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Abstract

The focus of robotic bipedal walking to date has been the development of an-
thropomorphic gait, but the community as a whole has struggled to agree on
the correct ordering of discrete events during walking. In this paper, we propose
a universal temporal ordering of discrete events for bipedal walking based on
motion capture data collected from a nine subject straight line walking exper-
iment. To construct this ordering, we develop a technique based on persistent
homology to process the motion capture data to determine when the number of
contact points change during the course of a step which automatically dictates
the ordering of discrete events. Surprisingly the findings of this work are that
every subject regardless of age, sex, weight or height in the experiment had an
identical temporal ordering of such events. This result allows for the develop-
ment of a universal anthropomorphic bipedal robotic walking model because the
temporal ordering of events together with the Lagrangian modeling of the robot
completely determines the mathematical model of the system. Importantly, this
universal ordering allows us to propose a cost function based on human data:
the human-based cost, which we use to gauge the “human-like” quality of robotic
walking.

Keywords: Robotics; Bipedal Robotic Walking; System Identification;
Homology

1. Introduction

One of the most important decisions made during the design of a controller
for bipedal robots is the temporal ordering of events that occur during the gait,
i.e., the discrete phases (or domains) of the walking termed a domain break-
down. This decision alone determines the constraints that are enforced at any
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Figure 1: An example of a domain breakdown, i.e., the discrete phases of a walking
gait based upon a specific temporal ordering. The red dots indicate the constraints
enforced in each discrete phase (or domain)

given time during the gait, e.g., the foot being flat on the ground correspond-
ingly determines the continuous dynamics (through holonomic constraints) on
each phase and the discrete dynamics (impact equations) between each phase.
Therefore, given the equations of motion for a bipedal robot, the temporal or-
dering of events completely determines the mathematical model for the biped
(referred to as hybrid systems or systems with impulsive effects).

The temporal ordering of events not only determines the underlying math-
ematical model of a bipedal robot, but it is essential during control design. In
each phase of walking the control objectives may be, and often are, dramati-
cally different. For example, for the specific discrete phases given in Fig. 1, it
might be desirable to design a control law that transitions from domain [lh, lt]
to domain [lt], i.e., a controller that forces the heel to lift. Knowing that such a
controller is desirable (or even needed at all) is purely a function of the domain
breakdown. In essence, the domain breakdown directly affects the nature of
walking.

Currently there exists a fractured landscape in the bipedal walking commu-
nity when one considers the domain breakdown. Traditionally, most models
of bipedal robots have employed a single domain model ([1, 2, 3, 4]), which as-
sumes an instantaneous double support phase and usually excludes the presence
of feet (models of this form began with the so-called compass gait biped, which
did not have knees or feet). Adding feet to the bipedal robot results in the need
to extend the domain breakdown beyond a single discrete phase, which is typi-
cally done by either adding a phase where the heel is off the ground or a double



support phase where both feet are on the ground, or any combination thereof
[5, 6, 7]. This lack of consistency among models in the literature motivates
the desire to determine if there does in fact exist a single “universal” domain
breakdown that should be used when modeling bipedal robots, especially in the
context of obtaining human-like bipedal walking.

The traditional tact taken to generate human like walking relies upon track-
ing of motion capture data [8]. Either these methods track a single data point
(called the Zero Mass Point) which has been proven insufficient to guarantee
even the stability of the generated walking or track the entire data signal which
does not allow for the generalization of the generated walking due to different
construction, inertial properties, or actuation methods [9]. Human gait has
been studied in great depth by the biomechanics community [10, 11, 12]. This
work has focused on qualitatively describing the motion and function of various
joints during walking [13, 14, 15] or constructed simple linear torsional spring
models of specific joints [16]. Unfortunately little has been done to understand
how these empirical observations can be employed to construct a mathematical
model for gait. Since a robotic and human walker employ such fundamentally
different constructs, we begin by describing an appropriate level of abstraction
at which to view human walking in order to extract a meaningful mathematical
model of robotic gait capable of generating human-like gait. In particular, we
begin by showing that the discrete events during walking uniquely determine a
dynamical model of gait. The goal of this paper is to then answer the following
two questions: (1) Is there a universal domain breakdown for human-like bipedal
walking? and (2) Is there a method to quantify how human-like a certain walking
gait truly is?

To address the first question “Is there a universal domain breakdown for
human-like bipedal walking?” we begin by conducting a nine subject straight
line walking motion capture experiment. From this data, we develop a novel
and automatic method based on persistent homology for determining the domain
breakdown of each subject. The application of homological arguments to hybrid
systems is not new [17, 18], but to our knowledge this is the first application of
persistent homology to identify a hybrid system model. Importantly, we show
that every subject has the same domain breakdown. That is, there is a universal
domain breakdown for human walking.

To address the second question “Is there a method to quantify how human-
like a certain walking gait truly is?’ this paper proposes a cost function based
upon the human-walking data: the human-based cost. This cost function is built
upon the idea of comparing the temporal ordering of events for humans and
robots and, more specifically, the amount of time spent in each discrete domain.
That is, for a domain breakdown and a walking gait (for either a human or
a robot), there is an associated weighted cycle graph, termed a walking cycle.
We then find the cycle graph and associated weighting that is the minimum
distance with respect to a graph metric, the cut distance, between all of the
subjects’ walking cycles. This optimal walking cycle gives a “universal” domain
breakdown and associated walking cycle for human walking. Given another
walking cycle associated with either a human or a robot, the human-based cost



is defined to be the cut distance between this walking cycle and the optimal
walking cycle. To demonstrate the utility of the proposed cost function, we
compute the human-based cost both for the subjects in the experiment and for
existing robotic models. Computing the human-based cost for existing bipedal
robotic models confirms that robotic gaits which are more anthropomorphic in
nature have a lower human-based cost.

