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Abstract— This paper presents an approach to the devel-
opment of bipedal robotic control techniques for multiple
locomotion behaviors. Insight into the fundamental behaviors
of human locomotion is obtained through the examination of
experimental human data for walking on flat ground, upstairs
and downstairs. Specifically, it is shown that certain outputs
of the human, independent of locomotion terrain, can be char-
acterized by a single function, termed the extended canonical
human function. Optimized functions of this form are tracked
via feedback linearization in simulations of a planar robotic
biped walking on flat ground, upstairs and downstairs — these
three modes of locomotion are termed “motion primitives.” A
second optimization is presented, which yields controllers that
evolve the robot from one motion primitive to another — these
modes of locomotion are termed “motion transitions.” A final
simulation is given, which shows the controlled evolution of a
robotic biped as it transitions through each mode of locomotion
over a pyramidal staircase.

I. INTRODUCTION

The study of bipedal robotic locomotion has a rich his-
tory. An enormous variety of control approaches have been
developed, including: passive walkers [1], [2], computation
of zero-moment point [3] and clever use of compliance
[4], among others. Robotic stair-climbing has been achieved
in [5], [6]. Bipedal robots are even now available both
commercially and for research. Impacts extend beyond the
field with significant advances in prosthetic devices [7], [8],
[9] and exoskeletons [10].

The quintessential model of bipedal locomotion — the hu-
man body — has an even richer history. Thousands of years
of evolution has rendered the human locomotion system a
highly effective, low-level control system. We suggest that
examination of this system will yield unparalleled insight
into the design of bipedal robotic locomotion controllers.
Granted, the physical human system, which utilizes 57 mus-
cles in locomotion [11], is far too complex to replicate with
current hardware and computational capabilities; however,
we claim that one can construct a low-level representation
of the human locomotion system. That is, certain outputs of
the human locomotion system can be represented as second
order system responses.

This paper presents two main results; the first is an
extension of [12], in which the author presents a method
of automatically obtaining robotic walking controllers, via
an optimization, from a set of human walking data. In the
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present paper, it is shown that an augmentation of the op-
timization can be successfully applied to multiple modes of
locomotion. Specifically, the presented technique yields robot
locomotion controllers for walking on flat ground, upstairs
and downstairs. The second result is a method of obtaining
controllers which evolve the robot from one locomotion
mode to another; that is, controllers which yield transition
modes between walking on flat ground, and traversing stairs.
The combination of these two results is a collection of con-
trollers, automatically obtained from optimizations based on
human data, which form a continuous, multi-modal system.
Related to this work is the predictive simulation of human
walking transitions method [13], which incorporates human
motion capture data in an optimization to generate transition
behaviors.

Here, the study begins with examination of the human
locomotion system. Using the method of [12], it is shown
that certain outputs of the human data for flat ground walking
can be characterized by the response of a linear spring-
damper system under constant force; this result is extended to
accommodate walking upstairs and downstairs. Specifically,
the extended canonical human function (3) is shown to
represent sets of data, from all three modes of locomotion
of interest, with high correlation in each case. The fact
that the same function can be applied to different modes
of locomotion further illustrates the validity of the proposed
low-level representation of the human system.

A classification scheme for hybrid systems — the meta-
hybrid system — is presented, in which a distinction is made
between primary and auxiliary modes of locomotion, which
are termed motion primitives and motion transitions, respec-
tively. Motion primitives are fundamental modes of locomo-
tion; the three motion primitives of this study are: walking
on flat ground, walking upstairs and walking downstairs. To
switch between different motion primitives, auxiliary modes,
termed “motion transitions,” are introduced.

Implementing the extended canonical function via feed-
back linearization, stable locomotion is achieved on a planar
bipedal robot in simulations of each of the three motion
primitives. Motion transitions are used to construct sim-
ulations which show the composition of multiple motion
primitives together; that is, a simulation is given which shows
the controlled evolution of a biped as it ascends and then
descends a staircase.

