
Valkyrie: NASA’s First Bipedal Humanoid Robot

Nicolaus A. Radford, Philip Strawser, Kimberly Hambuchen,
Joshua S. Mehling, William K. Verdeyen, Stuart Donnan,

James Holley, Jairo Sanchez, Vienny Nguyen,
Lyndon Bridgwater, Reginald Berka, Robert Ambrose∗

NASA Johnson Space Center

Christopher McQuin
NASA Jet Propulsion Lab

John D. Yamokoski
Institute of Human Machine Cognition

Stephen Hart, Raymond Guo
General Motors

Adam Parsons, Brian Wightman, Paul Dinh,
Barrett Ames, Charles Blakely, Courtney Edmonson, Brett Sommers,

Rochelle Rea, Chad Tobler, Heather Bibby
Oceaneering Space Systems

Brice Howard, Lei Nui, Andrew Lee,
Michael Conover, Lily Truong

Jacobs Engineering

David Chesney
Wyle Laboratories

Robert Platt Jr.
Northeastern University

Gwendolyn Johnson, Chien-Liang Fok,
Nicholas Paine, Luis Sentis

University of Texas Austin

Eric Cousineau, Ryan Sinnet,
Jordan Lack, Matthew Powell,
Benjamin Morris, Aaron Ames

Texas A&M University

∗Due to the large number of contributors toward this work, email addresses and physical addresses have been
omitted. Please contact Kris Verdeyen from NASA-JSC at william.k.verdeyen@nasa.gov with any inquiries.

Abstract

In December 2013, sixteen teams from around the world gathered at Homestead
Speedway near Miami, FL to participate in the DARPA Robotics Challenge (DRC)
Trials, an aggressive robotics competition, partly inspired by the aftermath of the
Fukushima Daiichi reactor incident. While the focus of the DRC Trials is to advance
robotics for use in austere and inhospitable environments, the objectives of the
DRC are to progress the areas of supervised autonomy and mobile manipulation for
everyday robotics. NASA’s Johnson Space Center led a team comprised of numerous
partners to develop Valkyrie, NASA’s first bipedal humanoid robot. Valkyrie is a
44 degree-of-freedom, series elastic actuator-based robot that draws upon over 18
years of humanoid robotics design heritage. Valkyrie’s application intent is aimed at
not only responding to events like Fukushima, but also advancing human spaceflight
endeavors in extraterrestrial planetary settings. This paper presents a brief system
overview, detailing Valkyrie’s mechatronic subsystems, followed by a summarization
of the inverse kinematics-based walking algorithm employed at the Trials. Next,
the software and control architectures are highlighted along with a description of
the operator interface tools. Finally, some closing remarks are given about the
competition and a vision of future work is provided.

1 Introduction

The DARPA Robotics Challenge is a worldwide competition aimed at advancing the state-of-
the-art in robotics with respect to mobile manipulation and supervisory control. The DRC was
inspired in part by the consequences of the Fukushima Daiichi reactor incident which illustrated,
rather candidly, how inadequate current robotic technologies are for use in highly unstructured
human environments. To help remedy this shortcoming, DARPA organized an industrial disaster
challenge consisting of eight representative tasks required of a robot. A sampling of the tasks
includes climbing ladders, handling debris, turning valves, and mating hose connectors. The tasks
are similar to those required of a robotic astronaut assistant in an extraterrestrial setting, like Mars
or the moon. NASA sees considerable overlap in the robotic technologies being developed for the
DRC and those needed to advance human spaceflight beyond low earth orbit. Therefore, NASA
adopted a long range approach and developed Valkyrie with the ultimate goal of creating a robotic
platform that is capable and effective in both space and Earth-bound applications.

NASA’s Johnson Space Center led a team of external partners, both academic and industrial, to
develop NASA’s first bipedal humanoid robot. Valkyrie is the culmination of almost two decades
of humanoid robotics research that has focused on manipulation, dexterity, wheeled mobility, and
wearable robotic devices (Ambrose et al., 2000; Diftler et al., 2011; Mehling et al., 2007; Harrison
et al., 2008; Rea et al., 2013). Even so, Valkyrie was a “clean sheet” design that was conceived,
designed, developed, manufactured, assembled and verified in less than 12 months. The Valkyrie
effort represents numerous advancements in robotics in the areas of rotary series elastic joints,
embedded motion control, energy storage, embedded computing, distributed control, pressure-
based tactile sensing, supervisory control, operator interface design and electric motor research.

2 Mechatronic Design

2.1 Mechatronic Overview

Valkyrie stands 1.87m tall, weighs 129kg, and approximates a human range of motion. Drawing
heavily from lessons learned from past NASA robots (Lai-Fook and Ambrose, 1997; Lovchik and
Diftler, 1999; Ambrose et al., 2000; Diftler et al., 2003; Bridgwater et al., 2012), the hardware
design team was able to vastly improve performance of the robot while at the same time reduce
weight. While the robot’s main design requirements were chosen to ensure the ability to compete in
the DRC tasks, NASA’s involvement required a larger view that included practical considerations
beyond the scope of the DRC Trials. These include requirements for roughly human shape, size,
and weight; fall protection; integrated power; and an all-electric design.

To ensure that Valkyrie could operate in human engineered environments, human ranges of motion
were used to inform the workspaces of the neck, waist, arms, hands and legs. Both the robot’s
disaster relief mission and its space mission analogues require an ability to do repairs quickly. The
DRC Trials event structure was used as a baseline for setting that repair requirement, which was a
15 minute interval between events. This drives an extremely modular design where large sections
of the robot can be replaced with a single connector and one bolt. To enable this modularity,
each limb was designed with integrated actuators, electrical and control systems. A layered impact
protection system, consisting of hard plastic shells with energy absorbing foam and industrial vinyl
covering surrounds each limb to distribute impact or fall loads to the robot hard points. These are
also modular and be replaced with minimal hardware.

2.2 Limb Architecture

Valkyrie is a highly integrated and articulated machine with 44 actuated degrees of freedom (DOF)
packaged into a humanoid form. Figure 1(a) shows the basic motions of the robot. Twenty-five of
the arm, leg, and torso joints are series elastic actuators (SEA), in which a spring element is built
into the joint in series with the output, based in part on previous Robonaut designs (Ihrke et al.,
2012). Nine of the actuators are rigid joints and the remaining 12 actuators are tendon driven
assemblies in the hands. The modular structure of the robot treats each arm, each leg, the pelvis
and torso as equivalent limbs. Each limb can be removed with a single connector and one bolt, and
the pelvis can be removed with a single connector and three bolts.

Each arm consists of a 3-DOF shoulder joint complex, implemented as three series elastic joints
whose joint axes share a common point of intersection, along with elbow and wrist roll joints. These
five primary arm joints are all implemented as rotary SEAs. A set of parallel linear actuators with
single axis load cells in the two-force member completes the wrist, enabling both pitch and yaw of
the hand.

Five of the tendon actuators within the forearm are the flexure actuators for the hand, an example
of which is illustrated in Figure 2(a). Each hand has four under-actuated three-link fingers: a
4-DOF thumb, and three 3-DOF fingers, where the primary finger contains a passive adduction
DOF. Passive elastic elements open the fingers. Additionally, a geared actuator directly drives the
thumb roll. Further information concerning the design and analysis of Valkyrie’s hand system can
be found in (Guo et al., 2014).

(a) (b)

Figure 1: Valkyrie’s (a) degrees of freedom and (b) Valkyrie’s sensors.

The robot’s 3-DOF waist consists of a pair of parallel linear SEAs providing pitch and roll on top of
a rotary SEA providing yaw. Each leg is designed in a yaw-roll-pitch-pitch-pitch-roll configuration,
with the first three hip joints and the knee joint implemented as rotary SEAs. Each ankle is
implemented as a pair of parallel linear SEAs very similar to the waist.

(a) (b)

Figure 2: Valkyrie’s (a) finger drivetrain and (b) ankle actuators.

To minimize design effort while still packaging within the humanoid form, joints with similar
performance requirements are reused across the robot. The waist linear actuators share a design
with the ankle actuators. The first joint in the arms, legs and waist kinematic chain are all
essentially the same actuator. The neck shares the same actuators as the wrist roll but uses
traditional rigid actuators form in a pitch-roll-pitch architecture.

2.3 Actuators & Motor Control

Valkyrie’s rotary joints include a frameless brushless DC motor with a high speed relative encoder
on the motor rotor for commutation. Eschewing traditional Hall sensors for commutation saves
motor mass and length and allows more sophisticated commutation schemes. The rotor is attached
to a harmonic drive wave generator, while the stator is attached to the harmonic drive circular
spline. A custom torsion spring sized for the actuator output is placed between the harmonic drive
flex cup and the joint output, with a sensor mounted to the assembly that measured only the spring
deflection. In most cases this was a 32-bit optical sensor. Absolute joint position was measured
directly across the joint with a coaxial magnetic sensor that measured true output and joint input,
bypassing the spring deflection sensor. This joint architecture eliminates the additional noise in
both position and torque sensing over previous architectures that subtracted two encoder signals
for differential position measurement (Diftler et al., 2011), at the cost of modest additional cable
management. The desire for a more human-like form as well as the ability to gain efficiency at high
speeds drove two of the leg joints, hip and knee extension and flexion, to have a belt drive between
the motor and harmonic. The additional reduction in the belt drive allowed the motor to run at
higher speed than the harmonic drive’s input rating, while still achieving 9 rad/s at the output.

