
Establishing Trust in Remotely Reprogrammable Systems

Thomas Gurriet
Mechanical Engineering Department

thomas.gurriet@gatech.edu

Mark L. Mote
Aerospace Engineering Department

mmote3@gatech.edu

Aaron Ames
Mechanical Engineering Department

ames@gatech.edu

Eric Feron
Aerospace Engineering Department

eric.feron@aerospace.gatech.edu

Georgia Institute of Technology, Atlanta, GA 30332, USA

ABSTRACT
Remote reprogrammability can serve as a powerful and
enabling tool, allowing widespread and rapid evolution of
cyber-physical systems. Together with the effects of ever
increasing automation, this tool is redefining the
relationship between the designer, user, and their methods
of interaction with the system. The cost of these
advancements is a series of new challenges in terms of
safety and security. This paper describes the need for a
formal framework in which safety, performance, and all
operational modes of the system can be described and
analyzed efficiently. An approach to establishing
trustworthiness of cyber-physical systems that allows for
automated and efficient verification of the system is
considered in the context of a concrete implementation.
Keywords
Cyber-physical, safety, software reliability, verification

INTRODUCTION
The emergence of new technologies for embedded systems,
especially the miniaturization of electronics and the
emergence of small and efficient sensors, have enabled a
new realm of possibilities in the field of robotics. Machines
can sense, they can act, and they are reaching the point
where they can even think as we push the embedded
computational power to levels never reached before. These
robots are not just machines anymore, but truly interactive
and aware systems where the “brain” and the “body” are
becoming fundamentally entangled. Welcome the world of
Cyber-physical Systems (CPS).
Machine intelligence is changing the way that humans
interact with CPSs. Increasing automation of low level
decisions shifts the control, and thus the burden of safety
assurance, from operator to designer. While this frees the
user to interact with system in extraordinary new ways, it

also introduces significant design challenges in regards to
safety and security. Assuring successful integration of these
systems requires extensive research in the context of usage
and performance, but perhaps more importantly in terms of
safety. If we cannot guarantee control integrity, then it is
not realistic to expect a satisfactory level of performance. It
is necessary that both fronts, safety and performance be
pushed in parallel.
Remotely reprogrammable systems - systems that allow
some component of their software to be changed by an
external entity - are enabling novel innovations in the field
of CPS by allowing a component of adaptability in their
design. Unfortunately, dynamic and evolving software adds
significantly to the challenge of ensuring safety in the
system. The already difficult task of verifying the behavior
of a highly complex CPS is exacerbated by the need to
repeat this verification process for each updated section of
code. Traditionally, the flexibility of embedded software
systems has been limited by the amount of reliability that
can be compromised, however many safety critical systems
such as aircraft or space probes do not allow themselves
this luxury. New processes need to be developed to allow
an expansion of the capabilities of these systems without
sacrificing the critically important aspects of safety,
performance, or cost.

ENABLING INNOVATIONS
Remotely reprogrammable systems are those whose
software components are partially or fully open to external
reconfiguration via some network connection.
Reprogramming a system allows it to either evolve to a
new purpose, or become more effective than the current
one by replacing or complementing its existing software.
The applications of this concept are far-reaching, extending
from the simple act of updating a smartphone application,
to the complete revision of an aerospace control system.
Looking specifically at the case of aerospace systems, an
expansion of capability is not only beneficial but often
necessary to meet evolving legal standards, such as
tightening security requirements [19].
We can distinguish three unique architectures that arise
with remotely accessible systems: (1) a central

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
HCI-Aero 2016, September 14-16, 2016, Paris, France.
Copyright 2016 ACM 978-1-4503-4406-7...$5.00.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

HCI-Aero '16, September 14-16, 2016, Paris, France
© 2016 ACM. ISBN 978-1-4503-4406-7/16/09...$15.00
DOI: http://dx.doi.org/10.1145/2950112.2964573

“development hub” with access to multiple platforms; (2) a
server with access to a single platform; and (3) “open
access” of multiple nodes (users) to a central system. The
first allows the efficient expansion of a program to multiple
platforms, e.g. pushing a software update to an application
shared by many users. The second architecture is typically
used to access systems whose location makes direct
connection infeasible; such is the case with space vehicle
design (e.g. satellites, planetary exploration rovers) [24],
where remote programming is an absolute necessity.
Finally, enabling many users with open access to a central
platform is the foundation for many open access research
facilities such as DeterLab [12] or SPHERES Laboratory
[14]. These laboratories have the potential to become
extremely powerful research enablers in the future of
robotics and CPS systems by extending valuable hardware
resources to external users.

