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ABSTRACT
This paper demonstrates the process of utilizing human lo-
comotion data to formally design controllers that yield prov-
ably stable robotic walking and experimentally realizing these
formal methods to achieve dynamically stable bipedal robotic
walking on the NAO robot. Beginning with walking data,
outputs—or functions of the kinematics—are determined
that result in a low-dimensional representation of human lo-
comotion. These same outputs can be considered on a robot,
and human-inspired control is used to drive the outputs of
the robot to the outputs of the human. An optimization
problem is presented that determines the parameters of this
controller that provide the best fit of the human data while
simultaneously ensuring partial hybrid zero dynamics. The
main formal result of this paper is a proof that these same
parameters result in a stable hybrid periodic orbit with a
fixed point that can be computed in closed form. Thus,
starting with only human data we obtain a stable walking
gait for the bipedal robot model. These formal results are
validated through experimentation: implementing the stable
walking found in simulation on NAO results in dynamically
stable robotic walking that shows excellent agreement with
the simulated behavior from which it was derived.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: [engineering,
mathematics and statistics]; G.1.6 [Numerical Analysis]:
Optimization—constrained optimization

General Terms
Theory, Algorithms, Experimentation

Keywords
hybrid systems, bipedal robotic walking, nonlinear dynamics
and control, human-data based optimization
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1. INTRODUCTION
Aldebaran’s commercially available NAO robot ships with

a pre-packaged walking algorithm called the “Stable and
Omnidirectional Walk”; this algorithm implements a pat-
tern generation technique which utilizes the Zero-Moment
Point (ZMP)[1, 11]. Indeed, the ZMP is a popular choice
of controller in the robotic walking community [20]. Other
interesting approaches to the bipedal robotic walking prob-
lem have surfaced in the field’s long history, including pas-
sive walking and controlled symmetries [6, 18], capture point
[14], geometric reduction [4, 8, 17] and hybrid nonlinear feed-
back control [7, 22], to name a only a few. Of the current
research in the field, the philosophy toward walking taken in
this paper can be best related to the spring-loaded inverted
pendulum [9], or SLIP model, due to its methodology of
representing locomotion by a simple “virtual” system. Com-
mon to these approaches is the application of control theory
and understanding of dynamics to achieve and implement
impressive walking algorithms and motion generators; how-
ever, there exists a significant disparity between the walking
achieved with these methods and the actual, dynamically
stable walking displayed by humans.

This paper presents a distinctively different approach to
the bipedal robotic walking control design problem: look to
human walking data to motivate the formal design of con-
trollers that achieve provably stable robotic walking. The

Figure 1: Experimental
demonstration of NAO
displaying dynamically
stable walking.

main idea is that regardless
of the complexity present in
human walking—hundreds of
degrees of freedom coupled
with highly nonlinear dynam-
ics and forcing due to the 57
muscles employed during hu-
man walking [15]—the essen-
tial information needed to un-
derstand walking is encoded
by a simple class of functions.
In other words, taking the
control theorist approach to
understanding a complex and
unknown system, we view the
human walking system as a
“black box,” where the “in-
put” to the system is a spe-
cific walking behavior, and we
seek “outputs” of this system
that characterize these walking behaviors. These outputs



can then be utilized in the design of robotic controllers—the
outputs of the robot can be driven to the outputs of the
human, resulting in “human-like” robotic walking.

Given human walking as the motivation for achieving robotic
walking, this paper begins by looking at human walking
data, i.e., angles over time, achieved through motion cap-
ture of subjects walking on flat ground at a “natural” pace.
Indeed, work with human data to construct low dimensional
representations of human walking has been performed [19]
by fitting human data with Bézier curves; however, the work
presented here suggests insight beyond achieving “best fits”
to data. By studying human data, we discover a collection
of outputs that appear to characterize human walking—they
are mutually exclusive, thus providing a low dimensional
representation of the system’s behavior. Moreover, we find
that these human outputs, as computed from the data, ap-
pear to be described by a very simple function: the time so-
lution to a linear spring-mass-damper system. We term this
function the canonical human walking function, and verify
that in fact this function describes the human data by show-
ing that it can be fit to the human data with a remarkably
high correlation coefficient. Utilizing the human outputs
and their time-based representation given by the canonical
walking functions, we construct a human-inspired controller
that drives the outputs of the robot to the outputs of the
human as represented by the canonical walking functions.

The main result of this paper is a formal method for de-
termining the parameters of the human-inspired controller
that provably results in stable robotic walking for a pla-
nar biped that is as “human-like” as possible. In particular,
we introduce an optimization problem where the cost is the
least squares fit of the outputs of the robot to the human
output data subject to constraints that ensure partial hybrid
zero dynamics [3], i.e., constraints that ensure that the zero
dynamics surface associated with the relative degree 2 out-
put functions is invariant through impact. This invariance
allows us to characterize the behavior of the hybrid sys-
tem modeling a bipedal robot (which is 10 dimensional for
the model considered) through a 2-dimensional hybrid sys-
tem. Utilizing this reduced dimensional representation, we
are able to prove the main result of this paper: the parame-
ters that solve the partial hybrid zero dynamics optimization
problem imply the existence of an exponentially stable hy-
brid periodic orbit, i.e., the existence of a stable walking
gait; moreover, the fixed point of the Poincaré map asso-
ciated with this periodic orbit can be explicitly computed
from these parameters. In other words, using only the hu-
man data, we are able to automatically generate parameters
for the human inspired controller that imply the existence
of a stable walking gait, and we can explicitly compute the
initial condition to this walking gait from these parameters.

To supplement the main theoretical developments of this
paper, we experimentally apply them to Aldebaran’s NAO
robot [1]. By considering the 2D hybrid system model of this
robot, we use the main results of the paper to obtain stable
robotic walking in simulation using only human data. The
trajectories obtained through simulation are implemented
on NAO, together with a simple online lateral stability feed-
back controller. The end result is dynamically stable walking
on NAO that is markedly more human-like than pre-existing
walking achieved with NAO (as evidenced by the walking it-
self and the comparison of this walking with the pre-existing
NAO walking, both of which can be seen at [2]). Thus we
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Figure 2: The modeled robot’s configuration, mass & length
distribution, and virtual constraints (outputs).

have successfully utilized human data to formally achieve
“human-like”robotic walking and demonstrated these results
experimentally.