Our contributions are four-fold. First, we show in Section 2 that determining
when constraints are enforced also determines the domain breakdown for each
subject of the experiment. Second, in Section 3 we develop a motion capture
dataset, which we make available, of nine healthy people (exhibiting a wide
variety of ages, genders, heights and weights) walking in a straight line. Next,
in Section 4, we develop a novel procedure exploiting persistent homology to
determine constraint enforcement and hence domain breakdown and show that
every subject in our experiment has the same domain breakdown illustrated in
Fig. 1. Finally, in Sections 5 and 6 we show that by constructing an appropri-
ate metric over the space of domain breakdowns that we can construct a cost
function that when minimized produces anthropomorphic gait.

2. From Constraints to Models

Bipedal robots display both discrete and continuous behavior, i.e., they are
naturally modeled as hybrid systems. Bipeds evolve in a continuous fashion
according to traditional equations of motion when a fixed number of points on
the biped are in contact with the ground, e.g., when one foot is flat on the
ground while the other swings forward. The discrete behavior in the system
occurs when the number of contact points changes.

In this section, we formally introduce hybrid systems and discuss how the
equations of motion of a robot together with a temporal ordering of constraints
completely determines the hybrid model of the system. That is, when model-
ing bipedal robots, one needs only the Lagrangian of the robot and a domain
breakdown.

2.1. Hybrid Systems.

Hybrid systems (or systems with impulse effects) have been studied exten-
sively in a wide variety of contexts and have been utilized to model a wide range
of bipedal robotic models. In this section, we introduce a definition of a hybrid
system applicable to bipedal walking.

Graphs and Cycles. A graph is a tuple I' = (V, E), where V is the set of
vertices and E C V x V is the set of edges; an edge e € E can be written as
e = (4, 7), and the source of e is source(e) = ¢ and the target of e is target(e) = j.
Since steady state bipedal walking naturally appears periodic, we are interested
in hybrid systems on a cycle; therefore, we are interested in graphs that contain
cycles or are themselves cycles. A directed cycle (or just a cycle) is a graph



¢ = (V, E) such that the edges and vertices can be written as:
Vo= {voavlv"'avP*1}7 (1)
E = {eo=(vo,v1),...,€p—1 = (Up—1,00)}.

Since in the case of a cycle, the edges are completely determined by the vertices,
we sometimes simply denote a cycle by:

l: Vo —» V1 — - —> Up—1

In the case when a graph I' is being considered with more than one cycle, we
denote a cycle in the graph by ¢ C T.

Example 1. The domain graph pictured in Fig. 1 has an underlying graph that
is a directed cycle: T, = (V,,, Ey). In particular, there are 4 vertices and edges,
which results in the cycle:

by o [lh,lt] = [lt] — [It,rh] — [lt,rh,1t].

With the notion of a directed cycle, we can introduce the formulation of a
hybrid system that is of interest in this paper.

Definition 1. A hybrid system in a cycle is a tuple
HE = (,D,U,S, A FG),
where
o (= (V,E) is a directed cycle

e D ={D,}vev is a set of domains, where D, C R™ x R™v is a smooth
submanifold of R™ x R™v (with R™v representing control inputs),

U ={U,}vev, where U, CR™ is a set of admissible controls,

S = {Sc}eer is a set of guards, where Se C Dgource(e)

A ={A.}eck is a set of reset maps, where A, : RMsource(e) — RMtarget(e) 4g
a smooth map,

o F'G = {(fv,9v)}ver, where (fy,g,) is a control system on D,, i.e., & =
fo(x) + go(x)u for x € D, and u € U,.

2.2. Hybrid Systems from Constraints.

The remainder of this section discusses how a Lagrangian for the biped to-
gether with domain breakdown (which determines the active constraints on each
vertex of a directed cycle) allows one to explicitly construct a hybrid model of
the system. Many details of this construction are extensions of results presented
in [19].



Rb

0 Rc

<

Figure 2: An illustration of the placement of coordinate systems used during the
derivation of the Lagrangian.

2.2.1. General Setup

We begin with a bipedal robot in three dimensions—the discussion in this
paper is applicable to the two dimensional case. We first construct a Lagrangian
for the biped when no assumptions on ground contact are made and then enforce
the ground contact conditions through constraints.

Lagrangians. Asin Fig. 2, let Ry be a fixed inertial or world frame, and Ry, be
a reference frame attached to the body of the biped with position p, € R? and
orientation ¢, € SO(3). Consider a configuration space for the biped Q., i.e.,
a choice of (body or shape) coordinates for the robot where typically ¢, € @,
is a collection of (relative) angles between each successive link of the robot.
The evolution of the generalized coordinates of the robot are then given by
q:[0,00) = Q =R3 x SO(3) x Q,, with Q the generalized configuration space.

The Lagrangian of a bipedal robot, L : TQ — R, can be stated in terms of
kinetic and potential energies as:

L(q(t),4(t)) = K(q(t),4(t)) — V(q(t)), (2)

where (¢(t),4(t)) € TQ. The Euler-Lagrange equations yield the equations of
motion, which for robotic systems are stated as:

D(q(t))4(t) + H(q(t),4(t)) = Ba(t))u(t), (3)

where D(q(t)) is the inertia matrix, B(q(t)) is the torque distribution matrix,
B(q(t))u(t) is the vector of actuator torques and H (q(t), ¢(t)) contains the Cori-
olis, gravity terms and non-conservative forces grouped into a single vector [20].



