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Abstract— Three-dimensional humanlike bipedal walking is
obtained through a hybrid control strategy which combines
geometric reduction with human-inspired control. Functional
Routhian reduction decouples the sagittal and coronal dynaics
of a biped, thereby reducing the control design problem to
sagittal motion. Experimental human kinematics data have
shown that certain outputs on a human’s kinematics follow a
canonical human function: Human-inspired controllers are de-
signed based on this function. The parameters of these furions
are found through optimization by trying to make them as cloe
to the human data as possible while simultaneously forming a
partial hybrid zero dynamics under feedback linearization. PD
control is used in these controllers to track the human fundbns
resulting in stable walking in both two- and three-dimensiaal
simulations.

. INTRODUCTION

Bipedal robotic walking has been studied from a variety
of perspectives. Existing approaches involve passiviyehl
control [1], [2], hybrid zero dynamics [3], [4], central patn

generators [5], [6], and compliance-based control [7]. ¥an Starting with kinematics data from a human walking

of these schemes have proven effective and some have drawn . . . :
o ST . experiment, controllers are designed using a single cléss o
inspiration from human walking in a holistic sense, yet the . : : X
S ) : mathematical functions termechnonical human functions
inituition behind these methods does not come directly from . .

which attempt to represent the fundamental behaviors of

analysis of human walking data. Moreover, bipedal walkin . T
T : . . S uman walking. A state-based parameterization is intreduc
is difficult in two dimensions and extending it to three . .
. : : to remove time dependence and PD control is used to
dimensions only further complicates the problem. : :
) . ; . track these functions. This leads to an autonomous feedback
Biomechanics researchers are often interested in forces

and dynamics [8]. Such analyses are useful in the desi Cr?gtg?rln?r\:\;ig:smh results in stable, humanlike walking in

of prostheses yet fail to give a complete picture of human L . . . .
b Y g P P After achieving two-dimensional walkingfunctional

walking. While many studies have been conducted in thl%outhian reductionis used to migrate this controller to a
context of biomechanics [9], few have been done with respe 9

to control engineering [10], [11]. This paper attempts t(ﬁwee-dlmensmnal biped. To do this, two control laws are

bridge the gap by proving insight from the viewpoints Ofdg5|gngd: Th? first shape_s _the Lagrangian of the three-
. . dimensional biped so that it is amenable to reduction. The
both control and biomechanics.

. . : . d uses feedback linearization to drive the systeneto th
When studying the biomechanics of walking, researchers ¢! o . ’
ying 9 rface where reduction is valid. The end result will belstab

use force plates and force loading models to measure and gyra . .
timate the distribution of musculoskeletal forces and grbu walking for the three-dimensional model based on AMBER

reaction forces [12]. These are used in conjunction Witﬁshown in Fig. 1). Moreover, simulation results show that th

either inverse-dynamic models [13], [14] or forward-dyriam wo- and three-dimensional gaits are virtually identical.

models [15], [16]. This paper instead analyzes functions The rest of this paper 1 struct_ured as followed: Sec. Il
{roduces the robotic model of interest. Sec. Ill presents

representing outputs on the kinematics of a human. Recé p K of h inepired ol d ibing h
methods [17], [18] draw from human data to achieve walkin € Tramework of human-inspired controf, describing now
0 obtain feedback control laws—for a two-dimensional,

in robotic models. This paper extends [18] by introducirg th

notion of a hybrid zero dynamics for the sagittal control an(:i"e""%[]Ittal dplane r.ObOt'CSmOd:/I_dWh'C.E res# It |ntstable ;ﬁa‘tkt:;
then extending the sagittal gait to three dimensions. N tWo dimensions. Sec. €sCribes Now 1o use the two-

dimensional walking control laws developed in Sec. Il to
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Fig. 1: The model of interest is based on the robot AMBER.



J€ sp such that sagittal control can be implemented inde-
pendent of the coronal dynamics. To design sagittal control
laws for use with reduction, it is necessary to consider a
two-dimensional counterpart of the three-dimensional ehod
This reduced-order model is obtained by applyinggaittal
restriction to the full-order model to obtain

HC2p = (Dap,Usp, Sop, A2, fop, 92D)- (2

This is as simple as setting = 0 and projecting away this
coordinate from the various elements of the hybrid model,
€ sp. Applying the sagittal restriction gives Lagrangian

(a) Physical configuration. (b) Configuration variables.

