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Abstract— This paper presents a method to determine out-
puts associated with human walking data that can be used
to design controllers that achieve human-like robotic walking.
We consider a collection of human outputs, i.e., functions
of the kinematics computed from experimental human data,
that satisfy criteria necessary forhuman-inspired bipedal robot
control construction. These human outputs are described ina
form amendable to controller design through a special classof
time based functions—termedcanonical walking functions. An
optimization problem is presented to determine the parameters
of this controller that yields the best fit to the human data that
simultaneously produces stable robotic walking. The optimal
value of the cost function is used as a metric to determine
which human outputs result in the most “human-like” robotic
walking. The human-like nature of the resulting robotic walking
is verified through simulation.

I. INTRODUCTION

Human walking has been studied extensively in the field
of biomechanics and is typically analyzed by decoding
the humans’ inner kinematics and kinetics, such as muscle
functionality [1], [2], ground reaction forces [3], [4] and
energy expenditure [5], [6]. The complexity of the human
muscle and nervous systems prevents the direct application
of research results from biomechanics to robot design since
it is difficult to mimic the inner kinematics of human walking
in control. Some research has attempted to bridge this
gap by determining the inverse kinematics [7] and forward
kinematics [8] of human walking, but the complexity of these
methods prevent their direct application to robotic control.
The methodology of this paper is to approach human walking
from the perspective that a control theorist would take when
analyzing a complex system: view the human walking system
as a “black box”. From this viewpoint, the goal becomes: find
“outputs” of this black box that characterize the behavior of
the system in the simplest form possible. The result is low-
dimensional characterization of human walking that can be
used to construct controllers that result in human like robotic
walking.

With the general methodology of this paper in mind, we
seekoutputsassociated with human walking, computed from
experimental human walking data, that appear to characterize
walking while simultaneously being applicable to bipedal
robotic controller design. Criteria are defined for choosing
these outputs. The sets of output combinations that satisfy
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these criteria can be used to construct controllers for bipedal
robots. For the chosen outputs, we discover that all the
human outputs are accurately described by a linear function
of time or the time response to linear mass-spring-damper
systems. Due to the simplicity and universality of these func-
tions, we term themcanonical walking functions. Moreover,
unlike other functions of time that could have been used to
fit the human output data (polynomials [6] and Bezier series
[9]), the form of the canonical human walking functions
provides insight into the kinematics of human walking. We
are able to conclude that humans appear to act like linear
spring-mass-damper systems for the outputs being consid-
ered. Utilizing the human outputs and canonical walking
functions, for each human output combination we construct
a human-inspiredcontroller that results in stable human-like
bipedal robotic walking. A constrained optimization problem
is introduced to compute these parameters, producing the
best fit human data while simultaneously yielding robotic
walking. The value of the cost function that solves this
optimization problem allows us to determine the best output
combination. The end result is that we are able to determine
the human outputs that yield the most human-like bipedal
robotic walking.

Achieving human-like bipedal walking promises to benefit
both robotics research and prosthetic device development.
Current approaches to bipedal robotic control—such as con-
trolled symmetries [10] and zero moment point regulation
[11]—have yet to produce true human-like robotic walking.
The hope is that directly using human data, and outputs of
human walking, to guide control construction will help to
bridge the gap between these methods and true human-like
robotic walking. Moreover, human-like robotic walking can
be used in prosthetic and orthotic device design and testing
[12], [13]. In order for prosthetic and orthotic devices to
create normal walking, it is necessary to mimic the behavior
of human walking [14]. Most controllers for prosthetic
and orthotic devices are implemented by using human data
[15].Different sensors are employed to measure energy and
force [16], [17]. If human-like bipedal walking is achieved
and human walking can be characterized, the force and
energy of human walking can be calculated directly from the
position data, which will greatly reduce the cost of devices
and simplify controller design.

