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Abstract— Three-dimensional humanlike bipedal walking is
obtained through a hybrid control strategy which combines
geometric reduction with human-inspired control. Functional
Routhian reduction decouples the sagittal and coronal dynamics
of a biped, thereby reducing the control design problem to
sagittal motion. Experimental human kinematics data have
shown that certain outputs on a human’s kinematics follow a
canonical human function: Human-inspired controllers are de-
signed based on this function. The parameters of these functions
are found through optimization by trying to make them as close
to the human data as possible while simultaneously forming a
partial hybrid zero dynamics under feedback linearization. PD
control is used in these controllers to track the human functions
resulting in stable walking in both two- and three-dimensional
simulations.

I. INTRODUCTION

Bipedal robotic walking has been studied from a variety
of perspectives. Existing approaches involve passivity-based
control [1], [2], hybrid zero dynamics [3], [4], central pattern
generators [5], [6], and compliance-based control [7]. Many
of these schemes have proven effective and some have drawn
inspiration from human walking in a holistic sense, yet the
inituition behind these methods does not come directly from
analysis of human walking data. Moreover, bipedal walking
is difficult in two dimensions and extending it to three
dimensions only further complicates the problem.

Biomechanics researchers are often interested in forces
and dynamics [8]. Such analyses are useful in the design
of prostheses yet fail to give a complete picture of human
walking. While many studies have been conducted in the
context of biomechanics [9], few have been done with respect
to control engineering [10], [11]. This paper attempts to
bridge the gap by proving insight from the viewpoints of
both control and biomechanics.

When studying the biomechanics of walking, researchers
use force plates and force loading models to measure and es-
timate the distribution of musculoskeletal forces and ground
reaction forces [12]. These are used in conjunction with
either inverse-dynamic models [13], [14] or forward-dynamic
models [15], [16]. This paper instead analyzes functions
representing outputs on the kinematics of a human. Recent
methods [17], [18] draw from human data to achieve walking
in robotic models. This paper extends [18] by introducing the
notion of a hybrid zero dynamics for the sagittal control and
then extending the sagittal gait to three dimensions.
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Fig. 1: The model of interest is based on the robot AMBER.

Starting with kinematics data from a human walking
experiment, controllers are designed using a single class of
mathematical functions termedcanonical human functions
which attempt to represent the fundamental behaviors of
human walking. A state-based parameterization is introduced
to remove time dependence and PD control is used to
track these functions. This leads to an autonomous feedback
control law which results in stable, humanlike walking in
two dimensions.

After achieving two-dimensional walking,functional
Routhian reductionis used to migrate this controller to a
three-dimensional biped. To do this, two control laws are
designed: The first shapes the Lagrangian of the three-
dimensional biped so that it is amenable to reduction. The
second uses feedback linearization to drive the system to the
surface where reduction is valid. The end result will be stable
walking for the three-dimensional model based on AMBER
(shown in Fig. 1). Moreover, simulation results show that the
two- and three-dimensional gaits are virtually identical.

The rest of this paper is structured as followed: Sec. II
introduces the robotic model of interest. Sec. III presents
the framework of human-inspired control, describing how
to obtain feedback control laws—for a two-dimensional,
sagittal plane robotic model—which result in stable walking
in two dimensions. Sec. IV describes how to use the two-
dimensional walking control laws developed in Sec. III to
achieve three-dimensional walking. Sec. V provides simu-
lation results for the three-dimensional model. The paper
ends with Sec. VI which mentions related results and future
research ideas.
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Fig. 2: Bipedal robot of interest.

II. ROBOTIC MODEL

The model of interest has point feet, knees, and a hip
(comparable models have been considered [19], [20]) and is
shown in Fig. 2(a)—this model represents an actual robot,
AMBER, and, due to space constraints, the parameter values
are omitted but are available online [21]. The robot will be
modeled by the hybrid control system (see [22])

H C 3D = (D3D,U3D,S3D,∆3D, f3D, g3D). (1)

The body coordinates are chosen to be the relative angles
between successive links. Combining the body coordinates
with additional angular coordinates at the foot results in
coordinates,q = (ϕ, θT )T ∈ Q3D, as shown in Fig. 2(b);
this intrinsically assumes the stance foot is pinned to the
ground which simplifies the continuous dynamics.