Lo (6,6) = Lo 0,0)| o0 = 367 Man(6) 0 — Vi(6),
Fig. 2: Bipedal robot of interest.
which is used to determine the control systéffap, gap).
The admissible control i#,p = R°. The unilateral con-
II. ROBOTIC MODEL strainthap (0) = hsp(¢=0, 6) leads to the domai®,p and

The model of interest has point feet, knees, and a h%uardSQD' The reset mapzp is obtained with Jacobian

(comparable models have been considered [19], [20]) and EZD(
shown in Fig. 2(a)—this model represents an actual robot,

AMBER, and, due to space constraints, the parameter values I1l. HUMAN-INSPIRED CONTROL
are omitted but are available online [21]. The robot will be
modeled by the hybrid control system (see [22])

Dy Dy, 0) = RowBasis (Esp (pg, py =0, 02, ©=0,0)) .

The effective decoupling between sagittal and coronal dy-
namics afforded by functional Routhian Reduction is indéégr
HEsp = (Dsp,Usp, S3p, Asp, f3D, 93D)- (1) tothe control scheme posed in this work: it allows for saditt
. ) control to be considerdddependent of motion in the coronal
The body coordinates are chosen to be the relative anglggne This section, therefore, provides the framework to de-
between successive links. Combining the body coordmatg&ln and implement human-inspired controllers which tesul
with qdditional angular coordinates at the foot.results it walking for the sagittaly-restricted model given in (2).
coordinatesg = (¢,0")" € Qsp, as shown in Fig. 2(b); This control design procedure begins with examination of

ground which simplifies the continuous dynamics. is developed.

Hybrid Model Construction. The hybrid modelZ”%’sp is  \walking Experiment and Human Outputs. An experiment
easily constructed using the definitions of [19]. The urilat ;55 conducted with human test subjects in which positional
constraintisp(q), representing the height of the swing footmeasurements of various points on the subjects were taken
leads to domairD;p and guardSsp. A Lagrangianlsp @ with high-speed motion capture. An in-depth description
T'Qsp — R can be derived from the physical configurationys this experiment is given in [26]; the data are available
of the model and this can be \{vritten as the .control Syste@hline [27]. The goal of human-inspired control is to use
(f3p,93p). From this Lagrangian, a dynamic model canpese kinematics data to motivate the construction of §peci
be derived using standard techniques [23]. The admissigtputs of the robot to consider for the purposes of coninol.
control is chosen to biéfsp = R® and the torque distribution essence, the human control system is viewed as a “black box”
map, Bsp : Qsp — R%C, is simply the identity matrix: ang outputs are sought on the human data, i.e., functions of
Bsn(g) = Isxe. Note that actuation is assumed at the stanGge kinematics (or angles), which are capable of describing
foot. While this is not a realistic assumption for a pointyyman walking. Anaylsis of candidate functions yielded
foot biped, it has been found that modeling footed robotge mutually-exclusive outputs which together appear to
with point foot models and the assumption of actuatiofjthfylly represent human walking—this claim will be sub-
shows promising results when simulations are compared &antiated through controller design. These outputs are:

experlment.al results [2.4]' . o 0O1: forward hip velocityi.e., the velocity of the:-position
In the bipedal walking literature, it is common to use of the hip
stance/swing leg notation [25]; it can be more intuitive tOOZ' swing leg slopei.e., the tangent of the angle between

think of control design for the legs in this context—the ~ : o . .
. . i . . the z-axis and the projection of the line connecting the
differences in behavior provide a natural way of transfogni . X
swing ankle and hip,

the design problem. Thus, the legs are “swapped” at impa%g stance knee relative angle
with a state relabeling procedur®,: Qsp — Qsp. 04; swing knee relative angle

Sagittal Restriction. The goal of this paper is to obtain O5: vertical torso anglethe angle of the torso measured
three-dimensional walking by decoupling the dynamics of with respect to the vertical axis of the world frame.



-

03

o
©

0.8

Hip Position
o o
N

o
N

0.6

o

n . . . . . . . . ,
) 01 02 03 04 05 06 07 08 09 1
Normalized Time

0.4

Fig. 4: Hip positions £ coordinate) for nine different human
test subjects.
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Normal Gait ==" Hu. Data Mean =====Hu. Func. spring-mass-damper system for which, anda; 5 would be
15 04 0.2 05 determined from initial conditions;; 4+ = (w,, with damping
ratio ¢ and undamped natural frequenay,, a;2 = wq
0.15 with damped natural frequeney,;, anda; 5 is the gravity
1 bias. It was shown in [29] that these functions can be fit to
- 0.1 the human outputs with correlation coefficients near unity.
05 - Bt PR It thus appears that humans act like linear spring-mass-
0.05 damper systems with respect to the outputs chosen above.
N . . .
RS PD control will be used to track these functions, but first a
00 05 1 00 05 1 parameterization will be introduced to replace time.