II. HUMAN OUTPUTS

In this section we seek human outputs which can be
used to achieve human-like walking in robotic control. Hu-
man walking data was collected experimentally. The human
outputs computed from the experimental data, are chosen
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Fig. 1: The position and acceleration data for one heel inz
direction. The vertical lines formed by− are the moment
the heel lifts the ground. The vertical+ line indicates the
moment the heel strikes.

according to criteria necessary for them to be used to
construct controllers.
Experimental Setup. The human walking data presented
in this paper were collected from a motion capture system
as detailed in [18]. Note that the data were collected from
two experiments separately. The two experiments have the
same setup and were conducted in the same lab. Though the
data were collected from two experiments, the results of the
analysis are the same, which shows that the data processing
algorithm and the experimental results are repeatable. The
data used in this paper considers one step cycle ranging from
a heel strike of one leg to the following heel strike of the
other leg. We distinguish patterns of the heels’ behaviors by
picking the maximum acceleration in thez direction. Fig.
1 shows how we distinguish the heel pattern. Utilizing this
method, we obtain one step cycle of human data. There are
two reasons why toe behavior is not considered in this work.
First, heel strike represents the main impact from the whole
human walking system. Compared with toe behavior, the
heel behavior is more important to human walking analysis.
Second, the bipedal robot considered in this paper has point
feet. Human heel-strike is analogous to foot-strike for such
a robot.
Human Outputs. The human outputs we seek should satisfy

TABLE I: Physical parameters of each subject in experi-
ments.Lc(mm), Lt (mm), mc(kg) and mt (kg) measurements
correspond to the lengths described in [18]. Mass distribution
is computed according to book [19]

Subject Sex Age Ht. Wt. mh mt mc Lt Lc
S1 M 17 188.5 83.9 56.9 8.4 3.9 49.3 45.1
S2 M 22 169.5 90.9 61.5 9.1 5.5 40.1 43.5
S3 M 30 170.5 69.1 46.7 6.9 3.3 43.8 38.1
S4 M 26 163.5 58.9 39.3 5.9 2.7 38.5 38.2
S5 F 23 165.5 47.7 32.3 4.8 2.9 39.2 37.6
S6 F 27 160.0 56.7 38.4 5.7 2.6 46.6 37.1
S7 M 30 160.5 58.9 40.0 5.9 2.7 38.8 30.4
S8 M 25 182.0 90.7 61.5 9.1 4.2 49.5 40.1
S9 M 22 173.0 68.0 46.1 6.8 3.2 59.2 35.6

Smean * * 170.3 69.4 47.1 6.9 3.2 45.2 38.1

θsa

θsk

θhip

θnsk

(a) Joint Angles of Human Gait.
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Fig. 2: Joint angles of human gait(a) and human outputs(b).

the following criteria: they (1) are functions of the joint
angles, (2) have simple time-based representation, and (3)are
mutually exclusive (the decoupling matrix associated with
these outputs is non-singular). According to this criteria, we
find seven output functions that satisfy conditions (1) and
(2), as shown in Fig. 2(b). We will argue these seven outputs
appear to be essential to walking.

(1) The x-position of the hip,

phip = Lcsin(−θsa)+Ltsin(−θsa−θsk),

whereLc is the length of the calf andLt is length of
the thigh.

(2) The linearized hip position,

δ phip = Lc(−θsa)+Lt(−θsa−θsk),

which is the first order terms of thephip Taylor expan-
sion.

(3) The slope of the non-stance leg, i.e., the tangent of the
angle between the z-axis and the line goes through the
non-stance ankle and hip, as shown in Fig. 2(b),

mnsl =
px

nsa− phip

pz
nsa− pz

hip
,

wherepz
hip is thez position of the hip andpz

nsa, px
nsa are

thez andx position of the non-stance ankle respectively.
(4) The linearized slope of the non-stance leg

δmnsl =−θsa−θsk+(
Lc

Lc+Lt
θnsk)−θhip,

which is the first order terms ofmnsl Taylor expansion.
(5) The hip angle, which is the angle between the stance

thigh and non-stance thigh,θhip.
(6) The angle of the stance knee,θsk.
(7) The angle of the non-stance knee,θnsk.