Contact Points. The continuous dynamics of the system depend on which
constraints are enforced at any given time, while the discrete dynamics depend
on the change in constraints. Constraints and their enforcement are dictated by
the number of contact points of the system with the ground or itself. Specifically,
we define the set of contact points as set C = {c1,¢a,...,cr}, where each ¢; is a
specific type of contact possible in the biped, either with the ground or in the
biped itself (such as the knee locking). Ignoring the knees there are four contact
points of interest given by:

C = {lh,lt,rh,rt}

where [h and [t indicate the left heel and toe, and rh and 7t indicate right heel
and toe, respectively.

Constraints. Contact points introduce a holonomic constraint on the system,
e for ¢ € C, which is a vector valued function 7. : @ — R", that must be held
constant for the contact point to be maintained, i.e., n.(q(t)) = constant € R™e
fixes the contact point but allows rotation about this point if feasible. It is
useful to express the collection of all holonomic constraints in a single matrix
n(g(1)) € R™I as:

ma(a(t) 0 0 0

B 0 t( (t)) 0 0

e =1 o ") o
0 0 0 nrt(Q(t))

where n =37 . ne.

In the case of foot contact, consider a reference frame R. at the contact
point ¢ € {lh,lt,rh,rt} such that the axis of rotation about this point (either
the heel or toe) is in the z direction (the axis pointing up) as illustrated in Fig.
2. Then the rotation matrix between Ry and R, can be written as the product
of three rotation matrices Rot(x, ¢*)Rot(y, ¢¥)Rot(z, $>) and the position and
orientation of R, relative to Ry is given as

pe(q(t))
ne(q) = o3
®Y

where the first argument to Rot denotes the axis of orientation and the second
argument to Rot denotes the amount of rotation and p.(gq(t)) is the position
of c. Since ¢Z is free to move while ¢? and ¢¢ must be held constant, the end
result of this choice of coordinates is a holonomic constraint 7.(¢(t)) = constant,
which fixes the foot contact point to the ground but allows rotation about the
heel or toe depending on the specific type of foot contact.

Another class of constraints that are important are unilateral constraints, h.
for ¢ € C, which are scalar valued functions, h. : @ — R, that dictate the set
of admissible configurations of the system; that is h.(¢(t)) > 0 implies that the
configuration of the system is admissible for the contact point c. In the case of



foot contact, assuming that the walking is on flat ground, these constraints are
the height of a contact point above the ground: h.(q(t)) = p¥(q(t)) > 0. These
can be put in the form of a matrix h(q(t)) € RIQIXIQl in the same manner as
holonomic constraints.

Domain Breakdowns. A domain breakdown is a directed cycle together with
a specific choice of contact points on every vertex of that graph. To define
this formally, we assign to each vertex a binary vector describing which contact
points are active in that domain.

Definition 2. Let ¢ = (V, E) be a cycle and C = {c1,¢2,...,ck} a set of contact
points. A domain breakdown is a function B : { — 7% such that B(v); = 1 if ¢;
is in contact on v and B(v); = 0 otherwise.

Example 2. In the case of the graph Ty, given in Example 1 and set of contact
points C = {lh,lt,rh,rt}, for the domain breakdown given in Fig. 1, this do-
main breakdown is formally given by B, : £, — Z3 where By, ([lh,t]), B.([it)),
B, ([lt,rh]) and By([lt,rh,rt]) are given by:

Bu(0) : — —

O = = O
)

1 0
1 1
0 0
0 0
Note that in this case the choice of “left” and “right” leg is arbitrary, as long
as it is kept consistent throughout the definition. The terms stance and non-

stance leg are often used in the literature as well, but with the existence of double
support phases this choice also becomes arbitrary.

2.3. Hybrid System Construction

We can now demonstrate that given a Lagrangian, a directed cycle, and
a domain breakdown a hybrid system can be explicitly constructed. Since the
Lagrangian is intrinsic to the robot being considered, this implies that a domain
breakdown alone dictates the mathematical model of the biped.

Continuous Dynamics. The domain of the hybrid system is the direct prod-
uct of the tangent space of the configuration space of the robot and the input
space U which is dictated by the set of available actuators on the robot. The
vector field in each mode is constructed by imposing the constraints as specified
by the domain breakdown. For the mode v € V', the holonomic constraints that
are imposed are given by:

n0(q(t)) = nlq(t))B(v), (4)

where the domain breakdown dictates which constraints are enforced. Differen-
tiating the holonomic constraint yields a kinematic constraint:

Ju(q(t))q(t) =0, (5)



where J,(q(t)) = RowBasis (%Z(t))) is a basis for the row space of the Ja-

cobian (this removes any redundant constraints so that J, has full row rank).
The kinematic constraint yields the constrained dynamics in that mode:

D(q(t))q(t) + H(q(t),4(t)) = Bla(t))u(t) + Ju(q(t)) Fu (q(t), 4(t), u(t))  (6)

which enforces the holonomic constraint; here D, H and B are as in Equa-
tion (3) and F,(q(t),q(t),u(t)) is a wrench [20]. To determine the wrench
F,(q(t),q(t),u(t)), we differentiate the kinematic constraint and combine this
result with Equation (6):

Folg.4,u) = 7, (@) [D(@) T (@) (Jul@)d) + H(g.d) - By, (7)

where we have suppressed the dependence on ¢ in ¢, ¢, and u. Therefore, for
x(t) = (q(t),q(t)), substituting Equation (7) into Equation (6) yields the con-
trol vector field f,(x(t),u(t)). Importantly, notice that only the holonomic
constraints but not the unilateral constraints appear in the control vector field
and that the actual position to be maintained by the contact point as dictated
by the holonomic constraints never appears inside of the control vector field.