In addition to the rotary actuators, Valkyrie also contains two linear actuator designs. The wrist
actuators use a prepackaged motor with a spur gear pass to drive a ball screw nut on a linear slide.
These motors use hall commutation and current sensing, with similar electronics to the finger
actuators. The series elastic ankle and waist linear actuators drive a roller screw nut directly, and
are commutated and driven similarly to the rotary arm and leg joints. These motors are mounted
on springs behind the actuator, with their linear deflection measured directly by a 32-bit sensor.
Figure 2(b) illustrates the linear actuator in the ankle and a similar setup is used in the waist,
differing only by their respective spring stiffnesses. All of these linear actuators feature a two-force
member to allow for parallel actuation across two degrees of freedom, while magnetic absolute
position encoders placed at the universal joints in the wrist, ankle and waist provide position
sensing.

Advanced distributed motor control is one of Valkyrie’s enabling technologies. A direct descendant
of the Robonaut 2 motor controller, the same motor controller, referred here as the “Turbodriver”,
drives all 15 DOF in the torso, pelvis and legs as well as the first 4 DOF in each arm. At its core, the
redesigned Turbodriver includes a forced-air cooled motor bridge capable of sourcing more than 30A
continuously and 60A for short bursts of high torque, while both the bridge and motor windings
are protected with temperature and current limits. The Turbodriver powers multiple auxiliary
sensors and components and routes signals from those sensors. It also has a replaceable logic card
consisting of both a dedicated microcontroller and FPGA. The motor controller can read the joint-
embedded force and torque sensors and enables closed-loop control based upon on any combination
of these sensors. Dual communications channels allow either redundant communication with the
robot’s main CPU, or a dedicated master/slave setup between parallel linear actuators. The wrist
roll, neck and finger joints are driven by the Radtile, a motor controller similar to the Turbodriver,
capable of sourcing up to 9A. Rather than using logic cards, Radtile boards are installed on either
custom single-axis clusters (Leonidas), for the neck and wrist roll joints, or custom four-axis clusters
(Athena), for the fingers and wrist linear actuators. While neither the Athena nor the Leonidas
boards feature a dedicated processor, soft processors are implemented in the FPGA’s to allow for
reuse of some embedded code.

(a) (b)

Figure 3: (a)The barometers in each finger (dark rectangles). (b)The distal barometer spatial
sensitivity.

2.4 On-Board Computation & Power

Valkyrie’s “brain” was implemented through three Intel Core i7 COM Express CPU’s, each with
8GB of DDR3 memory. A CARMA development kit, containing a Tegra3 ARM A9 processor
together with a NVIDIA Quadro 1000M GPU, allows for parallel sensor interpretation algorithms.
These four computers run the high-level robot controllers and process, compress and deliver sensor
data. Data can be shipped via a wired Ethernet or WiFi connection. A sophisticated power
distribution and battery management board enables indefinite operation when connected to a power
tether. A 14kg, dual output voltage, 1.8 kWh battery enables approximately one hour of tetherless
operation.

2.5 Sensor Systems

Valkyrie is a general purpose humanoid robot, designed to operate in many human environments
with the assistance of an operator. To this end, Valkyrie carries a significant sensor load, split into
two main categories: proprioceptive and exteroceptive. The exteroceptive sensors can be further
categorized into immediate and long-term planning sensors. These categories arose from a desire
to meet the following goals: provide situational awareness to the operator, provide an actionable
representation of the environment for use by the robot, provide feedback for the robot’s control
systems, and perform the above three goals in a bandwidth-limited and computationally constrained
environment.

These goals were developed after careful consideration of the DRC Trials tasks and the possible
environments in which the Trials might occur. Combining these goals with mechanical and aesthetic
constraints, the result is the the sensor suite is listed in Tables 1 and 2 and shown pictorially in
Figure 1(b).The sensor suite consists of: five time-of-flight (ToF) depth cameras, three LIDARS,
a camera stereo pair, four USB cameras, eight load cells, two 6-axis force/torque sensors in the
ankles, many pressure sensors in the hands (shown in Figure 3) and feet, two MEMS IMUs in
the torso, a 9-axis INS in the head, 3-axis accelerometers and 3-axis gyroscopes in the hands and
feet, and multiple encoders at each of the 44 actuated joints and Hall position sensors at the 16
underactuated finger joints.

3 Control Systems

3.1 Decentralized Embedded Control

A decentralized approach has been adopted for the control of Valkyrie’s 44 degrees of freedom (Paine
et al., 2014). Each individual actuator is driven by a single-joint control law running on an associ-
ated embedded motor controller. A multi-joint controller running on the robot’s central computer,
in turn, coordinates the efforts of each of the individual joints. This architecture has a number of
benefits, particularly in light of the extensive use of series elasticity in Valkyrie’s actuators. Namely,
actuator-level dynamics can be abstracted away from the multi-joint level by each of the single-joint
controllers. This significantly reduces the complexity of the dynamic model at the multi-joint level,
easing control design while also decreasing the computational burden placed on the central control
computer.

Enabled by the powerful, custom-built, embedded motor controllers integrated into Valkyrie’s de-
sign, this distributed architecture also allows for highly effective, dynamic model-based control
approaches - the majority of joint-related processing can be performed at 5kHz loop rates on pro-
cessors colocated with each actuator. Additionally, a decentralized approach to actuator control
lends itself to an incremental testing methodology in which each joint in the multi-DOF system
can be tuned and validated individually, before integration into the whole. Valkyrie’s SEAs can
be characterized, tuned, tested or debugged individually, with little effect on the parallel develop-
ment of a multi-joint controller. This is a significant benefit that eased the integration process and
greatly reduced control development time during the aggressive design schedule of the DRC.

3.2 Torque Control of Series Elastic Actuators

To realize the desired hierarchical control abstraction, an embedded torque controller exists for
each series elastic joint in Valkyrie such that the actuators appear, to the multi-joint controller at
the high level, as ideal torque sources (or at least low pass filtered ideal torque sources, valid up
to the required bandwidth). This is accomplished using the joint torque control architecture of
Figure 4. Here, the physical plant is modeled as a second order system representing the SEA with
a locked output (i.e. infinite output inertia), providing the following transfer function from motor
current (i) to measured spring force (τk):

P (s) =
τk(s)

i(s)
=

Nkτηk

jms2 + bms+ k
=

βk

jms2 + bms+ k
(1)

where jm is the motor inertia felt by the spring, bm is the effective motor-side damping, k is
the spring stiffness, N is the gear ratio of the actuator, kτ is the motors torque constant, and η
represents a measure of drivetrain efficiency. This plant is then augmented in the closed loop control
of Figure 4 using a feedforward term (N−1η−1kτ

−1) and a straightforward proportional-derivative
feedback controller (PD) to yield the closed loop transfer function:

Pc(s) =
τk(s)

τr(s)
=

(kβkd)s+ k(1 + βkp)

jms2 + (bm + kβkd)s+ k(1 + βkp)
. (2)

The control gains (kp) and (kd) of the PD controller can be used to increase the system’s bandwidth
and eliminate a resonant peak in the frequency response due to the passive actuator dynamics. Thus
the desired torque-source-like behavior can be achieved.

The assumption of a locked output SEA plant is, of course, not valid in the operational robot, and
variation in actuator load inertia will affect the behavior of the derived closed loop system, Pc.
Therefore, a disturbance observer (DOB) is also included in the joint-level controller (illustrated,
again, in Figure 4). By using an inverse nominal model, Pc

−1, the DOB preserves and enforces a
dynamic plant response in the presence of either external disturbances or, central to our application,
plant model variations, like changes in output inertia. The DOB allows a control architecture built
around the fixed output model of Equation 1 to generate ideal torque source behavior even when
this assumption is invalidated by replacing the plant model, P , with Valkyrie’s physical SEAs. A
low pass filter, Q, is also included in the disturbance observer to ensure that Pc

−1 is proper and to
provide an additional parameter to use for tuning the performance of the full control loop.

Figure 5(a) illustrates the torque tracking bandwidth of Valkyrie’s series elastic joint torque con-
troller as implemented on the robot’s elbow actuator (under a fixed output constraint). Here, a
significant improvement versus open loop actuator performance is observed, extending the torque
bandwidth of the system from 13 Hz to 70 Hz. Additionally, the resonant peak in the open loop
response is eliminated providing significant torque tracking improvement around the actuator’s
passive natural frequency. Extending the application of this control approach beyond a single joint
with fixed output to a 4 degree-of-freedom Valkyrie upper arm interacting with its environment
further demonstrates the effectiveness of the robot’s joint level torque controller. In the experiment
of Figure 5(b), Valkyrie’s first four arm joints are commanded to track a constant torque value.
A human then interacts with the robot to emulate the types of disturbances the limb might ex-
perience while performing in the field. Figure 6 is a measure of each actuator’s torque tracking
performance and position throughout the test. During full arm motions, the DOB-based torque
control of Figure 4 not only compensates for the aforementioned variations in output inertia seen by
each actuator, but it also continues to effectively track torque in the presence of disturbance torques
induced on each actuator from both the environment (i.e. the human) and the other actuators in
the serial chain. The peak tracking errors for the four arm joints are 0.85 Nm, 2.2 Nm, 0.63 Nm,
and 0.64 Nm (J1-J4, proximal to distal). These errors represent less than 1% of the rated torque
range for each actuator, thus demonstrating successful disturbance attenuation without sharing
data across multiple joints. This performance enables the decentralized control approach adopted
for Valkyrie.