II. HUMAN LOCOMOTION DATA

For guidance and insight in the control design process, we
turn to the most prevalent source of information on bipedal



walking found in nature — the human body. The following
sections provide an overview of the analysis and the insights
obtained through examination of the data.
Human Locomotion Experiments. A set of four human
subjects participated in this study; each was outfitted with
19 LED sensors placed at key locations on the body,

Fig. 1: Human ex-
periment for walking
upstairs.

as illustrated in Fig. 1. As a test sub-
ject performed the desired task, data
were collected from these sensors
via the Phase Space Motion Capture
System. An experiment consisted
of a single test subject performing
three distinct modes of locomotion:
walking on flat ground, ascending a
stairway and descending a stairway.
The stairway used in this experi-
ment has a 0.25 meter stair height
and a 0.27 meter stair depth. For
this paper, we selected the sub-
ject whose data contained the least
noise; single steps from the data are
determined via a domain breakdown
procedure [14] — which entails the
examination of heel position and

acceleration data to determine instances of foot strike and
foot lift.
Extended Canonical Human Function. In [15], it is shown
that certain kinematic outputs of human walking can be rep-
resented by a single, universal function termed the “canonical
human function” — which is the solution to a system of
linear spring dampers under constant force. Examination of
the data for walking up and down stairs, however, reveals a
need for the augmentation of this function. It is found that
both walking up and down stairs can be considered as the
response of a spring-damper system to a constant force with
sinusoidal excitation, which has the form

y = e−ζωnt(c0 cos(ωdt) + c1 sin(ωdt)) + g0/ω
2
n (1)

+ c2(ωn, ω, ζ, b) cos(ωt) + c3(ωn, ω, ζ, b) sin(ωt),

where c0 and c1 are the initial conditions decided by the
initial position y(0) and the initial velocity ẏ(0); ξ is the
damping ratio and ωn is the natural frequency; ωd =√

1− ξ2ωn is the damped frequency; the constant term g0 is
the gravity term; b and ω are the amplitude and frequency of
the sinusoidal excitation, respectively; c2 and c3 are functions
of ωn, ω, ξ and b given by:

c2 = (2bξω)/(ω4 + 2(−1 + 2ξ2)ω2ω2
n + ω4

n), (2)

c3 = (b(−ω2 + ω2
n))/(ω4 + 2(−1 + 2ξ2)ω2ω2

n + ω4
n).

Manipulation of (1) yields the following simplified form,
which we term the extended canonical human function:

yH(t) = e−α1t(α2 cos(α3t) + α4 sin(α3t))

+ α5 cos(α6t) + κ(α) sin(α6t) + α7, (3)

where κ(α) = (2α1α5α6)/(α2
1 + α2

3 − α2
6).
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(a) Fitted hip position
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(b) Fitted nonstance slope
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(c) Fitted stance knee angle
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(d) Fitted nonstance knee angle

Fig. 2: Fitted extended canonical human functions and cor-
responding human data.

It will be shown that the extended canonical human
function represents, with high correlation, certain outputs of
human locomotion; this analysis forms the basis of the ideas
and control approach presented in this paper. By examining
outputs of human locomotion and showing that (3) fits these
outputs with high correlation, we can construct a low-level
representation of human locomotion. Through control, we
can achieve locomotion — independent of terrain — which
exhibits the same kinematic outputs of human locomotion in
a robotic biped, despite immense morphological differences
between human and robot.

Function Fitting. We now seek various kinematic properties,
or constraints, of the human data which seem to describe
the fundamental outputs of the human locomotion system.
A total of four kinematic constraints are required for the 4-
DOF robot model in consideration; the constraints chosen
are: the forward position of the hip, phip, given by

phip = Lc sin(−θsf ) + Lt sin(−θsf − θsk),

where Lc and Lt are the lengths of the calf and thigh,
respectively; the nonstance slope, mnsl, given by

mnsl =
pxnsf − pxhip
pznsf − pzhip

,

which defines the slope of a virtual line segment connecting
the hip and the non-stance foot; the stance knee, θsk; and the
non-stance knee, θnsk. These constraints are illustrated on the
robot model, in Fig. 3(c). Throughout the paper, the stance
foot and nonstance foot are labeled sf and nsf , respectively.