Discrete Dynamics. We now construct the guards and reset maps for a hybrid
system using the domain breakdown. From the wrench F,(q(t), ¢(¢),u(t)), one
can ensure that the contact point is enforced by considering inequalities on the
friction which can be stated in the form: s, (q(t))? F,(q(t), 4(t),u(t)) < 0, with
ty(q(t)) a matrix of friction parameters and constants defining the geometry
of the contact point (see [19] for more details). These are coupled with the
unilateral constraint in each mode, h,(q(t)) = h(q(t))B(v), to yield the set of
admissible configurations:

. [ mola(®)T Fula(t), (8), u(t))
A(a®), 4 u(e) = | PEEET <0, (8)

The guard is just the boundary of the domain with the additional assumption
that the set of admissible configurations is decreasing, i.e., the vector field is
pointed outside of the domain, or for an edge e = (v,v’) € E,

Ge={(q,4,u) €ETQ x U : Ay(q,¢,u) =0 and A,(q,¢,u) <0},  (9)

where we have suppressed the dependence on t in ¢, ¢, and u. The reset map
is derived by considering the impact equations which are given by considering
the constraints enforced on the subsequent mode. For an edge e = (v,v') € E,
the post-impact velocity ¢(¢1) is given in terms of the pre-impact velocity (™)
and determines the reset map:

Ra( 110D = | (- poagrn oL | 00

where [ is the identity matrix, .J,/ is the Jacobian matrix in mode v’, D is the
inertia matrix, and we have suppressed the dependence on ¢(¢) in the Jaco-
bian and inertial matrices. The result of this analysis is that given a domain



Figure 3: Illustrations of the experimental setup (left) and sensor placement on each
foot (middle and right). Each subject in the experiment was required to wear a suit
where the sensors (colored in red LEDs) are fastened in place. Each sensor was placed
at the joints as illustrated with the red dots on the right lateral (middle) and anterior
aspects (right) of the right leg. Sensors are placed identically on the left leg. The
same sensors drawn from different views are connected with red arrows (right) and
the labeled blue arrows are used to illustrate the diversity of subjects in Table 4.

breakdown and a bipedal robot (which determines just the unconstrained La-
grangian), the hybrid model for the biped is completely determined. If we then
segment the empirically observed human walking by considering the sequence
of contact point enforcements, we can extract a hybrid model for a biped that
is capable of generating human-like gait.

3. Experimental Setup

In this section, we describe the experimental setup employed during data
collection and describe the preprocessing done before determining the domain
breakdown for each individual. After reading the description presented in this
section, any interested researcher should be able to perform analysis on the
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Sex | Age | Weight | Height | L; Lo L3 La
30 90.7 184 14.5 | 8.50 | 43.0 | 44.0
19 53.5 164 15.0 | 8.00 | 41.0 | 44.0
17 83.9 189 16.5 | 8.00 | 45.5 | 55.5
22 90.7 170 14.5 | 9.00 | 43.0 | 39.0
30 68.9 170 15.0 | 8.00 | 43.0 | 43.0
29 59.8 161 14.0 | 8.50 | 37.0 | 40.0
26 58.9 164 14.0 | 9.00 | 39.0 | 41.0
77 63.5 163 14.0 | 8.00 | 40.0 | 42.0
23 47.6 165 15.0 | 8.00 | 45.0 | 43.0

©o| co| ~1| &| w1 x| wo| pof =
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Figure 4: Table describing each of the subjects. The measurements in column 4 are
in kilograms and the measurements in column 5 are in centimeters.

collected datal.

The data presented in this paper is collected using the Phase Space System?,
which computes the 3D position of 19 LED sensors at 480 frames per second
using 12 cameras at 1 millimeter level of accuracy. The cameras were calibrated
prior to the experiment and were placed to achieve a 1 millimeter level of accu-
racy for a space of size 4 by 4 by 4 meters cubed. 8 LED sensors were placed
on each leg as Fig. 3 illustrates. 1 LED sensor was placed on the sternum, 1
LED sensor was placed on the back behind the sternum, and 1 LED sensor was
placed on the belly button. Each sensor was fastened to subjects in a manner
that ensured that they did not move during the experiment.

Each trial of the experiment required the subject to walk 3 meters along a
line drawn on the floor (in Fig. 3 this line is drawn in blue). To simplify the
data analysis each subject was required to place their right foot at the starting
point of the line at the outset of the experiment and was told to walk in a
natural manner. Each subject performed 12 trials, which constituted a single
experiment. 3 female and 6 male subjects with ages ranging between 17 and 77,
heights ranging between 161 and 189 centimeters, and weights ranging between
47.6 and 90.7 kilograms. Table 4 describes the measurements of each of the
subjects.

To make the data collected from walking experiment amenable to analysis, it
was processed through a three-step procedure: interpolation, data rotation and
averaging. Since the motion capture information drops out periodically due to
self-occlusions, we first interpolate the data to compensate for sensors dropping
out of contact with the camera. The result of this initial data processing is

1The collected data can be found at http://www.eecs.berkeley.edu/~ramv/
HybridWalker.html
2http://www.phasespace.com/hardware
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Figure 5: (a) The data for the height (in mm) of the heel and toe for each leg for all
12 trials of a single individual and (b) the data after it has been shifted (drawn at
the bottom of the plot) and averaged (drawn at the top of the plot after it has been
shifted to have zero mean). Each color corresponds to a particular sensor.

relatively clean data over the course of a few steps (with the number of steps
depending on the individual). From each of the trials, at least two steps are
isolated (one with the right leg and another with the left leg) by ensuring that
the data repeats. The data is then rotated so that the walking occurs in the
z-direction. Since we are only interested in the data corresponding to constraint
enforcement, only the sensor data for the heel and toe on each leg are considered
(this is drawn in Fig.5(a)). For each subject, this data is considered for all 12
walking trials and averaged (after appropriately shifting the data in time) which
results in a single trajectory for each constraint for each subject for at least two
steps (one step per leg); this is the data that is used to determine the domain
breakdown and is drawn in Fig.5(b).