2. HUMAN WALKING DATA
As the ultimate goal of this work is to develop a con-

trol scheme which yields stable human-like robotic walking,
we turn to the human locomotion data for insight in the
design process. Examination of human walking data reveals
that certain outputs of the human locomotion system can be
represented as second order linear system responses. This
section, therefore, introduces these outputs and shows that
the human data for these outputs can be accurately fit by
the time-solution to a linear mass-spring-damper system.

Human Walking Experiment. The goal of this experi-
ment was to track the evolution of the spatial positions of
specific points on the human body during walking on flat
ground—this collection of position data forms the raw kine-
matic outputs of human walking. For each trial, LED sen-
sors were fixed to a test subject in key locations, such as
the joints, along the lower body—as the test subject walked
forward, the spatial position of each LED sensors was mea-
sured at 480 Hz. A total of 11 trials per test subject and a
total of 9 test subjects were considered. For purposes of this
paper, the mean data from all 9 subjects are considered; see
[5] for more information regarding the walking experiments.

Human Outputs. Common in the bipedal robotic walking
literature is the employment of nonlinear feedback lineariza-
tion [16, 22]. In this method, “virtual outputs” are specified
which, upon successful application of feedback linearization
control, constrain the motion of a controlled robot. These
virtual outputs are functions of state, and thus are indepen-
dent of the robot’s actuator dynamics. Furthermore, the
same outputs can be computed from human walking data —
the result is a direct kinematic relationship between robot
and human walking, despite the morphological and dynam-
ical differences in the two systems. With this in mind, we
consider the following virtual output functions (see Fig. 2):

1. The linearization of the x-position of the hip, phip,
given by:

δphip(θ) = Lc(−θsf ) + Lt(−θsf − θsk) (1)

with Lc and Lt the length of the calf and thigh.

2. The linearization of the slope of the non-stance leg
mnsl, (the tangent of the angle between the z-axis and
the line on the non-stance leg connecting the ankle and
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Figure 3: The mean human output data for the nine subjects, computed with the parameters for NAO, with error bands
showing one standard deviation from the mean, and the canonical walking function fits.

hip), given by:

δmnsl(θ) = −θsf − θsk − θsh − θnsh +
Lc

Lc + Lt
θnsk.

(2)

3. The angle of the stance knee, θsk,

4. The angle of the non-stance knee, θnsk,

5. The angle of the torso from vertical,

θtor(θ) = θsf + θsk + θsh. (3)

These outputs, shown in Fig. 3, were computed from the
experimental human walking data which was scaled to the
robot by computing δphip(θ) and δmnsl(θ) using the NAO’s
length distribution. This figure also shows the mean of each
output computed from the data from nine subjects and error
bands showing one standard deviation from this mean. Note
that the motivation for considering the linearization of the
position of the hip and the non-stance slope (rather than
their original nonlinear formulations, as was considered in
[3]) will be seen later in the paper—it allows for a simple
representation of the partial hybrid zero dynamics.

Human Walking Functions. Visual inspection of the out-
puts as computed from the human data for the three subjects
(see Fig. 3) shows that all of the human outputs appear to
be described by two simple functions. In particular, the lin-
earized position of the hip appears to be essentially a linear
function of time:

δpdhip(t, v) = vhipt. (4)

The remaining human outputs, δmnsl, θsk, θnsk, θtor ap-
pear to be described by the solution to a linear mass-spring-
damper system. With this in mind, define the canonical
human walking function as:

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5. (5)

This function can be related to the more standard form of
the time solution of a mass-spring-damper system by noting
that α1 = c0, α2 = ωd, α3 = c1, α4 = ζωn and α5 = g,
where ζ is the damping ratio, ωn is the natural frequency,
ωd = ωn

√
1− ζ2 is the damped natural frequency, c0 and c1

are determined by the initial conditions of the system, and
g is a gravity related constant. In particular, with (5), for
the 4 remaining human outputs, we write:

md
nsl(t, αnsl) = yH(t, αnsl), θdtor(t, αnsl) = yH(t, αtor),

θdsk(t, αsk) = yH(t, αsk), θdnsk(t, αnsk) = yH(t, αnsk),
(6)

where, e.g., αnsl = (αnsl,1, αnsl,2, αnsl,3, αnsl,4, αnsl,5) in
(5). The parameters of all of the outputs can be combined to
yield a single vector: α = (vhip, αnsl, αnsk, αsk, αtor) ∈ R21.
If it can be verified that these functions accurately fit the
mean human output data, then it can be concluded that hu-
mans appear to act like linear spring-mass-damper systems
for the chosen outputs.

Human-Data-Based Cost Function. The goal is to show
that the human walking functions accurately describe the
human data. This will be achieved by simply fitting (5)
to the human walking data to achieve a least squares fit.
From the mean human walking data, we obtain discrete
times, tH [k], and discrete values for the output functions:
δpHhip[k], δmH

nsl[k], θHsk[k], θHnsk[k], and θHtor[k] where here
k ∈ {1, . . . ,K} ⊂ N with K the number of data points.
Represent the mean human output data by yHi [k] and the
canonical walking functions by ydi (t, αi) for i ∈ Output =
{hip,msl, sk, nsk, tor}; for example, yHmsl[k] = δmH

nsl[k] and
ydmsl(t, αmsl) = δmd

nsl(t, αnsl). Define the following human-
data-based cost function:

CostHD(α) =
K∑

k=1

∑

i∈Output

(
yHi [k]− ydi (tH [k], αi)

)2

(7)

which is simply the sum of squared residuals. To determine
the parameters for the human walking functions, we need
only solve the optimization problem:

α∗ = argmin
α∈R21

CostHD(α) (8)

which yields the least squares fit of the mean human output
data with the canonical walking functions. The parameters
given by solving this optimization problem are stated in Ta-
ble 1. The correlations, as given in the same table, show
that the fitted walking functions very closely model the hu-
man output data, i.e., the chosen human walking functions
appear to be, in fact, canonical. Indeed, the coefficients of
correlation are all very high, ranging from 0.8767 to 0.9997.
The accuracy of the fits can be seen in Fig. 3.