Examination of human locomotion data reveals that the
velocity of linearized hip position is approximately constant,
as seen in Fig. 2(a). Thus, we fit the linearized hip position
with straight line as δpdhip = αvhipt. Utilizing the extended
canonical function, the remaining three desired outputs of
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Fig. 3: The modeled robot’s configuration, mass & length
distribution, and virtual constraints.

robot can be stated as:

δmd
nsl(t, αnsl) = yH(t, αnsl),

θdsk(t, αsk) = yH(t, αsk),

θdnsk(t, αnsk) = yH(t, αnsk).

(4)

where, e.g.,

αsk = (αsk,1, αsk,2, αsk,3, αsk,4, αsk,5, αsk,6, αsk,7)

in (3). The parameters of all the outputs can be combined into
a single parameter vector: α = (αvhip

, αnsl, αsk, αnsk) ∈
R22. By fitting these functions, via least square fits which
yield high correlation coefficients, to corresponding human
data, we claim that the canonical human function accurately
describes human walking data. First, define the following
human data-based cost function:

CostHD(α) =

K∑
k=1

∑
i∈Output

(
yHi [k]− ydi (tHi [k], αi)

)2
, (5)

which is simply the sum of squared residuals; where i ∈
Output = {δhip, δmnsl, θsk, θnsk}; yHi [k] and ydi (·) rep-
resent the mean human data and the canonical walking
functions with fitting parameters αi, respectively, with k ∈
[1, . . . ,K] ⊂ Z an index for the K data points; for example,
yHθsk [k] = θsk[k] and ydθsk(tHθsk [k], αsk) = θdsk(tHθsk [k], αsk).
tHi [k] is the discrete time for the mean human walking data.

To determine the parameters for the human walking func-
tions, the following optimization is solved:

α∗ = argmin
α∈R22

CostHD(α), (6)

This optimization problem produces the least square fits of
the canonical human functions to the corresponding human
data (note that the reason this optimization is explicitly
stated is because this same cost function will later be used,
but subject to constraints that ensure robotic walking). The
parameters obtained through this process are given in Table
I, together with the correlation of each function to the
corresponding set of data. Additionally, the functions for
each kinematic constraint and each locomotion behavior
(three motion primitives and four motion transitions) are
plotted with the corresponding human data in Fig. 2.

III. HYBRID AND META-HYBRID SYSTEMS

In this section, it is shown that primary modes of bipedal
locomotion — such as walking, running, standing, jumping

and traversing stairways — can each be represented by a
unique hybrid control system. However, control of functional
bipedal robots requires dominion over multiple primary
modes of locomotion. Therefore, to develop a functional
locomotion control scheme, one must introduce auxiliary
hybrid systems, which evolve the state of the robot during
transitions between primary modes. To this end, we propose
the concept of a meta-hybrid system, which consists of both
primary and auxiliary hybrid systems.

A. Hybrid Systems

A natural choice of mathematical representation for this
robot model is a hybrid system, or system with impulse
effects [16], which exhibits both continuous and discrete
dynamics.

Definition 1: A hybrid control system is a tuple,

H C = (D, S,∆, f, g, U),
where
• D is the domain with D ⊆ X a smooth submanifold of

the state space X ⊆ Rn,
• S ⊂ D is a proper subset of D called the guard or

switching surface,
• ∆ : S → D is a smooth map called the reset map,
• (f, g) is a control system on D, i.e., ẋ = f(x) + g(x)u,
• U ⊆ Rm is the set of admissible control.
A hybrid system is a hybrid control system with U = ∅,

e.g., any applicable feedback controllers have been applied,
making the system closed-loop. In this case,

H = (D, S,∆, f),

where f is a dynamical system on D ⊆ X , i.e., ẋ = f(x).
Hybrid System for the Biped. The robot model for this
work is a planar, four-link pinned kinematic chain, with a
configuration and mass and length distribution as shown in
Fig. 3(a) and 3(b), in which mc, mt, mhip are the masses
of the calf, thigh and hip, respectively; Lc and Lt are the
lengths of the calf and thigh; rc and rt are the locations of
the center of mass of the calf and thigh, as measured from
the foot and knee. Derivations of the Lagrangian dynamics
and impact model for this biped are given in detail in [12].

