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Abstract—Zeno behavior is a dynamic phenomenon unique to
hybrid systems in which an infinite number of discrete transitions
occurs in a finite amount of time. This behavior commonly
arises in mechanical systems undergoing impacts and optimal
control problems, but its characterization for general hybrid
systems is not completely understood. The goal of this paper
is to develop a stability theory for Zeno hybrid systems that
parallels classical Lyapunov theory; that is, we present Lyapunov-
like sufficient conditions for Zeno behavior obtained by mapping
solutions of complex hybrid systems to solutions of simpler Zeno
hybrid systems defined on the first quadrant of the plane. These
conditions are applied to Lagrangian hybrid systems, which
model mechanical systems undergoing impacts, yielding simple
sufficient conditions for Zeno behavior. Finally, the results are
applied to robotic bipedal walking.

I. INTRODUCTION

Zeno behavior occurs in hybrid systems when an execution
(or solution) undergoes infinitely many discrete transitions in
a finite amount of time. Prior to the introduction of hybrid
systems, and in contrast with the view of Zeno behavior as a
modeling pathology, Zeno phenomena have long been studied
in the fields of nonsmooth mechanics and optimal control.
While understanding of Zeno behavior is, in these domains,
quite sophisticated, many basic problems in the theory of Zeno
behavior of general hybrid systems remain unsolved.

This paper studies the connections between Zeno behavior
and Lyapunov stability. In classical dynamical systems, sta-
bility is a property of the asymptotic behavior of trajectories
as time goes to infinity. In the model of hybrid systems used
in this paper, time is measured with two variables, one for
real time and the other for the number of discrete transitions.
Zeno stability is a hybrid analog of classical stability in the
case that real time stays bounded, while the number of discrete
transitions approaches infinity.

A. Summary of Contributions

The contributions of this paper are: 1) a theorem connecting
asymptotic Zeno stability and the geometry of Zeno equilibria;
2) Lyapunov-like sufficient conditions for local Zeno stability
for hybrid systems over cycles; 3) easily verifiable sufficient
conditions for Zeno stability of Lagrangian hybrid systems,
which model mechanical systems undergoing impacts.

Our first contribution deals with geometry of special in-
variant sets, termed Zeno equilibria, which are analogous to
equilibrium points of dynamical systems. A Zeno equilibrium
is a set of points (with one point in each discrete domain)
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that is invariant under the discrete dynamics of the hybrid
system but not the continuous dynamics. Our result shows
that a Zeno equilibrium is asymptotically Zeno stable if and
only if it is isolated (each point in each domain is isolated).
This result clarifies the limitations of existing results, [1], [2],
[3], [4], [5], which focus either on isolated Zeno equilibria
or asymptotic convergence. In particular, their application to
Lagrangian systems with impacts (such as bouncing balls)
is restricted to systems with one-dimensional configuration
manifolds, as higher-dimensional systems cannot have isolated
Zeno equilibria [2].

The next contribution, which is the main result of the
paper, consists of Lyapunov-like sufficient conditions for Zeno
stability that, in contrast to existing results, apply to both
isolated and non-isolated Zeno equilibria. The classical Lya-
punov theorem uses a Lyapunov function to map solutions
of a complex differential equation down to the solution
of a simple one-dimensional differential inclusion, and then
uses the structure of the Lyapunov function to prove that
the original system inherits the stability properties of the
one-dimensional system. Our approach to Zeno stability is
similarly inspired. We use Lyapunov-like functions to map
executions of a complex hybrid systems down to executions of
simple two-dimensional differential inclusion hybrid systems,
and then use the structure of the Lyapunov-like functions to
prove that the original system inherits Zeno stability properties
of the two-dimensional system.

Our final contribution applies the Lyapunov-like theorem to
Lagrangian hybrid systems (which model mechanical systems
undergoing impacts). Note that our Lyapunov-like theorem can
be applied to Lagrangian hybrid systems precisely because
it applies equally well to isolated and non-isolated Zeno
equilibria. While the technical machinery of hybrid systems
is not needed to develop the theory of mechanical systems
with impacts, we feel that any reasonable stability theory of
hybrid systems ought to cover this important special case.
To prove Zeno stability in Lagrangian hybrid systems, we
give a general form for a Lyapunov-like function that applies
to any Lagrangian hybrid system whose vector field satisfies
simple algebraic conditions at a single point (based upon the
unilateral constraint function defining the discrete component
of the Lagrangian hybrid system). Finally, it is shown how the
result can be used in robotic bipedal walking.

B. Relationship with Previous Results

As noted above, Zeno behavior has long been studied in
optimal control and nonsmooth mechanics. In 1960, Fuller
showed that for certain constrained optimal control problems,
the optimal controller makes an infinite number of switches
in a finite amount of time [6]. Since then, this phenomenon



has been observed and exploited in several optimal control
problems [7]. In mechanics, Zeno behavior arising from im-
pacts at the transition from bouncing to sliding is commonly
observed [8]. While Zeno behavior can stall hybrid system
simulations, time-stepping schemes for numerically integrating
mechanical systems circumvent these problems because they
do not require that impact times and locations be explicitly
calculated [9]. Sufficient conditions for Zeno behavior, similar
to the conditions for mechanical systems derived in this
paper are given in [10], [11]. Conditions to rule out Zeno
behavior have also been given for linear complementarity
systems [12], [13], which are special hybrid models defined
to capture discontinuous effects from nonsmooth mechanics,
optimal control, and electrical circuits with diodes.

For hybrid systems, as studied in this paper, the theory of
Zeno behavior has steadily matured with increased study of
the dynamical aspects of hybrid systems. Hybrid automata, the
precursors of the systems of this paper, were originally intro-
duced to reason about embedded computing systems. Since a
computer can only execute a finite number of operations in
a finite amount of time, Zeno behavior was not allowed in
early definitions of executions of hybrid automata [14], [15],
[16]. As the scope of hybrid automaton research was extended
to systems with rich continuous dynamics, attention to Zeno
behavior increased to reason about well known examples
such as the bouncing ball and Fuller’s phenomenon. Early
results focused on ruling out Zeno behavior using structural
conditions [17], [18], or proving its existence using closed
form solutions to simple differential equations [19], [20].

With increasing development of the qualitative, geometric
theory hybrid systems [21], [22], connections between Zeno
behavior and stability were recognized [23]. In [2], we gave
Lyapunov-like sufficient conditions for asymptotic Zeno sta-
bility of isolated Zeno equilibria in a class of systems similar
to that studied in this paper. This work was generalized in
two separate directions in [24] and [4]. As mentioned above,
Lagrangian hybrid systems with isolated Zeno equilibria must
have one-dimensional configuration manifolds. The aim of
[24], on which the current paper is based, was to extend
the Lyapunov-like theory of Zeno stability to cover more
complex examples, especially from mechanics, which typically
have non-isolated Zeno equilibria. The results on Lagrangian
hybrid systems from [24] were subsequently extended and
refined in [25], [26], [27], [28], [29]. On the other hand, work
in [4] exploited the connections between Zeno behavior and
finite-time stability to give Lyapunov theorems (and associated
converse theorems) for asymptotic Zeno stability general class
hybrid systems which encompasses the models considered in
[2], [24], and the current paper. Note, however, that because
their work deals with asymptotic stability, it also cannot apply
to nontrivial mechanical systems.