We consider the linearized form of non-linearized outputs
because it is easier to characterize the zero dynamics surface
[20] and the linearized outputs have been used to achieve
walking experimentally [21], [22]. The outputs can be par-
titioned into four disjoint sets:Ysa = {phip,δ phip}, Yhip =
{mnsl,δmnsl,θhip}, Ysk = {θsk} and Ynsk= {θnsk}. There is
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Fig. 3: Human output setYsa (represented by superscriptH)
over one step and the canonical walking functions (repre-
sented by superscriptd) that are fitted to these data.
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Fig. 4: Human output setYhip (circles) over one step and
the canonical walking functions (solid lines) that are fitted
to these data.

a one-to-one correspondence between the angles and the
output sets:Ysa corresponds toθsa; Yhip corresponds to
θhip; Ysk corresponds toθsk and Ynsk corresponds toθnsk.
Any combination of the elements between these sets are
mutual exclusive, which indicates that the decoupling matrix
associated with these outputs is full rank [18]. The end result
is 6 total sets of output combinations that satisfy criteria(1)-
(3), i.e., six collections of human outputs that can be used
to construct controllers for bipedal robots. The mean human
outputs are shown in Fig. 3 to 5 along with the error band of
one standard deviation. According to [23], outputs that lay
within the error bands are considered healthy human walking.

Canonical Walking Functions.To apply the human outputs,
which are discrete data, to bipedal robot control, we need
to represent the data as functions of time. We propose
the following functions (which will be fitted to the human
outputs to provide a time-based representation of the human
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Fig. 5: Human output setsYsk and Ynsk (circles) over one
step and the canonical walking functions (solid lines) that
are fitted to these data.

walking data):

yH
1 = vt, (1)

yH
2 = e−α4t(α1cos(α2t)+α3sin(α2t))+α5. (2)

These functions are termed canonical walking functions,
because they appear to represent human outputs universally
with a simple form. Equation (1) is fitted to the output
elements in theYsa. Equation (2) is fitted to the other outputs.
Note that (2) has the same form as the time response of a
linear mass-spring-damper system:

y= e−ξ ωnt(c0cos(ωdt)+ c1sin(ωdt))+ ḡ, (3)

where c0 and c1 are the initial conditions decided by the
initial position y(0) and the initial velocity ˙y(0), ξ is
the damping ratio andωn is the natural frequency,ωd =
√

1− ξ 2ωn is the damped frequency and the constant term
ḡ is the gravity term. Comparing (2) with the time solution
of a linear mass-spring-damper systems, we haveα1 = c0,
α2 = ωd, α3 = c1, α4 = ξ ωn andα5 = ḡ.

The results of the least squares fittings are shown in Figs.
3 – 5 by the solid lines. Table II gives the coefficients along
with correlations of each canonical walking function. All the
correlations are higher than 0.99. This fact shows that the
human outputs are uniformly described with high accuracy
by the canonical walking functions. We conclude that human
appears to act like linear mass-spring-damper system during
walking for the outputs chosen. This result is supported
currently in the prosthetic field where spring-damper systems
are used to mimic human muscle behaviors.

TABLE II: Parameters of canonical walking functions ob-
tained from fitting.

yH
1 = vt, yH

2 = e−α4t(α1cos(α2t)+α3sin(α2t))+α5
Y y v α1 α2 α3 α4 α5 Cor.
Ysa Phip 1.1065 * * * * * 0.9990

pL
hip 0.9337 * * * * * 0.9991

Yhip mnsl * 0.1662 7.2502 0.2539 -0.8875 0.1742 0.9999
mL

nsl * 0.0117 8.6591 0.1153 -2.1554 0.2419 0.9997
θhip * -0.9805 6.0632 -0.9366 2.6750 0.3527 0.9997

Ysk θsk * -0.1739 13.6644 0.0397 3.3222 0.3332 0.9934
Ynsk θnsk * -0.3439 10.5728 0.0464 -0.8606 0.6812 0.9996



III. CONTROLLER DESIGN

This section uses the human outputs and their time-
based representations—the canonical walking functions—to
construct a controller that drives the output of the robot
to the output of the human. In addition, an optimization
problem is introduced to determine the parameters of this
controller that provides the best fit of the human walking
data while simultaneously yielding stable robotic walking.
We consider a 2D bipedal robot model with knee and point
feet as described in [18], [21]. The motivation of this is the
application of this result to a under-actuated robot AMBER,
which has point feet. These result has been translated to
AMBER [21] experimentally achieving walking. Finally the
point foot approximation has been used in experiments to
achieve human-like bipedal walking on a robot with feet [22].
Output Design. Input/output linearization [24] is applied to
drive the robotic outputs to human outputs. Based on human
outputs, we define the following relative degree one and
relative degree two [20] outputs for the bipedal robot model.
The actual and desired outputs of relative degree one are
defined as:

ya
1(θ , θ̇ ) = dysa(θ )θ̇ , yd

1 = vhip, (4)

whereysa(θ ) ∈Ysa. vhip is a constant, i.e.,ysa can either be
the hip velocity or the velocity of linearized hip position.