TABLE I: Fitted parameter values for human functions.
yd1 = a1t, yd2 = yH(t) given in (3)

f. a1 a2 a3 a4 a5 a6 a7 Corr.
pfghip 0.921 0 0 0 0 0 0 0.9982
puship 0.273 0 0 0 0 0 0 0.9954
pdship 0.357 0 0 0 0 0 0 0.9976

mfg
nsl -1.135 0.062 6.495 0.217 0 0 0.150 0.9995

mus
nsl -0.515 0.057 5.515 0.162 0.046 14.864 -0.017 0.9996

mds
nsl 0.475 0.242 6.937 0.149 0.008 23.294 -0.076 0.9999
θfgsk 2.475 -0.188 10.248 -0.011 0 0 0.358 0.9861
θussk 2.013 1.028 3.705 0.639 0.023 14.375 0.514 0.9994
θdssk 1.775 -2.383 0.6909 -8.130 -0.130 11.374 2.852 0.9390
θfgnsk -0.849 -0.288 9.131 -0.123 0 0 0.593 0.9976
θusnsk 0.089 -0.850 5.367 -0.161 0.157 14.268 1.046 0.9996
θdsnsk -1.222 0.330 6.266 0.312 -0.066 15.422 1.289 0.9999



Given the preceding definition, we can now build a hybrid
system representation of the robot model of this study.
Formally, we begin by writing the hybrid control system for
the robot as:

H CR
h = (DRh , SRh ,∆R, fR, gR, UR), (7)

which depends on a unilateral constraint function, h, that
represents the environment, or terrain of the hybrid system.
Specifically, h is the height of non-stance foot above the
walking surface, e.g., a staircase or flat ground; h character-
izes the allowable configuration, i.e. the domain, given by:

DRh = {(q, q̇) ∈ TQ : h(q) ≥ 0} . (8)

The guard is just the boundary of the domain with the addi-
tional assumption that the unilateral constraint is decreasing,
i.e., the vector field is pointed outside of the domain, or

SRh =

{
(q, q̇) ∈ TQ : h(q) = 0 and

∂h(q)

∂q
q̇ < 0

}
. (9)

The remaining elements are specified by the dynamics of the
robot; that is, they are intrinsic to the model and consistent
for all hybrid system representations of the robot, yet they
are independent of the terrain. These elements are given by
• ∆R is the reset map — corresponding to the equations

which describe the response of the system to foot-
ground impact. Here the impact model of [17] is em-
ployed, which assumes perfectly plastic impacts.

• (fR, gR) is a control system on DR — which gov-
erns the evolution of the continuous phase of bipedal
locomotion. The Euler-Lagrange equations, (see [18]),
are used to obtain the control system for a given biped
model.

• UR = R4, as we assume full control authority.

Controller Design. Motivated by the desire to obtain human-
like, bipedal robotic locomotion, we seek to construct a
controller which drives outputs of the robot to correspond-
ing outputs of the human. Formally, we seek a u which
guarantees that ya(q) → yd(t) as t → 0, where q is the
configuration space of the biped, ya is the actual value of
the constraint on the robot and yd is the value of the extended
canonical human function. As the dynamics of the robot
model are highly nonlinear, the natural choice of control
method for this system is Input/Output Linearization [19].

The construction of this control law uses the human
walking functions considered in Sect. II. With these functions
in mind, we define the (relative degree 2) actual outputs of
the robot to be the output functions considered in Sect. II
and the desired outputs to be the outputs of the human as
represented by the walking functions:

ya2 (q) =

 mnsl(q)
θsk
θnsk

 , yd2,α(t) =

 md
nsl(t, αnsl)
θdsk(t, αsk)
θdnsk(t, αnsk)

 .
(10)

Similarly, with the goal of controlling the velocity of the
robot, we define the relative degree 1 outputs to be the

velocity of the hip and the desired velocity of the hip:

ya1 (q, q̇) = dphip(q)q̇, yd1,α = vhip. (11)

The goal is for the outputs of the robot to agree with the
outputs of the human, motivating the final form of the outputs
to be used in feedback linearization:

y1,α(q, q̇) = ya1 (q, q̇)− vhip, (12)

y2,α(q) = ya2 (q)− yd2,α(τ(q)) (13)

where τ(q) is a state-based parameterization of time using
the forward position of the hip; this renders the control sys-
tem autonomous. The controller u is obtained via feedback
linearization with the human-inspired virtual outputs (12) and
(13). A full derivation of the control law is given in [12], but
we note that the feedback linearization controller depends
on a constant ε which controls the convergence to the zero
dynamics surface, with faster convergence as ε→∞.

