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Human-Inspired Control of Bipedal Walking Robots
Aaron D. Ames

Abstract—This paper presents a human-inspired control approach to
bipedal robotic walking: utilizing human data and output functions that
appear to be intrinsic to human walking in order to formally design
controllers that provably result in stable robotic walking. Beginning
with human walking data, outputs—or functions of the kinematics—are
determined that result in a low-dimensional representation of human
locomotion. These same outputs can be considered on a robot, and
human-inspired control is used to drive the outputs of the robot to the
outputs of the human. The main results of this paper are that, in the
case of both under and full actuation, the parameters of this controller
can be determined through a human-inspired optimization problem that
provides the best fit of the human data while simultaneously provably
guaranteeing stable robotic walking for which the initial condition can
be computed in closed form. These formal results are demonstrated
in simulation by considering two bipedal robots—an underactuated 2D
bipedal robot, AMBER, and fully actuated 3D bipedal robot, NAO—for
which stable robotic walking is automatically obtained using only human
data. Moreover, in both cases, these simulated walking gaits are realized
experimentally to obtain human-inspired bipedal walking on the actual
robots.

I. INTRODUCTION

Despite the simplicity with which humans appear to walk, human
locomotion is inherently complex utilizing hundreds of degrees of
freedom coupled with highly nonlinear dynamics and forcing due
to the 57 muscles employed during human walking [41]. There is
evidence to suggest that humans control walking behaviors through a
hierarchical subdivision between cortical control and central pattern
generators in the spinal column [11], [16], [19], [28], indicating
that when humans perform motion primitives, i.e., steady-state well-
practiced walking behaviors—potentially simple and characterizable
control strategies are implemented. Inspired by this hierarchical
control present in humans, the motivation for the ideas presented
in this paper is that the essential information needed to understand
walking is encoded by a simple class of functions canonical to human
walking. In other words, taking the control theorist approach to
understanding a complex and unknown system, we view the human
walking system as a “black box,” where the “inputs” to the system
are specific walking behaviors, and we seek “outputs” of this system
that characterize these behaviors. In this fashion, a low dimensional
characterization of the system is achieved. These outputs can then
be utilized in the formal design of robotic controllers—the outputs
of the robot can be driven to the outputs of the human, resulting in
“human-like” robotic walking.

Given human walking as the motivation for achieving robotic
walking, this paper begins by looking at human walking data achieved
through motion capture of subjects walking on flat ground at a
“natural” pace. By studying this data, we discover a collection of
human outputs, e.g., the forward position of the hip, that appear
to characterize human walking—they are mutually exclusive, thus
providing a low dimensional representation of the system’s behavior.
Moreover, we find that these human outputs, as computed from the
data, appear to be described by two very simple functions: (i) a linear
function of time (describing the forward position of the hip) and (ii)
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Fig. 1: AMBER, an underactuated 2D bipedal robot, and NAO, a
fully actuated 3D bipedal robot.

the time solution to a linear spring-mass-damper system (describing
the remaining the outputs). We term (ii) canonical walking functions,
due to their simple yet general form, and verify that in fact these
functions describe the human data by showing that they can be fit
to the output data with a remarkably high correlation coefficient of
essentially 1. This result both motivates the introduction of the general
notion of a human output combination, and provides insight into
the basic mechanisms underlying human walking since we conclude
that, at the most basic level, the primary outputs associated with
locomotion are characterized by a system of linear springs and
dampers parameterized in time by the forward walking velocity.

Utilizing human outputs and their time based representation given
by the canonical walking functions, we construct human-inspired
controllers that drive the outputs of the robot to the outputs of
the human as represented by the canonical walking functions. As
a specific example, this paper considers a 5 degree of freedom 2D
bipedal robot with knees and a torso, for which we define human-
inspired outputs: the difference between the outputs of the robot
(computed via kinematics) and the human outputs (encoded through
canonical walking functions parameterized by the forward position
of the hip). In the context of both under and full actuation, human-
inspired outputs are used to construct human-inspired controllers
through the use of input-output linearization that drive the human-
inspired outputs to zero exponentially fast. Thus, on the correspond-
ing zero dynamics surface, the outputs of the robot and human are
in agreement. Since a bipedal robot is a hybrid system (due to the
impacts that occur at foot strike), the key challenge is to determine
parameters of the human-inspired controller that result in a hybrid
zero dynamics surface yielding stable robotic walking for which the
canonical walking functions best fit the human output data.

The main contribution of this paper is a formal method for
determining the parameters of the human-inspired controller that
provably result in stable robotic walking that is as “human-like” as
possible. Beginning with the case of full actuation, we introduce
a human-inspired optimization problem where the cost is the least
squares fit of the outputs of the robot to the human output data
subject to constraints that ensure partial hybrid zero dynamics, i.e.,
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constraints that ensure that the zero dynamics surface associated
with the relative degree 2 output functions are invariant through
impact. This invariance allows us to characterize the behavior of the
hybrid system modeling a bipedal robot (which is 10-dimensional for
the examples considered) through a 2-dimensional hybrid system.
Utilizing this reduced dimensional representation, we are able to
prove the main result of this paper: the parameters that solve the
partial human-inspired optimization problem imply the existence of
an exponentially stable hybrid periodic orbit, i.e., the existence of
stable walking gait. Moreover, the fixed point of the Poincaré map
associated with this periodic orbit can be explicitly computed from
these parameters. In addition, these results are extended to the case
of underactuation, where additional constraints to the human-inspired
optimization are added that ensure stable robotic walking, again
allowing for the fixed point to be computed in closed form. Therefore,
in the case of both under and full actuation, using only the human
data we are able to automatically generate parameters for the human-
inspired controller that imply the existence of a stable walking gait,
and we can explicitly compute the initial condition to this walking gait
from these parameters in the case of both full and under actuation.

To demonstrate the validity of the formal methods employed in
this paper, we apply them to two bipedal robots (shown in Fig.
1): AMBER, an underactuated 2D bipedal robot, and NAO, a fully
actuated 3D bipedal robot for which we consider a simplified 2D
sagittal representation. In both cases, we apply the constructions
of this paper to automatically obtain robotic walking in simulation
utilizing only human data; the end result is human-like robotic
walking. This is quantified by comparing the outputs of AMBER to
the human output data, and showing that it lies within one standard
deviation of the norm, thus implying “normal” human walking [37].
To further validate the theory developed in this paper, we discuss
the experimental implementation of the results presented on both
AMBER and NAO. In both cases, we experimentally obtain human-
inspired robotic walking on the physical robots (videos can be found
at [2], [3]). This paper, therefore, formally and provably obtains
robotic walking from human data, and realizes these formal results
experimentally on two real-world bipedal robots.

This paper has drawn inspiration from work on robotic walking that
attempts to discover the fundamental principles underlying bipedal
walking, including but not limited to: passive walking and controlled
symmetries [32], [15], [47], geometric reduction [9], [21], [44] and
hybrid nonlinear feedback control [20], [54], [55]. It is also important
to note that this is not the first paper that attempts to bridge the gap
between human and robotic walking [30], [43], [48], [49], although
there have been relatively few studies in this direction when compared
to the vast literature on robotic walking and biomechanics (see [12],
[13], [14], [54] and [23], [52], [56], [35], to only name a few). Of
special note is the preexisting work that studies human data in the
context of both robotic walking and optimization [48], [49], [57];
a common thread in that work is that the human data considered
consists of simply the joint angles over time, and this data is fit with
high order polynomials. The results in this paper, therefore, diverge
from this preexiting work in two important and fundamental ways:
(a) human output data is considered, rather than just angles, yielding
a low-dimensional representation of human walking, (b) this output
data is described with canonical walking functions, giving insight into
the behavior of these outputs over time that is of the simplest, yet
most general, form possible and (c) a framework is presented that is
naturally applicable to both under and fully actuated robotic systems.

It is important to note that the results presented in this paper
build upon [6], [7], [8]. These papers considered human-inspired
control of 4 and 5 link (under and fully) actuated robots in the
context of specific output combinations. This paper generalizes and

extends these constructions and results in the following significant
ways: (i) considers the hybrid system model of a general robot for
which the previous models and the specific robots considered in
this paper are a special case, (ii) introduces the general notion of
a human output combination allowing for the freedom to choose
different human outputs as long as they satisfy certain conditions, (iii)
extends the formal results from [6], [7], [8] to this general setting,
and (iv) introduces novel results related to the characterization of
solutions and limit cycles in the context of full actuation—results
that are essential to experimental realization. The main motivation
for these generalizations is the recent results that build upon the
human-inspired control framework. These include: walking up stairs,
down stairs and running in simulation through the human-inspired
control framework [40], [60], walking up slopes and on uneven terrain
experimentally on AMBER 1 [36], walking on flat ground (both in
simulation and experimentally) for a fully actuated 2D robot with
feet, AMBER 2 [4], [31], 3D speed regulated robotic walking with
NAO both in simulation and experimentally [39], and multi-domain
locomotion on ATRIAS [24] and AMBER 2 [59], including phases
of under, full and over actuation. At the core of all of these results
are the formal results presented in this paper, thus indicating the
extensibility of the results presented.

II. BIPEDAL ROBOT MODELS

Bipedal walking robots naturally display continuous and discrete
behavior throughout the course of a step—the continuous behavior
occurs when the leg swings forward and the discrete behavior occurs
when the foot strikes the ground. It is, therefore, natural to model
robots of this form by hybrid systems. This section introduces the
basic formalisms of hybrid systems along with the specific hybrid
models modeling bipedal robots. A special case of these systems
yields the models for the two robots considered in this paper:
AMBER and NAO (see Fig. 1 for pictures of both of these robots).
Specifically, we consider two hybrid models, one for full actuation
and one for underactuation.
Hybrid Systems. We begin by introducing hybrid (control) systems
(also referred to as systems with impulsive effects or systems with
impulse effects [20], [21]). We consider hybrid systems with one
domain because the specific biped models considered in this paper do
not have feet; the same model applies to robots with flat foot walking,
while for more complex foot behavior more elaborate hybrid systems
must be considered [21], [50], [44].