3. BIPEDAL ROBOT MODEL (NAO)
Bipedal walking robots naturally display continuous and

discrete behavior throughout the course of a step—the con-
tinuous behavior occurs when the leg swings forward and the
discrete behavior occurs when the foot strikes the ground.
It is, therefore, natural to model robots of this form by hy-
brid systems [5, 17] (also referred to as systems with im-
pulsive effects or systems with impulse effects [7, 8]). This
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Figure 4: The mean human output data for the nine subjects, computed with the parameters for NAO, allow with error bands
showing one standard deviation from the mean, and the canonical walking function fits.

These outputs were computed from the experimental human
walking data, with the results given in Fig. 4; this figure
shows the mean of each output computed from the data from
nine subjects. In addition, the error bands in the figure show
one standard deviation from this mean human data. The
simple form that the outputs take in Fig. 4 motivates the
consideration of a special class of walking functions. Note
that the motivation for considering the linearization of the
position of the hip and the non-stance slope (rather than
their original nonlinear formulations, as was considered in
[4]) will be seen later in the paper—it allows for a simple
representation of the zero dynamics.

Human Walking Functions. Visually inspecting the out-
puts as computed from the human data for the three sub-
jects, as shown in Fig. 4, all of the human outputs appear to
be described by two simple functions. In particular, the lin-
earized position of the hip appears to be essentially a linear
function of time:

δpdhip(t, v) = vhipt, (4)

The remaining human outputs, δmnsl, θsk, θnsk, θtor ap-
pear to be described by the solution to a linear mass-spring-
damper system. With this in mind, define the canonical
human walking function as:

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5 (5)

This function can be related to the more standard form of
the time solution of a mass-spring-damper system by noting
setting α1 = c0, α2 = ωd, α3 = c1, α4 = ζωn and α5 = g,
where here ζ is the damping ratio, ωn is the natural fre-
quency, ωd = ωn

√
1− ζ2 is the damped natural frequency,

c0 and c1 are determined by the initial conditions of the sys-
tem, and g is a gravity related constant. In particular, with
(5), for the 4 remaining human outputs, we write:

md
nsl(t, αnsl) = yH(t, αnsl), θdtor(t, αnsl) = yH(t, αtor),

θdsk(t, αsk) = yH(t, αsk), θdnsk(t, αnsk) = yH(t, αnsk),
(6)

where, e.g., αnsl = (αnsl,1, αnsl,2, αnsl,3, αnsl,4, αnsl,5) in
(5). The parameters of all of the outputs can be combined to
yield a single vector: α = (vhip, αnsl, αnsk, αsk, αtor) ∈ R21.
If it can be verified that these functions accurately fit the
mean human output data, then it can be concluded that hu-
mans appear to act like linear spring-mass-damper systems
for the chosen outputs.

Human-Data-Based Cost Function. The goal is to show
that the human walking functions accurately describe the

human data. This will be achieved by simply fitting (5)
to the human walking data to achieve a least-squared fit.
While this can be done automatically with a wide variety
of preexisting software, we prefer to achieve these fits by
stating them in the form of an optimization problem. This
is necessitated by the fact that this same cost function will
later be used to achieve robotic walking through a more
sophisticated optimization problem.

From the mean human walking data, we obtain discrete
times, tH [k], and discrete values for the output functions:
δpHhip[k], δmH

nsl[k], θHsk[k], θHnsk[k], and θHtor[k] where here
k ∈ {1, . . . ,K} ⊂ N with K the number of data points.
Represent the mean human output data by yHi [k] and the
canonical walking functions by ydi (t, αi) for i ∈ Output =
{hip,msl, sk, nsk, tor}; for example, yHmsl[k] = δmH

nsl[k] and
ydmsl(t, αmsl) = δmd

nsl(t, αnsl). Define the following human-
data-based cost function:

CostHD(α) =
K∑

k=1

∑

i∈Output

(
yHi [k]− ydi (tH [k], αi)

)2

(7)

which is simply the sum of squared residuals. To determine
the parameters for the human walking functions, we need
only solve the optimization problem:

α∗ = argmin
α∈R21

CostHD(α) (8)

which yields the least squares fit of the mean human output
data with the canonical walking functions. The parameters
given by solving this optimization problem are stated in Ta-
ble 1. The correlations, as given in the same table, show
that the fitted walking functions very closely model the hu-
man output data, i.e., the chosen human walking functions
appear to be, in fact, canonical. Indeed, the coefficients of
correlation are all very high, ranging from 0.9862 and 0.9997.
The accuracy of the fits can be seen in Fig. 4.

yH,2 = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5

Fun. vhip α1 α2 α3 α4 α5 Cor.
δphip 0.2288 * * * * * 0.9984
δmnsl * -0.0065 8.9157 0.1162 -2.2638 0.2750 0.9997
θsk * -0.1600 12.4473 0.0980 3.6061 0.3240 0.9751
θnsk * -0.3322 -10.2618 -0.1109 -0.9345 0.6772 0.9948
θtor * -0.0166 10.4416 -0.0033 3.2976 0.0729 0.8767

Table 1: Table containing parameter values of the canonical
human walking functions obtained from fitting the mean
human data, together with the correlations of the fits.

Table 1: Parameter values and correlation coefficients of the
canonical human walking functions obtained from optimiza-
tion about the mean human data and NAO robot model.

section introduces the basic formalisms of hybrid systems
along with the specific hybrid model obtained for the robot
that is considered in this paper: NAO, as shown in Fig. 1.
It is important to note that the model of NAO used in this
work is the 2D, planar model with point feet. Analysis of
the 3D and finite foot models is a topic of future work.

Hybrid Systems. A (simple) hybrid control system is a
tuple,

H C = (D, U, S,∆, f, g),

where D is the domain with D ⊆ Rn a smooth submanifold
of the state space Rn, U ⊆ Rm is the set of admissible
controls, S ⊂ D is a proper subset of D called the guard
or switching surface, ∆ : S → D is a smooth map called
the reset map, and (f, g) is a control system on D, i.e., in
coordinates: ẋ = f(x) + g(x)u. A hybrid system is a hybrid
control system with U = ∅, e.g., any applicable feedback
controllers have been applied, making the system closed-
loop. In this case,

H = (D, S,∆, f),

where f is a dynamical system on D ⊆ Rn, i.e., ẋ = f(x).