Fig. 3: Optimized human functions compared with normal ime-Invariant Parameterization. The control strategy will
human walking. Hip position is not shown as this varie@témpt to track the human functions found through opti-
depending on body size. mization. In order to achievautonomousor time-invariant

control, it is necessary to remove the time dependence
from the human functions; this is accomplished by devising

It is worth mentioning that the first output is a velocity® state-based parameterization for time—a method that is

rather than a position; this will be instrumental in achigyi common in the literature [3], [4]. . .
feedback control through parameterization of time. Denote the parameterization by Qop — Ry whereRg

In the biomechanics literature, it is typically assumed€Presents time. For this parameterization to be accutase,
that walking is normally-distributed over a population of€C€ssary to find a function on the kinematics of the system

humans. Normal walking is typically defined as anything thaf’hich has an approximately linear relationship with time.
falls within one standard deviation of the mean [28]. Usind-X@mination of the forward position of the higj;;,, in Fig. 4
this definition of normal walking as a reference point, gaits€Veals just such a relationship:

designed can be examined to see if they are truly humanlike. yf(t, A)=ar5 =: Vhips (4)
Such a comparison is shown in Fig. 3 for the gait designed .

in this paper. The shaded areas represent normal hum#Rerear =ai2=ais=a14=0 andvi,, = Fpj,, ()0
walking and were calculated by averaging the human dafg§Presents the hip velocity. Without loss of generalitgmse
from the experiment described in this section (notice th4tme starts a0 at the beginning of a step and et = 6(t =
the outputs in Fig. 3 are non-dimensional so averaging cahl be the configuration of the robot at tinie= 0. Then, the
be performed without normalization. One can see that tHéiP moves forward at an approximately constant rate so the
designed functions lie mostly within the shaded areas, thiglationship between velocity and position approximasafy

confirming that the designed gait is relatively humanlike. iSfi€Spy;, (t) &~ vj;, t+pj,, (67). This relationship motivates
) the following parameterization:
Canonical Human Outputs. In order to use the human out-

puts or functions just ir_ltroduced, it _is necessary to reges 7(0) = Phip(9) ;piip(e_). (5)
these outputs as continuous functions of time (rather than Vhip

discrete, sampled data). This will allow the outputs of the ) )

robot, 01-O5, to be driven to these time-dependent humaadittal Controller Construction. The construction of the

functions. It was discovered in [19], [29] that the consater Sadittal controller will consist of two steps: 1) find pardare

function—the time solution to a linear spring-mass-damp&ynamiCSiS achieved and 2) use these parameters together

controller that will result in walking in the two-dimensiah

yd(t, A)=e" "4 (a; 1 cosa; ot + a; 3sina; ot) +ais, (3)  robotic model.

wherei € {1,2,3,4,5} is an index corresponding to outputsHybrid Zero Dynamics. The goal of the controller is to
01-05. The parameters are combined into a matrix=  drive the outputs of the robot to the canonical human func-
{a; ;} € R5*5. Observe that (3) is the solution of a lineartions, thereby achieving humanlike trajectories. Theeefo



define the actual and desired outputs: PD Controller Design. The main result of [29] is that
the parametersd*, automatically result in bipedal robotic

T d
glhip ((?) Ubg:gg%’ﬁ; walking when feedback linearization is used. Yet the goal of
_ o e ' this paper is different than [29]: in this paper, PD contsl i
Ya (9) T ﬁstk (9) y Yd (7(9)) T Ys (T(e)v A) ) : . . .
9w (0) 1(7(6), A) used as the reduction scheme posed in this paper requires
’l;,:jf(e) Zé(T(Q):A) that sagittal control be independent of lean)+(feedback

linearization in general utilizes the entire state of the-sy
wherepy,,, Msw, sk, Insk @aNdJio, are the output©l-  tem. Motivated by these considerations, define the follgwin
05 computed for the robot from its kinematics apfl are  control law

the canonical human walking functions (3) where time is 0 Yd1 — Ya.1
parameterized by (5). For these outputs, tleeo dynamics ) Yd.2 — Ya,2 Yd,2 — Ya,2
surfaceZ , is parameterized by parameter matrx where Kip(0,0)=ky | Y43 — Ya,3 |+ka | Y43 = Ya3 |. (8)
the actual and desired outputs agree for all time,§£4) = Ya,4 _ Ya,4 Yda = Ya,d