3.3 Embedded Control Modes

While Valkyrie’s joint-level torque control serves as the foundation for our decentralized approach
to actuator control, the robot’s embedded motor controllers also allow for additional modes that
build upon and complement the aforementioned torque control. Each joint can receive a variety
of inputs from the high-level, multi-joint controller depending on what operation mode is desired.
As described previously, “torque control mode” receives a desired torque command and generates
a response using the architecture of Figure 4. Feedback of actuator output position and velocity
is provided to the multi-joint controller to generate appropriate torque commands at the whole
body level. A second, closely related, “impedance control mode” receives a desired joint position
and velocity, as well as a desired joint stiffness, desired joint damping, and feedforward gravity

Figure 4: Diagram of Valkyrie’s series elastic joint torque controller. The PD compensator is used
to shape the dynamics of the torque response while the DOB ensures that the desired response is
achieved in the face of external disturbances and plant model variations, like changes in output
inertia.

!60

!40

!20

0

20

40

M
a
g
n
it
u
d
e
 (

d
B

)

10
!1

10
0

10
1

10
2

!360

!270

!180

!90

0

90

P
h
a
s
e
 (

d
e
g
)

Torque Tracking Bandwidth

Frequency (Hz)

Open loop

Open loop model

PD+DOB feedback

PD+DOB feedback model

(a) (b)

Figure 5: (a) Frequency response of a Valkyrie elbow actuator with a fixed output. The dashed
line represents the open loop response while the solid line represents closed loop performance using
the controller in Figure 4. (b) Human interaction experiment with the Valkyrie left arm. The four
upper arm joints are commanded to track a constant torque while the human moves the limb to
impart disturbance motions on each joint.

Figure 6: Torque tracking and joint position data from the human interaction experiment of Fig-
ure 5(b). Small torque tracking errors at each joint in response to human imparted motion demon-
strate the applicability of Valkyrie’s series elastic joint torque controller to serial chain limbs.

compensation torque. Here, an outer impedance control loop is run at the joint level, with these
terms as inputs, that results in a commanded joint torque being fed to an inner torque controller.
Again, joint positions can be reported back to the multi-joint controller, but the implementation of
joint stiffness and damping is done locally to minimize latency and expand the effective impedance
range of Valkyrie’s actuators.

Each actuator also has the ability to run in a “position control mode.” In this mode, as the name
implies, the multi-joint controller simply sends position and velocity references to each joint and a
high gain control loop drives the output of the actuator to track these reference signals. Position
control mode is particularly valuable for driving Valkyrie’s non-SEA joints and it also enables easy
experimentation with, and quick transitions between, different high-level control schemes.

4 System Level Software Infrastructure

The system-level software for Valkyrie is distributed across multiple networked computers inside the
robot. This software infrastructure is responsible for handling low-level communication and control
of the robot and for providing telemetry to the supervisory control system. The three components of
the system software infrastructure are the (1) Control System, (2), the Bandwidth Manager,
and the (3) Data Compression Pipeline.

These components collectively provide a closed-loop controller framework, allow fast and efficient

communication with robot hardware, and provide a compressed and streamlined method for moving
data and commands between the operator and the robot.

4.1 Control System

The control system is responsible for turning task-level robot commands into low-level joint and ac-
tuator commands. This software process gathers data from the robot, processes control algorithms,
and sends commands to the robot’s actuators. The Valkyrie control system uses the ROS Control
framework (Meeussen, 2013). This closed-loop controller framework is composed of a hardware
interface layer and a controller layer. The main loop of the control system runs at a pre-defined
regular interval. During each control loop, the hardware interface updates data from the robot,
each active controller is executed, and the hardware interface updates commands which are sent to
the actuators.

4.1.1 Hardware Interface

The primary responsibility of the hardware interface is to provide a run-time framework that
bridges communication between high-level software and the robot hardware. To facilitate this
framework, the subsystem provides a rich API for handling communication with robot actuators,
an abstraction of low-level functionality for use with this API and tools that provide insight into
the current hardware state for users. Figure 7 illustrates the interaction between the hardware
interface and other levels of abstraction in the system.

Figure 7: Interaction of the Hardware Interface subsystem with other levels in the system.

Valkyrie’s distributed control architecture is composed of general purpose embedded computers
and highly specialized embedded actuator controllers. While the general purpose computers com-
municate using standard ethernet, the embedded actuator controllers use Robonet, a custom data
network. Robonet is a high-speed, two-wire, multi-point data network that contains a single master
and several nodes. The master for Valkyrie connects to an embedded computer, and, in most cases,
each node is a single-board computer acting as a single-axis actuator controller. Other Robonet
nodes for Valkyrie include the power management system and the forearms. Because Robonet is
agnostic to the data delivered, the central processor can command the power system over Robonet
as easily as commanding the electro-mechanical joints. The forearm has a further hierarchical ar-
chitecture: the master communicates with the forearm’s central processor as a node, which then
communicates with other single-axis controllers for the wrist and fingers.

The API for Robonet attempts to balance speed with flexibility. Previous attempts at APIs for

Robonet have used dynamically-generated data structures to provide fast communication between
Robonet nodes. For Valkyrie, the APIBuilder tool was developed as a ROS Python module
to generate both C++ and Python APIs from an XML file for Robonet nodes. The XML-based
nature of this tool allows for simple creation of new API functions. The tool also creates unit
tests for generated APIs. The generated C++ APIs become shared libraries that can be loaded
at run-time, while the generated Python APIs are mostly used by engineering tools. The robot’s
hardware interface is responsible for instantiating and making hardware resources available to the
controllers. Using the APIBuilder libraries to abstract details of I/O transactions, the hard-
ware interface populates fresh data into the hardware resource data elements and sends hardware
interface command elements back down to the joints.

4.1.2 Controllers

ROS Control can load many different types of controllers. These controllers include simple PD con-
trollers for the fingers, inverse kinemeatics or Whole Body Control controllers (Sections 5.3 and 5.2)
and mode controllers. While the hardware interface of the robot is fairly static, the controllers in
the ROS Control framework are dynamic: when the control system initializes the hardware inter-
face, the composition of the robot does not change. However, controllers are dynamically loaded
or unloaded depending upon the activity performed by the robot. When a controller is loaded,
it requesta hardware resources from the controller manager. Hardware resources are generally de-
scribed in terms of control interfaces, e.g., a controller that issues torque commands could ask for
an effort command interface which is composed of state information (position, velocity, and effort),
as well as a command (effort command).

4.2 Bandwidth Manager

It was known a priori that the DRC Trials would provide interrupted and delayed network band-
widths, similar to what would exist in true field-deployment scenarios. Such situations are charac-
terized by limited bandwidth, high latency and intermittent packet loss which can render standard
approaches useless. Several approaches are taken to maintain functionality in this environment.
Data streams are classified by their frequency and function into reliable and unreliable types. Re-
liable streams are comprised of small, non-periodic commands such as remote procedure calls that
require acknowledgment of receipt. Unreliable streams are comprised of small, high-rate or large,
low-rate periodic messages where a dropped message is acceptable because the message interval is
smaller than the time required to retransmit a dropped message. Examples include image streams,
joint positions, and error status messages.

The bandwidth manager was designed and implemented to throttle and multiplex the cloud of
messages transmitted between robot and operator. Reliable streams are sent over a ZeroMQ
(ZMQ) (iMatix Corporation, 2007) link and unreliable streams are sent over an RTP (UDP-based)
link. An estimate of the channel bandwidth and of the current bandwidth is used to determine
when to send each packet. Each instance of the bandwidth manager maintains an estimate of the
local→remote bandwidth by sending periodic time-stamps and deltas to the remote instance. If
the delta in latency is seen to be larger than a designated threshold, the bandwidth estimate is re-
duced. Also, if a time-stamp packet is not received within a set period from the previous time-stamp
packet, the bandwidth estimate is reduced. It is important to note that close clock synchronization
is required for accurate bandwidth sensing using this approach. In this implementation, a Network

Time Protocol (NTP) daemon is run on the robot, to which the operator computer periodically
synchronizes its clock. Towards the goal of minimizing bandwidth usage, all messages are sent
through in-line LZO compression. Depending on the size and amount of entropy in the message,
the resulting message may actually exceed the original length. To avoid this, any message that
could not be compressed is sent raw instead.

4.3 Data Compression Pipeline

Further compression is performed on Valkyrie’s sensory data before arriving at the bandwidth
manager. Indeed, even after significant degradation this data is still useful to an operator. As
a result, Valkyrie’s perception pipeline enforces a constant bit-rate—though optionally lossy—
encoding algorithm that is an obvious choice given the bandwidth limitations of the DRC Trials. For
2D data streams, the SPIHT encoding scheme was selected for its constant bit-rate and hierarchal
information selection (Said and Pearlman, 1996). It was incorporated into the Valkyrie’s perception
pipeline using the QccPack library (Fowler, 2000). The SPIHT encoding algorithm sends the most
important information (i.e. the data with the highest wavelet transform coefficient) first and
then proceeds to send finer resolution details as allowed by the bit budget. To provide a unified
compression framework the 2D SPIHT compression algorithm was extended to 3D in order to
leverage its advantages for point cloud information.

5 Supervisory Control

The complexity of the mechatronic structure of Valkyrie requires that appropriate “top-level” soft-
ware tools be used to maximize the robot’s functional potential. While the sheer number of high-
dimensional degrees of freedom and sensory channels provided by the system make direct teleoper-
ation intractable, the state of the art of humanoid autonomy is not yet sufficient to allow anything
close to a “hands-off” approach to run-time operation. Instead, a balance of shared autonomy must
be sought to effectively off-load as much burden from the operator as possible, while still allowing
that operator to take control when necessary to either set task goals or course correct. In the
remainder of this document, an overview of the Valkyrie approach to shared autonomy is presented
in which both the configuration variables and sensory streams are reduced into a manageable set
of signals that provide both a sufficient amount of task structure along with appropriate means of
adjustment to fit the run-time context of the robot’s operating environment.