4. Domain Breakdown

In this section, we present our approach to determining when and which
constraints are enforced through the course of a step. More explicitly, the
purpose of this section is to determine the specific time intervals during a step
when the constraints are enforced. Doing so allows for a temporal ordering of
events, yielding a domain breakdown. This would appear to be a simple task—
for example, in the case of the heel, one need only determine when it is or is
not on the ground—but this turns out to be non-trivial.

The obvious approach to determining the domain breakdown based upon the
human data is to threshold the data, i.e., below the threshold a given constraint
(heel or toe) is enforced and above it, it is not. Unfortunately due to the noisy
nature of the data for the constraints “near the ground,” choosing a proper
threshold occurs at the scale of the noise. Smoothing the data aggressively can

12



“essentially” solve this problem, but then there becomes too many subject spe-
cific defined parameters in the domain fitting, i.e. the degree of smoothing and
the threshold. This makes the resulting domain breakdown found through this
process too user dictated. It is desirable to, instead, have a domain breakdown
that is chosen “automatically,” i.e., a domain breakdown that is independent
of choices on thresholds and other parameters. To overcome this problem, we
employ the notion of persistent homology and barcodes which were introduced
in [21]. After describing this procedure, we illustrate how it can be employed
to find a domain breakdown.

4.1. Persistent Homology

Before illustrating persistent homology, we begin by defining simplicial com-
plexes and homology. The reader is encouraged to read [22] for a more complete
introduction.

Definition 3. A simplicial complex is a set K, together with a collection
Q of subsets of K called simplices such that for all v € K, {v} € Q, and if
o CweQ, then o € Q. We call the sets {v} the vertices of K.

Definition 4. We say w € Q is a k-simplex of dimension k if |w| =k +1
where |w| denotes the cardinality of the set w. An orientation of a k-simplex
w={vg,...,vr}, is an equivalence class of orderings of the vertices of w, where
{vo, .., vk} ~{vr ), -+ Vr k) }- We denote an oriented simplex by (w).

Definition 5. The kth chain group Ci of K is the free Abelian group on
its set of oriented k-simplices, where if (w) = —(0) if w = o and o and T are
differently oriented. An element ¢ € Cy, is a k-chain, ¢ = Y, nij(w;), w € K
with coefficients n; € Z.

When it is clear from context what € is, we refer to the set K as a com-
plex. For completeness, we set C_; = 0. Though these simplicial definitions
seem complicated, homology provides a means for a straightforward algebraic
description of each simplicial complex.

Definition 6. The boundary operator 0y : Cy — Ci_1 is a homomor-
phism defined linearly on a chain ¢ € Ck by its action on any simplex w =
(Vo,v1,...,08) € ¢, Ogw = Y., (—=1)"(vo,v1,...,0i...,v%), where v; indicates
that v; is deleted from the sequence. The boundary operator connects the chain
groups into a chain complex C.. We may also define subgroups of Cy using
the boundary operator: the cycle group Zj, = ker Oy, and the boundary group
By, = im 041 The k-th homology group is the quotient group Hy := Zy/By.
The homology of a complex is the collection of all homology groups. The rank
of Hy, is the k-th Betti number jj.

The Betti numbers of a chain group carry an important topological meaning.

Bo is equal to the number of connected components in a chain group and Sy for
k > 01is equal to the number of k-dimensional holes in a chain group. Though we

13
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Figure 6: Snapshots for an image thresholded by 7 € [0,1]. The collection of thresh-
olded images start with two connected components which merge at 7 = 0.4 as shown
in the 8o diagram. A hole is present until 7 = 0.15 as depicted in the 8; diagram.

do not prove it here, continuous deformations of simplicial complexes preserve
these Betti numbers. Therefore, the Betti numbers in a topological sense fully
characterize a simplicial complex.

Given these definitions, we can now illustrate persistent homology. Suppose
we construct a simplicial complex by thresholding an image over its intensity
values and treating each pixel in the image as a node in the complex. Edges
between nodes would arise when neighboring pixels in the thresholded image
shared the same intensity value. An example of the application of this procedure
to an image as a function of a threshold, 7, can be found in Fig. 6.

It is possible to track the Betti numbers as a function of the parameter 7.
Most importantly, these features have a “life span” corresponding to the time at
which the feature is introduced and the time at which disappears. For example,
Fig. 6 shows the collection of complexes start with two connected components
which eventually merge at 7 = 0.4. It also shows that the collection of complexes
start with a hole that disappears at 7 = 0.15. This information is depicted as a
persistence diagram at the bottom of Fig. 6. In particular, we notice that for any
threshold greater than 7 = 0.4 corresponds to the most persistent topologically
identical description of the image (i.e. the number of connected components
and the number of holes are unchanged by choosing any larger threshold. As
we describe in the next subsection, we employ the sensor data to construct a
simplicial representation as a function of a threshold for the contact constraints
that are enforced. After doing so we search for the threshold corresponding to
the most persistent topological description of the data.