The outputya
2 is a vector of the relative degree two outputs.

It is defined as

ya
2(θ ) =





yhip(θ )
ysk(θ )
ynsk(θ )



 , yd
2(t) =





yd
hip(t,αhip)

yd
sk(t,αsk)

yd
nsk(t,αsk)



 . (5)

where yhip ∈ Yhip, ysk ∈ Ysk and ynsk ∈ Ynsk. The desired
output function areyd

hip(t,αhip) = yH
2 (t,αhip), yd

sk(t,αsk) =

yH
2 (t,αsk), andyd

nsk(t,αnsk) = yH
2 (t,αnsk) with yH

2 in equation
(2). Our goal is to driveya

1 → yd
1 and ya

2 → yd
2 and we start

by removing the dependence of time from the desired out-
puts. The forward hip position is described byphip = vhipt;
therefore, for human walkingt ≈ phip/vhip. This motivates
the following parametrization of time:

τ(θ ) =
ysa(θ )− ysa(θ+)

vhip
, (6)

whereysa∈Ysa, vhip is a constant of hip velocity or linearized
hip velocity andθ+ is the configuration just after impact.
With the parametrized timeτ(θ ), we consider the following
outputs:

y1(θ , θ̇ ) = ya
1(θ , θ̇ )− yd

1, (7)

y2(θ ) = ya
2(θ )− yd

2(τ(θ )). (8)

With these outputs, we design a human-inspired controller
as presented in [22, Eq.(19)].
Human-Data-Based Optimization.The Partial Hybrid Zero
Dynamics (PHZD) based optimization of [18] is employed to
determine the parameters of the canonical walking functions
that best fit the human data, while still resulting in stable

robotic walking. With this goal in mind, we define human-
data-based cost as:

CostHD(α) =
K

∑
k=1

∑
i∈I

(

βyi (y
d
i (t

H [k],α)− yH
i [k])

2
)

, (9)

where βyi are the weightings, which are the reciprocal of
the maximum and minimum value of the human data for
the outputs,I = {sa,hip,sk,nsk} are the four outputs which
represent theysa∈Ysa, yhip ∈Yhip, ysk∈Ysk andynsk∈Ynsk.

This cost function is used as a criterion to quantify the
differences between robotic walking and human walking. In
particular, in [18] a method was developed for expressing the
zero dynamics surface,Zα , and the partial zero dynamics
surface, PZα , only in terms of the parametersα. The
optimization problem is thus given as:

α∗ = argmin
α∈R16

CostHD(α) (10)

s.t. ∆(S∩Zα)⊂ PZα (PHZD)

where ∆ is the reset map, of which the detail definition
is given in [21, Eq.(3)]. Note that this optimization only
depends on the parametersα, and produces a unique point
[θ (α), θ̇ (α)] ∈ S∩ Zα such that ∆(θ (α), θ̇ (α)) ∈ PZα .
Moreover, the point[θ (α), θ̇ (α)] will be the fixed point
of a stable periodic orbit, i.e., a stable walking gait. This
optimization, therefore, not only produces parameters that
best fit the human data, but ensures stable robotic walking
and explicitly produces the initial condition for this walking
gait.
Simulation Results. A 2D kneed bipedal robot [18] is
considered with physical parameters listed in Table I as

TABLE III: Optimization results of each output combination
obtained by solving (10)

yd
1 = vt, yd

2 = e−α4t(α1cos(α2t)+α3sin(α2t))+α5
Y y v α1 α2 α3 α4 α5 Cor. Cost
1 Phip 1.0919 * * * * * 0.9990

mnsl * 0.1184 6.8404 0.0820 -2.8059 0.2849 0.9951
θsk * -0.315210.7101 0.2345 6.3638 0.3133 0.9517
θnsk * -0.2769 8.3986 0.3287 -0.7328 0.5826 0.9884 1.98

2 Phip 0.9362 * * * * * 0.9990
mL

nsl * 0.0466 7.7313 0.0713 -3.5520 0.2747 0.9917
θsk * -0.310111.1149 0.2060 6.2400 0.3157 0.9551
θnsk * -0.3300 9.8342 0.1221 -1.0240 0.6392 0.9978 3.05