Figure 8 diagrams the dimensional reduction the Valkyrie supervisory control hierarchy imposes on
the system. On top of the robot and its environment, there are two pathways of reduction. The first
imposes structure on the command and control variables—the configuration space—of the robot.
On top of this space, the whole body control framework, as described in Section 5.2, resides in
which the command space of the robot is divided up into discrete sets of tasks and constraints that
effectively embody the piecewise intentions of the robot. This reduction filters the large number of
continuous data streams that would be required with direct joint level control of the robot into a
smaller (though still highly expressive) set of task goals. As will be described, these goals can be
combined in hierarchical, prioritized fashion to achieve a large amount of human understandable
goal-directed behavior.

A second pathway of reduction is necessary to filter the large number of data streams published

Figure 8: Supervisory Control Hierarchy

by Valkyrie’s sensing devices (Section 2.5) into perceptual cues that can be used as either feedback
signals to the control tasks or to provide appropriate situational awareness to the operator. It
is important to note that this dimensional reduction of sensory streams is necessary not only
for creating a more manageable set of data signals, but also because the limited bandwidth and
transmission constraints of Valkyrie’s operating environment require it from inception (as described
in Section 4.3). The pathway of perceptual reduction is achieved by various processing modules that
compress sensory data in into human parse-able shapes (planes, ellipsoids, etc.) that can effectively
be assigned by the operator various control affordances (grasp-ability, traverse-ability, etc.).

Tying these two pathways together, the robot behavior program layer ties together the tasks and
constraints of the control pathway with the processing modules of the perception pathway. The
behavioral programming syntax is then introduced, along with a new IDE called Robot Task Com-
mander (RTC) used to create programs using this syntax. RTC provides an easy-to-use development
environment for creating new state machines out of sequences of whole body control tasks. While
still an engineering tool for development, RTC allows operators to create a significant amount of
task structure while still providing the “knobs” to turn if control signals need to be tweaked or
modified at run-time. The final level of the hierarchy introduces a novel programming tool called an
affordance template that allows the operator to adjust behavior program references in an immersive
3D environment that brings together robot state and sensory data that enables fast modification,
recovery, and responsiveness.

5.1 Sensor Processing Modules

Relating the environment and an affordance template poses a challenge, due to the complexity and
volume of the raw data, as well as the general nature of the template. Thus Sensor Processing
Modules (SPM) were developed to act as a bridge between raw data and affordance templates.
SPMs create this bridge by semantically labeling regions of perception data with control oriented

labels. This data labeling provides a robust relationship between affordance templates and the
environment because primitive shapes are easy to detect, and graphs of them can be used to describe
affordance templates (Schnabel et al., 2008). In addition, operators have a reduced mental load
due to the increased saliency of control objectives in the environment. For example, the creation of
a map from depth data, reduces the information from each scan into an easily consumable object
that the operator can act upon.

Primitive shape decomposition performs the semantic labeling that is required by the SPM archi-
tecture. The decomposition assumes that the world consists of two types of shapes: planes and
ellipsoids. Planes are estimated by performing Principal Component Analysis (PCA) on the points
that are found in a certain volume. The axes returned from the PCA are then used to filter the
volumes by the following heuristics:

λ2 ÷ λ1 < 0.01 (3)

0.9 < λ0 ÷ λ1 < 1.1 (4)

Volumes that have been determined to be non-planar are then fit with an ellipsoid using convex
optimization (Asokan and Platt, 2014). These shapes were chosen because of the general applica-
bility to the tasks which Valkyrie must perform. For example, ellipsoids properly encode enveloping
grasps, as was demonstrated by (ten Pas and Platt, 2014), and planes capture the height and nor-
mal of the ground upon which the robot will walk. These primitive descriptions of the world allow
for a level of abstraction to be applied via the affordance templates, as described in Section 5.5.

As seen in Figure 9, primitive shape decomposition creates a simplified environment that allows
for generalized higher level functions to be applied or simplified shared control. In this image,
an image of a double door is shown. Points on the left are shown untouched. Points on the
right are converted to planes (shown in red) and ellipsoids (shown in green). While one ellipsoid
is (reasonably) found at the door handle, two other spurious ellipsoids are found at the top and
bottom of the wall. Although not useful behaviorally, an operator could easily prune these spurious
matches with minimal inconvenience.

5.2 Whole Body Control

The Whole Body Control (WBC) framework allows robot programmers to build sophisticated
applications out of closed-loop control components (Sentis and Khatib, 2005b; Sentis et al., 2013).
In a sense, these components capture the discrete behavioral intentions of the system, either as a
task that tracks a desired reference signal (e.g., a Cartesian end-effector trajectory, a grasp force
on an object, etc.), or a constraint that ensures a condition is maintained (e.g., contact between
the robot and its environment, relative configurations of coupled joints, etc.). Collectively these
components are called WBC primitives, and can be combined into composite structures called
compound tasks and constraint sets, respectively, that achieve a desired, prioritized ordering. On
Valkyrie, a whole-body torque controller is used that computes a dynamically consistent command
signal based on the goals of WBC primitives, the current robot configuration, and the mechanical
description of that robot (called the robot model) (Sentis and Khatib, 2005a). In the remainder of
this section, the robot model and WBC primitives are discussed in more detail.

Figure 9: On the left is the raw point cloud data, on the right is the plane representation as well
as an ellipsoid fit to the hinges and door handles

5.2.1 Robot Model

The robot model contains the dynamic and kinematic properties of the robot (i.e. a description
of the robot’s links and the joints that connect them), and is the basis of all WBC primitives.
For Valkyrie, a 6-DOF virtual joint is also included in order to capture the robot’s position and
orientation with respect to the world, as determined from IMU odometry1. During execution, the
robot model is updated using the current state of the robot (i.e. joint positions, q, and velocities,
q̇). For convenience, the robot’s state is defined as

Sq := {q, q̇} . (5)

Note that q, q̇ ∈ Rn where n is the number of real and virtual DOFs. From this information,
various useful dynamic and velocity-dependent quantities such as the joint space inertia matrix,
A(q) ∈ Rn×n, the gravity vector, g(q) ∈ Rn, or Jacobians, JF (q), for an arbitrary frames F(q)
such that

Ḟ = JF · q̇ ∈ R6 (6)

can be defined. For simplicity, JF from Equation 6 will be used to denote both the analytic
and geometric Jacobians, with the distinction being that the angular part of the frame velocity is
represented in terms of the rate of change of the Euler parameters in the first case, and the angular
velocity in the second (Sentis et al., 2010).

1Note that for fixed-base robots, the same virtual joint abstraction is used by simply fixing a 6-DoF constraint to
the base body.

5.2.2 WBC Primitives

WBC primitives represent the fundamental units of WBC computation from which tasks and
constraints are derived. Let us define a WBC primitive as

p(Sq,pd(Sq)), (7)

where pd(Sq) is the desired state of the primitive, possibly dependent on robot’s state. As such, p
can be generally thought of as an error function. The state of a WBC primitive is calculated from
the robot model, the current state of the robot, the current desired state of the WBC primitive,
and the Jacobian Jp(q), and is defined as

Sp = {p, ṗ} . (8)

In the following discussion, the notation pc and pt will be used to denote the states of constraints
and tasks respectively.

Constraints: A constraint encapsulates a mathematical description of a mechanical interaction
which is not directly described in the robot model when pc = 0. These include contact interactions
with the environment (e.g., keeping a foot on the ground, or a hand on a wall), internal mechanical
transmissions (e.g., coupled degrees of freedom), and joint limits. Constraints represent the im-
mutable goals of the system under which all other tasks must function. Table 3 provides example
constraints that have been implemented in WBC and tested on Valkyrie.

Tasks: WBC tasks are primitive closed-loop control objectives that produce a desired output
when pt = 0. Tasks using feedback signals based on the robot’s state can keep the robot well
conditioned; for example, away from joint limits. Tasks using signals derived from the environment
can allow the robot to reach out to desired goal locations and interact with objects and tools.
Table 4 provides a number of WBC tasks implemented and tested on Valkyrie. These include tasks
that control the joint configuration of the robot (JPos), the Cartesian position of a point on the
robot (CartPos) relative to a specified frame, the orientation of a link on the robot specified as a
Quaternion (QuaternionOrientation), and the desired center-of-mass (COM) of a robot.

5.2.3 Composite Structures

WBC primitives can be combined into composite structures that aim to achieve multiple objectives
at a given time. In particular, tasks can be combined into compound tasks that achieve more
complex behavior in a prioritized fashion. While certain tasks may reside at the same priority
level, there is no guarantee that the steady state error for these tasks will be achieved as progress
towards the goal of one may interfere the progress towards another. If a strict ordering is necessary,
tasks can be combined using null space projection such that they only execute subject to the goals
of other tasks (Nakamura, 1991; Khatib, 1987). Constraints can be combined into constraint sets.
However, because constraints represent immutable objections, there is no sense of prioritization
as exists in composite tasks. Tasks and composite tasks can also run subject to constraints or
constraint sets without interfering with the constraint goals.

5.2.4 Valkyrie Implementation

The WBC framework was successfully implemented for the Valkyrie project, both in simulation
and on the real robot. In simulation, WBC was used to control a full representation of the robot
in conjunction with planners for walking using inverted pendulum dynamics, similar to that given
in (Zhao et al., 2013). On the real robot, the WBC framework was used only to control the
upper torso (the robot’s arms and head), while the walking functionality was provided by the IK
algorithm provided in Section 5.3. This “dual-robot” strategy was implemented for simplicity, as a
first pass at integrating manipulation and mobility on the complex Valkyrie system. Ongoing work
is investigating a full-robot WBC implementation on the hardware system.