Hybrid Model Construction. The hybrid modelH C 3D is
easily constructed using the definitions of [19]. The unilateral
constraint,h3D(q), representing the height of the swing foot
leads to domainD3D and guardS3D. A LagrangianL3D :
TQ3D → R can be derived from the physical configuration
of the model and this can be written as the control system
(f3D, g3D). From this Lagrangian, a dynamic model can
be derived using standard techniques [23]. The admissible
control is chosen to beU3D = R

6 and the torque distribution
map, B3D : Q3D → R

6×6, is simply the identity matrix:
B3D(q) = I6×6. Note that actuation is assumed at the stance
foot. While this is not a realistic assumption for a point
foot biped, it has been found that modeling footed robots
with point foot models and the assumption of actuation
shows promising results when simulations are compared to
experimental results [24].

In the bipedal walking literature, it is common to use
stance/swing leg notation [25]; it can be more intuitive to
think of control design for the legs in this context—the
differences in behavior provide a natural way of transforming
the design problem. Thus, the legs are “swapped” at impact
with a state relabeling procedure,R : Q3D → Q3D.

Sagittal Restriction. The goal of this paper is to obtain
three-dimensional walking by decoupling the dynamics of

H C 3D such that sagittal control can be implemented inde-
pendent of the coronal dynamics. To design sagittal control
laws for use with reduction, it is necessary to consider a
two-dimensional counterpart of the three-dimensional model.
This reduced-order model is obtained by applying asagittal
restriction to the full-order model to obtain

H C 2D = (D2D,U2D,S2D,∆2D, f2D, g2D). (2)

This is as simple as settingϕ = 0 and projecting away this
coordinate from the various elements of the hybrid model,
H C 3D. Applying the sagittal restriction gives Lagrangian

L2D(θ, θ̇) = L3D(q, q̇)|ϕ=0 =
1

2
θ̇TM2D(θ) θ̇ − Vθ(θ),

which is used to determine the control system(f2D, g2D).
The admissible control isU2D = R

5. The unilateral con-
strainth2D(θ) = h3D(ϕ=0, θ) leads to the domainD2D and
guardS2D. The reset map∆2D is obtained with Jacobian

E2D(px, py, θ) = RowBasis (E3D(px, py=0, pz, ϕ=0, θ)) .

III. HUMAN-INSPIRED CONTROL

The effective decoupling between sagittal and coronal dy-
namics afforded by functional Routhian Reduction is integral
to the control scheme posed in this work: it allows for sagittal
control to be consideredindependent of motion in the coronal
plane. This section, therefore, provides the framework to de-
sign and implement human-inspired controllers which result
in walking for the sagittaly-restricted model given in (2).
This control design procedure begins with examination of
human data, from which ahuman-inspiredsagittal controller
is developed.

Walking Experiment and Human Outputs. An experiment
was conducted with human test subjects in which positional
measurements of various points on the subjects were taken
with high-speed motion capture. An in-depth description
of this experiment is given in [26]; the data are available
online [27]. The goal of human-inspired control is to use
these kinematics data to motivate the construction of specific
outputs of the robot to consider for the purposes of control.In
essence, the human control system is viewed as a “black box”
and outputs are sought on the human data, i.e., functions of
the kinematics (or angles), which are capable of describing
human walking. Anaylsis of candidate functions yielded
five mutually-exclusive outputs which together appear to
faithfully represent human walking—this claim will be sub-
stantiated through controller design. These outputs are:

O1: forward hip velocity, i.e., the velocity of thex-position
of the hip,

O2: swing leg slope, i.e., the tangent of the angle between
thez-axis and the projection of the line connecting the
swing ankle and hip,

O3: stance knee relative angle,
O4: swing knee relative angle,
O5: vertical torso angle, the angle of the torso measured

with respect to the vertical axis of the world frame.
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Fig. 3: Optimized human functions compared with normal
human walking. Hip position is not shown as this varies
depending on body size.

It is worth mentioning that the first output is a velocity
rather than a position; this will be instrumental in achieving
feedback control through parameterization of time.

In the biomechanics literature, it is typically assumed
that walking is normally-distributed over a population of
humans. Normal walking is typically defined as anything that
falls within one standard deviation of the mean [28]. Using
this definition of normal walking as a reference point, gaits
designed can be examined to see if they are truly humanlike.
Such a comparison is shown in Fig. 3 for the gait designed
in this paper. The shaded areas represent normal human
walking and were calculated by averaging the human data
from the experiment described in this section (notice that
the outputs in Fig. 3 are non-dimensional so averaging can
be performed without normalization. One can see that the
designed functions lie mostly within the shaded areas, thus
confirming that the designed gait is relatively humanlike.