Similar to linearization in classical stability theory, Zeno
stability can also be studied with local approximations [1],
[3], [5]. In particular, the connection between Zeno behavior
and homogeneity from [3], [5] was implicit in the early work
of Fuller [6] and more fully explored subsequent work on
optimal control [7] and relay systems [30].

II. HYBRID SYSTEMS & ZENO BEHAVIOR

In this section, we introduce the basic terminology used
throughout paper. That is, we define hybrid systems, execu-
tions, and Zeno behavior. We study a restricted class of hybrid
automata that strips away the nondeterminism and complicated
graph structures allowing us to focus on consequences of the
continuous dynamics.

Definition 1: A hybrid system on a cycle is a tuple:
H# =I,D,G,R,F),

where
o I'=(Q, E) is a directed cycle, with
Q = {QO7"'7qk—1}a
E = {60: (CIanl)7€1 :(QI7q2)7

ey €p—1 = (Qk—1>QO)}~

We denote the source of an edge e € E by source(e) and
the target of an edge by target(e).

e D ={D,},eq is a set of continuous domains, where D,
is a smooth manifold.

o G ={Gc}eer is aset of guards, where G C Dggurce(e)
is an embedded submanifold of Dygurcefe)-

e R={R.}eck is a set of reset maps, where R, : G, C
Dgource(e) = Drarget(e) 18 @ smooth map.

o F = {f;}qeq. where f, : Dy — TD, is a Lipschitz
vector field on D,.

Remark 1: Note that if a hybrid system over a finite graph
displays Zeno behavior, the graph must contain a cycle (see
[17] and [18]). Therefore, beginning with hybrid systems
defined on cycles greatly simplifies our analysis, while still
capturing characteristic types of Zeno behavior.

Definition 2: An execution (or solution) of a hybrid system
2 =(,D,G,R, F) is a tuple:

X = (Avvavc)

where

e A=1{0,1,2,...} C Nis a finite or infinite indexing set,

o I = {I;};cn where for each i € A, I; is defined as
follows: I, = [1;,Tit1] if 4,4+ 1 € A and In_1 =
[TN—1,7n] or [TN_1,7N) OF [Tn_1,00) if |A] = N,
N finite. Here, for all ¢,s + 1 € A, 7, < 7,41 with
TiyTitv1 € R, and 71 < 7n with 7y_1, 78 € R. We
set 79 = 0 for notational simplicity.

e p: A — @ is a map such that for all i,i +1 € A,
(p(i),p(i + 1)) € E. This is the discrete component of
the execution.

o C ={ci}ica is a set of continuous trajectories, and they
must satisfy ¢;(t) = f,q)(ci(t)) for t € I;.

We require that when i, i +1 € A,

(i) ci(t) € D,yVtel

(i) ¢i(Tit1) € Gp(i).p(i+1) (1)

(i) Ripea),pii+1)) (€i(Tie1)) = cip1(Tig).

When ¢ = |A| — 1, we still require that (i) holds.



We call co(0) € Do) the continuous initial condition and
of x. Likewise p(0) is the discrete initial condition of .

Remark 2: To ensure that executions are deterministic, it is
assumed that when an execution reaches a guard, the transition
must be taken. Furthermore, to ensure that executions can be
defined as ¢ or 7 approach oo, it is assumed that solutions
to & = fy(x) cannot leave D, except through an associated
guard, G,.

This paper studies Zeno executions, defined as follows:

Definition 3: An execution Y is Zeno if A =N and
oo
i=0
Here 7, is called the Zeno time.

Zeno behavior displays strong connections with Lyapunov
stability [2], [4]. Just as classical stability focuses on equi-
libria, much of the interesting Zeno behavior occurs near a
special type of invariant set, termed Zeno equilibria.

Definition 4: A Zeno equilibrium of a hybrid system 7 =
(I,D,G,R,F) is aset z = {2z, }4eq satisfying the following
conditions for all ¢ € Q:

o For the unique edge e = (¢,¢') € £

- zq € G,
= Re(zq) = 2¢'>

. fq(zq) 7é 0.

A Zeno equilibrium z = {z,}seq 18 isolated if there is
a collection of open sets {Wy}q4cq such that z, € W, C
Dy, and {W,}4eq contains no Zeno equilibria other than z.
Otherwise, z is non-isolated.

Note that, in particular, the conditions given in Definition 4
imply that for all ¢ € {0,...,k — 1},

Re, 0 0R,,0Re, 0 0R. (z)=2.

That is, the element z; is a fixed point under the reset maps
composed in a cyclic manner. Furthermore, the assumptions
from Remark 2 imply that any infinite execution with initial
condition ¢y(0) € z must be instantaneously Zeno (that is,
7, =0 for all 7 € N).

Definition 4 captures notions that appear to be necessary
for the Zeno phenomena studied in this paper. Indeed, unless
the domains have geometric pathologies such as cusps or
the vector fields are not locally Lipschitz, convergent, non-
chattering Zeno executions (those with 7; < 7;4; for infinitely
many ¢) must converge to a Zeno equilibrium; see [21]
Proposition 4.4. See [21] and [4] for examples of Zeno hybrid
systems defined on cusps which do not have Zeno equilibria.

Finally, we give definitions that connect Zeno behavior to
Lyapunov stability.

Definition 5: An execution x = (A, I, p, C) is maximal if
for all executions x = (A, I, p, C') such that

Ach,  UncUi,

JEA jej\

and ¢;(t) = ¢;(¢) for all j € A and t € I;, it follows that
X=X

Definition 6: A Zeno equilibrium z = {z,}4ec¢ of a hybrid

system ¢ = (I, D,G, R, F) is:

e bounded-time Zeno stable if for every collection of open
sets {Ug}qeq With z; € U, C D, and every € > 0,
there is another collection of open sets {W,},cq with
zq € Wy C U, such that if x is a maximal execution
with ¢o(0) € W), then x is Zeno with 7o, < ¢ and
ci(t) € Uy forall i € Nand all ¢ € 1.

o bounded-time asymptotically Zeno stable if it is bounded-
time Zeno stable and there is a collection of open sets
{Wy}qeq such that z, € W, C D, and every Zeno
execution x = (A, I, p, C) with ¢o(0) € W, (o) converges
to z as ¢ — co. More precisely, for any collection of open
sets {Uy }qeq with z, € U, C D,, there is N € N such
that if i > N, then ¢;(t) € U, for all ¢ € I;.

o bounded-time non-asymptotically Zeno stable if it is
bounded-time Zeno stable but not bounded-time asymp-
totically Zeno stable.