For the hybrid control system H CR
h , we apply the human-

inspired control law to obtain a hybrid system:

H R
(h,α) = (DRh , SRh ,∆R, fRα ), (14)

with
fRα (q, q̇) = fR(q, q̇) + gR(q, q̇)uα(q, q̇).

Here, we have made the dependence of fRα on the parameters
α ∈ R22 of the human walking functions explicit (note that
fRα also depends on the control gain ε, but since the same
gain will be used in all cases for the robot it is not explicitly
stated). The end result of the modeling process is a hybrid
system H R

h,α that depends on both the terrain (through h)
and the parameters of the human inspired control α.

B. Meta-Hybrid Systems.

A meta-hybrid system is a hybrid system of hybrid sys-
tems, which contains multiple locomotion behaviors and
transitions between these behaviors.

Definition 2: A meta-hybrid system is a tuple,

MH = (Γ,M ,T )
where
• Γ = (V,E) is a directed graph, with V a set of vertices,

or nodes, and E ⊂ Q × Q a set of edges; for e =
(q, q′) ∈ E, denote the source of e by sor(e) = q and
the target of e by tar(e) = q′.

• {Mv}v∈V is a collection of motion primitives, each
represented by a hybrid system:

Mv = (Dv, Sv,∆v, fv, Uv).

• {Te}e∈E is a collection of motion transitions, repre-
sented by hybrid systems of the form:

Te = (Dtar(e), Star(e),∆tar(e), fe).

That is, Te has the same domain, guard and reset map
as Mtar(e), but has a different vector field fe.

It is important to note that the meta-hybrid system of a
hybrid system, except that we have placed explicit restric-
tions on the structure of this system so as to be applicable
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Fig. 4: Graph of a meta-system representation for the three
motion primitives in consideration.

to bipedal robots that switch between different walking
behavior. In particular, as will be seen, we will construct
three motion primitives and transitions behaviors to form a
meta-hybrid system as illustrated in Fig. 4.

IV. MOTION PRIMITIVES & TRANSITIONS

In this section, we will explicitly construct a meta-hybrid
system for a bipedal robot, with the motion primitives—
walking on flat ground, walking upstairs and walking
downstairs—and transitions between these behaviors. The
behavior of the robot performing these transitions and motion
primitives will be supported through simulation results. More
formally, the goal of this section is to construct a meta-hybrid
system for the bipedal robot:

MH R = (ΓR,MR,T R).

Since the three motion primitives we are interested in are
walking on flat ground, walking up stairs, and walking down
stairs, we have the directed graph ΓR = (V R, ER), where

V R = {fg, us, ds}
ER = {(fg, us), (us, fg), (fg, ds), (ds, fg)}

or we allow transitions between walking on flat ground and
going up and down stairs (but not transitions between going
up stairs and going down stairs). The graph ΓR can be seen
in Fig. 4. The remainder of this section will be devoted to
constructing the motion primitives and motion transitions.

A. Motion Primitives

Motion primitives are the core modes of locomotion of this
study; this section discusses the development of controllers
for motion primitives and the simulations resulting from the
application of these controllers to the robot model.
Motion Primitive Collection. Using the concepts developed
throughout this paper, and specifically Sect. III-A, we can
now construct mathematical representations of a bipedal
robot traversing each of the three different terrains of interest:
walking on flat ground fg, up stairs us, and down stairs ds.
In particular, for each of the three terrains we obtain a hybrid

system (of the form given (14)) modeling the biped in this
terrain:
• Flat Ground:H R

(hfg,αfg)
, where hfg(q) = pznsf (q) is

the height of the foot above flat ground,
• Up Stairs: H R

(hus,αus)
, where hus(q) = pznsf (q)−pzstair

is the height of the foot above a stair (with the stair
above the stance foot).