Canonical Human Outputs. In order to use the human out-
puts or functions just introduced, it is necessary to represent
these outputs as continuous functions of time (rather than
discrete, sampled data). This will allow the outputs of the
robot, O1–O5, to be driven to these time-dependent human
functions. It was discovered in [19], [29] that the considered
human outputs can be accurately described by asingle
function—the time solution to a linear spring-mass-damper
system—termed thecanonical human walking function:

ydi (t, A)=e−ai,4t(ai,1 cos ai,2t+ ai,3 sin ai,2t) + ai,5, (3)

wherei ∈ {1, 2, 3, 4, 5} is an index corresponding to outputs
O1–O5. The parameters are combined into a matrix:A =
{ai,j} ∈ R

5×5. Observe that (3) is the solution of a linear
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Fig. 4: Hip positions (x coordinate) for nine different human
test subjects.

spring-mass-damper system for whichai,1 andai,3 would be
determined from initial conditions,ai,4 = ζωn with damping
ratio ζ and undamped natural frequencyωn, ai,2 = ωd

with damped natural frequencyωd, and ai,5 is the gravity
bias. It was shown in [29] that these functions can be fit to
the human outputs with correlation coefficients near unity.
It thus appears that humans act like linear spring-mass-
damper systems with respect to the outputs chosen above.
PD control will be used to track these functions, but first a
parameterization will be introduced to replace time.

Time-Invariant Parameterization. The control strategy will
attempt to track the human functions found through opti-
mization. In order to achieveautonomousor time-invariant
control, it is necessary to remove the time dependence
from the human functions; this is accomplished by devising
a state-based parameterization for time—a method that is
common in the literature [3], [4].

Denote the parameterization byτ : Q2D → R
+
0 whereR+

0

represents time. For this parameterization to be accurate,it is
necessary to find a function on the kinematics of the system
which has an approximately linear relationship with time.
Examination of the forward position of the hip,pxhip , in Fig. 4
reveals just such a relationship:

yd1(t, A) = a1,5 =: vxhip , (4)

wherea1,1 = a1,2 = a1,3 = a1,4 =0 and vxhip = ∂
∂θ
pxhip(θ) θ̇

represents the hip velocity. Without loss of generality, assume
time starts at0 at the beginning of a step and letθ− = θ(t =
0) be the configuration of the robot at timet = 0. Then, the
hip moves forward at an approximately constant rate so the
relationship between velocity and position approximatelysat-
isfiespxhip(t) ≈ vxhipt+pxhip(θ

−). This relationship motivates
the following parameterization:

τ(θ) :=
pxhip(θ)− pxhip(θ

−)

vxhip
. (5)

Sagittal Controller Construction. The construction of the
sagittal controller will consist of two steps: 1) find parameters
of the canonical walking function (3) such thathybrid zero
dynamicsis achieved and 2) use these parameters together
with PD control on the output functions to construct a
controller that will result in walking in the two-dimensional
robotic model.

Hybrid Zero Dynamics. The goal of the controller is to
drive the outputs of the robot to the canonical human func-
tions, thereby achieving humanlike trajectories. Therefore,



define the actual and desired outputs:

ya(θ) :=













pxhip(θ)

msw(θ)
ϑstk(θ)
ϑswk(θ)
ϑtor(θ)













, yd(τ(θ)) :=













yd1(τ(θ), A)
yd2(τ(θ), A)
yd3(τ(θ), A)
yd4(τ(θ), A)
yd5(τ(θ), A)













,

wherepxhip , msw, ϑsk, ϑnsk andϑtor are the outputsO1–
O5 computed for the robot from its kinematics andydi are
the canonical human walking functions (3) where time is
parameterized by (5). For these outputs, thezero dynamics
surfaceZA is parameterized by parameter matrixA, where
the actual and desired outputs agree for all time, i.e.,ya(θ) ≡
yd(θ) for all time. Yet due to the nature of impacts, it is
unlikely that the hip velocity will remain constant through
impact; thus thepartial zero dynamics surfacePZA is also
an important construct—this is the surface where(ya(θ))i ≡
(yd(θ))i, i ∈ {2, 3, 4, 5} for all time. (See [29] for a more
formal definition of these surfaces and why they are each
individually important.)