A (simple) hybrid control system is a tuple,

H C = (D, U, S,∆, f, g),

where D is the domain with D ⊆ Rn a smooth submanifold of the
state space Rn, U ⊆ Rm is the set of admissible controls, S ⊂ D is a
proper subset of D called the guard or switching surface, ∆ : S → D
is a smooth map called the reset map, and (f, g) is a control system
on D, i.e., in coordinates: ẋ = f(x) + g(x)u. A hybrid system is
a hybrid control system with U = ∅, e.g., any applicable feedback
controllers have been applied, making the system closed-loop. In this
case,

H = (D, S,∆, f),

where f is a dynamical system on D ⊆ Rn, i.e., ẋ = f(x).
Periodic Orbits. Stable bipedal robotic walking corresponds to stable
periodic orbits in hybrid systems. For simplicity, we focus our
attention on introducing periodic orbits of hybrid systems with fixed
points on the guard (for more general definitions, see [21], [53]).
Let ϕ(t, x0) be the solution to ẋ = f(x) with initial condition
x0 ∈ D. For x∗ ∈ S, we say that ϕ is periodic with period T > 0 if
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Fig. 2: The modeled robot’s configuration, mass & length distribution,
and virtual constraints (outputs).

ϕ(T,∆(x∗)) = x∗. A set O is a periodic orbit with fixed point x∗

if O = {ϕ(t, x∗) : 0 ≤ t ≤ T} for a periodic solution ϕ. Associated
with a periodic orbit is a Poincaré map [53]. In particular, taking S
to be the Poincaré section, one obtains the Poincaré map P : S → S
which is a partial function:

P (x) = ϕ(TI(x),∆(x)),

where TI : S → R>0 is the time-to-impact function [54]:

TI(x) = min{t ≥ 0 : ϕ(t,∆(x)) ∈ S}, (1)

for x ∈ S. As with smooth dynamical systems, the stability of the
Poincaré map determines the stability of the periodic orbit O . In
particular, the Poincaré map is (locally) exponentially stable (as a
discrete time system xk+1 = P (xk)) at the fixed point x∗ if and only
if the periodic orbit O is (locally) exponentially stable [33]. Although
it is typically not possible to analytically compute the Poincaré map, it
is possible to numerically compute its Jacobian. If the eigenvalues of
the Jacobian have magnitude less than 1, the stability of the periodic
orbit O has been numerically verified.
Robotic Hybrid Models. Utilizing the formulation of hybrid sys-
tems, the remainder of this section is devoted to constructing hybrid
system models for bipedal robots. Specifically, we consider two
hybrid control systems corresponding to full and under actuation:

H CR,FA = (DR, UR,FA, SR,∆R, fR, gR,FA). (2)

H CR,UA = (DR, UR,UA, SR,∆R, fR, gR,UA). (3)

The constructions of these systems will be presented in the general
case of a robot with a single discrete phase of walking and, in the
case of underactuation, we will assume 1 degree of underactuation.
As a result they are applicable to both 2D and 3D robots in the case
of full actuation. In the case of underactuation, due to the assumption
on 1 degree of underactuation, they are only applicable to 2D
underactuated robots or 3D robots with feet where the underactuation
is, for example, a result of ankles with only one degree of actuation.
In the case of 3D robots with point feet, more elaborate constructions
are needed to understand the zero dynamics [22] due to the fact that
they have higher dimensionality.

Note that the specific robot models for AMBER and NAO con-
sidered in this paper are just a special case of (2) and (3), with the
type of actuation and parameters, e.g., masses, lengths and inertias,
determined by the specific robot. For example, the mass and inertia
properties for AMBER were obtained via a SolidWorks model and
these constants were obtained for NAO through the published values
at [1]. We suppress the dependence of the models on these parameters
for notational simplicity.

Continuous Dynamics: Let QR be the configuration space of
a robot with n degrees of freedom, i.e., n = dim(QR), with
coordinates q ∈ QR. For the sake of definiteness, it may be necessary
to choose QR to be a subset of the actual configuration space of

the robot so that global coordinates can be defined1, i.e., such that
QR is embeddable in Rn, or more simply QR ⊂ Rn. Calculating
the mass and inertia properties of each link of the robot using
the specifications of the robot allows for the construction of the
Lagrangian LR : TQR → R of the form:

LR(θ, θ̇) =
1

2
θ̇TD(θ)θ̇ − V (θ). (4)

Explicitly, this is done symbolically through the method of twists and
exponential maps (see [34]). The Euler-Lagrange equations yield the
equations of motion of the form:

D(θ)q̈ + C(θ, θ̇) = Bi(θ)u. (5)

where i ∈ {FA,UA}, i.e., Bi depends on the degree of actuation.
In the case of full actuation, BFA(θ) ∈ Rn×n. In the case of
underactuation, we will asumme one degree of underactuation, and
therefore BUA(θ) ∈ Rn×n−1.

Converting the equations of motion (5) to a first order ODE yields
the affine control systems (fR, gR,i):

fR(θ, θ̇)=

[
θ̇

−D−1(θ)C(θ, θ̇)

]
, gR,i(θ)=

[
0

D−1(θ)Bi(θ)

]
.

where i ∈ {FA,UA}, i.e., we obtain control systems for both full
and under actuation. Finally, the set of admissible values for control
depends on the degree of actuation and the admissible control values,
i.e, UR,FA ⊆ Rn and UR,UA ⊆ Rn−1.

In the specific case of the robots AMBER and NAO, we will
consider a 2D 5-link point foot model of both of these robots. In
the case of AMBER this is a valid model of the system, since the
robot is 2D operating on a boom while in the case of NAO this
is a simplified model which only considers the sagittal dynamics
and abstracts away the behavior of the feet which are compensated
experimentally through local controllers. As a result of this choice
of model, there are 5 degrees of freedom and the coordinates of QR
are denoted by θ = (θsf , θsk, θsh, θnsh, θnsk)T where, as illustrated
in Fig. 2, θsf is the angle of the stance foot, θsk is the angle of the
stance knee, θsh is the angle of the torso with the stance thigh, θnsh
is the angle of the non-stance thigh with the torso, and θnsk is the
angle of the non-stance (or swing) knee. Since NAO is fully actuated,
based upon this choice of coordinates BFA(θ) = I5. Since AMBER
is underactuated at the stance ankle, BUA consists of the 2nd through
5th column of BFA. For NAO and AMBER UR,FA = R5 and
UR,UA = R4 respectively (since we will, for the sake of simplicity,
not put any restrictions on the values of the controllers).

Domain and Guard: The domain specifies the allowable configura-
tion of the system as specified by a unilateral constraint function hR;
for the bipeds considered in this paper, this function specifies that the
non-stance foot must be above the ground, i.e., hR is the height of the
non-stance foot and the system is subject to the unilateral constraint
hR > 0. Therefore, the domain DR is given by:

DR =
{

(θ, θ̇) ∈ TQR : hR(θ) ≥ 0
}
.

The guard is just the boundary of the domain with the additional
assumption that the unilateral constraint is decreasing:

SR =
{

(θ, θ̇) ∈ TQR : hR(θ) = 0 and dhR(θ)θ̇ < 0
}
,

where dhR(θ) is the Jacobian of hR at θ.
Discrete Dynamics. The discrete dynamics of the robot determine

how the velocities of the robot change when the foot impacts

1Note that at various points we will assume that matrix functions have full
rank; it may be necessary to carefully choose QR to satisfy these conditions.
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(a) Output Combination 1, Y = {phip, mnsl, θsk, θnsk}

Figure 15: The desired output vs. human output over one step for output combination 1 to 6

Fig. 3: Tiles of the walking gait for a human subject, plotted directly
from the human walking data.

the ground, while simultaneously switching the “stance” and “non-
stance” legs. In particular, the reset map ∆R is given by:

∆R : SR → DR, ∆R(θ, θ̇) =

[
∆θθ

∆θ̇(θ)θ̇

]
, (6)

where ∆θ is the relabeling which switches the stance and non-
stance leg at impact (by appropriately changing the angles). Here, ∆θ̇

determines the change in velocity due to impact; a detailed discussion
on its computation can be found in [26], [21] and [6]. In particular,
it is computed by considering extended coordinates that include the
position of the stance foot and by employing a perfectly plastic impact
law that results in the pre-impact non-stance foot being fixed post-
impact wherein it becomes the stance foot.

III. HUMAN OUTPUT COMBINATIONS

Because the ultimate goal of this work is to develop a control
scheme which yields stable human-like robotic walking, we begin by
looking at human locomotion for motivation. In particular, we con-
sider experimental human walking data, and from this data we seek
a low-dimensional representation of human walking through human
outputs and canonical walking functions. In particular, examination
of human walking data reveals that certain outputs of the human
locomotion system, i.e., functions of the kinematics which we term
human output functions, can be represented as second order system
responses. In other words, we find that certain outputs of the human
are described by the time solution to a linear mass-spring-damper
system:

y(t) = e−ζωnt(c0 cos(ωdt) + c1 sin(ωdt)) + g (7)

where ζ is the damping ratio, ωn is the natural frequency, ωd =
ωn
√

1− ζ2 is the damped natural frequency, c0 and c1 are deter-
mined by the initial conditions of the system, and g is a “acceleration”
related constant. This section will provide evidence of this fact by
considering human walking data and showing that functions of this
form indeed describe human walking with high correlation.
Human Walking Data. An integral part of the human-inspired
nature of the control scheme presented is its motivation from human
locomotion. This takes the form of data associated with human
walking which will be considered throughout this paper. This data
was collected from 9 subjects: 2 females and 7 males with ages
ranging from 17 to 30, heights ranging from 160.0 cm to 188.5 cm,
and weights ranging from 47.7 kg to 90.9 kg. The subjects walked
3 meters along a line drawn on the floor at a “natural” pace, with
each subject performing 11 trials. For each trial, LED’s were fixed
to a test subject in key locations, such as the joints, along the lower
body—as the test subject walked forward, the spatial position of each
LED sensors was measured at 480 Hz. Details on the experiment and
data analysis can be found in [6], [10].