Periodic Orbits. Stable bipedal robotic walking corre-
sponds to stable periodic orbits in hybrid systems. For sim-
plicity, we consider periodic orbits of hybrid systems with
fixed points on the guard (for more general definitions, see
[8, 21]). Let ϕ(t, x0) be the solution to ẋ = f(x) with initial
condition x0 ∈ D. For x∗ ∈ S, we say that ϕ is periodic with
period T > 0 if ϕ(T,∆(x∗)) = x∗. A set O is a periodic or-
bit with fixed point x∗ if O = {ϕ(t,∆(x∗)) : 0 ≤ t ≤ T} for
a periodic solution ϕ. Associated with a periodic orbit is a
Poincaré map [21]; specifically, taking S to be the Poincaré
section, one obtains the Poincaré map P : S → S which is a
partial function:

P (x) = ϕ(TI(x),∆(x)),

where TI is the time-to-impact function [22]. As with smooth
dynamical systems, the stability of the Poincaré map deter-
mines the stability of the periodic orbit O. In particular,
the Poincaré map is (locally) exponentially stable (as a dis-
crete time system xk+1 = P (xk)) at the fixed point x∗ if
and only if the periodic orbit O is (locally) exponentially
stable [12]. Although it is not possible to analytically com-
pute the Poincaré map, it is possible to numerically compute
its Jacobian. Thus, if the eigenvalues of the Jacobian have
magnitude less than one, the stability of the periodic orbit
O has been numerically verified.

NAO Hybrid Model. Utilizing the mass and inertia prop-
erties of the NAO robot provided in the specifications sheet

[1], we can formally model this robot as a hybrid control
system:

H CR = (DR, UR, SR,∆R, fR, gR). (9)

The method used to construct the individual elements of
this hybrid system will now be discussed.

Continuous Dynamics: The configuration space of the
robot QR is given in coordinates by:

θ = (θsf , θsk, θsh, θnsh, θnsk)T ,

where, as illustrated in Fig. 2, θsf is the angle of the stance
foot, θsk is the angle of the stance knee, θsh is the angle
of the torso with the stance thigh, θnsh is the angle of the
non-stance thigh with the torso, and θnsk is the angle of the
non-stance (or swing) knee. Calculating the mass and inertia
properties of each link of the robot using the specifications
of the robot allows for the construction of the Lagrangian:

LR(θ, θ̇) =
1

2
θ̇TD(θ)θ̇ − V (θ). (10)

Explicitly, this is done symbolically through the method of
exponential twists (see [13]). The Euler-Lagrange equations
yield the equations of motion of the form:

D(θ)θ̈ +H(θ, θ̇) = B(θ)u.

Converting the equations of motion to a first order ODE
yields the affine control system (fR, gR):

fR(θ, θ̇)=

[
θ̇

−D−1(θ)H(θ, θ̇)

]
, gR(θ)=

[
0

D−1(θ)B(θ)

]
,

with UR = R5 and B(θ) ∈ R5×5.
Domain and Guard: The domain specifies the allowable

configuration of the system as specified by a unilateral con-
straint function hR; for the biped considered in this pa-
per, this function specifies that the non-stance foot must
be above the ground, i.e., hR is the height of the non-stance
foot. In particular, the domain DR is given by:

DR =
{

(θ, θ̇) ∈ TQR : hR(θ) ≥ 0
}
.

The guard is just the boundary of the domain with the addi-
tional assumption that the unilateral constraint is decreas-
ing:

SR =
{

(θ, θ̇) ∈ TQR : hR(θ) = 0 and dhR(θ)θ̇ < 0
}
,

where dhR(θ) is the Jacobian of hR at θ.
Discrete Dynamics. The discrete dynamics of the robot

determine how the velocities of the robot change when the
foot impacts the ground, while simultaneously switching the
“stance” and “non-stance” legs. In particular, the reset map
∆R is given by:

∆R : SR → DR, ∆R(θ, θ̇) =

[
∆θθ

∆θ̇(θ)θ̇

]
, (11)

where ∆θ is the relabeling matrix which switches the stance
and non-stance leg at impact (by appropriately changing the
angles). Here, ∆θ̇ determines the change in velocity due to
impact; we forgo the detailed discussion on its computation,
but detailed descriptions can be found in [10], [8] and [3].
In particular, it is computed by considering extended co-
ordinates that include the position of the stance foot and
employing a perfectly plastic impact law that results in the



pre-impact non-stance foot being fixed post-impact, wherein
it becomes the stance foot.

4. HUMAN-INSPIRED CONTROL
In this section, we construct a human-inspired controller

that drives the outputs of the robot to the outputs of the hu-
man (as represented by canonical walking functions). More-
over, we render this control law autonomous through a pa-
rameterization of time based upon the position of the hip.
The end result is a feedback control that is used to obtain
stable bipedal robotic walking.

Parameterization of Time. Attracted by the robustness
of autonomous control, we introduce a state-based parame-
terization of time in our system; this is a common practice
[23, 22], except that in this case we pick a parameteriza-
tion as motivated by human data. Examination of human
data reveals that the (linearized) forward position of the hip
evolves in an approximately linear manner with respect to
time, that is δphip(t, vhip) ≈ vhipt, where phip denotes the
forward position of the hip and vhip denotes the forward ve-
locity of the hip. Taking advantage of this observation, the
following parameterization of time is formed:

τ(θ) =
δpRhip(θ)− δpRhip(θ+)

vhip
. (12)

where δpRhip(θ+) is the (linearized) forward position of the
robot’s hip at the beginning of the current step, and vhip is
the forward velocity of the hip (which is just an element of
the vector of parameters α).

Output Functions. Based upon the human outputs and
their time-based representation given by the canonical walk-
ing functions, we define relative degree 1 and (vector) rela-
tive 2 outputs for the robot based upon our desire for the
robot to have the same output behavior as the human. (Note
that it will not be formally verified that these are, in fact
relative degree 1 and 2 outputs until the decoupling matrix
is introduced; see [16] for a formal definition.)