The following structural fact shows that isolatedness of a
Zeno equilibrium dictates the type of Zeno stability properties
it can display. While the theorem is independent of the main
results of the paper, it clarifies the existing sufficient conditions
for Zeno stability and adds context to our current work.

Theorem 1: Let z = {z,}qcq be a bounded-time Zeno
stable equilibrium. Then z is bounded-time asymptotically
Zeno stable if and only if z is isolated.

Note the sharp contrast between Theorem 1 and classical
stability theory. The standard theory of continuous dynamical
systems focuses primarily on isolated equilibria without much
apparent conceptual loss. In Zeno hybrid systems, however, we
must consider non-isolated Zeno equilibria just to describe the
non-asymptotic analog of Lyapunov stability.

From the theorem, we learn that many of the recent suf-
ficient conditions for Zeno stability have similar limitations,
but for different reasons. The work in [3] and [4] requires
bounded-time asymptotic Zeno stability (or the stronger global
version), while [1] and [2] assume that the hybrid systems
studied have isolated Zeno equilibria. None of the conditions
in the papers listed above apply to the mechanical systems in
this paper, since they have non-isolated Zeno equilibria.

Proof: Let z be an isolated Zeno equilibrium. By continu-
ity, there is a collection of bounded neighborhoods {U;}4cq
containing no Zeno equilibria other than z, such that for all
q € Q, 2y € Uy C Dy and fy(x) # 0 for all z € U,.
From bounded-time local Zeno stability, there is another
collection of neighborhoods {W,},cq such that all maximal
executions with initial conditions in {W},cq are all Zeno
and never leave {U,},cq. Let x be any maximal execution
such that ¢(0) € {W,},eq- Since x is Zeno and bounded,
Proposition 4.3 of [21] implies that there is a collection of
points 2 = {Z,}4eq such that:

o 2, € Gy qyNU, forall (q,¢) € E,
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Fig. 1. A ball moving through the plane under gravitational acceleration that
bounces on a fixed circular surface. The simulations use g = 1, e = 1/2,
starting from initial conditions of the form co(0) = (z1,x2,0,0), with 1
and x2 varied. 1(b) When (x1,z2) = (0.192,1.2), the execution bounces
several times before free falling to infinity. 1(c) Shifting 1 to the left a small
amount, so that (z1,z2) = (0.191, 1.2), the execution becomes Zeno.

o Riyq)(2q) =2y forall (q,¢") € E,

. Ci(t) — 2p(i) as ¢ — o0.

The convergence, c;(t) — Z,(;), should be understood as fol-
lows. For each domain, let V, be an arbitrary neighborhood of
zq. There exists N such that i > N implies that c;(t) € V)
for all ¢ € I;. Since 2, € Uy, it follows that f,(2,) # O for
all ¢ € Q. Therefore 2 is a Zeno equilibrium contained in
{Uq}qeq. By construction of U,, we find that 2 = z, and
thus x converges to z. We conclude that z is bounded-time
asymptotically Zeno stable.

Conversely, let z be a non-isolated Zeno equilibrium. Then
for any collection of neighborhood {Uj,}4cq, there is a Zeno
equilibrium 2 = {Z,},eq with 2 # z and %, € U,. Further-
more, any maximal execution with co(0) = 2,0y € Uy is
Zeno but does not converge to z. Therefore, z is not bounded-
time asymptotically Zeno stable. ]

Example 1 (Bouncing Ball on a Circle): We illustrate
the definitions and concepts above, and the theorems to
follow by studying a ball bouncing on a circular surface
(Figure 1(a)), modeled formally with the hybrid system

s = (I'= ({4}, {(¢,0)},{DB}, {Gs}, {RB}, {/B}),

where
Dg = {(z,%) e R? x R?:|jz| > 1}, o
Go — {(r.d) e R xR2: |z = 1, aTi <0},
1
r) — T SN i‘g
Rp(z,t) = <x 1+ e)(:ETi)x) , fB(2,2) = 0
-9

Here the reset map, Rp, is a Newtonian impact model, with
a coefficient of restitution, 0 < e < 1, that describes an
instantaneous jump in velocity when the ball impacts the
circle. The vector field fg models flight under gravitational
acceleration.

Since fg(x,2) # 0 on the entire continuous domain, the
Zeno equilibria are exactly the fixed points of the reset map:

Zp = {(z,&) € R* xR?: ||z, = 1, and 274 = 0}.

Note that Zg is an infinite, connected set. Therefore, /5
has no isolated Zeno equilibria. From Theorem 1, this bounc-
ing ball system has no bounded-time asymptotically stable
Zeno equilibria.

Turning to Zeno stability, the theory developed in this paper
predicts that whenever 0 < e < 1 and (z*,i*) € R? x R?
satisfies the following algebraic conditions:

lz* =1, @&t =0, [&"|* <gas, )

the singleton set {(z*,2*)} is a bounded-time non-
asymptotically Zeno stable Zeno equilibrium. Note how the
conditions guarantee a non-compact continuum of bounded-
time Zeno stable sets along the entire open upper half circle,
even at points with nearly vertical tangent spaces. Furthermore,
the theory developed in this paper and its extensions such
as [28] can be used to numerically distinguish between Zeno
executions and executions that take several bounces before free
fall (Figures 1(b) and 1(c)).

III. LYAPUNOV THEORY FOR ZENO STABILITY

This section presents Lyapunov-like sufficient conditions
for Zeno stability. First, classical Lyapunov functions are
interpreted as mapping solutions of differential equations to
solutions of a one-dimensional differential inclusion, referred
to as the target system. It is noted that by varying the
target system, different specifications can be proved using
Lyapunov-like techniques. Next, a class of target systems
for proving Zeno stability are defined and studied. Finally,
sufficient conditions for Zeno stability, based on Lyapunov-
like reductions to the target systems are presented.

A. Classical Lyapunov Theory Reinterpretted

This subsection discusses classical Lyapunov theory, with
empahasis on which components of the theory can be varied
to reason about specifications other than classical stability. In
standard treatments of Lyapunov theory, there is a differential
equation

i = f(z)
with f: D — R", and f(0) = 0. Here D C R"™ is an open
set with 0 in its interior. A continuously differentiable function
V : D — R is called a Lyapunov function if V(0) = 0 and
for all nonzero x € D

L@@ 0.