4.2. Determining the Domain Breakdown

In order to apply the persistent homology argument to determine a domain
graph, we must describe how given a set of distinct thresholds for each motion
capture sensor we construct a simplicial complex. Let the two toe and two heel
sensors time series data, be denoted as fin, fit, fre,frn 2 [0, T] = R. Given a set of
thresholds for each sensor, 7 = (7ip,7t,7rh,Trt), and encoding each combination
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Figure 7: An illustration of the procedure to construct a simplicial complex from
motion capture sensor data (top) via C(-,t) (bottom). For convenience we have trans-
formed each combination of contact points, from Z3 to its decimal expansion.
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Figure 8: An illustration of By as a function of 7+, 7;:. Notice the the most persistent
region corresponds to fo = 9.

of contact points as an element of Z3 (as we did in Example 2), we can define a
function, C : R* x [0, T] — Z3, which describes which set of constraints is active
at a given time:

ﬂ{{fzhgtg < Tlh}}

1 ft t) < Tit

{flt) < | (1D
ﬂ{frt(t) < Trt}

Fig. 7 illustrates C' for a given threshold. Given this function and a thresh-
old, 7 we can define a simplicial complex, K™. The 0—simplices of K™ corre-
spond to all combinations of contact points (i.e. we would have 16 0—simplices).
The 1—simplices of K7 correspond to transitions within the function C. That
is, if C(-,t7) = vy and C(-,t*) = vy where vy # wvg, then we include the
1—simplex {v1,v2} in K7. For the illustration in Fig. 7 the 1— simplices in K7
are {[lh,lt], [1t]},{[lt], [It, rh]},{[lt, rR], [lt, R, rt]}. Importantly each simplicial
complex corresponds uniquely to a domain breakdown.

As we described earlier, we can compute the Betti numbers for each of these
simplicial complex, K7. Fig. 8 illustrates how the number of connected compo-
nents changes as a function of the thresholds for the toe sensors for a particular
individual. Importantly, we notice that there is a large set of thresholds which
result in a topologically similar domain graph. We employ the persistence ho-
mology argument to search over the space of thresholds to find the most topo-
logically persistent domain breakdown (i.e. the threshold which corresponds to
the most persistent number of connected components and cycles) and treat this
as the domain graph corresponding to the walker.

In practice, naively searching over all possible thresholds (i.e. letting the

C(7,t; fin, fit, fris frn) =
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threshold be any value between (—oo, 00)) for the most persistent domain break-
down would result in the construction of a single domain, domain graph corre-
sponding to either all the constraints being active or none being active. There-
fore, some care must be taken in choosing an interval of interest over which to
perform the thresholding. Since the subjects performed a walking experiment,
at any instance at least one toe constraint was active and at least once each
toe constraint was inactive which allows us to immediately restrict the space of
thresholds for each toe over which to perform the analysis. Similarly each heel
constraint was active and inactive at least once during the experiment allowing
us to restrict the space of thresholds for each heel.

4.3. Results

After performing the aforementioned procedure, we consider the domain
breakdowns for the various subjects. In particular, we notice as illustrated in
Fig. 9 that in spite of the vast differences in age, height, and weight all subjects
exhibit the universal domain breakdown which is shown in Fig. 1. This is par-
ticularly surprising, since we made no a priori assumptions about the ordering
of constraint enforcement and did not demand simultaneous constraint enforce-
ment between legs. Importantly, the similarities between the various walkers
hints at the level at which to construct a cost function that when minimized
produces human gait.

5. Cost of Walking from Human Data

While constructing a bipedal walking robot, beyond the immediate goal of
obtaining stable walking, a cost function is generally chosen to optimize certain
system parameters. The choice of cost function can have dramatic impacts
on the resulting gait. In contrast to other robotic applications, the goal of
bipedal walking is typically not to minimize some sort of energy expended, but
rather to achieve the more nebulous goal of natural or human-like walking.
The most popularly chosen cost functions applied to bipedal walking are torque
squared [4, 19, 23] and the specific cost of transport [24, 25, 26]; however, no
clear connection exists between minimizing these types of costs and achieving
anthropomorphic walking. This lack of connection motivates the construction
of a cost function based upon human walking data.

In this section, we construct a cost function that measures the anthropo-
morphic nature of robotic bipedal walking termed the human-based cost. We do
this by first defining a metric on the space of weighted cycles, the cut distance,
which allows us to compare different walking gaits and to construct an optimal
walking cycle by minimizing the distance between the weighted cycles observed
in the human walking data. Using the cut distance, we next define the human-
based cost which allows us to compute the distance from a specific walking gait
(either human or robotic) to the optimal walking cycle. The remainder of this
section is devoted to using the human-based cost to determine the extent to
which popular robotic models from the literature are anthropomorphic.

17



S = (e ty)
S = (@, 0,)
S, = (as.0,)
S, = (@4 t,)

SS = (a51€u)

SS = (aG'Eu)

S7 = (a7’fu)

SB = (aS’Zu)

33 = (a91€u)

17.74% 17.74% 18.43% 46.08%
[it] — Ut rij—  —uurnrg—  ——[h, It —
15.95% 12.07% 2478% 47 20%
[t —[It, rh] —ltrhrt—  —[lh 1t
3 Y N
s e \j/a e
23.09% 21.09% 15.09% 40.73%
[ —[It, rh] —Otrhrtl—  —[lhIt]
—— - e B
18.93% 7.40% 2367% 50.00%
Lt —It, rh] —[IT, rA, 1t — —— 1IN, 1t —
7 b X 1
Lo L o b AR Py
16.89% 19.62% 10.07% 53.41%
— — It rh] —[it R, ry— — 1IN, 1t]
/&y /, )
- — e de
19.92% 14.79% 17.16% 48.13%
[t —[It, rh] —trhrt—  ——[Ih 1] —
"\ Y j- A
[ \ A1 -1
Lo =2 > e o
19.00% 19.94% 19.94% 41.12%
—[] —[It, rh] —[trhrt]—  —[ih, It]
/ hS 1 — 1
L = - Yo
17.27% 20.03% 13.13% 4957%
[it] —[It, rh] —Otrhrtl—  —[Ih 1]
e S —
2559% 15.42% 14.41% 4458%
[t —[lt, rh] —trhrtl—  —[Ih,It]
! N N\