With the goal of controlling the velocity of the robot, we
define the relative degree 1 output from the actual velocity
of the hip and the desired velocity of the hip:

ya,1(θ, θ̇) = δṗRhip(θ, θ̇) = dδpRhip(θ)θ̇, yd,1 = vhip. (13)

where δpRhip(θ) is given in (1). Since ya,1 is the output of
a mechanical system that depends on both position and ve-
locity, it is relative degree 1. Similarly, with the goal of the
robot tracking the human outputs, we consider the following
actual and desired outputs:

ya,2(θ) =




δmR
nsl(θ)
θsk
θnsk
θRtor(θ)


 , yd,2(t) =




md
nsl(t, αnsl)
θdsk(t, αsk)
θdnsk(t, αnsk)
θdtor(t, αtor)


 , (14)

where δmR
nsl and θRtor are the functions given in (2) and (3)

computed with the parameters of the robot, and yd,2 consists
of the human walking functions given in (6). This is the first
point in which it becomes apparent why we linearized the
output functions describing the position of the hip and the
non-stance leg slope; because of their linear form:

ya,2(θ) = Hθ (15)

for H ∈ R4×5 with full row rank.
The goal is to drive the outputs to the outputs of the

human as represented by the canonical walking functions,
which motivates the final form of the outputs to be used in
feedback linearization:

y1(θ, θ̇) = ya,1(θ, θ̇)− vhip, (16)

y2(θ) = ya,2(θ)− yd,2(τ(θ)) (17)

These outputs can be grouped together to form a single vec-
tor of human-inspired outputs:

y(θ, θ̇) =

[
y1(θ, θ̇)
y2(θ)

]
(18)

where y1 and y2 will be seen to be relative degree 1 and
vector relative degree 2 outputs, respectively. These outputs
yield a human-inspired controller:

u(θ, θ̇) = −A−1(θ, θ̇)

([
0

LfRLfRy2(θ)

]
(19)

+

[
LfRy1(θ, θ̇)

2εLfRy2(θ, θ̇)

]
+

[
εy1(θ, θ̇)
ε2y2(θ)

])
,

with control gain ε and decoupling matrix A(θ) given by

A(θ, θ̇) =

[
LgRy1(θ, θ̇)

LgRLfRy2(θ, θ̇)

]

Note that the decoupling matrix is non-singular exactly be-
cause of the choice of output functions, i.e., as was discussed
in Sect. 2, care was taken when defining the human outputs
so that they were “mutually exclusive.” It follows that for
a control gain ε > 0, the control law u renders the output
exponentially stable [16]. That is, the human-inspired out-
put y → 0 exponentially at a rate of ε; in other words, the
outputs of the robot will converge to the canonical human
walking functions exponentially.

Applying the feedback control law in (19) to the hybrid
control system modeling the bipedal robot being considered,
H CR as given in (9), yields a hybrid system:

H (α,ε)
R = (DR, SR,∆R, f

(α,ε)
R ), (20)

where, DR, SR, and ∆R are defined as for H CR, and

f
(α,ε)
R (θ, θ̇) = fR(θ, θ̇) + gR(θ, θ̇)u(θ, θ̇),

where the dependence of f
(α,ε)
R on the vector of parameters,

α, and the control gain for the human-inspired controller, ε,
has been made explicit.

5. HUMAN-INSPIRED PARTIAL HYBRID
ZERO DYNAMICS

This section presents the main result of this paper through
a culmination of the concepts presented thus far. Specifi-
cally, we present a method of obtaining parameters of the
human-inspired controller (19) which provides the best fit of
the human data, by minimizing (7), subject to constraints
that guarantee that the resulting hybrid control system (20)
has a stable periodic orbit. Furthermore, it is proven that a
fixed point for this stable periodic orbit can be computed in
closed form in the limit as ε→∞.

Hybrid Zero Dynamics (HZD). The human-inspired con-

trol law (19) drives the human-inspired outputs y(θ, θ̇)→ 0



exponentially at a rate of ε. In particular, for the contin-

uous dynamics of the hybrid system H (α,ε)
R , the controller

renders the zero dynamics surface:

Zα = {(θ, θ̇) ∈ TQR : y(θ, θ̇) = 05, LfRy2(θ, θ̇) = 04} (21)

exponentially stable. Note that here 0p ∈ Rp is a vector
of zeros, and we make the dependence of Zα on the set
of parameters explicit. It is at this point that continuous
systems and hybrid systems diverge: while this surface is
invariant for the continuous dynamics, it is not necessarily
invariant for the hybrid dynamics. In particular, the discrete
impacts in the system cause the state to be “thrown” off
of the zero dynamics surface. Therefore, a hybrid system
has hybrid zero dynamics if the zero dynamics are invariant
through impact: ∆R(SR ∩ Zα) ⊂ Zα.

Partial Hybrid Zero Dynamics (PHZD). While the
realization of HZD is the “best case scenario,” it is quite dif-
ficult in the case of bipedal robotic walking since it would
force the hybrid system to evolve on a 1-dimensional man-
ifold. Therefore, we seek to enforce zero dynamics only for
the relative degree 2 outputs. We refer to this as the partial
zero dynamics surface, given by:

PZα = {(θ, θ̇) ∈ TQR : y2(θ) = 04, LfRy2(θ, θ̇) = 04} (22)

The motivation for considering this surface is that it allows
some“freedom”in the movement of the system to account for
differences between the robot and human models. Moreover,
since the only output that is not included in the partial
zero dynamics surface is the output that forces the forward
hip velocity to be constant, enforcing partial hybrid zero
dynamics simply means that we allow the velocity of the hip
to compensate for the shocks in the system due to impact.

Problem Statement. The goal of human-inspired PHZD
is to find parameters α∗ that solve the following constrained
optimization problem:

α∗ = argmin
α∈R21

CostHD(α) (23)

s.t ∆R(SR ∩ Zα) ⊂ PZα (PHZD)

with CostHD the cost given in (7). This is simply the op-
timization problem in (8) that was used to determine the
parameters of the canonical human walking functions that
gave the best fit of the human walking functions to the hu-
man output data, but subject to constraints that ensure
PHZD. The formal goal of this section is to restate (PHZD)
in such a way that it can be practically solved.