The WBC library was written in C++ and was initially implemented in a single-threaded manner
where the model and task Jacobians were updated every cycle of the servo loop in series with the
computation of the joint commands via a series of dynamically-consistent null space projections.
Later, to achieve higher servo frequency, the process of updating the model and task Jacobians
was offloaded into separate child threads. This is possible because the joint states change slowly
relative to the servo frequency. Note that in the multi-threaded architecture the latest joint state
information is still used in two places: (1) in the error calculations of the JPos task that specifies
the robot’s posture and is present as the lowest-priority task in every compound task used with
Valkyrie, and (2) in the impedance controller that converts the torque commands produced by the
WBC algorithm into an impedance command consisting of a desired torque, position, and velocity
for each joint. Having a high servo frequency is desirable because it enables higher controller gains
and thus increases the achievable levels of tracking accuracy and impedance.

Figure 10: The maximum servo frequency of WBC versus the number of tasks when controlling
Valkyrie’s 17 DOF upperbody.

The maximum servo frequency depends on the computational complexity of the WBC controller,
which in turn depends on complexity of the compound task. To understand the maximum servo

frequency that can be achieved by our implementation, we measure the latency of executing one cy-
cle of the servo loop with compound tasks containing between one and fifteen tasks. This is because
the largest compound task we used for the DRC Trials contained fifteen tasks. We then invert these
latency measurements to obtain the theoretical maximum frequency that can be obtained. Servo
frequency was not directly measured since the controller operates asynchronously from the robot
and servo loop is triggered by a periodic clock of known frequency (1kHz in Valkyrie’s case). The
purpose of this study is to gain insight into the maximum frequency that could be achieved assum-
ing no other bottlenecks in the system, e.g., latencies from communication, sensing, and actuation.
For each compound task, we measured the execution latency of the servo loop ten thousand times.
All measurements were done on a laptop containing an Intel Core i7-3520M 2.90GHz CPU and
16GB of DDR3 RAM, running Ubuntu Linux 12.04.4 and Linux kernel 3.13.0 (a non-realtime OS
was used in this study because the same OS was used on Valkyrie during the DRC Trials). The
WBC controller was configured to use Valkyrie’s 17 DOF upperbody. The results are shown in
Figure 10. Each vertical bar denotes the average and the error bars denote the standard deviation
of the dataset. As indicated by the figure, the multi-threaded control architecture increases the
maximum achievable servo frequency over the single-threaded implementation by 25−54% depend-
ing on the size of the compound task. Servo frequencies in the range of 1kHz to 3kHz are achievable
by our WBC implementation. This is sufficiently high to achieve the necessary performance for the
DRC tasks.

5.3 Inverse Kinematics (IK) Locomotion Strategy

During the DRC Trials, only Valkyrie’s upper body ran under impedance mode, receiving its
commands from WBC. Valkyrie’s lower body, however, ran in position mode, receiving desired
trajectories from an inverse kinematics (IK) based walking algorithm. This hybrid approach was
taken due to the implementation challenges involved with model-based locomotion on a robot of
Valkyrie’s complexity.

When designing controllers for stable biped locomotion, a highly accurate dynamic model of the
robot is not always available. Although the structure of the dynamic equations of motion are
well known and model parameters such as link lengths and total robot mass may be known very
accurately, other parameters will likely not be known as accurately. Values for link inertia tensors,
encoder offsets, coefficients of friction, elastic effects of cabling, power supply dynamics, force sensor
calibration, etc. are typically much more difficult to measure in practice. As mentioned in (Mistry
et al., 2008), model-based techniques suffer when there is large model error. In situations where
model error is known or suspected to be a limiting factor in achieving locomotion, a position-
based controller may be preferred over a similar torque-based model dependent controller. Inverse
kinematics is a popular technique that can be employed to produce model-independent position
based control. This section focuses on the non-redundant Newton-Raphson inverse kinematics
technique, which is largely dismissed in the literature (Tevatia and Schaal, 2000; Whitney, 1972;
Mistry et al., 2008); however, due to the algorithms simplicity, it can lead to quick prototyping of
simple behaviors as a robotic system is being developed.

5.3.1 IK Algorithm

Given a set of actual and desired task values, ya(q) and yd(t), inverse kinematics tries to find a
value, qd, such that ya(qd) = yd(t) within a specified tolerance, ε. Since PD-control was employed,

Algorithm 1 Inverse Kinematics

Inputs: q, t,ya(q),yd(t), q
seed
d , ε

Outputs: qd, q̇d

qd ← qseedd

yerr ← ya(q
seed
d)− yd(t)

while max(|yerr|) > ε do
J ← ∂yerr

∂q (qd)

qd ← qd − J−1yerr
yerr ← ya(qd)− yd(t)

end while
Ja ← ∂ya

∂q (qd)

q̇d ← J−1
a ẏd(t)

the derivative term, q̇d, was also included as an output of the algorithm. The iterative Newton-
Raphson method is shown as a modified version of the IK algorithm from (Meredith and Maddock,
2004) in Algorithm 1, and is used to obtain the vector of desired joint positions, qd, at a given
point in time.

This implementation can be stated with the functional relationship (qd, q̇d) = IK(ya(·),yd, qseedd).
Assuming continuity in the output trajectories, using the previously computed inverse kinematics
value as the seed value, qseedd , can produce quicker convergence of the Newton-Raphson algorithm.

Note that J = ∂yerr

∂q = ∂ya

∂q = Ja since yd is a function of time and not state. Also note that
the coordinates used will be the full, extended coordinates, q, which is comprised of the virtual or
floating-base coordinates, qb ∈ R6, and the physical robot generalized coordinates, qr ∈ Rn, where
n is the number of generalized coordinates for the robot.

5.3.2 Output Selection

The selection of the constraints or outputs, ya, is an important step in the implementation of
different motion behaviors. The constraints for the walking behavior were inspired by the outputs
used in dynamic (hybrid zero dynamics-based) locomotion, with examples of such constraints given
in (Grizzle et al., 2010; Morris et al., 2013; Lack et al., 2014; Ames et al., 2012). In particular,
outputs were chosen to regulate the full-body behavior of the robot, including the center of mass,
foot height, lateral foot spacing, etc. For stepping over a cinder block, additional constraints were
placed on the torso and waist orientation. For the floating-base model, where the torso is the base
link, constraints were supplied to fix the position and orientation of the feet, which then assumes
that the feet are flat upon the ground. The specific outputs used in these behaviors are simply sets
of linear combinations of nonlinear Cartesian positions in the world frame and linear combinations
of the generalized coordinates. The desired outputs were time-based desired trajectories with a set
of parameters, α, resulting in the form yd(t,α). In this case, they were defined as a minimum-
jerk profile which goes from an initial position to a final position, beginning and ending with zero
velocity and zero acceleration.

5.3.3 Planning

Several different trajectories or motion primitives must be pieced together to realize behaviors
as complex as walking or walking over cinder blocks. Given the simplified inverse kinematics
technique, basic steps need to be taken to ensure that the behaviors produced are continuous and,
if needed, periodic. In order to enforce continuity, a planner needs to operate between two different
sets of constraints. When the planner switches between the current set of constraints, yca(t) with
the desired trajectories specified as ycd(t,α

c), to the next set of constraints, yna (t) and ynd (t,αn),
the planner must provide a valid set of parameters, αn, for the new set of constraints, such that
IK(yca(·),ycd(t

p
f ,α

c), qseedd) = IK(yna (·),ynd (tn0 ,α
n), qseedd), where tpf is the end-time of the current

set of constraints and tn0 is the initial time for the next set of constraints, and qseedd in this case
is the previously solved-for inverse kinematics value. However, due to the nature of the deadbeat
update, drift may occur in the inverse kinematics solutions and may cause aperiodicity, namely in
the floating-base coordinates. To avoid this drift, certain states must be specified where all of the
desired values are captured and restored in subsequent visitations. This will enforce periodicity
due to the full-rank nature of the inverse kinematics problem.

5.3.4 Valkyrie Implementations

The non-redundant Newton-Raphson algorithm and the planner concepts introduced above were
implemented and used to experimentally achieve prototype walking and cinder block climbing
behaviors. Statically stable walking was implemented with the aforementioned set of outputs, with
Figure 11 showing tiles of the behavior on the physical hardware. The experimental tracking plots
in Figure 12 show very low tracking error, indicating excellent performance in the hardware. A
video of this walking behavior experiment is publicly available online2. The cinder block behavior,
where Valkyrie takes a total of four steps up and over a row of cinder blocks, was implemented
in the same fashion as the walking behavior. The resulting behavior is shown in Figure 13, and
the experimental tracking plots are shown in Figure 14. A video of this cinder block behavior
experiment is publicly available online3.

Figure 11: Tiles of walking behavior in action.

