares
just how different two walking cycles are when considering
all possible “cuts” between the pair of cycles.

Human-Based Cost. In the context of this paper, we
develop a cost based upon the domain breakdown and re-
sulting walking cycles to determine how anthropomorphic
a gait is.

Definition 8. Consider N subjects with associated do-
main breakdowns and walking cycles S; = (ay,¥¢;) for
i € {1,...,N}. Letting .¥ = vazl ¢; be the graph ob-
tained by combining all of the cycles ¢;, we define the
optimal walking cycle by:

N

LS dobant).  (3)
1

argmin —
(a,l)GR‘“XfNZ-:

(", 6%)

The optimal walking cycle is just the walking cycle through
the graph of all cycles obtained from the walking that best
fits the data under the cut distance. The optimal walking
cycle allows one to describe the extent to which a walking
gait is human-like.

Definition 9. Given a biped (either human or bipedal
robot) with associated domain breakdown and walking
cycle R = (ay, £;), the human-based cost (HBC) of walking
is defined to be:

H(R) = d(ow, by, ™, L),

It is important to note that the optimal walking cycle
may not be unique, and so there may be multiple HBCs
of walking constructed from a single experiment, i.e., the
HBC is not necessarily unique (in this paper, we found a
unique HBC). Unsurprisingly, multiple experiments might
yield different HBCs, but if the experiments are carried
out consistently they should be compatible.



uuuuuuuuuuuuuuuuuuuuuuuuuu

Distance

o6l

o.al

o2t .... 4 oz
o

S1 sz sa3 s4 S5 S6  S7 S8 SO

Fig. 8. The HBC for the 9 subjects in the experiment (left),
5 bipedal robotic models that have appeared in the
literature (right, with the number of domains in each
of the models is illustrated by subscripts).

Next, we consider the domain breakdowns for the 9 sub-
jects in the walking experiment. Since there is a unique
cycle, it is unsurprising that there is a unique optimal
walking cycle and therefore unique HBC. Using the walk-
ing cycles illustrated in Fig. 7, we now compute the opti-
mal walking cycle and compute the HBC for the subjects
and bipedal robots that have appeared in the literature.
All the subjects have the same universal cycle £, and so
Si = (au, £y) fori = 1,...,9 and the optimal walking cycle
is given by (a*,£,), where we compute o* from Equation
(3) yielding:
by [LhIt] — [it] — [lt,rh] — [lt,rh, 1]
a*(ly) : 46% — 19% — 18% — 17%.

We argue that if the objective is to obtain anthropomor-
phic bipedal walking, this optimal walking cycle should be
matched as closely as possible. To demonstrate this, we use
the optimal walking cycle to compute the HBC in several
instances.

Humans. To quantify the differences in walking between
the different subjects, we compute the HBC for each
subject. The results of this computation are illustrated
in Fig. 8. Interestingly, nearly all of the human walkers
exhibit nearly uniform HBC and the uniformity of their
cost is particularly striking.

Robots. Next, we use the HBC to compute the cost of
walking for various bipedal robots without knee lock con-
sidered in the literature. Tlalolini et al. (2009) consider nu-
merous bipedal modes with different numbers of domains
(between 1 and 3) and walking gaits. We focus on two
models that they present, one with cycle €s : [lh, [t] — [It]
and another with cycle ¢4 : [lh, lt] — [lt] — [lt, rh,7t]. As-
sociated with these cycles, there are three walking cycles:
Roq = (a24,02), Rop = (agp,l2) and Rz, = (a3q, (%), for
which the HBC is illustrated in Fig. 8. From the results
of the computed HBC, we conclude that the model Rj,
produces the most anthropomorphic walking as it has a
dramatically lower cost than the other two models. In that
paper the authors state that this walking cycle “is the
closest to human gait” amongst the ones they consider,
which the HBC agrees with.

Schaub et al. (2009) consider two bipedal walking gaits
with a model consisting of cycle: ¢4 : [lh,lt] — [it] —
[rh], where [rh] is a domain not seen in human walking
consisting of the bipeds only having one contact point at
the right heel (a domain not found in human walking).
Two walking cycles Rz, = (aap, £3) and Rz = (aae, £3)

are associated with this cycle for which the HBC can be
computed; the result is illustrated in Fig. 8. Despite the
fact that both of these models have three domains, they do
not produce a HBC as low as walking cycle Ry indicating
that adding more domains does not necessarily result in
more human-like walking.

6. CONCLUSION

In this paper, we resolve an outstanding debate within
the bipedal walking community by showing that there
exists a universal temporal ordering of events for bipedal
walking. The human-based cost was then constructed
to measure the anthropomorphism of gait. When the
HBC was computed for existing bipedal walking robots,
the robots with more “human-like” walking gaits were
correctly identified. The results of this paper are also
applicable to future bipedal robot design. If the universal
domain breakdown is used for the robotic model, and the
parameters of the controller used to achieve walking are
chosen so as to minimize the HBC, the end result promises
to be human-like walking.
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