For purposes of this paper, the mean data from all 9 subjects are
considered. A single step, consisting of heel strike to heel strike is
isolated (see Fig. 3). The end result is discrete times, tH [k], and
discrete values for the angles of the human mapped to the 5-link robot
model considered in this paper (see Fig. 2(a)), denoted by θH [k],
where here k ∈ {1, . . . ,K} ⊂ N with K the number of data points.

Human Outputs. We now construct a low-dimensional representa-
tion of human walking from the given experimental data through
the use of human outputs. The goal is to determine a collection of
output functions, one for each degree of freedom of the robot, that
are independent (the decoupling matrix associated with these outputs
must be non-singular) while simultaneously giving intuitive insight
into human walking.

Definition 1: A human output combination is a tuple Y H =
(QR, yH1 , yH2 ) consisting of a configuration space QR, a velocity-
modulating output yH1 : QR → R and position-modulating outputs
yH2 : QR → Rn−1. Let O be an indexing for yH2 whereby
yH2 (θ) =

[
yH2 (θ)i

]
i∈O . A set of human outputs are independent

if2,

rank

([
yH1 (θ)
yH2 (θ)

])
= n (8)

on QR, and linear if

yH1 (θ) = cθ (9)

yH2 (θ) = Hθ (10)

for c ∈ R1×n and H ∈ Rn−1×n.
In the case of the robotic models considered in this paper, we will

utilize the following human outputs:

yH1 (θ) = δphip(θ) (11)

yH2 (θ) =


δmnsl(θ)
θsk
θnsk
θtor(θ)

 (12)

where

δphip(θ) = Lc(−θsf ) + Lt(−θsf − θsk) (13)

δmnsl(θ) = −θsf − θsk − θsh + θnsh +
Lc

Lc + Lt
θnsk (14)

θtor(θ) = θsf + θsk + θsh (15)

with δphip the linearization of the x-position of the hip, δmnsl is the
linearization of the slope of the non-stance leg mnsl, (the tangent
of the angle between the z-axis and the line on the non-stance leg
connecting the ankle and hip), and θtor is the angle of the torso
from zero. It is clear that this choice of human outputs are linear and
independent. We denote the indexing set for the position-modulating
outputs by O = {nsl, sk, nsk, tor}.

The human outputs yH1 (θH [k]) and yH2 (θH [k]) from (11) and (12)
are computed from the experimental human walking data, θH [k], with
the results given in Fig. 4. In addition, the error bands in the figure
show one standard deviation from this mean human data. The simple
form that the outputs take in Fig. 4 motivates the consideration of
a special class of time based functions representing these outputs:
canonical walking functions.

It is important to note that numerous other human outputs are
possible, even in the case of the 5-link robot model considered in
this paper. In particular, the actual position of the hip and non-
stance slope, as nonlinear functions, were considered in [6], [46]
yielding almost identical results. More generally, [46], [45] considers
collections of human outputs and analyzes their ability to correctly
describe human locomotion: examples of other velocity-modulating
outputs include the position of the center of mass, and position-
modulating outputs such as the hip angle and leg lengths.
Canonical Walking Functions. Visually inspecting the human out-
puts, computed from the human data and shown in Fig. 4, they

2Here the rank is defined to be the rank of the Jacobian.
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Fig. 4: The mean human output data computed over one step (heel strike to heel strike) from the data of nine subjects walking, with error
bands showing one standard deviation from the mean, and the canonical walking function fits (red). The data for the δphip was shifted to
be zero at time zero.

all appear to be described by two simple functions. In particular,
the linearized position of the hip appears to be essentially a linear
function of time:

yH1 (θH [k]) ≈ vhiptH [k], (16)

The remaining human outputs, δmnsl, θsk, θnsk, θtor appear to be
described by the solution to a linear mass-spring-damper system. With
this in mind, define the canonical walking function:

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5 (17)

This function can be related to the more standard form of the time
solution of a mass-spring-damper system given in (7) by noting that
α1 = c0, α2 = ωd, α3 = c1, α4 = ζωn and α5 = g. In particular,
with (17), for the 4 remaining human outputs, yH2 , the claim is that
we can describe their behavior as:

yH2 (θH [k]) ≈ [yH(tH [k], αi)]i∈O (18)

where αi = (αi,1, αi,2, αi,3, αi,4, αi,5) in (17), and the parameters
of all of the outputs can be combined to yield a single vector: α =
(vhip, αnsl, αnsk, αsk, αtor) ∈ R21. If it can be verified that these
functions accurately fit the mean human output data, then it can be
concluded that humans appear to act like linear spring-mass-damper
systems for the chosen outputs.
Human-Data-Based Cost Function. We now show that the canon-
ical walking functions accurately describe the human data. This is
achieved by simply fitting (17) to the human walking data to achieve
a least squares fit. While this can be done automatically with a
wide variety of preexisting software, we prefer to achieve these fits
by stating them in the form of an optimization problem. This is
necessitated by two facts: (i) this same cost function will later be used
to achieve robotic walking through a more sophisticated optimization
problem, i.e., an optimization problem with constraints that formally
guarantee stable robotic walking and (ii) it will form the basis for
the notion of admissible output combinations.

Given a set of human outputs Y H = (QR, yH1 , yH2 ) as given
in Definition 1 with associated human data θH [k] ∈ QR defined
at discrete times tH [k] with k ∈ {1, . . . ,K}, define the following
human-data-based cost function:

CostHD(α) =

K∑
k=1

(
(yH1 (θH [k])− vtH [k]− yH1 (θH [0]))2

+
∑
i∈O

(yH2 (θH [k])− yH(tH [k], αi))
2
)

(19)

which is simply the sum of squared residuals, where here v rep-
resents a constant desired velocity (as will be seen in (21)) and
α = (v, (αi)i∈O) ∈ R5n−4. To determine the parameters for

the human walking functions, we need only solve the optimization
problem:

α∗ = argmin
α∈R5n−4

CostHD(α) (20)

which yields the least squares fit of the mean human output data with
the canonical walking functions. Therefore, given a set of human
outputs, these outputs are accurately described by the canonical
walking function if CostHD(α∗) is “small.” This, coupled with the
desire to utilize the human outputs in controller design, motivates the
following definition of admissible human output combinations.

Definition 2: For δ > 0 sufficiently small, the human output
combination Y H = (QR, yH1 , yH2 ) is admissible if the decoupling
matrix AFA given in (29) is nonsingular and δ-admissible if the
parameters solving (20) satisfy CostHD(α∗) < δ.

The main idea behind admissible human output combinations
is that one should choose output combinations that are accurately
described by the canonical walking function. Doing so will facilitate
the human-inspired control introduced in Section IV; this is where the
admissibility of the outputs will be formalized through the introduc-
tion of the decoupling matrix. The requirement that CostHD(α∗) < δ
stems from the fact that because human data can vary, a perfect fit
is never possible but it should be “good enough.” The size, δ, of this
variation between the time based representation and the actual data
should be kept small; naturally, this is both a function of the data
collection and the choice of outputs. In addition, since the human-
inspired optimization introduced in Section V will minimize (19)
subject to constraints, having a small initial value of the cost is
desirable.

In the case of AMBER and NAO, the same human output
combinations, (11) and (12), are considered; it is easy to verify
that this output combination is admissible. Solving the optimization
problem (20) results in the parameters stated in Table I. In this
case CostHD(α∗) = 0.0447, and therefore this output combination
is δ-admissible with, for example, δ = 0.05. The small value of
δ indicates that the canonical walking function accurately fits the
human data for the outputs chosen; this is further supported by the
coefficients of correlation given in Table I which range between
0.9862 to 0.999 and visually through Fig. 4; note that the correlations
for detrended and zero mean data are essentially the same. This
provides evidence that the canonical walking function appears, in
fact, to be canonical in some sense due to the small number of
parameters needed to accurately describe the human data coupled
with the intuitive representation of human walking given—humans
appear to act like linear spring-mass-damper systems with respect to
certain outputs.