Assume that x(t) is a solution to the differential equation.
In standard presentations of Lyapunov theory, such as [31],
the behavior of V' (z(t)) merits limited discussion, due to its

V(z) >0 and



simplicity. To modify Lyapunov theory, however, the behavior
of the image V' (x(¢)) is crucial and will thus be emphasized.
First note that V(x(t)) satisfies the following differential
inclusion on the non-negative real line:

{0}
While V(z(t)) satisfies a differential inclusion, it typically
does not satisfy a differential equation because V' and its Lie

derivative are typically not 1-1. In particular, it is often the
case that there are two vectors x and 2 such that

ov ov
T @) @) # S (@)f (@),

The target system, defined by equation (4), encodes simple
stable dynamics that are flexible enough to describe conver-
gence properties of the orignal dynamical system, through the
use of a Lyapunov function. In a sense, the Lyapunov function
“reduces” the stability properties of the original system to the
stability properties of the target system. For Zeno stability,
an analogous development holds. A simple class of hybrid
systems is defined to serve as target systems. Then, Lyapunov-
like functions are given to reduce Zeno stability properties of a
given hybrid system to the stability properties of the associated
target system.

forv >0
for v = 0.

“4)

V(z) =V(z) but

B. First Quadrant Interval Hybrid Systems

This subsection introduces first quadrant interval hybrid sys-
tems, which serve as the targets for Lyapunov-like reductions
for Zeno stability. First quadrant interval hybrid systems are
a variant of first quadrant hybrid systems studied in [1] and
[20]. We use the term “interval” since both the vector fields
and reset maps are interval valued. See [32] and [33] for more
on set valued functions and differential inclusions.

Definition 7: A first quadrant interval (FQI) hybrid sys-
tem is a tuple

%FQI: (F5D5G7R7F)

where

o« I'=(Q, E) is a directed cycle as in Definition 1.
e D ={Dy},cq where for all g € Q,

Dq = Rzzo = {(Z1,$2)T S Rz x>0, 29 > 0}
o G={G.}4eq where for all e € E,
Ge = {(fﬂl,xz)T € RQZO cx1 =0, x> 0}.

e R ={R.}ccr where for all e € E, R, is a set valued
function defined by

Re(OaI'Q) = {(ylvyZ)T S -Dq’ ‘Y1 = 07
Y2 € [Vé@ﬁgl’z}},

for v¢ > ~! > 0 and for all (0,29)7 € G..
o F = {f,}qeq where for all ¢ € Q, f, is the (constant)
set-valued function defined by

fol@) = {(yr,92)" € R? 1y € [ag, ag],y2 € [By. 571}

Definition 8: An execution of a first quadrant interval sys-
tem, Hrqr is a tuple xpgr = (A, I, p, C) where
e A, I and p are defined as in Definition 2.

o C = {c;}icn i a set of continuous trajectories that
satisfy the differential inclusion ¢;(t) € f,q)(ci(t)) for
tel;.

We require that when i, i + 1 € A,

(l) Ci(t) S Dp(i) Vtel

(i) ci(Ti+1) € Go(iy.p(i+1)) 5)

(il)  cir1(Tit1) € Ry, piit1)) (€i(Tit1))-

When ¢ = |A| — 1, we still require that (i) holds.

As mentioned above, the class of first quadrant interval
hybrid systems is motivated by their simple Zeno stability
theory. Indeed, they are among the simplest systems that can
demonstrate the non-chattering Zeno behavior of interest for
this paper. The following theorem gives sufficient conditions
for Zeno stability of first quadrant interval hybrid systems.

Theorem 2: Let 5trqr = (I', D,G, R, F) be a first quad-
rant interval hybrid system. If oy < 0 < 5f1 for all q € Q,
L >0 forall e € E and

Q-1 u
| | S |

zau

i=0 qi

then the origin {04},eq is bounded-time asymptotically Zeno
stable.

Proof: Define 0 < ¢ < 1 by

Q-1 u
¢=II o) (©)
i=0 qi

Let xrqgr be an execution of J¢7¢g;. Without loss of gen-
erality, assume that ¢y(0) € Dg,. Since fy(z)2 > B}I > 0,
the continuous trajectories travel upwards, away from the z;-
axis. Likewise, fq(z)1 < ay < 0 implies that the continuous
trajectories travel left, towards the xo-axis. Therefore, by
construction, events are always guaranteed to occur and we can
assume that A = N. For simplicity, assume that co(0)2 = 0.
Dropping this assumption changes little, though the proofs
become messier.

The hypothesis ag(i) < 0 implies that ¢;(t); < ¢;(1)1 +
oy (t = 7i), and therefore

ci(Ti)1
V(i)
for all ¢ > 0. Given the assumption that ¢o(0)2 = 0 and the

fact that ¢;(7;)2 = 0 for all ¢ > 1, the continuous state at
events must satisfy

. )

Titl — Ti <

ci(Tiy1)2 < ﬁ;‘(i)(nﬂ —7) < e(mh ai(i) )
p(4)
Thus, after the events the continuous state satisfies
cit1(rizi)1 < ﬁp(i)’p(iﬂ))q(ﬁﬂh
. Bo
< G | o] ©)
p(u)




Inductively combining the bounds from equation (9) gives a
bound in terms of ¢y(0);:

H

Bt

ot ge |+ (10

cirii < (01 1 1760

for all z > 0.

To prove stability and asymptotic convergence note that
ay <0< Bé implies that ¢;(t)1 < ¢;(7;)1 and ¢;(t)2 <
¢i(Ti41)2 for all ¢t € I;,. Combining equations (8), (9), and
(10) gives the bound

lles (D]

< (i) + ci(Tit1)2

(1 + Bp(l) ) ci(Ti)
p( )
(1 + ) H

U
Pp(i)
i) =
Since the product in the last 1nequahty converges to 0 as ¢ —
0o, executions with ¢(0); small must remain near the origin,
and ¢;(t) — 0,¢;) as i — oo.
Combining equations (6), (7) and (10) and proves that x is

Zeno:

o0
ZTi+1 — T
i=0
< Z

IA

p(J)
7(/)(3) p(3+1))

IA

P(J)

g(])

)pG+1) qu =
() P(J)
Q-1 j—1
= aln | 3 o \H i <Z<l>
7=0

< ©oQ.

Furthermore, note that the bound on the Zeno time goes to
zero as ¢1(0); — 0. |

Theorem 2 can also be proved using Lyapunov methods
from [4] or the homogeneity methods from [5], but the specific
form of convergence of ¢;(t) to the Zeno equilibrium exploited
in the proof above is used to prove Theorem 3.

The Target Systems from [4]. It is worth comparing first
quadrant interval hybrid systems with the class of targets used
in [4]. These targets are defined for v € [0, o) by

0 e (—o00,—1] forv>0
0 forv=0
vt € [0,v—k(v)] forv>0,

where k is some class o, function. In the framework of
[4], solutions for this hybrid system flow according to the
differential inclusion almost everywhere, but can make a jumps
according to the difference inclusion at nondeterministic times.
If any such solution starts at v = v, then it must converge to
0 in time at most vg. Thus, these target systems exhibit finite-
time convergence but the solutions may or may not be Zeno.
To guarantee non-chattering Zeno behavior, extra conditions
on the original hybrid system must be checked.