Partial Zero Dynamics. This section utilizes the fact that
the human outputs were specifically chosen to be linear in
order to explicitly construct the partial hybrid zero dynam-
ics. In particular, we reformulate the constructions in [22]
in such a way as to be applicable to full-actuation (which
is assumed in this case) and reframe them in the context
of canonical human walking functions. Because of the spe-
cific choice of ya in (14), we begin by picking the following
representation of the partial zero dynamics:

ξ1 = δpRhip(θ) =: cθ (24)

ξ2 = ya,1(θ, θ̇) = δṗRhip(θ, θ̇) =: cθ̇

where c ∈ R1×5 is obtained from (1). Moreover, since ξ1
is just the linearized position of the hip, which was used to

parameterize time (12), we can write yd,2(τ(θ)) = yd,2(ξ1).
Picking the coordinates

η1 = ya(θ) = Hθ (25)

η2 = LfRya,2(θ, θ̇) = Hθ̇

with H as in (15), and defining

Φ(ξ1) =

[
c
H

]−1(
ξ1

yd,2(ξ1)

)

Ψ(ξ1) =

[
c
H

]−1
(

1
∂yd,2(ξ1)

∂ξ1

)

it follows that for θ = Φ(ξ1) and θ̇ = Ψ(ξ1)ξ2, (θ, θ̇) ∈ PZα.
As a result of the fact that we have full actuation and

completely linearize the dynamics with (19), it follows that
the relative degree 1 output evolves according to ẏ1 = −εy1.
Therefore, because of the definition of the partial zero dy-
namics, the partial hybrid zero dynamics evolve according
to the linear ODE:

ξ̇1 = ξ2 (26)

ξ̇2 = −ε(ξ2 − vhip).

The advantage of the partial zero dynamics representation
introduced is that it allows for the existence and stability of
a fixed point of the zero dynamics to be determined with-
out integrating the ODE. Specifically, given a point on the
guard (θ−, θ̇−) ∈ SR with its post-impact state (θ+, θ̇+) =

∆R(θ−, θ̇−), we can compute ξ−1 = δpRhip(θ−) and ξ+
1 =

δpRhip(θ+). From this, if (PHZD) is satisfied, the change in
ξ1 and ξ2 due to this impact can be determined through:

ξ+
1 = δpRhip(∆θθ

−) (27)

ξ+
2 = ∆PZ(θ−)ξ−2

where θ− is a point that is chosen a priori and

∆PZ(θ−) := c∆θ̇(θ
−)Ψ(δpRhip(θ−)). (28)

In essence, this defines a 2-dimensional hybrid system and
therefore, when considering the existence and stability of a
periodic orbit in the partial hybrid zero dynamics surface,
one need only consider the restricted Poincaré map:

ρ : SR ∩PZα → SR ∩PZα (29)

where

SR ∩PZα ∼= {(ξ1, ξ2) ∈ PZα : ξ1 = ξ−1 , ξ2 ∈ R≥0}
In other words, the hyperplane ξ1 = ξ−1 can be chosen as the
Poincaré section. The Poincaré map for the partial hybrid
zero dynamics is therefore a 1-dimensional (partial) map ρ :
SR ∩ PZα → SR ∩ PZα, and so ρ can be viewed as only a
function of ξ2 and therefore defines a discrete time dynamical
system: ξ2[k + 1] = ρ(ξ2[k]).

Inverse Kinematics. To achieve the goal of restating (23)
in a way that is independent of state variables (position and
velocity), we can use the outputs and guard functions to
explicitly solve for the configuration of the system ϑ(α) ∈
QR on the guard (hR(ϑ(α)) = 0) in terms of the parameters
α. In particular, let

ϑ(α) = θ s.t

[
y2(∆θθ)
hR(θ)

]
=

[
04

0

]
, (30)



where ∆θ is the relabeling matrix (11). Note that ϑ(α) ex-
ists because of the specific structure of the outputs y2(∆θθ)
chosen. In fact, the reason for considering y2 at the point
∆θθ is because this implies that the configuration at the
beginning of the step is θ+ = ∆θθ and thus τ(∆θθ) = 0
implying that: y2(∆θθ) = H∆θθ − yd,2(0), or (30) has a
solution because of the simple form that y2 takes at ∆θθ.

Using ϑ(α), we can explicitly solve for a point (ϑ(α), ϑ̇(α)) ∈
Zα ∩ SR. In particular, let

Y (θ) =

[
dδpRhip(θ)
dy2(θ)

]
, (31)

It follows from the definition of y1 and y2 that
[

y1(θ, θ̇)

LfRy2(θ, θ̇)

]
= Y (θ)θ̇ −

[
vhip

04

]
. (32)

Therefore, define

ϑ̇(α) = Y −1(ϑ(α))

[
vhip

04

]
, (33)

where Y is invertible because of the choice of outputs.

Human-Inspired Optimization. With the notation of
this section in hand, we define a human-inspired optimiza-
tion problem; a proof of this theorem can be found in [3].
This constrained optimization uses the human data as a cost
function (through the human-data-based cost (7)), but en-
forces constraints that, as is seen in the main result, ensure
that the bipedal robot has a stable walking gait.

Theorem 1. The parameters α∗ solving the constrained
optimization problem:

α∗ = argmin
α∈R21

CostHD(α) (34)

s.t y2(ϑ(α)) = 04 (C1)

dy2(∆θϑ(α))∆θ̇(ϑ(α))ϑ̇(α) = 04 (C2)

dhR(ϑ(α))ϑ̇(α) < 0 (C3)

yield partial hybrid zero dynamics: ∆R(SR ∩Zα∗) ⊂ PZα∗ .

Main Result. The main result of this paper is that the
point (ϑ(α∗), ϑ̇(α∗)), determined through the inverse kine-
matics and utilizing the parameters obtained by solving the
optimization problem in Theorem 1, is “essentially” the fixed
point to a stable hybrid periodic orbit. Thus, the optimiza-
tion problem in (34) not only ensures partial hybrid zero
dynamics, but it automatically yields a fixed point to a sta-
ble walking gait that can be computed in closed form from
the parameters of the human-inspired controller. Moreover,
since the cost function (7) only depends on human walk-
ing data, we automatically generate a controller for a stable
walking gait, its parameters, a stable hybrid periodic orbit
and its fixed point using only human data.