It is important to note that the human outputs considered, and the
fact that humans appear to act like linear mass-spring-dampers for
these outputs, provides evidence for many of the “human-inspired”
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constructions considered in the past. In particular, the specific choice
of human outputs was motivated by the compass gait biped [9], [17],
[18], [46]; in essence, the (nonlinear) form of these outputs represent
the human as a compass gait biped. Moreover, the specific choice of
canonical function is motivated by the well-studied SLIP model [38],
[29], [25] in that it represents human walking as essentially being
the behavior of a linear mass-spring-damper system for the outputs
chosen. Finally, it is important to note that the viewpoint on human
walking taken in this paper, and the fact that output functions of a
very special form are considered, differentiates it from other work
that has considered human data because previous work considers,
almost exclusively, joint angles over time [48], [49], [57]

IV. HUMAN-INSPIRED CONTROL

In this section, we construct a human-inspired controller that drives
the outputs of the robot to the outputs of the human (as represented
by canonical walking functions). In particular, in both the case of full
and under actuation, we consider an admissible output combination
Y H = (QR, yH1 , yH2 ) and construct a feedback controller through the
use of a parametrization of time based upon the velocity-modulating
output. The end result is feedback controllers that will be used to
obtain stable bipedal robotic walking.
Output Functions. Based upon the human outputs and their time-
based representation given by the canonical walking functions, we
define outputs for the robot based upon our desire for the robot
to have the same output behavior as the human. With the goal of
controlling the velocity of the robot, we define the relative degree 1
outputs to be the velocity of the velocity-modulating output—hence
the motivation for the name—and a desired velocity:

ya,1(θ, θ̇) = ẏH1 (θ, θ̇) = dyH1 (θ)θ̇, yd,1(α) = v. (21)

Similarly, with the goal of the robot tracking the canonical walking
function (18) through the position-modulating outputs, we consider
the following actual and desired outputs:

ya,2(θ) = yH2 (θ), yd,2(t, α) =
[
yH(t, αi)

]
i∈O . (22)

In the case when Y H = (QR, yH1 , yH2 ) is a linear and independent
output combination, it follows that:

ya,1(θ, θ̇) = cθ̇
ya,2(θ) = Hθ

s.t. rank

([
c
H

])
= n, (23)

by (8)-(10).
Parameterization of Time. Motivated by the desire to create
autonomous controllers, which are more robust than time based
controllers, we introduce a state-based parameterization of time in
our system as is common practice [48], [54]. Examination of human
data reveals that the (linearized) forward position of the hip evolves
in an approximately linear manner with respect to time (16). Taking
advantage of this observation, for an admissible output combination

yH = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5

Fun. v α1 α2 α3 α4 α5 Cor.
δphip 0.9337 * * * * * 0.9991
δmnsl * 0.0117 8.6591 0.1153 -2.1554 0.2419 0.9997
θsk * -0.1739 13.6644 0.0397 3.3222 0.3332 0.9934
θnsk * -0.3439 10.5728 0.0464 -0.8606 0.6812 0.9996
θtor * -0.0166 10.4416 -0.0033 3.2976 0.0729 0.9862

TABLE I: The parameter values of the canonical walking functions
obtained from fitting the mean human data, together with the corre-
lations of the fits.

Y H = (QR, yH1 , yH2 ), the following parameterization of time is
considered:

τ(θ) =
yH1 (θ)− yH1 (θ+)

v
. (24)

where yH1 (θ+) is the value of the velocity-modulating output of the
robot’s hip at the beginning of the current step, and v is, as will be
seen, the desired velocity (which is just an element of the vector of
parameters α ∈ R5n−4).
Fully Actuated Control. The goal is to drive the outputs of the
robot, obtained through a human output combination, to the outputs
of the human as represented by the canonical walking functions
parameterized by τ(θ). This motivates the final form of the outputs,
termed the human-inspired outputs for full actuation, given by:

y1(θ, θ̇) = ya,1(θ, θ̇)− v, (25)

y2(θ) = ya,2(θ)− yd,2(τ(θ), α). (26)

These outputs can be grouped together to form a single vector of
outputs:

y(θ, θ̇) =

[
y1(θ, θ̇)
y2(θ)

]
(27)

where y1 and y2 will be seen to be relative degree 1 and (vector)
relative degree 2 outputs, respectively, due to the assumption of
admissible output combinations coupled with the fact that y2 is the
output to a mechanical system that is only dependent on θ.

The feedback linearization controller for full actuation, denoted
by u

(α,ε)
FA (θ, θ̇) and termed the human-inspired controller for full

actuation due to its dependence on the human-inspired outputs, can
now be stated as:

u
(α,ε)
FA (θ, θ̇) = −A−1

FA(θ, θ̇)

([
0

LfRLfRy2(θ)

]
(28)

+

[
LfRy1(θ, θ̇)

2εLfRy2(θ, θ̇)

]
+

[
εy1(θ, θ̇)
ε2y2(θ)

])
,

with control gain ε and decoupling matrix:

AFA(θ, θ̇) =

[
LgR,FAy1(θ, θ̇)

LgR,FALfRy2(θ, θ̇)

]
. (29)

Note that the decoupling matrix is non-singular by the definition of
an admissible output combination (see Def. 2). More generally, this
follows from the fact that care was taken when defining the human
output combinations so that they are independent (see Def. 1). It
follows that u(α,ε)

FA (θ, θ̇) results in dynamics on the outputs given by:

ẏ1 = −εy1 (30)

ÿ2 = −2εẏ2 − ε2y2 (31)

and therefore, for a control gain ε > 0, the control law u
(α,ε)
FA renders

the output exponentially stable [42]. That is, the human-inspired
outputs y1 → 0 and y2 → 0 exponentially at a rate of ε; in other
words, the outputs of the robot will converge to the canonical walking
functions exponentially.

Applying the feedback control law in (28) to the hybrid control
system modeling the bipedal robot being considered, H CR,FA as
given in (2), yields a hybrid system:

H (α,ε)
R,FA = (DR, SR,∆R, f

(α,ε)
R,FA), (32)

where, DR, SR, and ∆R are defined as for H CR,FA, and

f
(α,ε)
R,FA(θ, θ̇) = fR(θ, θ̇) + gR,FA(θ, θ̇)u

(α,ε)
FA (θ, θ̇), (33)

where the dependence of f (α,ε)
R,FA on the vector of parameters of

the canonical walking functions, α, and the control gain for the
input/output linearization control law, ε, has been made explicit.
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Underactuated Control. When the robot is underactuated, there is
no longer the control authority to drive all of the outputs of the system
to be in agreement with the human outputs. In particular, since we
will no longer have control of the stance ankle (as in the case of
AMBER, due to its point feet), we can no longer directly control
the forward movement of the hip through the output (25). Thus, in
the case of underactuation, we only consider the relative degree 2
outputs given in (26).

Motivated by these considerations related to underactuated control,
for the affine control system (fR, gR,UA) associated with the robotic
model (3), we define the human-inspired controller for underactua-
tion:

u
(α,ε)
UA (θ, θ̇) = (34)

−A−1
UA(θ, θ̇)

(
L2
fRy2(θ, θ̇) + 2εLfRy2(θ, θ̇) + ε2y2(θ)

)
,

with y2 as defined in (26) and AUA the underactuated decoupling
matrix: AUA(θ, θ̇) = LgR,UALfRy2(θ, θ̇). As in the case of full
actuation, the decoupling matrix is non-singular because of the choice
of output functions and the fact that we assume admissibility of the
outputs. In addition, the control law u

(α,ε)
UA results in dynamics on

the outputs given by (31) and therefore renders the relative degree
two outputs, y2, exponentially stable, i.e., y2 → 0 exponentially at a
rate of ε. Due to the fact that the system is underactuated, the output
y1 will no longer converge to 0. Thus the velocity of the hip cannot
be directly controlled in the case of underactuation.

Applying the feedback control law in (34) to the hybrid control
system modeling and a bipedal robot with 1 degree of underactuation,
H CR,UA as given in (3), yields a hybrid system:

H (α,ε)
R,UA = (DR, SR,∆R, f

(α,ε)
R,UA), (35)

where, DR, SR, and ∆R are defined as for H CR,UA, and

f
(α,ε)
R,UA(θ, θ̇) = fR(θ, θ̇) + gR,UA(θ, θ̇)u

(α,ε)
UA (θ, θ̇).

V. HUMAN-INSPIRED PARTIAL HYBRID ZERO DYNAMICS

This section considers the fully actuated model of a bipedal robot
H (α,ε)
R,FA , with the goal of formally obtaining human-like bipedal

robotic walking. In particular, we determine parameters of the human-
inspired controller that result in the best fit with the human output
data while simultaneously guaranteeing robotic walking. To this end,
we introduce a novel concept termed partial hybrid zero dynam-
ics (PHZD), and present an optimization problem that determines
the parameters that provide the best fit to the human data while
ensuring PHZD. In addition, we prove that these parameters—as
a consequence of the satisfaction of the PHZD constraints—will
automatically guarantee robotic walking. The fixed point of this
walking gait is explicitly constructed, and it is formally proven
that the periodic orbit associated with this fixed point is locally
exponentially stable.

Throughout this section, and the remainder of this paper, we make
the following assumption:
A1: The human output combination Y H = (QR, yH1 , yH2 ) is linear,
independent and δ-admissible.