C. Sufficient Conditions for Zeno Stability Through Reduction
to FQI Hybrid Systems

This subsection gives the main Lyapunov-type theorem of
this paper. Our theorem uses special Lyapunov-like functions
to map executions of complex hybrid systems down to exe-
cutions of FQI hybrid systems, thus transferring some Zeno
stability properties from Theorem 2. The theorem applies to
both isolated and non-isolated Zeno equilibria. Therefore, by
Theorem 1, our sufficient conditions can imply bounded-time
asymptotic or non-asymptotic Zeno stability, depending on the
type of Zeno equilibrium in question.

Reduction conditions. Let z = {z,},c0 be a Zeno equi-
librium (not necessarily isolated) of a hybrid system 5 =
(I'D,G,R,F), {Wy}qeq be a collection of open sets with
zq € Wy C Dy and {9}qeq be a collection of C' maps;
these are “Lyapunov-like” functions, with

Yg: Wy € Dy — R,
Consider the following conditions:

R1: ¢4(z4) =0 for all ¢ € Q.

R2: If (¢,¢") € E, then t4(x); = 0 if and only
if x € G(q,q’) N Wwy.

R3: dipg(29)1f4(2q) < 0 < dipg(2g)2f4(24) for

all ¢ € Q.

g (Rg,g)(x))2 = 0 and there exist con-

stants 0 < 7% < 4 such that

Yo (Rigan @)1 € Wy a(@)2: Vo @)2]
for all z € G(g,4) "Wy and all (q,¢') € E.

R4:

RS:
Q-1
H ,yu d’l/)Qi(Z‘Z'i)2fQi (ZQz)
i=0 “ d’L/J% (Zqz‘)l.f%(zth)
R6: There exists K > 0 such that
[Rq,q) (@) = 2¢ || < |lz = 2g|| + Ktpg(2)2
for all x € G4,4yN W, and all (¢,¢') € E.

<1

Remark 3: Just as the conditions on classical Lyapunov
functions guarantee that solutions of a dynamical system can
be mapped to solutions of a stable one-dimensional system,
conditions R1-R5 guarantee that ¢, can be used to map
executions of J# to executions of a Zeno stable FQI hybrid
system. Condition R6 is used to guarantee that Zeno behavior
occurs before the execution can leave the neighborhoods,
W,. Figure 2 depicts the reduction conditions applied to the
example of a ball on a circle.

Theorem 3: Let ¢ be a hybrid system with a Zeno equi-
librium z = {z4}qeq. If there exists a collection of open sets
{Wyteeq with zy € Wy € Dy and maps {1)q}qcq satisfying
conditions RI-R6, then z is bounded-time Zeno stable.

Before proving this theorem we state the following corol-
lary, which follows from combining Theorems 1 and 3.



(@ (b)

Fig. 2. 2(a) A Zeno execution of the ball on a circle. 2(b) The execution
is mapped to an execution of a first quadrant interval hybrid system. Since
the continuous domain of the bouncing ball system is four-dimensional, the
mapping takes executions of the bouncing ball system to a executions of a
system with lower dimension.

Corollary 1: Let 7 be a hybrid system with a Zeno
equilibrium z = {z,}qeq satisfying the conditions of Theorem
3. If z is an isolated Zeno equilibrium, then z is bounded-time
asymptotically Zeno stable. Otherwise, if z is a non-isolated
Zeno equilibrium, then z is bounded-time non-asymptotically
Zeno stable.

Constructing a FQI hybrid system. The proof of Theorem
3 is based on the Zeno behavior of a first quadrant interval
system qr constructed from the reduction conditions as
follows. Assume that JZ is a hybrid system satisfying R1-
RS. Pick o}, o, . and (Y such that

aly < dipg(2q)1fq(zq) < ol < 0BL < dipg(zq)2fq(2) < BY
for all ¢ € @ and
1QI-1

[

=0

u
w g
’YGi au
qi

<1,

u Al

& B B Vo)

and v* . (with 4! . also given by R4) thus define a first
(2:q") (¢,9")

quadrant interval system fqi, on the same graph as JZ,

satisfying the conditions of Theorem 2 due to conditions R3-

RS. Thus all executions of J#q; extend to Zeno executions.

where ., is given by R4. The constants afl, o

Proof of Theorem 3: The results are local and we can
work in coordinate charts. Thus, it can be assumed without loss
of generality that D, C R"¢, for some ny, and that z, = 0.
The proof relies on the following three claims:

1) Let x = (A, p,I,C) be an execution of J#. For all
> 0, there exist n and 7" with 0 < < pand T > 0
such that ||co(0)|| < n implies that ||c;(¢)|| < p for all
t < T for which ¢;(t) is well defined.

2) Let x = (A, p, I, C) be an execution of J#. There exists
w > 0 such that if ||¢;(t)]] < p for all ¢ € A and all
t € I;, then XFQI = (A o, 1, \IJOO) where ¥ o C' =
{1/)p( ) © cl}leA, is an execution of of Jq;.

3) Let y = (A D, I C) be an execution of g1 with A=
N and Zeno time T7¢p,. For all T' > 0 there exists § > 0
such that ||éo(0)|| <  implies that Tzen, < 7T

Before proving the claims, it will be shown how they imply
the theorem. The claims imply that positive numbers 7, u, T,
and ¢ can be chosen such that:

e |lco(0)]] < n implies that ||c;(¥)|| < p for all ¢ < T for
which ¢;(t) is defined.

o |lc;(¢)|| < pforalli € Aandall ¢t € I; implies that xpqr
is an execution of J%&q.

o [lco(0)]| < n implies that |1,y © co(0)] < 4.

o [|¢0(0)]] < & implies that Tzeno < T

Let ¥ be a maximal execution with ||co(0)]] < 7. Assume
for the sake of contradiction that y is not Zeno. Let x =
(A, p,I,C) be the restriction of y to times with ¢ < T'. Then,
by choice of 7, p, and T, it follows that xpqr = (A, p, I, ¥oC')
is an execution of J#qr. By maximality and the assumption
that x is not Zeno, x and thus x must be defined for all ¢
such that T7z¢,, <t < T'. Therefore xrqr must be defined for
t > Tzeno, Which is past the Zeno time, giving a contradiction.
Therefore x = x is Zeno with ||¢;(¢)|| < p for all ¢ and ¢. It
follows that {04 },ecq is bounded-time Zeno stable.

Now the claims will be proved. First, note that Claim 3
follows from the proof of Theorem 2.

Next Claim 2 will be proved. By continuity, there exists
p > 0 such that for all ¢ € @ and for all x € W, with
]l < p.

ol < dipg(x)1fo(x) < ol <0< Bl < dipg(2)2fq(a) < BY,

wherein it follows that xrqr satisfies the conditions of J#&qr
by construction. Indeed, 1,(;)(c;(t)) satisfies the differential
inclusion:

d

@wp(i) (ci(t)) € {(z1,22)T € R?