3 Phip 1.0919 * * * * * 0.9990
θhip * -0.7290 5.4485 -0.0788 0.3504 0.0664 0.9974
θsk * -0.296410.5414 0.2454 6.4075 0.3147 0.9522
θnsk * -0.2727 8.3097 0.3497 -0.6234 0.5800 0.9867 2.08

4 PL
hip 0.9559 * * * * * 0.9991

mnsl * 0.0923 7.0185 0.0710 -2.9054 0.2391 0.9956
θsk * -0.310510.7700 0.2329 6.3020 0.3135 0.9537
θnsk * -0.3323 9.8612 0.1187 -1.0225 0.6383 0.9978 1.87

5 PL
hip 0.8499 * * * * * 0.9991

mL
nsl * -0.0100 8.8926 0.0746 -3.8786 0.2705 0.9963

θsk * -0.235412.2941 0.1133 4.7734 0.3220 0.9809
θnsk * -0.344510.1027 0.0963 -0.8205 0.6635 0.9991 2.27

6 PL
hip 0.9268 * * * * * 0.9991

θhip * -0.3975 6.0662 0.0421 -1.2215-0.1557 0.9972
θsk * -0.223411.9485 0.1258 4.7811 0.3216 0.9788
θnsk * -0.3427 9.7484 0.1541 -0.7001 0.6593 0.9977 1.53



smean. As stated in section II, the six total human output
combinations are considered. The end result is six human
inspired controllers for the bipedal robot as listed in TABLE
III. The parameters of each controller are obtained by solving
the human-data-based optimization problem (10), the results
of which are given in Table III. Moreover, the stability of
walking is numerically verified by computing the eigenvalues
of Poincaré map. All the magnitudes of the eigenvalues are
smaller than one as shown in Fig.6, which implies that all
walking gaits are stable.

The best output combination isY6 = {δ phip,θhip,θsk,θnsk}
since it has the lowest optimization cost. Simulation results
of Y6, as compared against the human data, are given in
Fig. 8. The solid lines, which represent the robot outputs,
are very close to the red circle lines, which are the human
mean outputs. Fig. 7(a) shows the periodic orbit associated
with this walking. Fig. 7(b) shows the actual outputsya

i
and the desired outputsyd

i over the course of one step; in
this figure, it can be seen that hybrid invariance is achieved
for the relative degree two outputs (as guaranteed by the
partial hybrid zero dynamics optimization (10)). Therefore,
the actual and desired outputs of relative degree two agree
on value at all times. Fig. 10 is the simulation results of
Y4. Besides comparison between human outputs and robot
outputs, there is Fig. 10(a) showing that, while we did not
directly attempt to match the joint angles of the robot to those
of the human, forcing the robotic outputs to agree with the
human outputs results in good agreement between the joint
angles as well.

Finally, a comparison of the robotic walking with the
human walking is shown in Fig. 9. This implies that the
methods proposed in this paper can be applied to achieve
human-like walking on bipedal robots, even though they
differ from humans in form and structure.

IV. CONCLUSIONS

This paper analyzed human walking by viewing the hu-
man walking system as a “black box” and sampling its
outputs. Specific human outputs were chosen that appeared
to characterize walking, while simultaneously being useful
for controller design. To utilize the human outputs for the
design of these controllers, canonical walking functions were
considered. These time-based functions—which were simply
the solution to a mass-spring-damper system—described the
human output data with a high degree of accuracy. Human-
inspired controllers were then constructed that drive the
outputs of the robot to the outputs of the human, and an
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Fig. 6: The magnitudes of eigenvalues associated with the
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Fig. 7: The simulation results of the 2D bipedal robot
model with Y6 = {δ phip,θhip,θsk,θnsk}. The parameters of
the controller guarantee the PHZD.
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Fig. 8: Desired outputs (solid lines) compared with human
outputs (red circles) over one step forY6

optimization problem was considered that determined the
parameters of this controller that best fit the human data
while producing stable robotic walking. The cost function
associated with this optimization allows us to determine
the best human outputs, i.e., the human outputs that give
the most “human-like” robotic walking. Finally, simulation
results show the human-like nature of this robotic walking.
Future work will be devoted to the experimental realization
of this method.
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