5.4 Robot Task Commander

Robot Task Commander (RTC) is a robot programming environment that allows task developers
to build applications out of controllers and sensory processing modules to perform complex tasks in

2http://youtu.be/hxvYLO713Cc
3http://youtu.be/qubDKVCut4o

http://youtu.be/hxvYLO713Cc
http://youtu.be/qubDKVCut4o

0 20 40 60 80 100

t (s)

−0.30

−0.15

0.00

0.15

0.30

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.008

0.000

0.008

0.016

er
ro
r
(r
ad

)

(a) Left Hip Adductor

0 20 40 60 80 100

t (s)

−0.30

−0.15

0.00

0.15

0.30

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.06

−0.04

−0.02

0.00

0.02

er
ro
r
(r
ad

)

(b) Right Hip Adductor

0 20 40 60 80 100

t (s)

−1.5

−1.2

−0.9

−0.6

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.02

−0.01

0.00

0.01

0.02

er
ro
r
(r
ad

)

(c) Left Knee Extensor

0 20 40 60 80 100

t (s)

−1.6

−1.2

−0.8

−0.4

0.0

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.030

−0.015

0.000

0.015

er
ro
r
(r
ad

)

(d) Right Knee Extensor

0 20 40 60 80 100

t (s)

−1.6

−1.2

−0.8

−0.4

0.0

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.04

−0.02

0.00

0.02

er
ro
r
(r
ad

)

(e) Left Hip Extensor

0 20 40 60 80 100

t (s)

−1.6

−1.2

−0.8

−0.4

0.0

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.06

−0.04

−0.02

0.00

0.02

er
ro
r
(r
ad

)

(f) Right Hip Extensor

0 20 40 60 80 100

t (s)

−0.8

−0.4

0.0

0.4

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.02

−0.01

0.00

0.01

er
ro
r
(r
ad

)

(g) Left Ankle Extensor

0 20 40 60 80 100

t (s)

−1.00

−0.75

−0.50

−0.25
q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.02

−0.01

0.00

0.01

er
ro
r
(r
ad

)

(h) Right Ankle Extensor

Figure 12: Plots of the actual qa versus desired qd joint angle trajectories from the walking ex-
periment with error metrics. Each of the vertical lines represents a major transition in the state
machine. Note that the ankle angles are computed from a transmission mapping coupled linear
actuators to pitch and roll angles.

real-world environments (Hart et al., 2014b). RTC provides an integrated development environment
(IDE) that is suitable for both development and deployment of applications that can respond to
different, possibly unforeseen, situations either autonomously or by enabling operators to modify
these programs quickly in the field. While more fully autonomous solutions to complex robot
behavior still tend to be relegated to the laboratory, run-time application modification usually
requires a certain amount of expert knowledge (i.e. re-programming by a robotics expert or system
designer). This can be an expensive and potentially time-consuming practice. However, with
appropriate tools and levels of abstraction, robot applications can be adapted and modified quickly.
To these ends, RTC has been designed for use by both experts and non-experts to quickly create, re-
use, and adapt application software for complex systems such as humanoid robots or a multi-robot
manufacturing plant.

5.4.1 RTC Design Principles

The following design principles were followed in the development of the RTC framework:

1. Robot applications programs must adhere to an application syntax that also allows for
hierarchical composition.

Figure 13: Tiles of cinder block behavior in action.

2. Applications must control the flow of both distributed computation as well as the designa-
tion of a robot’s control mode.

3. Units of computation must be generalizable and, therefore, must be written in terms of
abstract interfaces (i.e. types of data), not specific robot resources.

4. All functionality must be stored in a library accessible for re-use to minimize code re-
creation.

5. Appropriate interfaces must exist for both experts and non-experts.

Together, these principles emphasize a paradigm of application flexibility and re-usability. A formal
syntax will encourage principled construction that minimize brittle code that leads to fast depre-
cation and “bit-rot.” Computation that is written generally in terms of data types (joint positions,
Cartesian positions, wrenches, etc.) instead of specific hardware resources (Valkyrie’s left arm or
right foot), allows behavior to be re-parameterized in different contexts. For example, an RTC
program for pick-and-place can be re-parameterized to use Valkyrie’s left arm or right arm at the
operator’s run-time request. By ensuring that all programs are stored in a library and composable
hierarchically, functionality can be re-used easily. A pick-and-place program, for example, can be
used in a more complex stacking program. Finally, while expert interfaces provide an advanced
developer to code complex algorithms (RTC provides a Python language interface for building com-
putation components called process nodes), more stream-lined interfaces, like a visual programming

0 20 40 60 80 100

t (s)

−0.30

−0.15

0.00

0.15

0.30

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

0.000

0.004

0.008

0.012

0.016

er
ro
r
(r
ad

)

(a) Left Hip Adductor

0 20 40 60 80 100

t (s)

−0.30

−0.15

0.00

0.15

0.30

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.004

0.000

0.004

0.008

0.012

er
ro
r
(r
ad

)

(b) Right Hip Adductor

0 20 40 60 80 100

t (s)

−1.0

−0.8

−0.6

−0.4

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.02

−0.01

0.00

0.01

0.02

er
ro
r
(r
ad

)

(c) Left Knee Extensor

0 20 40 60 80 100

t (s)

−1.0

−0.8

−0.6

−0.4

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.02

−0.01

0.00

0.01

0.02

0.03

er
ro
r
(r
ad

)

(d) Right Knee Extensor

0 20 40 60 80 100

t (s)

−0.60

−0.45

−0.30

−0.15

0.00

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.008

0.000

0.008

0.016

er
ro
r
(r
ad

)

(e) Left Hip Extensor

0 20 40 60 80 100

t (s)

−0.60

−0.45

−0.30

−0.15

0.00

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.01

0.00

0.01

0.02

er
ro
r
(r
ad

)

(f) Right Hip Extensor

0 20 40 60 80 100

t (s)

−0.6

−0.5

−0.4

−0.3

−0.2

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.015

−0.010

−0.005

0.000

0.005

0.010

er
ro
r
(r
ad

)

(g) Left Ankle Extensor

0 20 40 60 80 100

t (s)

−0.6

−0.5

−0.4

−0.3

−0.2

q
(r
ad

)

qdqa
0 20 40 60 80 100

t (s)

−0.016

−0.008

0.000

0.008

er
ro
r
(r
ad

)

(h) Right Ankle Extensor

Figure 14: Plots of the actual qa versus desired qd joint angle trajectories from the cinder block
experiment with error metrics, formatted the same as Figure 12.

language (VPL) are more suitable for non-expert users or to facilitate fast operator modification
at run-time, when a code-level interface is too cumbersome.

5.4.2 RTC Implementation

The RTC system architecture (Figure 15(a)) consists of a single graphical front end and at least
one execution engine. The front end, shown in Figure 15(b), represents a simple and unified point
of access for an operator to develop, deploy, or modify applications that control a potentially
large number of remote systems. The execution engines handle the execution of each application
component—process nodes (such as sensory processing modules) that perform auxiliary compu-
tation, and control state machines that sequence and parameterize composite WBC tasks and
constraints—as well as communication between itself, other engines, and the front end.

Decomposing the deployment architecture into multiple execution engines and a single user interface
presents a key advantage in limited bandwidth scenarios such as controlling Valkyrie. In RTC, all
development is done locally on the user’s machine, but during deployment, only basic program
flow feedback and control is required; discrete information that can typically be transmitted even
with severe bandwidth limitations. Additionally, user feedback from the remote engine(s) to the
graphical front end can be manually configured during runtime, allowing the user to dynamically
prioritize which feedback data, if any, he or she wants during operations. To further keep the

bandwidth usage low, all data is automatically compressed using LZMA (Merhav et al., 1989) and
then serialized using the Python cPickle library before being sent across a socket using ZMQ.

(a) (b)

Figure 15: (a) shows the RTC Architecture. Multiple execution engines can be deployed on the
network to run various processing nodes that communicate using ROS. On the robot, a single
execution engine communicates with the control system to handle time-critical operations such as
controller switching and activation. (b) shows the RTC Front End. This graphical user interface
provides access to the RTC application library (A), a text editor for writing new Python process
nodes (B), a canvas to build hierarchical nodes and applications using a VPL (C), a parameter
editor for the selected state or node (D), a command output window streaming relevant run-time
information (E), and a deployment manager (F) that allows the operator to select the execution
engine a selected node will execute on.

5.5 Affordance Templates

Although a significant amount of task structure can be programmed in RTC applications (transi-
tions between WBC control modes, sensory processing modules, etc.), it is important to provide a
flexible interface for the operator to set or adjust additional task parameters at run-time in order to
ensure task success. These parameters may include controller reference goals or trajectories, object
locations or poses, navigational way-points, etc. This paradigm follows a methodology of shared
control, which lets the operator and robot control different signals simultaneously, rather than on
traded control, which assumes direct teleoperation or full autonomy. This notion of shared con-
trol can reduce the operator’s workload and is therefore suitable over unreliable and/or unknown
networks. Shared control describes a system in which an operator commands higher-level goals as
opposed to every joint-level robot command.

The shared control level of the Valkyrie system follows a supervisory control paradigm of Plan,
Teach, Monitor, Intervene, and Learn (PTMIL) (Sheridan, 1992). During the planning step, the
operator understands the robot’s environment and what objectives need to be satisfied in the control
loop. Specifically, an explicit link between the run-time context and the robot’s task parameters
is created by allowing the operator to identify, through the robot’s sensory systems, the likely
affordances in the environment and the controller reference signals that can be used to accomplish
the corresponding behavior. An affordance describes a place or object in the world that affords
an action by a particular agent. If something affords “sitting” it is not that that thing is a chair,

(a) (b)

Figure 16: (a) shows a interactive marker with 6-DOFs of control associated with a drill shape. (b)
shows a “wheel” affordance template with different Valkyrie hands markers providing controls for
various task sub-goals (pre-grasp, grasp, turn-goal, etc.).

but rather that it has a surface that the agent could sit on (without falling off), whether it be a
chair, a stool, a rock, or the ground. The concept of affordances was initially introduced in the
psychological literature by Gibson (Gibson, 1977) as a means of describing cognitive constructs
that assign functional merit to the environment. It is therefore readily applicable for programming
robots; embodied agents that must perform actions to achieve some discernible objective (Chemero,
2003; Stoytchev, 2005; Hart and Grupen, 2013).