L1 € [, ),
T2 € [52(1'), }3‘@)]}-

Condition R2 guarantees that an event of xrqr occurs if and
only if an event occurs in x. Condition R4 guarantees that
Xrqr satisfies the first quadrant interval system reset condition
defined by +. and ~%. Therefore, XFQr 1s an execution of
JQr.

Finally, Claim 1 will be proved. Assume that |co(0)| < 7
and ||¢;(t)|| > p. The goal is to choose 1 and T > 0 such that
t > T must hold. Let M be such that || f,(z)|| < M for all =
such that ||z|| < p. Then the total change in norm is bounded
as

i—1

lle: @)1 = lleco )] < Mt + Y~ (llega ()l = lles (1))
§=0

where the first term is due to flow, while the second term is due
to jumps. Applying condition R6 shows that ||c;41(7j41)] —
llej(7j+1) |l < K9p(4)(cj(7j+1))2, and therefore the change in
norm can be bounded as

i—1

el = llea(0)]] < Mt+ K>t ((Ti41))2-

J=0



Arguing as in the proof of Theorem 2 shows that

J

=11

g(p)

O‘Z(p)

wﬂ(]) cj(Tj+1)) ’Yp(p 1),

"p(0)

p(0)
with the product decreasing geometrically in j. By continuity

of 1, it follows that there is a continuous, increasing function
g(n) with g(0) = 0 such that

B
: (%(0)(00(0))2 sl Yp(0)(c0(0))1 )

1—1

> o (ei(min))2 < g(n)

§=0
whenever |co(0)]| < 7. Thus, the following chain of inequal-
ities holds:

p=n < lei(®)]] = lleo ()|} < Mt + Kg(n).

Therefore, if n and T are chosen such that 7 + Kg(n) < u
and T < %W, it follows that ¢ > T. ]

Example 2: The water tank system is a well-known
early example of a Zeno hybrid automaton [18]. It is
described as a hybrid system on a cycle by J&Ry =
(({QQ,ql},{60,61}),Dw,Gw,Rw,Fw), with Dw =
{quDth} Gw = {Geo’Gh}’ Rw = {R607R€1}’ and

FW_{ q0> Ch}givenby
qu = Dql = {(l’l,l'Q)T cR2: 1 >0, xo > 0},
Geo = {(1‘17 Q)T cR?: 1 =0, z90 > 0},
Gel = {(xh g)T cR?: 1 >0, 2o = 0},

Rey(2) = Re, () =

Fute) = (, )+ Fule) = (w_vjl) .

Here w, vy, and ve are positive numbers with vy, vy < w.
Zeno behavior can be proved using Theorem 3 with functions

wqo((xl?l‘?)T) = (xlva)Tv %1((3017332)T) = (w27x1)T’
and constants fye = ’Yel = Ye, = Ve, = 1, K = 0. Condition

RS reduces to w < 1, which is equivalent to the
condition for Zeno behav1or from [18], w < vy + va.

IV. APPLICATION TO SIMPLE HYBRID MECHANICAL
SYSTEMS

This section develops Zeno stability theory for a simple
model of mechanical systems undergoing impacts, known as
Lagrangian hybrid systems. We begin by introducing the basic
definitions of Lagrangian hybrid systems (see [26], [27], [34]
for more on systems of this form modeled with the framework
of this paper and see [10], [11], [35], [36] for mechanics based
formulations). We then specialize the main result of this paper,
Theorem 3, to this class of systems to give easily verifiable
sufficient conditions for Zeno behavior in Lagrangian hybrid
systems. Finally, we conclude by summarizing an application
to bipedal robots with knee-bounce.'

'While bipedal robots could be studied in other nonsmooth mechanics
frameworks, throughout the literature on biped robots, they are typically
modeled by hybrid systems (sometimes termed systems with impulsive effects
[37], but still equivalent to the hybrid systems as defined in this paper [38]).

A. Lagrangian Hybrid Systems

Lagrangians. Consider a configuration space’ © and a
Lagrangian L : T© — R given in coordinates by:
. 1. .

L(,6) = 59TM(9)9 —U(#) (11)
where M (0) is positive definite and symmetric and U(6) is
the potential energy. For the sake of simplicity, we assume
© C R™ since all our results are local, i.e., we can work
within a coordinate chart. The equations of motion are then

given in coordinates by the Euler-Lagrange equations,
doL oL _
dtog 00

In the case of Lagrangians of the form given in (11), the vector
field associated to L takes the familiar form

. B 0

+= 1= ( apa-cii- oy ) 02
where z = (07,6T)T, C(0,0) is the Coriolis matrix and
N(0) = 25(0).

This process of associating a dynamical system to a La-
grangian will be mirrored in the setting of hybrid systems.
First, we introduce the notion of a hybrid Lagrangian.

Definition 9: A hybrid Lagrangian is a tuple, L =

(©, L, h), where
e © C R” is the configuration space,
e L:TO — R is a Lagrangian of the form given in (11),
e h: © — R is a unilateral constraint function, where
we assume that O is a regular value of A (to ensure that
~1({0}) is a smooth manifold).

To concretely illustrate the hybrid Lagrangian concepts of
the rest of the section, we will return to the ball on a circle
example discussed in Section II.

Example 3 (Ball on a Circle): Recall the ball bouncing
on a circular surface introduced in Example 1 (c.f. Figure
1(a)). This system has a natural hybrid Lagrangian description:
B = (O, L, hg), where Og = R?, and for z = (21, 72),

1, 5 1
b () = 5 llal* - 5.
We will show that the hybrid model of this system (as
introduced in Example 1) can be constructed from the hybrid
Lagrangian describing the system.

. L
Ly (e,3) = S]] — mgzz,

Domains from constraints. Given a smooth (unilateral
constraint) function » : © — R on a configuration space ©
such that O is a regular value of h, we can construct a domain
and a guard explicitly. Define the domain, Dy, as the manifold
(with boundary):

Dy, ={(60,6) € TO : h(6) > 0}. (13)

’Note that we denote the configuration space by © rather than Q, due to
the fact that @) denotes the vertices of the graph of a hybrid system.



Similarly, we have an associated guard, G}, defined as the
following submanifold of Dj,:

Grn={(0,0) €TO : h(d) =0 and dr(0)d <0}, (14)
where dh(f) = ( 5—6',11(9) (%;(9) ). Note that 0 is a

regular value of & if and only if dh(6) # 0 whenever h(6) = 0.

Lagrangian Hybrid Systems. Given a hybrid Lagrangian
L = (O, L,h), the Lagrangian hybrid system associated to L
is the hybrid system

s, = (T = ({q},{(¢,9)}), Dv, Gy, Ry, FL),

where DL = {Dh}, FL = {fL}, GL = {Gh} and RL =
{Ry} with the reset map given by the Newtonian impact
equation Ry, (0,0) = (6, P(6,0)), with

dh(6)6

P0,0)=0—(1+e) dh(0)M (6)~1dh(6)T

M)~ dh(6)T.
(15)

Here 0 < e <1 is the coefficient of restitution.