• Down Stairs: H R
(hds,αds)

, where hds(q) = pznsf (q) +
pzstair is the height of the foot above a stair (with the
stair below the stance foot).

To achieve motion primitives from these hybrid systems, it
is necessary to design controllers for each motion primitive,
i.e., determine the control parameters αv , v ∈ V R, that will
result in stable walking for the robot in each terrain.
Controller Development. To obtain the control parameters
αv , v ∈ V R, for each motion primitive, we use the method of
[12] which uses human data in the form of an optimization
subject to constraints that imply stable walking (see [20]
for the underactuated case). In particular, we solve the
optimization problem:

α∗v = argmin
αv∈R22

CostHD(αv) (15)

s.t. ∆R(SRhv
∩ Zαv

) ⊂ PZαv

where CostHD is the human-data-based cost function, (5);
note that since this cost depends on the human data, it is
indexed by v ∈ V R since for each motion primitive one
obtains a different cost. Moreover, the constraints of the
optimization depend on the constraint function hv , v ∈ V R,
i.e., they depend on the specific terrain being considered.
Finally, Zαv

is a zero dynamics surface of the system, on
which ya1 (q, q̇) = yd1,αv

and ya2 (q) = yd2,αv
(q) for all time;

PZαv
is a partial zero dynamics surface of the system,

on which ya2 (q) = yd2,αv
(q) for all time. Due to space

constraints, we refer the reader to [12] for further details.
By solving the optimization problem (15) for each motion

primitive, we obtain control parameters α∗v , v ∈ V R that
yield stable hybrid systems for each motion primitive (this
is formally proven in [21] and will be justified through
simulation in the next paragraph). Moreover, a fixed point
for each motion primitive (q∗v , q̇

∗
v) ∈ SRhv

, v ∈ V R, i.e.,
the unique point on the periodic orbit that intersects the
guard, can be computed in closed form in the limit as
ε→∞ (again see [21]). That is, we have thus obtained the
motion primitives for MH R given by MR

v = H R
(v,α∗

hv
),

v ∈ V R. Plots of the human walking functions with the
specific parameters α∗v found by solving this optimization
problem, as compared against the human data, can be seen
in Fig. 5. By inspecting that figure, it can be seen that the
canonical human walking functions that yield walking for
each motion primitive have very good agreement with the
human walking data.
Simulations. A simulation for each motion primitive was
performed. The resulting locomotion gaits from simulation
are given in Fig. 7; these figures show the evolution of the
robot during the single support phase of the gait, each of
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(d) Optimized nonstance knee angle

Fig. 5: Optimized extended canonical human functions with
parameters obtained by solving the optimization problem
(15) and the corresponding human data.
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(a) Periodic orbit for Mfg .
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(b) Periodic orbit for Mas.
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(c) Periodic orbit for Mds.

Fig. 6: Phase portraits for the motion primitives.

which qualitatively resembles the corresponding human gait
quite well. The phase portraits for each motion primitive
simulation are shown in Fig 6. Numerical approximations of
the Poincaré map yield eigenvalues with magnitude less than
one, implying that the corresponding motion primitives are
stable.

B. Motion Transitions

This section discusses the development and simulation of
motion transitions which are explicitly built upon the motion
primitives obtained in the previous section.
Motion Transition Collection. We are interested in devel-
oping motion primitives based upon the meta-hybrid system
graph ΓR, which gives the allowable transitions between

(a) Walking on flat ground.

(b) Walking upstairs.

(c) Walking downstairs.