Full Hybrid Zero Dynamics (FHZD). As stated in Section IV, the
goal of the control law u

(α,ε)
FA (28) is to drive the human-inspired

output y(θ, θ̇) → 0 exponentially at a rate of ε. Therefore, for the
continuous dynamics, the controller renders the full zero dynamics
surface:

FZα = {(θ, θ̇) ∈ TQR : y(θ, θ̇) = 0, LfRy2(θ, θ̇) = 0} (36)

exponentially stable; moreover, this surface is invariant for the
continuous dynamics of the hybrid system H (α,ε)

R,FA . Note that here

0 is a vector of zeros of appropriate dimension and we make the
dependence of FZα on the set of parameters explicit. It is at this
point that continuous systems and hybrid systems diverge: while this
surface is invariant for the continuous dynamics, it is not necessarily
invariant for the hybrid dynamics. In particular, the discrete impacts
in the system cause the state to be “thrown” off of the full zero
dynamics surface. Therefore, a hybrid system has full hybrid zero
dynamics (FHZD) if the full zero dynamics are invariant through
impact: ∆R(SR ∩ FZα) ⊂ FZα. It turns out that this condition
is too strong in that—due to the differences between the robotic
model and the human—it is not possible to obtain “good” walking
that satisfies this requirement. Instead, due to these differences, it is
more beneficial to allow the velocity of the hip to “jump” through
impact, while requiring the other relative degree 2 outputs to remain
on the invariant. This motivates the consideration of partial hybrid
zero dynamics.
Partial Hybrid Zero Dynamics (PHZD). While the realization of
FHZD is the “best case scenario,” it is quite difficult in the case
of bipedal robotic walking since it would force the hybrid system
to evolve on a 1-dimensional manifold. Therefore, we enforce zero
dynamics only for the relative degree 2 outputs. We refer to this as
the partial zero dynamics surface, given by:

PZα = {(θ, θ̇) ∈ TQR : y2(θ) = 0, LfRy2(θ, θ̇) = 0} (37)

The motivation for considering this surface is that it allows some
“freedom” in the movement of the system to account for differences
between the robot and human models. Moreover, since the only
output that is not included in the partial zero dynamics surface is the
output that forces the forward hip velocity to be constant, enforcing
partial hybrid zero dynamics simply means that we allow the velocity
of the hip to compensate for the shocks in the system due to impact.
Problem Statement. The goal of human-inspired PHZD is to find
parameters α∗ that solve the following constrained optimization
problem:

α∗ = argmin
α∈R5n−4

CostHD(α) (38)

s.t ∆R(SR ∩PZα) ⊂ PZα (PHZD)

with CostHD the cost given in (19). This is simply the optimization
problem in (20) that was used to determine the parameters of the
canonical walking functions that gave the best fit of the human
walking functions to the human output data, but subject to constraints
that ensure PHZD. The formal goal of this section is to restate
(PHZD) in such a way that it can be solved practically.
Partial Zero Dynamics. This section utilizes the fact that the
human outputs were specifically chosen to be linear in order to
explicitly construct the partial hybrid zero dynamics. In particular,
we reformulate the constructions in [54] in a way applicable to
full-actuation and reframe them in the context of canonical walking
functions. Because of the specific form of ya,1 in (23) due to
the linear output assumption, we begin by picking the following
coordinates for the partial zero dynamics surface:

z1 = yH1 (θ) = cθ (39)

z2 = ya,1(θ, θ̇) = ẏH1 (θ, θ̇) = cθ̇

where c ∈ R1×n is obtained from (9). Moreover, since z1 is just
the velocity-modulating output which was used to parameterize time
(24), we can write yd,2(z1) = yd,2(τ(θ), α). Picking the coordinates

η1 = ya,2(θ) = Hθ (40)

η2 = LfRya,2(θ, θ̇) = Hθ̇
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with H as in (10), and defining

ΦPZ(z1) =

[
c
H

]−1(
z1

yd,2(z1)

)
(41)

ΨPZ(z1) =

[
c
H

]−1
(

1
∂yd,2(z1)

∂z1

)
it follows that for θ = ΦPZ(z1) and θ̇ = ΨPZ(z1)z2, the point
(θ, θ̇) ∈ PZα.

As a result of the fact that we have full actuation and completely
linearize the dynamics with (28), it follows that the relative degree 1
output (25) evolves according to ẏ1 = −εy1. Therefore, the partial
hybrid zero dynamics evolve according to the linear ODE:

ż1 = z2 (42)

ż2 = −ε(z2 − v).

The advantage of the partial zero dynamics representation introduced
is that its linear form allows for the existence and stability of a
fixed point of the zero dynamics to be determined in closed form.
Specifically, given a pre-impact point on the guard (θ−, θ̇−) ∈ SR
with its post-impact state (θ+, θ̇+) = ∆R(θ−, θ̇−), we can compute
z−1 = yH1 (θ−) and z+

1 = yH1 (θ+). From this, if (PHZD) is satisfied,
the change in z1 and z2 due to this impact can be determined through:

z+
1 = yH1 (∆θθ

−) (43)

z+
2 = ∆PZ(θ−)z−2

where θ− is a point that is chosen a priori and

∆PZ(θ−) := c∆θ̇(θ
−)ΨPZ(yH1 (θ−)). (44)

In essence, this defines a 2-dimensional hybrid system and, since the
partial hybrid zero dynamics is 2-dimensional, when considering the
existence and stability of a periodic orbit in this surface one need
only consider the restricted Poincaré map:

ρε : SR ∩PZα → SR ∩PZα (45)

where ρε depends on ε due to (42) and

SR ∩PZα ∼= {(z1, z2) ∈ PZα : z1 = z−1 , z2 ∈ R≥0}. (46)

In other words, the hyperplane z1 = z−1 can be chosen as the Poincaré
section. The Poincaré map for the partial hybrid zero dynamics is
therefore a 1-dimensional (partial) map ρε : SR∩PZα → SR∩PZα,
and so ρ can be viewed as only a function of z2 which therefore
defines a discrete time dynamical system:

z2[k + 1] = ρε(z2[k])

and the stability of this 1-dimensional discrete time dynamical
system, as will be seen in Theorem 2, completely determines the
stability of a periodic orbit in the full dimensional system.
Calculation of the fixed point corresponding to Partial Zero
Dynamics. To achieve the goal of restating (38) in a way that is
independent of state variables (position and velocity), we seek to
explicitly construct the point (θ−, θ̇−) that will be utilized in the
constructions outlined in (43) and (44). To this end, we can use the
outputs and guard functions to explicitly solve for the configuration
of the system ϑ(α) ∈ QR on the guard (hR(ϑ(α)) = 0) in terms of
the parameters α. In particular, let

ϑ(α) = θ s.t

[
y2(∆θθ)
hR(θ)

]
=

[
0
0

]
, (47)

where ∆θ is the relabeling matrix (6). Note that ϑ(α) exists because
of the specific structure of the outputs, y2(∆θθ), chosen. In fact,
the reason for considering y2 at ∆θθ is because it implies that the

configuration at the beginning of the step is θ+ = ∆θθ and thus
τ(∆θθ) = 0 implying that: y2(∆θθ) = H∆θθ−yd,2(0, α), or there
is a solution to (47) because of the simple form that y2 takes at ∆θθ.

Using ϑ(α), we can explicitly solve for a point (ϑ(α), ϑ̇(α)) ∈
FZα ∩ SR. In particular, let

Y (θ) =

[
dyH1 (θ)
dy2(θ)

]
. (48)

It follows from the definition of y1 and y2 in (25) and (26) that[
y1(θ, θ̇)

LfRy2(θ, θ̇)

]
= Y (θ)θ̇ −

[
v
0

]
. (49)

Therefore, define

ϑ̇(α) = Y −1(ϑ(α))

[
v
0

]
, (50)

where Y is invertible because of the choice of outputs. The point
(ϑ(α), ϑ̇(α)) is essential to all of the constructions in this paper, as
it will: (a) be used to remove state-dependence in the optimization,
(b) be a fixed point of a periodic orbit, and (c) be used to determine
the stability of the periodic orbit by taking it to be the point chosen
a priori in (43).
Human-Inspired Optimization. With the notation of this section
in hand, we define a human-inspired optimization problem (first
introduced in [6]). This constrained optimization uses the human
data as a cost function (through the human-data-based cost (19)), but
enforces constraints that, as will be seen in the main result, ensure
that the bipedal robot has a stable walking gait.

Theorem 1: The parameters α∗ solving the constrained optimiza-
tion problem:

α∗ = argmin
α∈R5n−4

CostHD(α) (HIO)

s.t y2(ϑ(α)) = 0 (C1)

dy2(∆θϑ(α))∆θ̇(ϑ(α))ϑ̇(α) = 0 (C2)

dhR(ϑ(α))ϑ̇(α) < 0 (C3)

yield partial hybrid zero dynamics: ∆R(SR ∩PZα∗) ⊂ PZα∗ .
Proof: Let α∗ be the solution to the optimization problem (HIO).

We begin by showing that ∆R(SR ∩ FZα∗) ⊂ PZα∗ since this
will imply that ∆R(SR ∩ PZα∗) ⊂ PZα∗ . By (C1) and (49),
(ϑ(α∗), ϑ̇(α∗)) ∈ FZα∗ . Moreover, by (47) (specifically, the fact
that hR(ϑ(α∗)) = 0) and (C3), it follows that (ϑ(α∗), ϑ̇(α∗)) ∈ SR.
Therefore, (ϑ(α∗), ϑ̇(α∗)) ∈ SR ∩ FZα∗ . Now, FZα∗ and SR
intersect transversally since

LfRhR(ϑ(α∗), ϑ̇(α∗)) = dhR(ϑ(α∗))ϑ̇(α∗) < 0

by (C3). Since FZα∗ is a 1-dimensional submanifold of DR, it fol-
lows that SR∩FZα∗ is a unique point. Therefore, (ϑ(α∗), ϑ̇(α∗)) =
SR ∩ FZα∗ .

To show that ∆R(SR ∩FZα∗) ⊂ PZα∗ we need only show that
∆R(ϑ(α∗), ϑ̇(α∗)) ∈ PZα∗ . From the form of ∆R given in (6), the
requirement that ∆R(ϑ(α∗), ϑ̇(α∗)) ∈ PZα∗ is equivalent to the
following conditions being satisfied:

y2(∆θϑ(α∗)) = 0, (51)

LfRy2(∆θϑ(α∗),∆θ̇(ϑ(α∗))ϑ̇(α∗)) = 0. (52)

By the definition of ϑ(α∗), and specifically (47), (51) is satisfied.
Moreover,

LfRy2(∆θϑ(α∗),∆θ̇(ϑ(α∗))ϑ̇(α∗)) =

dy2(∆θϑ(α∗))∆θ̇(ϑ(α∗))ϑ̇(α∗)
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Therefore, (52) is satisfied as a result of (C2). Thus we have
established that ∆R(SR ∩ FZα∗) ⊂ PZα∗ .