Example 4 (Ball on a Circle): From the hybrid
Lagrangian B = (O©p,Lg,hp) we obtain the Lagrangian
hybrid system associated to B:

Hp = (F = ({q}7{(QaQ)})vDB’GB7RB7FB)

It can be checked that this hybrid model is the model 73
introduced in Example 1, i.e., Dg, G, R, FB as given in
(2) are obtained through (13), (14), (15) and (12), respectively.

B. Sufficient Conditions for Zeno Behavior in Lagrangian
Hybrid Systems

This subsection presents sufficient conditions for bounded-
time Zeno stability of Lagrangian hybrid systems, based on
an explicitly constructed Lyapunov-like function. The paper
[10] proves a special case of the main result in this section,
Theorem 4, for a class of Lagrangian hybrid systems with con-
figuration manifolds of dimension two. If the potential energy
is a convex function and the domain specified by the unilateral
constraint is a convex set, global Zeno stability results have
been proved in [11]. Of course, the convexity assumptions
preclude local phenomena, in which some executions are Zeno
while others are not, occurring in the bouncing ball example
above or knee-bounce example below.

First, however, we examine the Zeno equilibria of La-
grangian hybrid systems, observing that isolated Zeno equilib-
ria only occur in systems with one-dimensional configuration
manifolds. Thus, no Lagrangian hybrid system with configura-
tion manifold of dimension greater than one can have bounded-
time asymptotically stable Zeno equilibria.

Zeno equilibria in Lagrangian hybrid systems. If J7, is
a Lagrangian hybrid system, then applying the definition of
Zeno equilibria and examining the special form of the reset
maps shows that z = {(6*,0*)} is a Zeno equilibrium if and
only if

fL(87,6%) #0,
dh(8")6* <0,

h(6*) =0,
0" = P(6*,6%).

Furthermore, the form of P implies that §* = P(6*,6*) holds
if and only if dh(6*)§* = 0. Therefore the set of all Zeno
equilibria for a Lagrangian hybrid system is given by the
surfaces in 7O:

Zn ={(6,0) € TO : f1,(0,0) #0, h(h) =0, dh(6)d =0}.

Note that if dim(©) > 1, the Lagrangian hybrid system has
no isolated Zeno equilibria.

Theorem 4: Let 71, be a Lagrangian hybrid system and
(0*,0%) € Dy. If the coefficient of restitution satisfies 0 <
e < 1 and (6*,0%) satisfies

h(6%) =0, (6",6%) =0,

h(6*,6*) <0,
then {(6*, 9*)} is a bounded-time stable Zeno equilibrium.
Here h(0*,0%) = dh(0*)0* and

h(07,6%) = (6")"H(h(0"))6" +
dh(0F)M(07) 1 (~C(0%,0)0* — N(67)),
where H(h(0*)) is the Hessian of h at 6*.

Proof: First note that {(6*,6*)} is a Zeno equilibrium.
Indeed, dh(6*,6*)fr(0%,0%) = h(6*,6*) # 0 implies that
fu(6*,6*) # 0. Then the conditions h(6*) = 0 and
h(6*,6%) = 0 imply that {(§*,0*)} is a Zeno equilibrium.

Let V be a small neighborhood of (6*,6*) and assume (by
passing to a coordinate chart) that V' C R?" with Euclidean
norm. Let K satisfy

L+e |[M(0*)"tdh(0*)T||

(
K> = Q@ M @) dn@ )T

We verify that the constants v} = ’yé = e, K and the function

h(0,0) + +/h(0,6)% + 2h(0)

9,0) =
on(@:0) —h(6,60) + \/h(6,60)2 + 2h(6)

(16)

satisfy conditions R1-R6 on V.

R1: Since (8*,0*) is a Zeno equilibrium, 7(6*) = 0 and
h(6*,6*) = dh(*)6* = 0. Thus 1, (6*,6*) = 0.

R2: Since () > 0, 15 (0,6); = 0 if and only if h(f) = 0
and h(6,0) < 0. So ¢5,(0,60); = 0 if and only if (6,0) € GJ,.

R3: The square root in the definition of ¢;, creates some
differentiability problems at the Zeno equilibrium.

Assume V' is small enough that V' contains no equilibria of
fu. Then (Dp, \ Z) NV has the form

(Dp\ Zy) NV ={(0,0) € V : h(8) > 0 or h(6,8) # 0},

and that vy, is continuously differentiable on (D \ Zp) NV
with Lie derivative given by

o) (9. 0) + (h(e,e) +1)
w(0, S O — ) — (ﬁ(& 0) + 1)
7 h(6,6)2+2h(6) ’
a7

Recall that h(6*,0*) < 0. It follows from the definitions
that scaling & by a positive constant does not change D, G,
or Rj,. Therefore we can assume that h(6*,6*) = —1.



While the function % may not have a unique
] AV h(0,6)24+2h(0)
limit as (6,60) — (6*,6*) it remains bounded on (D \ Z,)NV:
|26, 6)]

<1.
\/ (0, 0)2 + 2h(6)

Therefore, @/}h has the well defined limit

_ lim  n(6,0) = <_1> .
(0,6)€(Da\Zn)NV, (6,6)—(0%,6%) 1

Since the differentiability problems only arise on the guard,
an in particular only on the Zeno equilibria, the limit in
equation (18) suffices for the evaluation in R3.

R4: Let (0,0) € Gj,. Then h(f) = 0 and h(0,0) <
0. So substitution into equation (16) gives ¥y (0,0) =
(0,2|h(0,0))T.

Multiplying both sides of equation (15) on the left by dh(6)
and the definition of 7(6, ) gives h(Ry(6,6)) = —eh(8,6).

Therefore ;,(Rn(0,0)) = (2¢[h(6,0)],0)7. So if

(18)

Y, = v = e R4 holds with ¢,(Rp(6,0))1 €
[€¢h(9>9>276¢h(9,9>2]'
| dn (07,072 fr (07,05) | | 1|
R5: ’Yhdwh(e*yé*)lfL(g*)é*) —‘671‘—€<1.

R6: Take a point (0,6) € G, NV (this is the only step that
requires a norm, and hence the coordinate chart on V). We
upper bound the growth due to the reset map as follows,

| Ry (6,0) — (67,67
H(e, 6) — (6%, 0%)—

dh(6)6 I
(0’ A+ @i tan@r 0 ()
|dh(6)0]
dh(0)M(0)~1dh(0)
Recall that vy, (6,0), = 2|dh(0)d|. Plugging in the definition
of K proves R6:

1R (6,0) — (67,6 < [1(8,6) — (6", 6%)|| + Kn(6,0)2.

IN

(1+e) 7M@)~ dh(O)].