Theorem 2. Let α∗ be the parameters solving (34). If

τ(ϑ(α∗)) =
δpRhip(ϑ(α∗))− δpRhip(∆θϑ(α∗))

v∗hip

> 0

then there exists a constant ε > 0 such that for all ε > ε

the hybrid system H (α∗,ε)
R has an exponentially stable peri-

odic orbit. Moreover, the fixed point of this periodic orbit,
(θ∗ε , θ̇

∗
ε), is dependent on ε and satisfies the property that:

lim
ε→∞

(θ∗ε , θ̇
∗
ε) = (ϑ(α∗), ϑ̇(α∗)). (35)

Proof. From the proof of Theorem 1 in [3] it follows

that (ϑ(α∗), ϑ̇(α∗)) ∈ Zα ∩ SR. Letting ξ1(α∗) and ξ2(α∗)
be the representation of this point in the partial hybrid zero
dynamics coordinates (24), the fact that (ϑ(α∗), ϑ̇(α∗)) ∈
Zα implies that ξ2(α∗) = v∗hip. By picking θ− = ϑ(α∗)

in (27), it follows that ξ−1 = ξ1(α∗). Due to the fact that
the zero dynamics evolve in a linear fashion according to
(26), the Poincaré map (29) can be explicitly computed; for
ξ2 ∈ SR ∩PZα, it is given by

ρε(ξ2) = v∗hip

(
1 +W

(
e−ετ(ϑ(α∗))eγ(ξ2)γ(ξ2)

))

where W is the Lambert W function (or product logarithm)
and

γ(ξ2) =
∆PZ(ϑ(α∗))ξ2 − v∗hip

v∗hip

determines the change in the (linearized) velocity of the hip
relative to v∗hip; or, in other words, the perturbation away
from the zero dynamics surface Zα. From the explicit form
of the reduced Poincaré map ρ it follows that:

lim
ε→∞

ρε(ξ2) = v∗hip = ξ2(α∗) (36)

since W (0) = 0 and τ(ϑ(α∗)) > 0.
To prove the existence of a periodic orbit for the partial

hybrid zero dynamics, we need only prove the existence of
a fixed point for ρε. Consider a ball of radius δ > 0 around
v∗hip, i.e., for ξ2 ∈ Bδ(v

∗
hip), |ξ2 − v∗hip| < δ. Then for this

δ it follows by (36) that there exists a ε1 > 0 such that for
all ε > ε1, |ρε(ξ2) − vhip| < δ. Therefore, ρε : Bδ(v

∗
hip) →

Bδ(v
∗
hip). By the Brouwer fixed-point theorem, it follows

that there exists a fixed point of ρε, i.e., ξ∗2(ε), dependent
on ε and satisfying ρε(ξ

∗
2(ε)) = ξ∗2(ε), and the hybrid partial

zero dynamics has a periodic orbit. To prove the stability of
this periodic orbit, we need only check the derivative of ρε
at ξ∗2(ε) and ensure that its magnitude is less than 1. The
derivative ρε can be explicitly computed as:

ρ′ε(ξ
∗
2(ε)) =





e−ετ(ϑ(α∗))∆PZ(ϑ(α∗)) if ξ∗2(ε) = v∗hip
∆PZ(ϑ(α∗))2(ξ∗2 (ε)−v∗hip)

∆PZ(ϑ(α∗))ξ∗2 (ε)−v∗
hip

otherwise

Since ξ∗2(ε)→ v∗hip = ξ2(α∗) as ε→∞, it follows that

lim
ε→∞

ρ′ε(ξ
∗
2(ε)) = 0.

Therefore, there exists an ε2 > 0 such that for ε > ε2,
|ρ′ε(ξ∗2(ε))| < 1 establishing the stability of the periodic orbit
for the partial hybrid zero dynamics.

Finally, by Theorem 4.5 of [22] (see also [12]) a stable fixed
point for the restricted Poincaré map ρε implies that:

(θ∗ε , θ̇
∗
ε) = (Φ(ξ1(α∗)),Ψ(ξ1(α∗))ξ∗2(ε)) (37)

is a stable fixed point of the Poincaré map Pε for the hybrid

system H (α∗,ε)
R for ε sufficiently large, i.e., for ε > ε3. Since

(37) clearly satisfies (35), picking ε = max{ε1, ε2, ε3} implies
the desired result.

6. NAO IMPLEMENTATION
In this section, we show that the formal results of this pa-

per can be used to achieve stable walking in a simulation of
the NAO robot. Furthermore, by implementing the trajecto-
ries found in simulation, coupled with a lateral stability con-
troller on the actual NAO robot (Fig. 4), we experimentally



achieve dynamically stable bipedal robotic walking; since
the main purpose of this paper is the formal results, the dis-
cussion of the experimental results will necessarily be brief.
We acknowledge that, as the formal results presented in this
paper consider only the 2D sagittal dynamics of NAO, while
the experimental implementation presented here is a good
indication of successful control for complete validation of the
theory, the 3D model with feet is required; this is a topic re-
served for future work.

6.1 NAO Walking Simulation
We begin by discussing how the main results of this pa-

per, Theorem 1 and 2, can be used to achieve walking in
simulation for the 2D hybrid system model of NAO. These
simulation results will serve as the basis for the control of
the actual NAO robot.

Stable Robotic Walking. Beginning with the mean hu-
man output data, computed from the experimental human
walking data and normalized with the NAO parameters, we
apply the optimization in Theorem 1. To achieve practi-
cal results, additional constraints were enforced in this op-
timization which limited the maximum joint velocity to 3
rad/s and ensured proper foot clearance. This results in
the parameters α∗ for the human-inspired controller. As a

ϕra

θsf

θsk

ϕrh

θsh ϕlh

θnsh

θnsk

ϕla

θnsf

θrs
θls

1

Figure 4: Angle
conventions for NAO
with right foot as
stance foot.

result of Theorem 2, we auto-
matically know that the param-
eters α∗ will result in stable
robotic walking for sufficiently
large control gain ε. Picking
ε = 25 and simulating the hy-

brid system H (α∗,ε)
R from the

initial condition (ϑ(α), ϑ̇(α))
verifies that we do, in fact, have
a walking gait, i.e., a periodic
orbit (see Fig. 5 and Fig. 6).
Moreover, we can verify the fact
that the chosen ε results in a
stable walking gait by checking
the eigenvalues of the Poincaré
map; we find that the mag-
nitude of the maximum eigen-
value is λ = 0.1059, thus ver-
ifying the exponential stability
guaranteed by Theorem 2. Furthermore, and as indicated
in Fig. 5, the resulting walking exhibits partial hybrid zero
dynamics. Finally, we computed the specific cost of trans-
port (SCOT) for this walking to be 0.33 which, given the
differences between NAO and a human, is reasonably close
to the human value of 0.20 (see [6]). It is important to note
that, since the simulated model only has point feet (which
was used to approximate the fact that the feet are assumed
to always be flat during the walking on the actual NAO
robot), the walking obtained in simulation is necessarily dy-
namically stable.