For Valkyrie, a new programming tool called an affordance template was designed specifically for
the operator to overlay and adjust 3D representations of RTC program goals in an immersive
3D environment (Hart et al., 2014a). Affordance templates were implemented using the RVIz
interactive marker packages (Gossow et al., 2011). Interactive markers consist of visual controls
with which a user can interact in an immersive 3D environment that contains robot state feedback
and 3D sensory data (laser scans, RGB-D point clouds, occupancy grids). Interaction can occur by
dragging the controls with the mouse, or by creating custom menu options that can be accessed by
right-clicking the marker. Each individual marker allows up to 6 controllable degrees of freedom
(position and orientation and can be associated with custom shapes described by the developer (e.g.,
a tool, a representation of the robot’s end-effector, etc.). Figure 16(a) shows a 6-DOF interactive
marker associated with a drill shape model. Multiple interactive marker controls can be associated
together into composite structures that allow multiple means of adjustment and are suitable for
complex tasks like opening a door and walking through it or using a picking up a fire hose and
attaching it to a wye. Figure 16(b) shows a composite template for wheel turning that has multiple
hand goal locations (pre-grasp, grasp, turn, release) appropriate for accomplishing the task. By
right-clicking on each of the hands, 6-DOF controls can be shown to provide more fine-tuned
adjustment.

Figure 5.5 shows the placement of the wheel turning affordance template in the immersive RViz
environment. In (a), Valkyrie is shown standing in front of a valve. In (b), the RViz environment
showing the state feedback of the robot is seen along with compressed point cloud data (Section 4.3)

(a)

(b) (c) (d)

Figure 17: (a) shows Valkyrie standing in front of a valve. (b) shows the RViz view with the
robot and a registered scan from the head-mounted point cloud device. (c) and (d) show the
wheel template before and after it is overlaid (by the operator) on the sensor data to provide the
appropriate goal references for the RTC wheel-turning program.

coming from the head-mounted Ensenso sensor. From this view, an operator can clearly identify
the valve in the robot’s workspace, and can overlay the wheel affordance template, seen in (c),
and adjust the hand pre-grasp, grasp, and grasp goal locations (shown as different color hands,
displayed in the wheel reference frame) as necessary. When the operator is satisfied with these
goal locations, it can publish the information to an underlying RTC program that sequences the
motions accordingly to turn and release the valve (Figure 18).

It should be noted that, over time, affordance templates could monitor task performance and
learn from this experience. Template parameters (such as an object’s size, it’s location in the
workspace, etc.) that become reliable predictors of success or failure can be monitored to give the
operator feedback either before or during task execution. This feedback could indicate when the
operator might need to intervene to make corrections and better ensure task success. This additional
functionality, although not currently implemented in the affordance template framework, is fully
compatible with the PTMIL paradigm, and is a subject of ongoing investigation.

6 Concluding Remarks

The NASA-JSC team completed the design and development of “clean sheet” robot named Valkyrie
in under a 12 month timeline. The resulting fully electric machine is completely self contained in-
cluding a sophisticated on-board power system and powerful on-board computers. This naturally
gives the robot quite a head start toward the eventual and intended use of performing work in
remote, austere locations in human engineered environments. The robot design pushed the enve-
lope, advancing technologies on several fronts including high performance series elastic actuators,
torque sensing, energy storage, embedded motion control, tactile sensing and electric motors. The
software architecture, high level control and operator interface are very powerful tools that were
developed first in simulation and then deployed to the robot in an equally aggressive timeline and
made significant original contributions to the field.

To mitigate the risk of an accelerated development timeline to develop bipedal locomotion, the
original plan called for fabricating two Valkyries that would support the aggressive learning phase
of deploying the walking algorithms to the robot. However, due to funding limitations, only one
Valkyrie was produced. This caused considerable development strain between the locomotion team
and the manipulation and applications team developing the tasks. Because of the modularity of
the robot, the robot was divided at the waist to continue development of manipulation tasks on
the upper body and development of inverse kinematics based walking on the lower body.

While trial runs proved Valkyrie competent in multiple tasks, and the robot continuously scored
seven challenge points during these runs, the robot performed poorly at the DRC Trials in December
of 2013, failing to score any points during the actual competition. This can be attributed most
directly to four major factors: NASA JSC had very little experience with bipedal locomotion robots,
the deployment timeline was too aggressive, not all systems were fully vetted before deployment
and the untimely U.S. government shutdown (Office of Management and Budget, 2013).

The next steps for Valkyrie involve improvements to the control software and the operator inter-
face and evaluations of hardware systems, such as the perceptive sensor suite. For For the DRC
trials, walking proved non-robust due to the lack of deep sensor integration together with the
statically stable locomotion strategy implemented as a result of the time-critical nature of the chal-

Figure 18: Valkyrie turning a valve using an affordance template.

lenge. Proceeding forward, dynamically stable walking will be implemented, integrating walking
and manipulation with WBC will be pursued. In particular, using WBC to implement a more so-
phisticated, feedback-driven locomotion strategy, such as capture-point walking (Pratt et al., 2006)
will be investigated. Manipulation was performed mainly by position controllers; future improve-
ment of manipulation will be attained by the addition of force- or impedance-based controllers that
will allow for more compliant, human-safe motions (Platt Jr et al., 2010). The affordance template
paradigm will be adapted to provide more flexibility during run-time operations and to offer a
larger suite of templates for unknown operations scenarios. Tighter integration between perceived
objects in the robot’s environment, provided by primitive shape finding SPMs, and affordance tem-
plates will be achieved to reduce operator workload by bootstrapping the affordance identification
procedure that is currently done fully by the operator.

Long-range plans for Valkyrie and its systems involve operations on other planets as either an
astronaut-assistant robot or as a pre-cursor robot for setup. The robots in these scenarios will be
expected to perform many of the functions that Valkyrie has and will perform for the DRC. While
wheeled mobility may be desirable for operations over planetary surfaces, situations exist where
bipedal locomotion is advantageous, such as climbing ladders, traversing human-sized walkways
and scaling habitats. Valkyrie is a grand step in the march towards intelligent NASA robotics for
space exploration.

7 Acknowledgments

The authors would like to send a special thanks to Dr. Gill Pratt who funded and supported this
work and all the staff at DARPA who helped organize and run the DRC event’s successful execution.
It was an amazing opportunity to be a part of this worldwide endeavor. We would also like to
thank our management within NASA’s Johnson Space Center and especially Dr. Michael Gazarik,
Associate Administrator of the Space Technology Mission Directorate at NASA Headquarters, for
supporting this work and additionally funding the development in conjunction with DARPA. We
would also like to offer thanks to Laurie Rich, Deputy Director and Special Advisor on Higher
Education at the State of Texas, and the State of Texas’ Emerging Technology Fund, which funded
the Texas universities involvement in NASA’s team. We would like to thank Jacobs Engineering
for supporting this work with their Innovation Fund and working through the many challenges of
delayed government funding. We would also like to thank the many NASA contractors that took
part in this challenge with the NASA team. Finally, we would like to thank the University of Texas
at Austin and Texas A&M University staff for staying patient as we worked through the many
logistical issues that provided NASA access to the talented university faculty and students.

References

Ambrose, R., Aldridge, H., Askew, R., Burridge, R., Bluethmann, W., Diftler, M., Lovchik, C.,
Magruder, D., and Rehnmark, F. (2000). Robonaut: Nasa’s space humanoid. Intelligent
Systems and their Applications, IEEE, 15(4):57–63.

Ames, A. D., Cousineau, E. A., and Powell, M. J. (2012). Dynamically stable bipedal robotic
walking with NAO via human-inspired hybrid zero dynamics. In Hybrid Systems: Computation
and Control, pages 135–44, Beijing.

Asokan, P. and Platt, R. (2014). Ellipsoid consensus: An approach to localizing handles for grasping
in 3d point clouds. In ICRA. IEEE.

Bridgwater, L., Ihrke, C., Diftler, M., Abdallah, M., Radford, N., Rogers, J. M., Yayathi, S., Askew,
R. S., and Linn, D. (2012). The robonaut 2 hand - designed to do work with tools. In Robotics
and Automation (ICRA), 2012 IEEE International Conference on, pages 3425–3430.

Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15(3):181–195.

Diftler, M., Culbert, C., Ambrose, R., Platt, R., J., and Bluethmann, W. (2003). Evolution of the
nasa/darpa robonaut control system. In Robotics and Automation, 2003. Proceedings. ICRA
’03. IEEE International Conference on, volume 2, pages 2543–2548 vol.2.

Diftler, M., Mehling, J., Abdallah, M., Radford, N., Bridgwater, L., Sanders, A., Askew, R., Linn,
D., Yamokoski, J., Permenter, F., Hargrave, B., Platt, R., Savely, R., and Ambrose, R. (2011).
Robonaut 2 - the first humanoid robot in space. In Proceedings of the IEEE Conference on
Robotics and Automation (ICRA), Shanghai, China.

Fowler, J. (2000). Qccpack: An open-source software library for quantization, compression, and
coding. In Applications of Digital Image Processing XXIII, pages 243–250. SPIE.

Gibson, J. J. (1977). The theory of affordances. In Perceiving, acting and knowing: toward an
ecological psychology, pages 67–82, Hillsdale, NJ. Lawrence Erlbaum Associates Publishers.

Gossow, D., Leeper, A., Hershberger, D., and Ciocarlie, M. T. (2011). Interactive markers: 3-
D user interfaces for ros applications [ros topics]. IEEE Robotics & Automation Magazine,
18(4):14–15.

Grizzle, J., Chevallereau, C., Ames, A. D., and Sinnet, R. W. (2010). 3d bipedal robotic walking:
Models, feedback control, and open problems. In Proceedings of the IFAC Symposium On
Nonlinear Control Systems.

Guo, R., Nguyen, V., Niu, L., and Bridgwater, L. (2014). Design and analysis of a tendon-driven,
under-actuated robotic hand. In Proceedings of the ASME 2014 International Design Engineer-
ing Technical Conferences & Computers and Information in Engineering Conference, Buffalo,
NY. USA. IDETC/CIE.