The main result of [29] is that using the actual and desired
outputs, ya and yd, respectively, together with feedback
linearization, it is possible to automatically determine a
parameter matrixA that results in stable walking. This is
stated in the form of an optimization problem which uses the
experimental human data as the cost function. From the mean
human walking data, denote byτH [k] andyHi [k] the sampled
times and values, respectively, of the output functionsO1–
O5. Then define the cost function

CostHD(A) =
K
∑

k=1

5
∑

i=1

(

yHi [k]− ydi (t
H [k], A)

)2
, (6)

which is simply the sum of residuals squared. Minimizing
this cost results in the least squares fit of the canonical human
walking functions to the mean human output data. In [29],
a method was developed for expressing the zero dynamics
surface,ZA, and partial zero dynamics surface,PZA, only
in terms of the parameter matrixA, thus motivating the
optimization problem

A∗ = argmin
A∈R5×5

CostHD(A) (7)

s.t. ∆2D(S2D ∩ ZA) ⊂ PZA (HZD)

which depends only on the parametersA. Solving this
optimization problem (numerically in MATLAB through
fmincon) results in the matrix of parameters:

A∗ =













0 0 0 0 .6000
.0241 9.5581 .0806 −3.8359 .2422
−.0767 13.341 .1905 3.8029 .2576
−.4105 −11.463 −.1485 −.2429 .6759

0 −19.651 0 −17.750 .0568













wherea1,5 = vxhip is chosen to be0.6 m/s, thus controlling
the speed of the robot. The proximity of normal human
walking to the human functions using parameter matrixA∗

is shown in Fig. 3. To reiterate an earlier point, these fits are
quite close to normal human walking.

PD Controller Design. The main result of [29] is that
the parameters,A∗, automatically result in bipedal robotic
walking when feedback linearization is used. Yet the goal of
this paper is different than [29]: in this paper, PD control is
used as the reduction scheme posed in this paper requires
that sagittal control be independent of lean (ϕ)—feedback
linearization in general utilizes the entire state of the sys-
tem. Motivated by these considerations, define the following
control law

KA
2D(θ, θ̇)=kp









0
yd,2 − ya,2
yd,3 − ya,3
yd,4 − ya,4
yd,5 − ya,5









+kd









yd,1 − ya,1
ẏd,2 − ẏa,2
ẏd,3 − ẏa,3
ẏd,4 − ẏa,4
ẏd,5 − ẏa,5









. (8)

In this paper,kp = 30 and kd = 10. This control law is
applied to the systemH C 2D to obtain H A

2D which has
vector field

fA
2D(θ, θ̇) = f2D(θ, θ̇) + g2D(θ)K

A
2D(θ, θ̇). (9)

Simulation. Simluation of H A
2D results in stable walking

as expected. Fig. 5 shows the phase portrait which exhibits
a closed trajectory—this limit cycle represents steady-state
walking—as well as the torques and outputs. Of additional
interest are the torques required to achieve the simulated
results: these torques are reasonable for AMBER. The prox-
imity of the system to the zero dynamics surfaceZA can
also be seen. The humanlike nature of the gait can be seen
in Fig. 6(a); specifically, the knee behavior is of paramount
importance to human walking. Stability is confirmed by
examining the eigenvalues of the Poincaré map linearized
about the fixed point

θ∗2D = (−0.399, 0.330, 0.139, −0.316, 0.161),

θ̇∗2D = (−1.613, 0.387, 1.463, 2.088, −4.615).

The maximum eigenvalue ismaxi∈[1,|Λ|] |λi| = .409, which
is below unity and therefore indicates a stable limit cycle.

IV. FUNCTIONAL ROUTHIAN REDUCTION

Classical Routhian reduction [30] is a type of geometric
reduction which leverages conserved momentum in the form
of a constant to eliminate cyclic variables in a dynamical
system.Functional Routhian reduction(first introduced in
[31]) is a specific type of geometric reduction used in the
presence of external forces (see [32]) in which the momen-
tum map is set to a function rather than a constant. This
reduction will decouple the sagittal and coronal dynamics;
then, stable walking is obtained in three dimensions by
applying control laws which give stable walking in the
sagittally-restricted counterpart whose Lagrangian takes the
structure of a functional Routhian [32, Eq. (13)].

Two controllers will be needed to obtain walking in the
three-dimensional model in addition to the human-inspired
controller. The first controller shapes the Lagrangian [32,
Thm. 1] to into an almost-cyclic Lagrangian [32, Eq. (10)]
which is amenable to reduction. In order to enjoy the
decoupling effects of reduction, a second controller is needed
to stabilize to the surface where reduction is valid.
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Fig. 5: Simulation ofH A
2D from initial condition(θ∗2D, θ̇

∗
2D): (l) phase portraits, (c) output torques, (r) output functions.

(a) 2D simulation.

(b) 3D simulation.

Fig. 6: Simulated walking gaits. Hip in 6(b) shown in black,
stance leg is dashed.