Figure 9: The domain breakdowns in each row for the 9 subjects in the order listed
in 4 participating in the experiment. Comparing with the hybrid system illustrated in
Fig. 1 the first through fourth rows correspond to [lh,lt], [It], [It,rh], and [It, rh,Tt],
respectively. Each illustration is a snapshot of the subject’s dynamics in the domain
and above each plot is the percentage of the total gait spent within that domain.
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5.1. Distance Between Cycles

We employ the notion of cut (or rectangular) distance between two weighted
graphs to compare different domain breakdowns (the definition in its general
form can be found in [27, 28]). Since we are only interested in the specific
domains visited and the corresponding time spent in each of these domains, we
define a notion of weighted cycle and a corresponding distance between weighted
cycles that is pertinent to the application being considered.

Definition 7. A walking cycle is a pair (o, £) where £ = (V, E) is a cycle and
a: 0 — RVl s a function such that a(v) > 0 and Y,y a(v) = 1. Denoting a
cycle by € : vg — v1 = -+ = v, we denote a walking cycle by:

a(f) : afvg) = a(vy) = - = alvy).

Example 3. Each of the domain breakdowns presented in Fig. 9 gives us a
distinct walking cycle. For example, Subject 1 has a walking cycle S1 = (o, £1)
given by:

0 IR = [it] = [trh] — [t rhyrt]
ar(ty) ¢ 46.08% — 17.74% — 17.74% —  18.43%.

Here, and throughout this paper, weightings are stated in percentages to indicate
the physical quantity that they represent: the time the human spends in a domain
through the course of one step.

We now introduce a definition of cut distance that is a slight modification
of the definition presented in [27, 28]. The only differences are that we do not
force the weighted graphs to have nodes with positive weights, and we require
the weights to sum to one.

Definition 8. Let (a1, 41 = (Vi, E1)) and (ag, b2 = (Va, E2)) be two walking
cycles. Viewing both ay and ag as functions on V4 U Va by letting oy (i) = 0 if
i € Vo\Vi and az(j) = 0 if j € Vi\Va, the cut distance between two cycles is
given by:

dlar, b1, 00,6) = | max | Z (ar (D) (5)Br(i, §) — ca(i)z(5)B2(i, 5)) | +
iel,jed
+ Y laa(k) —az(k), (12)
keViuV,
where B1(i,7) = 1 for all edges (vi,v;) € Ev and B2(i,7) = 1 for all edges
(Ui,’Uj) S

It is straightforward to check that the modified cut distance satisfies the re-
quirements of a metric (i.e. non-negativity, identity of indiscernibles, symmetry
and the triangle inequality). Intuitively, the cut distance compares just how
different two walking cycles are when considering all possible “cuts” between
the pair of cycles. To illustrate how the cut distance works, we consider a simple
example:
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Example 4. Suppose we are given three walking cycles, W; = (ay,4;),1 €
{1,2,3,4}, defined as:

fl : 1
(5] (61) . 100%
by Vg
(65) (62) : 100%
fg : V1 — )
Qa3 (fl) : 25% —  75%
by U1 - vg

014(62) : 50% — 50%
We can then compute the cut distance between all pairs:

Wy Wy W3 Wy

Wi 1 0.000 | 3.000 | 2.500 | 2.000
Wy | 3.000 | 0.000 | 1.500 | 2.000
W3 | 2.500 | 1.500 | 0.000 | 0.625
Wy | 2.000 | 2.000 | 0.625 | 0.000

where the entry in row j and column k in the table corresponds to the cut distance

between W; and Wi,.

Notice that walking cycles that do not spend any time in the same domains
are the furthest apart with respect to the cut distance. The transitions between
pairs of vertices also play an important role during the comparison of the dis-
tance between pairs of walking cycles. For example, the net difference in node
weights between W3 and W5 is the same as the net difference in node weights
between W3 and Wy. However, W3 includes the same edges as Wy, but W5 does
not include the same edges as Ws; therefore, the distance between W3 and Wa
is larger than the distance between W3 and Wy.

5.2. Human-Based Cost

In this subsection, we develop a cost based upon the human domain break-
down and resulting walking cycles to judge non-human walking.

Definition 9. Consider N subjects walking with associated domain breakdowns
and a walking cycles S; = (o, 4;) Y{1,--- ,N}. Letting £ = Uzj\il 4; be the
graph obtained by combining all of the cycles {;. We define the optimal walking

cycle by:
N

(", €*) = argmin Zd(a,ﬁ,ai,&). (13)
(,0)eRIIx 2

The optimal walking cycle is just the walking cycle through the graph of all
cycles obtained from the walking that best fits the data under the cut distance.
The optimal walking cycle allows one to describe just how human-like a robotic
walking gait is.
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Definition 10. Given a biped (either human or bipedal robot) with associated
domain breakdown and walking cycle R = (a., £,), the human-based cost (HBC)
of walking is defined to be:

H(R) = d(ap, by, ™, £7).