Walking from Rest. In addition to stable, periodic walk-
ing, the robustness of the human-inspired control law allows
for the robot to start from rest and converge to the walking
periodic orbit corresponding to the walking gait. As shown
in Fig. 5, trajectories of the system when started from rest
converge to the stable limit periodic orbit predicted by The-
orem 2. Convergence is also seen in a plot of the human
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Figure 5: Periodic orbits for the simulated behavior of NAO
starting from rest, i.e., a zero initial condition (top left) and
the fixed point of the periodic orbit (top right). Starting
from rest, the actual outputs of NAO converge to the desired
outputs and display partial hybrid zero dynamics (bottom).

Figure 6: Snapshots of the walking gaits from the NAO
simulation starting from zero initial conditions (top) and

starting from the fixed point (ϑ(α), ϑ̇(α)) (bottom).

inspired outputs; in Fig. 5 the convergence of the actual out-
puts of the robot to the desired outputs can be seen. Tiles of
the first step of the walking, starting from rest, can be seen
in Fig. 6. As discussed in the following section, the trajec-
tories of the simulated NAO model, starting from rest, can
be used to experimentally achieve walking in the real NAO
robot.

6.2 NAO Walking Experiment
The end goal of the human-inspired walking control de-

sign process is the realization of stable walking on an actual
robot. Aldebaran’s NAO robot was chosen for implementa-
tion of the ideas presented in this paper; therefore, we use it
as a testbed to show experimental validation of the formal
results for the 2D model of the NAO presented in this pa-
per and, more generally, the framework of human-inspired
control.

Implementation. To implement the simulated walking
behavior on NAO, we use trajectory tracking of the simu-
lated behavior for the sagittal angles and design and imple-
ment a lateral stability controller to maintain lateral balance
through the walking gait. Specifically, stance and swing joint



Student Version of MATLAB

Figure 7: Comparison of the snapshots of the actual (top) and simulated (bottom) walking gaits over one step.

angle trajectories are taken from the simulated behavior of
the robot. The control software then takes these individual
steps and compiles them into joint trajectories for sagittal
angles of the left and right legs (essentially “undoing” the
simplifying assumption of a “stance” and “non-stance” leg
used in the modeling of the robot). To help maintain lat-
eral stability during walking, we implement a simple online
feedback controller with the objective of driving the abso-
lute vertical roll-angle of the NAO’s chest to zero in order
to decrease lateral instability. In particular, we measure the
absolute angle of NAO’s chest, ϕachest, through the onboard
IMU. The desired lateral angles of NAO are then defined as
ϕdlh = ϕdrh = Khipϕ

a
chest and ϕdla = ϕdra = −Kankleϕ

a
chest,

with Khip = 0.7 and Kankle = 0.77, which NAO then tracks
with the onboard joint angle controllers.

Results. Implementing the simulated trajectories of the
human-inspired walking control on NAO results in dynam-
ically stable walking on the actual NAO robot. Tiles of
the walking gait achieved in experimentation can be seen
in Fig. 7; in that figure, the experimental walking is com-
pared against tiles of the simulated walking taken at the
same time instances showing that, in fact, there is good
agreement. To provide qualitative evidence of this, the sim-
ulated and experimentally observed figures are plotted in
Fig. 8; this shows excellent agreement between simulation
and experimentation. In this same figure, the effects of the
lateral stability controller are shown; the lateral angles os-
cillate to provide stability in the lateral plane. To verify
that the walking obtained on NAO is dynamically stable,
we compute the position of the center of mass from the ex-
perimental data and check to ensure that it is not over the
foot during the course of the walking. Due to the size of
the feet on NAO, we find that the y-position of the center
of mass is more revealing; as shown in Fig. 9, the center of
mass is almost never over the feet during the walking gait.
Thus we conclude that the robotic walking achieved is dy-
namically stable. Finally, the human-inspired walking that
was obtained on NAO subjectively appears more human-like
that other walking gaits that have been achieved for NAO.
We invite readers to form their own opinions by watching
the video of the human-inspired robotic walking, and its

8.5 9 9.5 10 10.5 11 11.5 12
−0.15

−0.1

−0.05

0

0.05

Time(s)

y
-p

o
si
ti
o
n

(m
)

 

 

COMy

 

 

Left foot

 

 

Right foot

Figure 9: The y-position of the center of mass over multiple
steps, with the width of the left and right foot indicated.
Since the position of the center of mass is not over either
the left or right foot, the experimental walking obtained is
dynamically stable.

comparison with the pre-existing (ZMP) walking, which is
available online [2].

7. CONCLUSIONS
This paper presents a formal, human-inspired approach to

bipedal robotic walking, proving through Theorem 1 and 2
that, by using only human data, parameters to the human-
inspired controller can be determined that simultaneously:
provide the best fit of the human data, yield partial hybrid
zero dynamics, imply the existence of a stable walking gait,
and allow the fixed point for this stable walking gait to be
explicitly computed. As a result, this method allows for
the rapid generation of stable walking gaits during the con-
troller development for bipedal robotic walking simulations
and experiments, such as those performed on Aldebaran’s
NAO robot in this paper. Future work on this topic includes
expansion of the formal results to the 3D model of NAO and
examination of the accompanying constraints, such as ZMP
and friction.
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Figure 8: Simulated (desired) and experimental joint trajectories for the sagittal plane (a)-(e), and angles in the lateral plane
controlled through the lateral stability controller (f)-(i) as seen in experimentation (see Fig. 4 for the angle conventions).
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Poincaré maps for hybrid systems with applications to
bipedal walking. In Hybrid Systems: Computation and
Control, Stockholm, Sweden, 2010.

[22] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H.
Choi, and B. Morris. Feedback Control of Dynamic
Bipedal Robot Locomotion. CRC Press, Boca Raton,
2007.

[23] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek.
Hybrid zero dynamics of planar biped walkers. IEEE
TAC, 48(1):42–56, 2003.