Sagittal Control. The first controller is strictly responsible
for motion in the sagittal plane. This controller will be
used with the reduction controllers to generate walking
for the three-dimensional model. In Sec. III, a controller
was described which resulted in walking for the sagittally
restricted modelH C 2D given in (2). This exact control law,
KA

2D, given by (8), will be used for the three-dimensional

model H C 3D given in (1): KA
3D(q, q̇)) = ι

(

KA
2D(θ, θ̇)

)

.

Here,ι : Uθ → U3D is an embedding given byuθ 7→ (0, uθ).

Lagrangian Shaping Controller. A controller is needed to
shape the LagrangianL3D into an almost-cyclic Lagrangian,
sayLα, where reduction is valid. In this paper,λ(ϕ) = −αϕ
is chosen with control gainα = 1. The appropriate control
law is given by [33, Eq. (4)] with control gainǫ = 20, and,
when applied, results in the vector field

fA,α
3D (q, q̇) = f3D(q, q̇) + g3D(q)K

A,α
3D (q, q̇).

For the proper initial conditions as specified in [33, Eq.
(6)], the continuous dynamics ofH C 3D can be effectively
decoupled into the sagittal and coronal dynamics with the
control lawKA,α

3D (q, q̇) (cf. [33]). This control law contains
the sagittal control lawK2D(θ, θ̇). Furthermore, the dynamics
of ϕ evolve according to [33, Eq. (7)]. To guarantee the
that initial condition assumption [33, Eq. (6)] is satisfied,
an additional control law is needed. Feedback linearization
is used to stabilize to the surface containing valid initial
conditions. This motivates the output function

yz(q, q̇) := ϕ̇+m−1
ϕ (θ)

(

αϕ+Mϕ,θ(θ) θ̇
)

,

which has relative degree 1. Driving this output to zero will
cause the system to operate on an embedded submanifold
known as the zero dynamics manifold:

Z :=
{(

qT , q̇T
)

∈ TQ3D : yz(q, q̇) = 0
}

.

The control law that is sought is well-defined under the
framework of feedback linearization [34]. Applying this con-
trol law yields the vector fieldfA,α,ǫ

3D (q, q̇). Using this vector
field, one can construct a hybrid system implementing the
described controllers:H A,α,ǫ

3D = (D3D,S3D,∆3D, f
A,α,ǫ
3D ).

V. SIMULATION RESULTS

Reduction Surface Stabilization. Simluation of H
A,α,ǫ
3D

results in stable walking which is strikingly similar to
simulation ofH A

2D as can be seen from Fig. 7 which shows
the phase portrait, the torques, and the outputs. Gait tiles
are shown in Fig. 6(b). A linearization of the Poincaré map
about the fixed point

q∗ = (−.00376, −.404, .329, .146, −.308, .145),
q̇∗ = (−.126, −1.628, .399, 1.475, 2.112 −4.351).

yields maximum eigenvaluemaxi∈|Λ| |λi| = 0.286.
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Fig. 8: Phase portrait,ϕ.

As before, the largest eigen-
value has magnitude below unity
indicating stability. However, the
magnitudes of eigenvalues only
indicate that the manifold is lo-
cally attractive; thus the system
may start close to a stable limit
cycle, but not close enough to be
within the region of attraction.
The most important observation is that the two-dimensional
and three-dimensional walking gaits are virtually identical.
Moreover, since the two-dimensional control law was used
to construct the three-dimensional system, it appears thatthe
sagittal and coronal dynamics are indeed decoupled which
illustrates the value of function Routhian reduction.

VI. CONCLUDING REMARKS

This paper presented a framework for achieving three-
dimensional bipedal walking by using sagittal control design
on a two-dimensional model. This framework, when applied
to robotic models, allows one to obtain humanlike walking
gaits with provable stability properties. Moreover, thesegaits
have the added benefit of being humanlike as measured by
the closeness of the robot kinematics to human kinematics
as described in Sec. III. Human-inspired control has been
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Fig. 7: Simulation ofH A,α,ǫ
3D from initial condition(q∗3D, q̇

∗
3D): (l) phase portraits, (c) output torques, (r) output functions.

the topic of recent research in which results have been
validated experimentally. The novelty in this paper lies inthe
application of geometric reduction and sagittal PD control.

Finally, feedback linearization is generally not robust to
model uncertainty. However, this control design has recently
been validated on NAO despite the lack of feet in the hybrid
model [24] and experiments on AMBER seem to confirm that
human-inspired control provides sufficient robustness [35].
This allays these concerns to the extent that the walking is not
unmanageably robust. Thus, it has become apparent that the
union of functional Routhian reduction and human-inspired
control results in promising, three-dimensional humanlike
walking as well as a reduction in the complexity of the
control design procedure as a ramification of the decoupling
of the sagittal and coronal dynamics.
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