Yd,5 — Ya,5 Yd,5 — Ya,5

ya(0) for all time. Yet due to the nature of impacts, it is _ _ _
unlikely that the hip velocity will remain constant throughIn th_IS paper,k, = 30 and k; = 10. '_l'hIS COﬂtro_l law is
impact; thus thepartial zero dynamics surfacRZ 4 is also  applied to the systemy#’%¢,p to obtain % which has
an important construct—this is the surface wheyg6)); =  vector field

(ya(9)):, ¢ € {2,3,4,5} for all time. (See [29] for a more A (g @) = 0.0 0) KA (0.6 9
formal definition of these surfaces and why they are each 120(0,0) = fo0(0,0) + 920(0) Kon (0, 6). ©)

individually important.) Eimulation. Simluation of %% results in stable walking

s expected. Fig. 5 shows the phase portrait which exhibits
a closed trajectory—this limit cycle represents steadyest
"i‘zvalking—as well as the torques and outputs. Of additional
interest are the torques required to achieve the simulated
fesults: these torques are reasonable for AMBER. The prox-
ﬁﬁ'ity of the system to the zero dynamics surfdég can

also be seen. The humanlike nature of the gait can be seen
in Fig. 6(a); specifically, the knee behavior is of paramount
importance to human walking. Stability is confirmed by

2 examining the eigenvalues of the Poincaré map linearized
Costup(4) = Z Z (" [k] = (t"[K], 4))",  (6)  apout the fixed point

k=1 1i=1
which is simply the sum of residuals squared. Minimizing OED (-0.399, 0.330, 0.139, —0.316,  0.161),
this cost results in the least squares fit of the canonicadmum 2D — (-1.613, 0.387, 1463, 2.088, —4.615).
walking functions to the mean human output data. In [29]The maximum eigenvalue isiax;c(1,a)) |A:| = .409, which
a method was developed for expressing the zero dynamissbelow unity and therefore indicates a stable limit cycle.

surface,Z 4, and partial zero dynamics surfadeZ 4, only
in terms of the parameter matrid, thus motivating the IV. FUNCTIONAL ROUTHIAN REDUCTION

The main result of [29] is that using the actual and desire
outputs, y, and y,, respectively, together with feedback
linearization, it is possible to automatically determine
parameter matrix4 that results in stable walking. This is
stated in the form of an optimization problem which uses th
experimental human data as the cost function. From the me
human walking data, denote by [k] andy [k] the sampled
times and values, respectively, of the output functi@is-
0O5. Then define the cost function

optimization problem Clas_sical Routhian reduction [30] is a type of geometric
. ) reduction which leverages conserved momentum in the form
AT = irgﬂgi? Costup (A) (7)  of a constant to eliminate cyclic variables in a dynamical

system.Functional Routhian reductioffirst introduced in
st Aan(Sop NZ4) CPZy (HZD) [31]) is a specific type of geometric reduction used in the
which depends only on the parametefs Solving this presence of external forces (see [32]) in which the momen-
optimization problem (numerically in MATLAB through tum map is set to a function rather than a constant. This
f m ncon) results in the matrix of parameters: reduction will decouple the sagittal and coronal dynamics;
then, stable walking is obtained in three dimensions by

0 0 0 0 .6000 . ; : T
0241 95581 0806 —3.8350 92429 app]ymg control laws which give stable walk_mg in the
. sagittally-restricted counterpart whose Lagrangian sake
A* = —.0767 13.341 .1905 3.8029  .2576 . .
4105 —11463 - 1485 —.92499 6759 structure of a functional Routhian [32, Eq. (13)].
0 19651 0 17750 0568 Two controllers will be needed to obtain walking in the

three-dimensional model in addition to the human-inspired
wherea; 5 = v}, is chosen to b®.6 m/s, thus controlling controller. The first controller shapes the Lagrangian [32,
the speed of the robot. The proximity of normal humaThm. 1] to into an almost-cyclic Lagrangian [32, Eq. (10)]
walking to the human functions using parameter mattix which is amenable to reduction. In order to enjoy the
is shown in Fig. 3. To reiterate an earlier point, these fies adecoupling effects of reduction, a second controller islede
quite close to normal human walking. to stabilize to the surface where reduction is valid.
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Fig. 5: Simulation of %7 from initial condition(&;D,égD): () phase portraits, (c) output torques, (r) output fuoics.