To complete the proof we note that ∆R(SR ∩ FZα∗) ⊂ PZα∗

implies that ∆R(SR∩PZα∗) ⊂ PZα∗ by Theorem 5.2 in [54] since
(ϑ(α∗), ϑ̇(α∗)) = SR ∩ FZα∗ ⊂ SR ∩ PZα∗ is a point satisfying
(51) and (52).
Exact Reconstruction. One of the main advantages to considering
partial hybrid zero dynamics in the case of full actuation is the simple
form that the partial zero dynamics takes. In particular, using (42)
we can explicitly, and in closed form, reconstruct the solution of the
full-order system. This is outlined in the following proposition—a
result that is essential to both proving the main result in the case of
full actuation along with adding constraints that ensure the physical
realizability of the resulting walking gait.

Consider the point (ϑ(α∗), ϑ̇(α∗)) ∈ PZα∗ ∩SR and let z−1 (α∗)
and z−2 (α∗) be the representation of this point in the partial hybrid
zero dynamics coordinates (39); note that from (50), z−2 (α∗) = v∗.
By picking θ− = ϑ(α∗) in (43), we obtain z+

1 (α∗). From the con-
structions presented in this section, and because ∆R(SR∩PZα∗) ⊂
PZα∗ , by viewing SR ∩PZα∗ as a 1-dimensional space as in (46),
for an initial condition z2 ∈ SR ∩ PZα∗ it follows from (42) that
the solution to the partial hybrid zero dynamics is given by:

z1(t, α∗) := tv∗ + z+
1 (α∗)

+
(1− e−tε)∆PZ(ϑ(α∗))z2 + (−1 + e−tε)v∗

ε
z2(t, α∗) := v∗ + e−tε(∆PZ(ϑ(α∗))z2 − v∗). (53)

With this notation in hand, we present the following result on
reconstructing solutions for the full order system in closed form
through partial hybrid zero dynamics.

Proposition 1: Let α∗ be the parameters solving (HIO) and as-
sume that

τ(ϑ(α∗)) =
z−1 (α∗)− z+

1 (α∗)

v∗
> 0.

For z2 ∈ SR ∩ PZα∗ , the time-to-impact function for the partial
hybrid zero dynamics is given by:

TPZ(z2) = τ(ϑ(α∗)) +
1

εv∗
(−∆PZ(ϑ(α∗))z2 + ρε(z2))) (54)

with

ρε(z2) = v∗
(

1 +W(e−ετ(ϑ(α∗))eγ(z2)γ(z2)
)

(55)

where W is the Lambert W function (or product logarithm) and3

γ(z2) =
∆PZ(ϑ(α∗))z2 − v∗

v∗
. (56)

Moreover, for the hybrid system H (α∗,ε)
R,FA with initial condition

(θ0, θ̇0) = (ΦPZ(z−1 (α∗)),ΨPZ(z−1 (α∗))z2), the time to impact
function is given by TI(θ0, θ̇0) = TPZ(z2) and the solution to the
continuous dynamics (33) is given by:[

θ(t, α∗)

θ̇(t, α∗)

]
=

[
ΦPZ(z1(t, α∗))

ΨPZ(z1(t, α∗))z2(t, α∗)

]
(57)

for 0 ≤ t ≤ TI(θ0, θ̇0).
Proof: For z2 ∈ SR∩PZα∗ , the corresponding initial condition

for the partial hybrid zero dynamics is given by the pre-impact point
(z−1 (α∗), z2). Correspondingly, applying the reset map to this point

3Note that γ determines the change in the (linearized) velocity of the hip
relative to v∗; or, in other words, the perturbation away from the full zero
dynamics surface FZα. That is, if we were to require the stronger condition
of full hybrid zero dynamics, ∆R(SR ∩ FZα) ⊂ FZα, then γ(z2) = 0
from which it would follow that TPZ (z2) = τ(ϑ(α∗)).

for the partial hybrid zero dynamics (43) yields the initial condition
(z+

1 (α∗),∆PZ(ϑ(α∗))z2) for the partial zero dynamics (42) with
solution given by (53). According to the definition of the guard for
the partial hybrid zero dynamics (46), to establish that TPZ(z2) is
the time-to-impact function it is necessary to determine the time, t∗,
such that z1(t∗, α∗) = z−1 (α∗). It is easy to verify through direct
calculation that solving for t∗ yields t∗ = TPZ(z2) as desired.

The fact that the solution to H (α∗,ε)
R,FA is given by (57) for the

given initial condition follows from ∆R(SR ∩ PZα∗) ⊂ PZα∗ . In
particular, the system evolves according to the partial hybrid zero
dynamics (42) with solution given by (53). By the definition of
PZα∗ , it follows that (41) can be used to obtain (θ(t), θ̇(t)) from
(z1(t, α∗), z2(t, α∗) for all 0 ≤ t ≤ TPZ(z2) = TI(θ0, θ̇0).
Main Fully Actuated Result. The main result of this paper, in the
context of full actuation, is that the point (ϑ(α∗), ϑ̇(α∗)), determined
through the inverse kinematics and utilizing the parameters obtained
by solving the optimization problem in Theorem 1, is “essentially”
the fixed point to a stable hybrid periodic orbit. Thus, the constrained
optimization problem (HIO) not only ensures partial hybrid zero
dynamics, but it automatically yields a fixed point to a stable walking
gait that can be computed in closed form from the parameters of
the human-inspired controller. Moreover, since the cost function (19)
only depends on human walking data, we automatically generate a
controller for a stable walking gait, its parameters, a stable hybrid
periodic orbit and its fixed point using only human data.

Theorem 2: Let α∗ be the parameters solving (HIO). If
τ(ϑ(α∗)) > 0 then there exists a constant ε > 0 such that for
all ε > ε the hybrid system H (α∗,ε)

R,FA has an exponentially stable
periodic orbit, Oε, dependent on ε, with fixed point (θ∗ε , θ̇

∗
ε) ∈ S

and period Tε which satisfy the following properties:

lim
ε→∞

Tε = τ(ϑ(α∗)) (P1)

lim
ε→∞

(θ∗ε , θ̇
∗
ε) = (ϑ(α∗), ϑ̇(α∗)) (P2)

lim
ε→∞

Oε =

{[
ΦPZ(ẑ1(t, α∗))

ΦPZ(ẑ1(t, α∗))v∗

]
: 0 ≤ t ≤ τ(ϑ(α∗))

}
(P3)

where ẑ1(t, α∗) = v∗t+ yH1 (∆θϑ(α∗)).
Proof: From the constructions related to Proposition 1, the

Poincaré map (45) can be explicitly computed; in fact, it is given
by (55). To see this, for z2 ∈ SR ∩PZα, it is given by

ρε(z2) = v∗ + e−TPZ (z2)ε(∆PZ(ϑ(α∗))z2 − v∗)
= v∗

(
1 +W

(
e−ετ(ϑ(α∗))eγ(z2)γ(z2)

))
with TPZ(z2) and γ(z2) given in (54) and (56), respectivly. From
the explicit form of the reduced Poincaré map ρε it follows that:

lim
ε→∞

ρε(z2) = v∗ = z−2 (α∗) (58)

since W (0) = 0 and τ(ϑ(α∗)) > 0.
To prove the existence of a periodic orbit for the partial hybrid

zero dynamics, we need only prove the existence of a fixed point for
ρε. Consider a ball of radius δ > 0 around v∗, i.e., for z2 ∈ Bδ(v∗),
|z2 − v∗| < δ. Then for this δ it follows by (58) that there exists
a ε1 > 0 such that for all ε > ε1, |ρε(z2) − v∗| < δ. Therefore,
ρε : Bδ(v

∗) → Bδ(v
∗). By the Brouwer fixed-point theorem, it

follows that there exists a fixed point of ρε, i.e., z∗2(ε), dependent
on ε and satisfying ρε(z∗2(ε)) = z∗2(ε), and the hybrid partial zero
dynamics has a periodic orbit. To prove the stability of this periodic
orbit, we need only check the derivative of ρε at z∗2(ε) and ensure
that its magnitude is less than 1. The derivative ρε can be explicitly
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computed as:

ρ′ε(z
∗
2(ε)) =

{
e−ετ(ϑ(α∗))∆PZ(ϑ(α∗)) if z∗2(ε) = v∗

∆PZ(ϑ(α∗))2(z∗2 (ε)−v∗)

∆PZ(ϑ(α∗))z∗2 (ε)−v∗ otherwise

Since z∗2(ε)→ v∗ = z−2 (α∗) as ε→∞, it follows that

lim
ε→0

ρ′ε(z
∗
2(ε)) = 0.

Therefore, there exists an ε2 > 0 such that for ε > ε2, |ρ′ε(z∗2(ε))| <
1 establishing the stability of the periodic orbit for the partial hybrid
zero dynamics.

To establish the existence of a stable periodic orbit Oε for
H (α∗,ε)
R,FA , by Theorem 4.5 of [54] (see also [33]), a stable fixed point

for the restricted Poincaré map ρε implies that:

(θ∗ε , θ̇
∗
ε) = (ΦPZ(z1(α∗)),ΨPZ(z1(α∗))z∗2(ε)) (59)

is a stable fixed point of the Poincaré map Pε for the hybrid
system H (α∗,ε)

R,FA for ε sufficiently large, i.e., for ε > ε3. Picking
ε = max{ε1, ε2, ε3} implies the desired existence and stability
result.