Since R1-R6 hold, Theorem 3 implies that there is a
neighborhood W of (6*,0*) with W C V such that there
is a unique Zeno execution with ¢o(0) =z forallz € W. R

Example 5 (Ball on a Circle): With Zeno stability tools
in hand, we revisit the ball bouncing on a circle from Examples
1, 3 and 4. The conditions in equation (3) for Zeno stability
follow from the application of Theorem 4.

C. Application to Knee-bounce in Bipedal Robotic Walking

Mechanical knees are an important component of achieving
natural and “human-like” walking in bipedal robots [39].
Mechanical “knee-caps”, i.e., mechanical stops, are typically
added to these mechanical knees to prevent the leg from hyper-
extending. Yet with this benefit comes a cost: knee-bounce,

Knee-Bounce

[

Knee Unlocked

(@ (b)

Knee-Bounce

A Knee Locking

eZ
Foot Impact

Knee Unlocked € Knee Locked

©

Fig. 3. The model of a biped with knees (a) the Lagrangian hybrid system
model J#g (b) and the generalized completion of this model SR (c).

which occurs when the shin bounces off the mechanical stop
repeatedly as the leg attempts to lock. It was experimentally
shown by McGeer that this “bouncing” behavior can destabi-
lize the robot in certain situations [40]. This naturally raises the
question: will knee-bounce always destabilize robotic walking,
or are small amounts of knee-bounce acceptable? To address
this question, knee-bounce can be formulated as Zeno behavior
and analyzed using the results of this paper. In particular,
this subsection summarizes the results of [41], which applied
Theorems 3 and 4 of this paper to characterize the effect that
knee-bounce has on the existence of walking gaits for bipedal
robots with mechanical knees.?

Consider a bipedal robot with knees as shown in Figure
3(a). We begin by considering the hybrid Lagrangian asso-
ciated with this robot, given by R = (Or, Lr, hr), where:
OR is the configuration space of the robot with coordinates
6 = (01,04, 0r), where 6; is the angle of the leg from vertical,
0}, is the angle of the hip and 6y, is the angle of the knee, Lr
is the Lagrangian of the robot computed in the standard way
[42], and hgr is the constraint that ensures that the knee does
not hyperextend, i.e., hg = 0. From this hybrid Lagrangian
we obtain a Lagrangian hybrid system:

Jr = (T'r = (u,es = (u,u)), Dr,Gr, Rr, FR),

which models the robot with a single impact that occurs when
the knee “strikes” as shown in Figure 3(b). The Zeno equilibria
for this system are given by:

Zr ={(0,0) € TOR : fr(0,0) #0, 6, =0, 6, =0}.

3A more formal treatment is given in [41].



That is, the set of points where the knee angle is zero with
zero velocity, i.e., the set of points where the leg is straight
and the knee is “locked.” Moreover, it is easy to verify that
BR < 0 for a large subset of this set, and thus there are
stable Zeno equilibria. Physically, the existence of these stable
Zeno equilibria imply that knee-bounce will occur (formally
verifying the experimental behavior witnessed by McGeer).

As a result of these stable Zeno equilibria, it is necessary to
complete the Lagrangian hybrid system model 7 to allow
for solutions to continue after knee locking. The details of this
completion process for this system can be found in [41], but to
summarize one obtains a new hybrid system .r graphically
illustrated in Figure 3(c) where a “post-Zeno” domain is added
where the leg is locked, transitions to that domain occur when
the set Zr is reached, and transitions back to the original “pre-
Zeno” domain occurs at foot-strike with reset map being the
standard impact equations considered in the bipedal robotics
literature [37]. In the case of perfectly plastic impacts at the
knee (when e = 0 for Rr as computed with (15)), this
completed model is the standard model of a bipedal robot
with knees that lock [43]. What is of interest is when the
assumption of perfectly plastic impacts at the knee is relaxed,
and knee-bounce occurs.

It was proven in [41] using Theorem 3 and Theorem 4 that
if there exists a locally exponentially stable plastic periodic
orbit for #g, ie., a periodic orbit with e = 0, and if
hr(6*,6%) < 0 for (§*,0*) a Zeno equilibrium point that
is a fixed point of this plastic periodic orbit, then for e > 0
sufficiently small there exists a Zeno periodic orbit for SR,
i.e., a periodic orbit which contains a Zeno execution. In
simple terms, this result simply states that if there exists
bipedal robotic walking for the assumption of perfectly plastic
impacts at the knees, there there will exist robotic walking
for small amounts of knee-bounce. To apply this result, we
begin by producing a walking gait with plastic impacts at the
knees, the trajectories for which can be seen in Figure 4(a).
The exponential stability of the periodic orbit associated with
this walking gait can be checked by numerically computing the
Poincaré map at the fixed point (§*,0*), and we can check that
the Zeno equilibrium point (6*, 9*) is Zeno stable by noting
that hg (6*,0*) = —50.135 < 0. Thus there will be walking
even with knee bounce as long as it is sufficiently small. In
fact, we find that even taking e = 0.25 there is still a stable
walking gait; the trajectories of this walking gait can be seen
in Figure 4(b).

V. CONCLUSION

In this paper, we developed Lyapunov-like sufficient condi-
tions for Zeno stability. The proof methodology had two main
components. First, we defined a class of hybrid systems with
simple conditions for Zeno stability. Then, we proposed spe-
cial structured (Lyapunov-like) functions that map executions
of interesting hybrid systems to executions of the simple Zeno
hybrid systems on the first quadrant of the plane.

Our Lyapunov-like theorem applies equally well to isolated
and non-isolated Zeno equilibria. Covering both cases was
necessary, since we observed that a stable Zeno equilibrium
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Fig. 4. The trajectories of the bipedal robot for a walking gait in the case
of plastic impacts at the knee (a) and knee-bounce, or Zeno behavior, at the
knee (b).

displayed asymptotic stability if and only if it was isolated.
Furthermore, since most interesting Lagrangian hybrid systems
only have non-isolated Zeno equilibria, the study of the sta-
bility of non-isolated Zeno equilibria is fundamental. Because
most of the existing conditions for Zeno behavior required
either isolated Zeno equilibria or asymptotically stable Zeno
equilibria, they all had similar limitations.

Our applications to Lagrangian hybrid systems showed that
our sufficient conditions for Zeno stability can handle some
non-trivial, high dimensional hybrid systems. Furthermore,
the Lyapunov-like sufficient conditions specialize to algebraic
constraints on the Zeno equilibria. In particular, in Lagrangian
hybrid systems, we can infer Zeno stability properties based
on the zeroth-order approximation to the vector fields at the
Zeno equilibria, similar to the local approximation results of

(11, 131, [5].

Future work on Zeno stability must push the theory towards
real-world systems. As summarized in Subsection IV-C, the
theory from this paper has been used to characterize knee-
bounce phenomena in bipedal robotic systems. More work
is needed to extend the theory for reasoning about practical
systems from robotics, control, and verification in which Zeno
behavior occurs in the models.
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