Harrison, D. A., Ambrose, R., Bluethmann, B., and Junkin, L. (2008). Next generation rover for
lunar exploration. In Aerospace Conference, 2008 IEEE, pages 1–14.

Hart, S., Dinh, P., and Hambuchen, K. (2014a). Affordance templates for shared robot control. In
Artificial Intelligence and Human-Robot Interaction, AAAI Fall Symposium Series, Arlington,
VA. USA.

Hart, S., Dinh, P., Yamokoski, J., Wightman, B., and Radford, N. (2014b). Robot Task Comman-
der: A framework and IDE for robot application development. In International Conference on
Intelligent Robots and Systems (IROS), Chicago, IL. USA. IEEE/RSJ.

Hart, S. and Grupen, R. (2013). Intrinsically motivated affordance discovery and modeling. In Bal-
dassarre, G. and Mirolli, M., editors, Intrinsically Motivated Learning in Natural and Artificial
Systems, pages 279–300. Springer Berlin Heidelberg.

Ihrke, C. A., Mehling, J. S., Parsons, A. H., Griffith, B. K., Radford, N. A., Permenter, F. N.,
Davis, D. R., Ambrose, R. O., Junkin, L. Q., et al. (2012). Rotary series elastic actuator. US
Patent 8,291,788.

iMatix Corporation (2007). ZeroMQ: Distributed Computing Made Simple.

Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Robotics & Automation, 3(1):43–53.

Lack, J., Powell, M. J., and Ames, A. D. (2014). Planar multi-contact bipedal walking using hybrid
zero dynamics. In Robotics and Automation (ICRA), 2014 IEEE International Conference on.
IEEE.

Lai-Fook, K. and Ambrose, R. (1997). Automation of bioregenerative habitats for space environ-
ments. In Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference
on, volume 3, pages 2471–2476 vol.3.

Lovchik, C. and Diftler, M. (1999). The robonaut hand: a dexterous robot hand for space. In
Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, vol-
ume 2, pages 907–912 vol.2.

Meeussen, W. (2013). ros control.

Mehling, J. S., Strawser, P., Bridgwater, L., Verdeyen, W., and Rovekamp, R. (2007). Centaur:
Nasa’s mobile humanoid designed for field work. In Robotics and Automation, 2007 IEEE
International Conference on, pages 2928–2933.

Meredith, M. and Maddock, S. (2004). Real-time inverse kinematics: The return of the jacobian.
Technical report, Department of Computer Science, University of Sheffield.

Merhav, N., Gutman, M., and Ziv, J. (1989). On the estimation of the order of a markov chain and
universal data compression. Information Theory, IEEE Transactions on, 35(5):1014–1019.

Mistry, M., Nakanishi, J., Cheng, G., and Schaal, S. (2008). Inverse kinematics with floating base
and constraints for full body humanoid robot control. In Humanoid Robots, 2008. Humanoids
2008. 8th IEEE-RAS International Conference on, pages 22–27. Look into control techniques
How does using velocity affect the base coordinates? Since it is not iterative, maybe incorpo-
rating the constraints allows for the true orientation to work its way in.

Morris, B., Powell, M. J., and Ames, A. D. (2013). Sufficient conditions for the lipschitz continuity
of qp-based multi-objective control of humanoid robots. In Decision and Control (CDC), 2013
IEEE 52nd Annual Conference on, pages 2920–2926. IEEE.

Nakamura, Y. (1991). Advanced Robotics: Redundancy and Optimization. Addison-Wesley.

Office of Management and Budget (2013). Impacts and costs of the october 2013 federal government
shutdown. http://www.whitehouse.gov/sites/default/files/omb/reports/impacts-and-costs-of-
october-2013-federal-government-shutdown-report.pdf.

Paine, N., Mehling, J. S., Holley, J., Radford, N., Johnson, G., Fok, C., and Sentis, L. (2014). Actu-
ator Control for the NASA-JSC Valkyrie Humanoid Robot: A Decoupled Dynamics Approach
for Torque Control of Series Elastic Robots. Journal of Field Robotics (Submitted 2014).

Platt Jr, R., Abdallah, M. E., and Wampler, C. W. (2010). Multi-priority cartesian impedance
control. In Robotics: Science and Systems.

Pratt, J., Carff, J., Drakunov, S., and Goswami, A. (2006). Capture point: A step toward humanoid
push recovery. In Humanoid Robots, 2006 6th IEEE-RAS International Conference on, pages
200–207. IEEE.

Rea, R., Beck, C., Rovekamp, R., Diftler, M., and Neuhaus, P. (2013). X1: A robotic exoskele-
ton for in-space countermeasures and dynamometry. In AIAA SPACE 2013 Conference and
Exposition.

Said, A. and Pearlman, W. (1996). A new fast and efficient image codec based on set partitioning
in hierarchical trees. In IEEE Transactions on Circuits and Systems for Video Technology,
pages 243–250. IEEE.

Schnabel, R., Wessel, R., Wahl, R., and Klein, R. (2008). Shape recognition in 3d point-clouds. In
Skala, V., editor, The 16-th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision’2008. UNION Agency-Science Press.

Sentis, L. and Khatib, O. (2005a). Control of free-floating humanoid robots through task prioritiza-
tion. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation.
ICRA 2005., pages 1718–1723.

Sentis, L. and Khatib, O. (2005b). Synthesis of whole-body behaviors through hierarchical control
of behavioral primitives. International Journal of Humanoid Robotics, pages 505–518.

Sentis, L., Park, J., and Khatib, O. (2010). Compliant control of multicontact and center-of-mass
behaviors in humanoid robots. IEEE Transactions on Robotics, 26(3):483–501.

Sentis, L., Petersen, J., and Philippsen, R. (2013). Implementation and stability analysis of pri-
oritized whole-body compliant controllers on a wheeled humanoid robot in uneven terrains.
Autonomous Robots, 35(4):301–319.

Sheridan, T. B. (1992). Telerobotics, Automation, and Human Supervisory Control. The MIT
Press.

Stoytchev, A. (2005). Toward learning the binding affordances of objects: A behavior-grounded
approach. In Proceedings of the AAAI Spring Symposium on Developmental Robotics, Stanford
University.

ten Pas, A. and Platt, R. (2014). Localizing grasp affordances in 3-d points clouds using taubin
quadric fitting. In ICRA. IEEE.

Tevatia, G. and Schaal, S. (2000). Inverse kinematics for humanoid robots. In In Proceedings of
the International Conference on Robotics and Automation (ICRA2000, pages 294–299.

Whitney, D. E. (1972). The mathematics of coordinated control of prosthetic arms and manipula-
tors. Journal of Dynamic Systems, Measurement, and Control, 94(4):303.

Zhao, Y., Kim, D., Fernandez, B., and Sentis, L. (2013). Phase space planning and robust control for
data-driven locomotion behaviors. In Humanoid Robots (Humanoids), 2013 13th IEEE-RAS
International Conference on, Atlanta, Georgia.

Manufacturer Name Type Range Resolution FPS Placement

PMD Camboard Nano TOF Depth 0m-1m 160x120 90 Chin, Wrists, Shins

Ensenso N-10 Texture Aided Stereo 450mm - 1600mm 640x480 8 Forehead

Hokuyo UTM-30LX-EW LIDAR 0.1m - 10m 1080 x 1 40 Both Knees

Ibeo LUX 8L LIDAR 200m 880x8 25 Eyeball level

Point Grey Research Flea 3 (FS3-U3-13E4M-C) Monochromatic Camera N/A 1280x1024 60 FPS Left and Right Waist, Right Lower Back

Senix TSPC-30S1-232 Sonar 4.3m N/A 20 Waist level

Table 1: Valkyrie Exteroceptive Sensor Suite

Manufacturer Name Type Placement

Invensense MPU6000 3-axis Gyro and 3-Axis Accelerometer Both hands and feet

Takktile Takktile Pressure Sensor Fingers and Palm

ATI 9105-NETOEM 6-axis load cell Both Ankles

Tekscan 9811 Pressure Sensor Soles of both feet

Futek TFF60 Linear Load cell In both linkages of an ankle actuator

Microstrain 3DM-GX3-15 6-axis IMU Left and Right Shoulder

Microstrain 3DM-GX3-45 9-axis IMU Top of Skull

Table 2: Valkyrie Proprioceptive Sensor Suite

Constraint Type Description

FlatContact Constrains all 6 DOFs at a contact point

PointContact Constrains the 3 lateral DOFs at a contact point

Transmission Makes the position of a slave DOF dependent on
that of a master DOF

Table 3: The Constraint Library

Task Type Description

JPos Controls every joint’s position

CartPos Controls the Cartesian position of a robot link

QuaternionOrientation Controls the orientation of a robot link

Wrench Applies a force and torque to a point on the robot

COM Controls the position of the robot’s COM

Table 4: The Task Library

	Introduction
	Mechatronic Design
	Mechatronic Overview
	Limb Architecture
	Actuators & Motor Control
	On-Board Computation & Power
	Sensor Systems

	Control Systems
	Decentralized Embedded Control
	Torque Control of Series Elastic Actuators
	Embedded Control Modes

	System Level Software Infrastructure
	Control System
	Hardware Interface
	Controllers

	Bandwidth Manager
	Data Compression Pipeline

	Supervisory Control
	Sensor Processing Modules
	Whole Body Control
	Robot Model
	WBC Primitives
	Composite Structures
	Valkyrie Implementation

	Inverse Kinematics (IK) Locomotion Strategy
	IK Algorithm
	Output Selection
	Planning
	Valkyrie Implementations

	Robot Task Commander
	RTC Design Principles
	RTC Implementation

	Affordance Templates

	Concluding Remarks
	Acknowledgments