To complete the proof, note that (P1)-(P3) follow from Proposition
1 applied to z∗2(ε). In particular, inspection of (54) yields (P1).
Since limε→∞ z

∗
2(ε) = z−2 (α∗), (P2) follows from (59) since

(ϑ(α∗), ϑ̇(α∗)) = (ΦPZ(z1(α∗)),ΨPZ(z1(α∗))z−2 (α∗)). Finally,
(P3) follows from the fact that for the initial condition (θ∗ε , θ̇

∗
ε) the

periodic orbit is defined by (57) with z2 = z∗2(ε). Using (P1) coupled
with the fact that, from (53), limε→∞ z1(t, α∗) = ẑ1(t, α∗) and
limε→∞ z2(t, α∗) = v∗ yields the desired result.
Imposing Physical Realizability Constraints. Thoerem 2 demon-
strated that partial hybrid zero dynamics implies the existence of a
stable periodic orbit that can be completely characterized in the limit.
Yet, for the purpose of realization on physical robots, convergence
is often not enough; it is desirable to know, in closed form, the
solution of the system so that constraints on physical realizability can
imposed directly in the optimization in closed form (e.g., constraints
on maximum torque, foot height, etc.). The importance of Proposition
1, in addition to the role it plays in proving Theorem 2, is that it
allows for these conditions to be enforced in closed form. To provide
a specific example, suppose that the maximum allowable torque by
the motors is umax. For a given ε > 0 we can enforce this constraint
by solving for z∗2(ε) such that ρε(z∗2(ε)) = z∗2(ε). Using z∗2(ε) in
Proposition 1, through (57) the periodic solution (θ(t, α∗), θ̇(t, α∗))

to the hybrid system H (α∗,ε)
R,FA can be constructed in closed form,

resulting in the constraint:

max
0≤t≤TPZ (z∗2 (ε))

‖u(α,ε)
FA (θ(t, α∗), θ̇(t, α∗))‖∞ < umax (C4)

which, when added to (HIO), will ensure that the maximum allowable
torque is not violated (assuming a feasible solution to the optimization
problem is found). The same approach can be utilized to implement
constraints on maximum power, angular velocity, minimum foot
height (i.e., scuffing prevention) and ZMP conditions. In essence,
any behavior that can be quantified in terms of the solution to the
dynamics can be codified in closed form through the closed form
solution obtained from partial hybrid zero dynamics via Proposition
1.
Simulation Results. It will now be demonstrated how these formal
results can be applied to models of bipedal robots, and specifically
AMBER and NAO, to achieve walking in simulation. These simula-
tion results serve as the basis for the control of the actual NAO robot
to obtain walking experimentally as will be discussed at the end of
this section.
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Fig. 5: The walking gaits for AMBER in the case of both full (left)
and under (right) actuation. The periodic orbits corresponding to the
walking gaits are shown in (a) for the fully actuated case and (c) for
the underactuated case. Similarly, the torques for the fully and under
actuated case are shown in (b) and (d).

AMBER: We begin with the hybrid model of AMBER, H (α∗,ε)
R,FA ,

obtained using the mass, length and inertia values of this robot (in
this case, we assume the robot is fully actuated for the sake of
simulation only—we later consider the more physically realistic case
of underactuation). Utilizing the human output combination specified
in (11)-(15) and the associated human output data, we numerically
solve the optimization problem in Theorem 1. In particular, we utilize
only the human data (for the cost in (HIO)), and seed the optimization
problem with the parameters of the canonical walking functions that
best fit the human output data (as given in Table I). The end result of
this optimization is parameters α∗ for the human-inspired controller
that provably result in stable robotic walking due to Theorem 2, along
with the initial condition to this walking gait: (ϑ(α), ϑ̇(α)).

Comparing the parameters of the human-inspired controller, and
thus the canonical walking functions, obtained as a result of Theorem
1 against the mean human walking data (see Fig. 6) it can be
seen that the resulting robotic walking is in fact “human-like.” In
particular, in [37], “normal” human walking is defined to be walking
that lies within one standard deviation of mean human walking. In
the case of the considered outputs, the walking for AMBER lies
almost entirely within this one standard deviation band indicating
“normal” human walking. The one exception is the velocity of the
hip which is modulated to take into account the physical differences
between AMBER and the humans from whom the data was collected,
i.e., the difference in link lengths between AMBER and the human
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(b) Human Outputs and Outputs for AMBER for Underactuated Walking

Fig. 6: The outputs of AMBER (blue) for fully actuated (a) and underactuated (b) walking obtained plotted against the mean human output
data computed from the data of nine subjects walking, with error bands showing one standard deviation from the mean.

subjects results in different linear velocities for the same angular
velocities. The walking gait obtained, as simulated from the initial
condition (ϑ(α∗), ϑ̇(α∗)) with ε = 20, can be seen in Fig. 5,
with the corresponding periodic orbit and torques required shown
in Fig. 5(a),(b). While Theorem 2 formally guarantees stability of
the periodic orbit, we verify this numerically by computing the
eigenvalues of the Poincaré map; we find the largest magnitude of an
eigenvalue to be 0.0172, indicating local exponential stability (in fact,
all other eigenvalues are essentially zero as the proof of Theorem 2
predicts).
NAO: We apply Theorem 1 to the hybrid model of NAO where, to
achieve practical results (with a view towards implementation), addi-
tional constraints were enforced in this optimization which limited the
maximum joint velocity to 3 rad/s and ensured proper foot clearance.
The end result is parameters α∗ for the human-inspired controller that
(due to Theorem 2) result in stable robotic walking for sufficiently
large control gain ε. Picking ε = 25 and simulating the hybrid system
H (α∗,ε)
R,FA (with the mass, lengths and inertia values for NAO) from

the initial condition (ϑ(α∗), ϑ̇(α∗)) verifies that we do, in fact, have
a walking gait, i.e., a periodic orbit (see Fig. 7(b),(e)). Moreover, we
can verify the fact that the chosen ε results in a stable walking gait
by checking the eigenvalues of the Poincaré map; we find that the
magnitude of the maximum eigenvalue is λ = 0.1059, thus verifying
the exponential stability guaranteed by Theorem 2. Furthermore, and
as indicated in Fig. 7(c), the resulting walking exhibits partial hybrid
zero dynamics. In addition to stable, periodic walking, the robustness
of the human-inspired control law allows for the robot to start from
rest and converge to the walking periodic orbit corresponding to the
walking gait. As shown in Fig. 7(a), trajectories of the system when
started from rest converge to the stable limit periodic orbit predicted
by Theorem 2. Convergence is also seen in a plot of the human
inspired outputs; in Fig. 7(c) the convergence of the actual outputs
of the robot to the desired outputs can be seen. Tiles of the first step
of the walking, starting from rest, can be seen in Fig. 7(d). These
simulated trajectories will be used to experimentally achieve walking
on the real NAO robot.
NAO Experimental Results. Implementing the simulated trajectories
of the human-inspired walking control on NAO results in dynamically
stable walking on the actual NAO robot. In particular, the simulated
trajectories, starting from rest, are implemented on the sagittal actu-
ators of the robot through trajectory tracking, and a simple feedback

control law is implemented in the lateral plane (more details can be
found in [8]). Tiles of the walking gait achieved on the NAO robot
can be seen in Fig. 9 where the experimental walking is compared
to tiles of the simulated walking taken at the same time instances
showing that, in fact, there is good agreement. To provide qualitative
evidence of this, the simulated and experimentally observed figures
are plotted in Fig. 10 where very good agreement between simulation
and experimentation is shown. Finally, the human-inspired walking
that was obtained on NAO subjectively appears more human-like
than other walking gaits that have been achieved for NAO through
ZMP related methods [27], [51]. We invite readers to form their own
opinions by watching the video [3] of the human-inspired robotic
walking and its comparison with the pre-existing (ZMP) walking.

VI. HUMAN-INSPIRED HYBRID ZERO DYNAMICS

Having demonstrated how human-inspired control automatically
results in “human-like” robotic walking for fully actuated bipedal
robots, this section shows how robotic walking is also automatically
obtained from human data in the case of underactuation. In partic-
ular, we now consider hybrid zero dynamics (HZD) as originally
developed for the underactuated control of bipedal robots [20], [54].
In the framework of HZD, we add constraints to the human-inspired
optimization in Theorem 1 so that the parameters that guarantee HZD
also imply the existence of a stable walking gait for an underactuated
robot. Moreover, we can explicitly compute the fixed point to the
stable periodic orbit corresponding to this stable walking gait. It is
important to note that formulations considered in this section utilize
the results of [54]; the novelty lies in the different optimization
problem used to obtain HZD and, more importantly, the fact that the
same optimization problem that yields walking for the fully actuated
case yields walking in the underactuated case with the addition of
two constraints.
Problem Statement. The goal of the underactuated human-inspired
controller (34) is to drive the outputs of the robot to the outputs of
the human: ya,2 → yd,2. In other words, the controller renders the
zero dynamics surface:

Zα = {(θ, θ̇) ∈ TQR : y2(θ) = 0, LfRy2(θ, θ̇) = 0} (60)

exponentially stable; moreover, this surface is invariant for the
continuous dynamics of the hybrid system H (α,ε)

R,UA defined in (35).
Note that the hybrid zero dynamics surface is simply the partial
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Fig. 8: Simulated (desired) and experimental joint trajectories in the sagittal plane for NAO.
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(a) Periodic Orbit from Rest
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(b) Periodic Orbit from Fixed Point
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Fig. 7: Periodic orbits for the simulated behavior of NAO starting
from rest, i.e., a zero initial condition (a) and the fixed point of
the periodic orbit (b). Starting from rest, the actual outputs of
NAO converge to the desired outputs and display partial hybrid
zero dynamics (c). Snapshots of the walking gaits from the NAO
simulation starting from zero initial conditions (d) and continuing
from the fixed point (e).

hybrid zero dynamics surface, PZ, considered in the case of full
actuation; that is, for underactuation PZ = Z, and this was one of the
original motivations for considering the partial hybrid zero dynamics
surface. As in the case of full actuation, the goal of human-inspired
HZD is to find parameters α∗ that solve the following constrained
optimization problem:

α∗ = argmin
α∈R21

CostHD(α) (61)

s.t ∆R(SR ∩ Zα) ⊂ Zα (HZD)

Student Version of MATLAB

Fig. 9: Simulated (desired) and experimental joint trajectories for
the sagittal plane (a). Comparison of the actual (top) and simulated
(bottom) walking gaits for NAO over one step (b).

with CostHD the cost given in (19). The formal goal of this section
is to restate (PHZD) in such a way that it can be practically solved
through the utilization of the constructions for the fully actuated case,
but suitably modified for underactuation.
Zero Dynamics. The zero dynamics must be constructed so as
to take into account the fact that the system is underactuated. In
particular, the zero dynamics will no longer be linear as in the case
of full actuation. To this end we will utilize the constructions in [54],
reframed in the context of canonical walking functions. Because of
the specific choice of ya,2 in (22), we begin by picking the following
coordinates for the zero dynamics:

ξ1 = yH1 (θ) =: cθ (62)

ξ2 = D(θ)1,∗θ̇ =: γ0(θ)θ̇

where D(θ)1,∗ is the first row of the inertia matrix in (4). Moreover,
as in the case of full actuation, we can again write yd,2(ξ1) =
yd,2(τ(θ)).