Fig. 7: Snapshots from robotic locomotion simulations ex-
hibiting the three motion primitives. The stance leg is shown
in black; the nonstance leg is shown in red.

different walking behaviors. Based upon the definition of
a meta-hybrid system (Definition 2), the motion transitions
must satisfy very specific conditions with regard to the mo-
tion primitives. Therefore, specific motion transition hybrid
systems we are interested in must have the form:
• Walking on flat ground to up stairs: H R

(hus,α(fg,us))

• Walking up stairs to flat ground: H R
(hfg,α(us,fg))

• Walking on flat ground to down stairs: H R
(hds,α(fg,ds))

• Walking down stairs to flat ground: H R
(hfg,α(ds,fg))

Therefore, to define the transition behaviors, it is necessary
to determine the control parameters αe, e ∈ E. This will
be achieved through another optimization, but one that uses
the walking behavior of the motion primitives to smoothly
transition from one behavior to another.

Controller Development. To determine the parameters αe,
e ∈ E, of the motion transitions we use the fixed points
corresponding to the stable walking of each motion primitive.
In particular, let (q∗v , q̇

∗
v) ∈ SRhv

, v ∈ V R, be the fixed
point of each motion primitive obtained through (15). Using
this, and at a high level, the goal of the motion transition
optimization is to generate desired output functions, which
have smooth connections with the corresponding source and
the target motion primitives. Formally, these objectives can
be stated in an optimization problem:

α∗e = argmin
α∈R22

ẏd2,αe
(ταe)− ẏd2,α∗

tar(e)
(τα∗

tar(e)
(q∗tar(e))) (16)

s.t yd2,αe
(0)− yd2,α∗

sor(e)
(0) = 0

ẏd2,αe
(0)− ẏd2,α∗

sor(e)
(0) = 0

yd2,αe
(ταe)− yd2,α∗

tar(e)
(τα∗

tar(e)
(q∗tar(e))) = 0

yd1,αe
−
yd1,αsor(e)

+ yd1,αtar(e)

2
= 0

where τα∗
tar(e)

is the parameterization of time based upon the
position of the hip (see [12]), and ταe is a parameterization
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(a) Periodic orbit for H M {fg,us}.
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(b) Periodic orbit for H M {fg,ds}.

Fig. 8: Phase portraits for the motion primitive-transition
combinations.

of time for the motion transition, ταe
= (phip(q∗target) −

phip(∆R(q∗source)))/vhip, yd2,αe
(t) is the desired output of

the robot with parameters αe; α∗tar(e) and α∗sor(e) are the pa-
rameters of the target and source motion primitives, MR

tar(e)

and MR
sor(e), respectively. The are obtained by solving the

optimization problem (15), (q∗tar(e), q̇
∗
tar(e)) is the fixed point

of the periodic orbit for the target motion primitive. Solving
this optimization problem yields parameters α∗e , e ∈ ER,
which yields our motion transition hybrid systems: Te =
H R

(htar(e),α∗
e)

with e ∈ ER.

Simulations. Three simulations were performed in which
motion primitves and motion transitions were combined.
To construct a Poincaré map, and thus establish a notion
of the stability of a meta-system, the biped must start and
end in the same mode; therefore, we chose to simulate two
locomotion cycles: walking on flat ground to walking up
stairs to walking on flat ground (F-US-F) and walking on
flat ground to walking down stairs to walking on flat ground
(F-DS-F). The phase portrait for each locomotion cycle is
shown in Fig. 8. Numerical approximation yields eigenvalues
for both simulations; the maximum eigenvalue of each is
below unity which implies that both meta-systems are stable.
Finally, we simulated all three motion primitives together
with the four motion transitions; see Fig. 9 for snapshots
from the simulated walking gait.

V. CONCLUDING REMARKS

In this paper, we examined experimental human data on
three modes of walking. It is shown that certain outputs of the
flat ground and stair-climbing data can each be represented
by the response of a linear spring-damper system. An op-
timization of the parameters in (3) gives virtual outputs for
feedback linearization controllers; implementation of these
controllers yields stable, periodic locomotion in simula-
tion. A second optimization yields controllers which effect
transitions between motion primitives; these intermediate
modes are termed motion transitions. Simulations are given
which display bipedal robots walking in a varying terrain.
Future work will be devoted to expanding the set of motion
primitives to additional locomotion behaviors, extending the
results presented to the case of underactuation, and finally
realizing the results of this work on a physical robot.

Fig. 9: Snapshots from the simulated composition of multiple
locomotion modes. The stance leg is shown in black; the
nonstance leg is shown in red.
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