It is important to note that the optimal walking cycle may not be unique, and so
there might be multiple HBC’s of walking associated with a single experiment,
i.e., the HBC is not necessarily unique (in this paper, we find a unique HBC).
In addition, multiple experiments might yield different HBC’s, but if they are
carried out consistently they could be merged into a single HBC.

6. Computing the Human Based Cost

In this section, we consider the domain breakdowns for the 9 subjects in
the walking experiment, S; — Sg. From these domain breakdowns, and the
corresponding walking cycles, we compute the HBC. Since there is a unique
cycle, it is unsurprising that there is a unique optimal walking cycle and there-
fore unique HBC. We show that the HBC gives useful information about the
anthropomorphic nature of bipedal robotic models.

Using the walking cycles illustrated in Fig. 9, we now compute the optimal
walking cycle and compute the HBC for the subjects and bipedal robots that
have appeared in the literature. All the subjects have the same universal cycle
£, and so S; = (v, by,) for i = 1,...,9 and the optimal walking cycle is given
by (a*,¢,,), where we compute o* from (13) yielding:

Ly, = [lhlt] — []] — [lit,rh] — [lt,rh,rt]
a*(ly,) : 46% - 1% — 1B8% — 17%.

We argue that if the objective is to obtain anthropomorphic bipedal walking, this
optimal walking cycle should be matched as closely as possible. To demonstrate
this, we use the optimal walking cycle to compute the HBC in several instances.

Humans. Although all of the subjects have the universal domain breakdown,
this does not and should not imply identical walking gaits. To quantify the
differences in walking between the different subjects, we compute the HBC
for each subject. The results of this computation are illustrated in Fig. 10.
Interestingly, nearly all of the human walkers exhibit nearly uniform HBC. This
is unsurprising since the optimal walking cycle was constructed from their data,
but the uniformity of their cost is particularly striking.

Robots. We next use the HBC to compute the cost of walking for bipedal
robots that have been considered in the literature with no knee-lock. In [7]
several bipedal models with a variety of domains (between 1 and 3) and walking
gaits are considered. We focus on two of the domain graphs in [7]: ¢o : [lh, lt] —
[it] and £ : [lh,lt] — [lt] — [lt,rh,rt]. Associated with the walking found in
that paper, there are three walking cycles, Ro, = (24, £2), Rap = (aap, £2) and
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Figure 10: The HBC for the 9 subjects in the experiment, 5 bipedal robotic models

that have appeared in the literature (with the number of domains in each of the models
is illustrated by subscripts).

R3q = (@34, ¢5), given by:

b bl = ]
aga(fg) : 40% — 60%
6o: ] — (i)
OéQb(éQ) : 55% — 46%

g Ikt —  [it] —  [it,rh,rt]

asa(0d) 4% - 43% —  13%.

Fig. 11 illustrates these robotic models.We compute the HBC for each of these
models using o* as illustrated in Fig. 10. From the results of the computed
HBC, we conclude that the model Rs3, produces the most anthropomorphic
walking as it has a dramatically lower cost than the other two models. Inter-
estingly enough, in that paper the authors state that this walking cycle “is the
closest to human gait” amongst the ones they consider, which the HBC agrees
with.

In [6] two bipedal walking gaits are obtained with a model consisting of a
cycle: €5 : [lh,1t] — [it] — [rh], where [rh] is a domain not seen in the human
walking wherein the biped only has one contact point at the right heel (see Fig.
11 for an illustration). The paper considers two walking cycles Rz, = (agb,ﬂg)
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Figure 11: The domain breakdowns for the 5 robotic models without knee-lock con-
sidered in the literature.
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and Rz. = (aae, £8) given by:

¢ o [Ihit] — [f] — [rh]
asp(8) + 21% — 15% — 64%
0 [hit) — i) —  [rh]

ase(fy) : 3% — 35% — 28%.

We compute the HBC for each of these models using a* as illustrated in Fig.
10. Despite the fact that both of these models have three domains, they do not
produce a lower HBC, which illustrates the fact that adding more domains does
not necessarily result in more human-like walking. In particular, the high cost
associated with these walking cycles is due to the [rh] domain, which does not
appear in human walking. Adding this domain was a design decision made by
the authors; if, instead, the universal domain breakdown found from the human
data were coupled with the techniques utilized in [6], it is very likely that a
more anthropomorphic gait would have been constructed.

7. Conclusion

In this paper, we resolve an outstanding debate within the bipedal walking
community by showing that there exists a universal temporal ordering of events
during bipedal walking. We illustrate the existence of this universal temporal
ordering by working from a motion capture dataset of a variety of subjects
performing a straight line walking task and employing a novel automatized
persistent homology technique to determine when constraints are active. The
importance of our discovery is that it gives a single domain breakdown, and
hence mathematical model, which can be used by all bipedal robot researchers.
If consistency in the mathematical models can be achieved, any new controller
developed that yields bipedal walking can be directly compared. Moreover,
since this model is obtained directly from human walking, controllers developed
using this domain breakdown promise to be more anthropomorphic.

The domain breakdowns and walking cycles which encode the amount of
time spent in each discrete domain constructed from human data allow us to
formulate a human-based cost which measures how anthropomorphic gait is. It
was demonstrated that when the HBC was computed for the human subjects,
preexisting medical conditions were successfully identified. When the HBC was
computed for existing bipedal walking robots, the robots with more “human-
like” walking gaits were correctly identified. This points to the utility of the
HBC both in identifying medical conditions in humans, and in obtaining an-
thropomorphic walking in bipedal robots. The results of this paper also are
applicable to future bipedal robot design. If the universal domain breakdown
is used for the robotic model, and the parameters of the controller used to
achieve walking are chosen so as to minimize the HBC, we postulate that the
constructed gait will be more human-like.
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