HABHARRAATH AR which has relative degree 1. Driving this output to zero will
LS NI DRSS N ! cause the system to operate on an embedded submanifold
ke I A K )RS A known as the zero dynamics manifold:
Yy 1) 417 iy,
v v v " Z:={( 4", 4" ) €TQsp :y.(q,4) = 0}.
(a) 2D simulation. The control law that is sought is well-defined under the
7 , \ \ \ framework of feedback linearization [34]. Applying thisrco
\\\\ \\ \ \\\\E\ \\ N t_roI law yields the vector fiequg‘]‘j"f’é(q, qQ). Us?ng this vector
\ MR Y \I)_flr it field, one can construct a hybrid system implementing the
Nl XN\ i, described controllers#y*“ = (Dsp, Ssp, Asp, fi™°)-
i viu, /N : l.:' ‘
¢ o v V. SIMULATION RESULTS

Reduction Surface Stabilization. Simluation of 5>
results in stable walking which is strikingly similar to
Fig. 6: Simulated walking gaits. Hip in 6(b) shown in black,simulation of.7#4 as can be seen from Fig. 7 which shows
stance leg is dashed. the phase portrait, the torques, and the outputs. Gait tiles
are shown in Fig. 6(b). A linearization of the Poincaré map

about the fixed point

(b) 3D simulation.

Sagittal Control. The first controller is strictly responsible
for motion in the sagittal plane. This controller will be
used with the reduction controllers to generate walkingg® = (—.00376, —.404,.329, .146, —.308, .145),
for the three-dimensional model. In Sec. lll, a controller ¢* = (—.126, —1.628,.399,1.475, 2.112 —4.351).
was described which resulted in walking for the sagittall)g,iekjS maximum eigenvalumax; || |Ai] = 0.286.
restricted modeb# % >p given in (2). This exact control law, As before, the largest eigea—
K4, given by (8), will be used for the three—dimensionak,ame has magnitude below unity £

model s %¢3p given in (1): K4 (q,4)) = ¢ (’CQAD(eae))- indicating stability. However, the
Here,. : Up — Usp is an embedding given byy — (0,up). magnitudes of eigenvalues only
indicate that the manifold is lo-
cally attractive; thus the system % _yq0
may start close to a stable limit A7 4 0 4 8 12
cycle, but not close enough to be Ang: Pos. (rads)

within the region of attraction. Fig. 8: Phase portraits.

100
50
0

Lagrangian Shaping Controller. A controller is needed to 0

shape the Lagrangiafsp into an almost-cyclic Lagrangian,
sayL,, where reduction is valid. In this papeiy) = —agp
is chosen with control gaine = 1. The appropriate control

law is given by [33, EQ' (4)] with cor_1tro| gain = 20, and, The most important observation is that the two-dimensional
when applied, results in the vector field

and three-dimensional walking gaits are virtually idealtic
é%a(q,Cj) = f3p(¢,4) + g3p(q) /cg‘;(q,q). Moreover, since the two-dimensional control law was used
to construct the three-dimensional system, it appeardhieat

F60r tt?]e pro?er 'mt'?jl concﬂuog:f%s specn‘t|)ed If? [33’ IEangittaI and coronal dynamics are indeed decoupled which
(6)], the continuous dynamics sp Can be eliecively y, sirates the value of function Routhian reduction.

decoupled into the sagittal and coronal dynamics with the
control Iawlcg“]'jo‘(q,q) (cf. [33]). This control law contains VI. CONCLUDING REMARKS

the sagittal control laviC,p (6, 0). Furthermore, the dynamics  This paper presented a framework for achieving three-
of ¢ evolve according to [33, Eq. (7)]. To guarantee thgjimensional bipedal walking by using sagittal control desi
that initial condition assumption [33, Eq. (6)] is satisfied gy 5 two-dimensional model. This framework, when applied
an additional control law is needed. Feedback linearimatiag rohotic models, allows one to obtain humanlike walking
is used to stabilize to the surface containing valid initialyaits with provable stability properties. Moreover, thgséts

Ang. Vel. (mrads/sec

conditions. This motivates the output function have the added benefit of being humanlike as measured by
N 1 ; the closeness of the robot kinematics to human kinematics
Y=(0:9) = @+ m (0) (aSOJrM“"’O(e) 9) ’ as described in Sec. Ill. Human-inspired control has been
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validated experimentally. The novelty in this paper liesha

application of geometric reduction and sagittal PD contro

Finally, feedback linearization is generally not robust to
model uncertainty. However, this control design has rdgent

been validated on NAO despite the lack of feet in the hybri&n
model [24] and experiments on AMBER seem to confirm that
human-inspired control provides sufficient robustnesg.[35[18]

This allays these concerns to the extent that the walkingtis n

unmanageably robust. Thus, it has become apparent that the
union of functional Routhian reduction and human-inspired

control results in promising, three-dimensional humamnlik

walking as well as a reduction in the complexity of the20]
control design procedure as a ramification of the decoupling
of the sagittal and coronal dynamics.
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