Picking the coordinates η1 and η2 as in (40) and defining

ΦZ(ξ1) =

[
c
H

]−1(
ξ1

yd,2(ξ1)

)
ΨZ(ξ1) =

[
γ0(ΦZ(ξ1))

H − ∂yd,2(ξ1)

∂ξ1
c

]−1(
1
0

)
it follows that for θ = ΦZ(ξ1) and θ̇ = ΨZ(ξ1)ξ2 that (θ, θ̇) ∈ Zα.
Finally, the zero dynamics evolve according to the ODE:

ξ̇1 = κ1(ξ1)ξ2 κ1(ξ1) := cΨZ(ξ1) (63)

ξ̇2 = κ2(ξ1) κ2(ξ1) :=
∂V (θ)

∂θsf

∣∣∣∣
θ=ΦZ(ξ1)

with V the potential energy of the robot (4).
The advantage of the low-dimensional zero dynamic representation

introduced is that it allows for the existence and stability of a fixed
point of the zero dynamics to be determined a priori. In the case of
underactuation, this is achieved by considering the energy of the zero
dynamics, and in particular the potential energy. As in the case with
full actuation, we begin with a point on the guard (θ−, θ̇−) ∈ SR
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with its post-impact state (θ+, θ̇+) = ∆R(θ−, θ̇−), we can compute
ξ−1 = yH1 (θ−) and ξ+

1 = yH1 (θ+). From this, the change in ξ2 due
to this impact can be determined through:

∆Z(θ−) = γ0(θ+)∆θ̇(θ
−)ΨZ(yH1 (θ−)) (64)

wherein ξ+
2 = ∆Z(θ−)ξ−2 .

Picking the same Poincaré section as in the case of full actuation
(46), the stability of a periodic orbit can be characterized by 1-
dimensional discrete time dynamical system ρ : SR∩Zα → SR∩Zα,
given by:

ξ2[k + 1] = ρ(ξ2[k]) = ∆Z(θ−)ξ2[k]− VZ(yH1 (θ−))

where

VZ(ξ1) := −
∫ ξ1

ξ+1

κ2(ξ)

κ1(ξ)
dξ.

is the potential energy of the zero dynamics (63). Energy methods
can be coupled with these constructions to determine when the robot
will take a step by considering the constant:

DZ(θ−) =
∆Z(θ−)2

1−∆Z(θ−)2
VZ(yH1 (θ−)) + V max

Z

with V max
Z = max

ξ+1 ≤ξ≤ξ
−
1
VZ(ξ). Specifically, if DZ(θ−) < 0 it

will imply the existence of a limit cycle in the hybrid zero dynamics
surface, and if 0 < ∆Z(θ−) < 1 it will imply the stability of that
limit cycle [54].
Main Underactuated Result. We now present the main result of this
paper related to underactuated walking. Picking ϑ(α) and ϑ̇(α) (see
(47) and (50)) as the choice of (θ−, θ̇−), constraints can be added
to the human-inspired optimization problem (HIO) to automatically
obtain an initial condition corresponding to stable periodic walking
for an underactuated robot.

Theorem 3: The parameters α∗ solving the constrained opti-
mization problem (HIO) in Theorem 1 subject to the additional
constraints:

DZ(ϑ(α)) < 0 (C4)

0 < ∆Z(ϑ(α)) < 1 (C5)

yields hybrid zero dynamics: ∆R(SR∩Zα∗) ⊂ Zα∗ . Moreover, there
exists an ε̂ > 0 such that for all ε > ε̂ the hybrid system H (α∗,ε)

R,UA

has a stable periodic orbit with fixed point (θ∗, θ̇∗) ∈ SR ∩ Zα∗

given by:

θ∗ = ϑ(α), θ̇∗ = ΨZ(cϑ(α))

(
−

√
−VZ(ϑ(α))

1−∆Z(ϑ(α))

)
.

Proof: From Theorem 1, it follows that conditions (C1)-(C3)
imply partial hybrid zero dynamics. Since in the case of underactu-
ation PZ = Z and FZ ⊂ Z it follows that these conditions imply
hybrid zero dynamics: ∆R(SR ∩ Zα∗) ⊂ Zα∗ . Utilizing Theorem
5.3 in [54], conditions (C4) and (C5) imply the desired result.
Simulation Results. Since AMBER (Fig. 1) is an underactuated robot
due to its point feet, we apply the results of this section to AMBER to
obtain underactuated human-inspired robotic walking in simulation.
We then discuss how this simulated walking can be used as a basis
for the controller design on the physical bipedal robot with the end
result being real-world robotic walking.

We begin with the application of Theorem 3 to the underactuated
hybrid model of AMBER. Specifically, we solve the optimization
problem in Theorem 1 subject to the additional constraints in
Theorem 3. The end result of this optimization is a collection of
control parameters for the α∗ resulting in a hybrid system H (α∗,ε)

R,UA .
Moreover, the same optimization automatically generates a fixed
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Fig. 10: Simulated (desired) and experimental joint trajectories for
AMBER.

Fig. 11: Comparison of the simulated and experimental walking gait
for AMBER over one step.

point to a stable periodic orbit (shown in Fig. 5(c)); this is verified
by picking ε = 10 and checking the eigenvalues of the linearization
of the Poincaré map for which the maximum magnitude is 0.7761
(and hence less than 1). Tiles of the walking obtained in simulation
can be seen in Fig. 5. In addition, it can be seen in Fig. 5(d) that the
walking is very low torque (in fact, the torque is far lower than for
the fully actuated walking obtained). What is especially interesting is
the comparison of the outputs, ya,2, of the robot against the human
output data as shown in Fig. 6. Despite the fact that the robot consists
of only 5 degrees of freedom and is underactuated at the ankle, the
end result is still “human-like” walking–the outputs of the robot fall
within one standard deviation of the mean human data for a majority
of the outputs.

Experimental Results. The underactuated walking obtained through
simulation forms a basis for the controllers realized on the physical
robot AMBER. The implementation details are involved (see [58]),
and do not lie within the scope of this paper, but the matrix of
parameters α∗ is used as the control parameters for a voltage based
feedback proportional controller that was also shown to obtain walk-
ing in simulation (shown in Fig. 11). Finally, this feedback voltage
control was implemented on the physical robot through National
Instruments CompactRIO system. The end result was human-inspired
robotic walking as can be seen in Fig. 11. Good agreement between
the simulated and experimental behavior was observed; for example,
the simulated and experimental trajectories can be seen in Fig. 10.
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Fig. 12: Comparison human output data and outputs for AMBER
calculated from the experimentally realized walking over one step.

Note that the differences between these trajectories are a result of
the fact that the simulated trajectories are not tracked directly, but
rather feedback voltage control is used, which can result in drift.
Nonetheless, the end result of this approach is “human-like” robotic
walking; this can best be seen by watching the actual walking which
can be found at [2], and is quantified by the comparisons between
the human output data and the outputs of the robot shown in Fig. 12.
In addition, the human-inspired walking appears to be robust. As can
be seen at [5], the robot AMBER is subjected to disturbances both
on the robot and as a result of the environment. The robot is able to
react to these disturbances in such a way that walking is maintained
and, more subjectively, AMBER reacts in a “human-like” manner.

VII. CONCLUSIONS

This paper presents a formal human-inspired approach to bipedal
robotic walking, proving through Theorem 1, 2 and 3 that by using
only human data, parameters to the human-inspired controller can
be determined that simultaneously provide the best fit of the human
data, yield (partial) hybrid zero dynamics, imply the existence of a
stable walking gait, and allow the fixed point for this stable walking
gait to be explicitly computed. Moreover, these results are established
in the case of both full and under actuation. To demonstrate these
results, walking gaits are generated in simulation for two models
of bipedal robots: AMBER and NAO. In the case of AMBER,
both full and under actuated walking is achieved that is remarkably
“human-like.” In the case of NAO, the robustness of the walking
obtained through human-inspired control allows for both steady state
walking and walking starting from rest. Finally, the formal results
presented are utilized to achieve robotic walking in experimentation
on both AMBER in NAO. In particular, 3D fully actuated bipedal
robotic walking is obtained for NAO, and 2D underactuated bipedal
robotic walking is achieved with AMBER. This provides evidence
of the practical applicability of the formal results presented in this
paper. This hope is, therefore, that these results lay the groundwork
for a “human-inspired” framework for robotic locomotion controller
design.
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