3-D Rendering of Curiosity Rover on Mars

The potential of remotely reprogrammable systems is in
general, limited by factors such as implementation cost and
reliability. Introducing new software to engineering
platforms can jeopardize the safety or functionality, and
reliable software updates are often prohibitively expensive
to implement. While reprogrammability may be
compromising to the safety of the system, remote
accessibility is compromising to the security. Specifically,
open access opens a window of vulnerability through the
possibility of hacking. For example, manipulating radio up-
links to satellite services might have significant damaging
effects on our communication infrastructure [7].
Remoteness poses additional challenges in terms of time
delay and communication integrity.
Looking at the example of the open access laboratory, the
addition of accessibility to the user makes the host more
vulnerable. A possible solution to protect the local
hardware may be to place the computational burden on the
user’s server, and only allow for a very narrow band of
communication to the equipment. The safety of the system
would be reduced to the safety of its input communication
channel. However, this may pose challenges regarding the
restriction in bandwidth and lag time that would arise,
making the system less suitable for time-critical

applications. For the full potential of remotely
reprogrammable systems to be unleashed, we must devise
cost effective strategies to mitigate these issues.

SAFETY AT THE CORE OF CPS
Though safety can be defined in a number of ways, it is at
its core a characterization of the state of the system and its
evolution. If the state space of the system and its subsets
can be described easily, possibly at the price of abstraction,
then characterizing system safety becomes more feasible.
The essence of safety is the partition of the system behavior
in a set of “unsafe” behaviors and a set of “safe” behaviors.
The characterization itself is usually based on the states that
are harmful to humans, but this definition is purely
arbitrary and is highly contextual. It would usually be
defined in the system specifications during the early stages
of design [11].
The difficulty arises when we try and combine the safety
requirements with the performance requirements. Indeed,
being in a safe state and not doing anything is certainly a
way to assure safety, but it usually does not meet
performance requirements either. Nevertheless, it is
sometimes used as a last resort solution [22]. The
difference between human operated and autonomous
systems is that traditionally the responsibility of assuring
safety was up to the operator, whereas for autonomous
systems these safety requirements need to be infused into
the system itself. A compromise between performance and
safety must then be defined so as to maximize the end users
freedom while assuring constant safety of the system.
Another ambiguity arises when we start to consider the
failure modes as states of the system. Failed states should
definitely be characterized, but this task is not trivial.
Where should one draw the line between a system
functioning in a degraded mode of operation and a cloud of
debris resulting from being struck by a missile? The
definition of the system’s integrity should also be clearly
stated in restricting the size of the state space.
If the specifications are not complete in the sense that they
don’t fully define the system and the safety properties we
associate to that system, making formal statements about
the safety aspect of the system becomes impossible. A
formalism that encompasses these three aspects (system
definition, performances and safety) needs to be developed
in order to carry forward with formal analysis of CPSs.
What makes our problem unique is the extent to which the
state-space and the state-space transitions can be changed.
Today, certification is only done for a fixed transition
system but what we actually need are certifications for all
possible transition systems. As these systems become more
and more complex, a next generation of design tools, that
intelligently guide designers, detect and mediate or even
anticipate human error, needs to be created.

ESTABLISHING TRUSTWORTHINESS
Once we have defined our “safe” states, the goal is to
design a system that stays in these safe regions. This can be
done either mechanically through static measures of

protection between the systems and their environment, or
through feedback control of the systems. But for safety-
critical systems, we cannot blindly trust these algorithms
without some kind of verification of what they produce in
terms of the behavior of the system [13].
How to establish trustworthiness of these CPSs is still an
open question but we can distinguish two ways of
addressing this fundamental problem. On one hand, we can
either create a formalism that would capture the entire
behavior of the system and prove safety properties about
that system. On the other hand if we are not able to extract
and exploit meaningful semantics out of the system, we can
look at the problem from a probabilistic point of view.
Obviously, staying formal from the specifications to the
actual hardware would be preferable, but is difficult and we
may have to compromise absolute guaranties for
probabilistic ones. Also designing the system so as to
minimize the impact of parameter uncertainty on the
overall behavior of the system is definitely complementary
to the verification work [25].
As we make progress toward the completeness of a formal
verification framework [8], we must also put safeguards in
the system. Ideally, we want this system to be totally robust
to what happened upstream and to assure absolute safety of
the hardware. A promising tool we are currently developing
is Control Barrier Functions (CBF) [3]. The idea is to
mathematically define the safe set for the system and to
determine in real time the set of inputs that guarantee the
forward invariance of that safe set. We then send to the
robot an input that is as close as possible to the original
command but that satisfies this Barrier Condition to
guarantee safety. In practice, one just needs to solve a
quadratic optimization problem with the proper inequality
constraints for set invariance and input limits. However,
this framework still needs to take actuator limits into
consideration when synthesizing CBFs to assure set
invariance in a realistic context, and still needs to fully
characterize the robustness of these CBF based controllers
[26]. A formal verification of the algorithms used for the
barrier functions will still have to be performed, as these
CBF based safety nets are based on complex real time
optimization algorithms [17]. We would start with simple
safeguard that would have been proven to be safe but that
may substantially restrict the user, and then build on these
to synthesize optimal safeguards.

CONCLUSION
Robotics has become one of the most fruitful areas of
research of the beginning of this millennia, enabling the
seamless integration of CPS into our everyday lives.
Remotely Reprogrammable systems enable a new realm of
possibilities within CPS by allowing systems to adapt.
However, in spite of their many advantages, the potential of
remotely reprogrammable systems is limited by factors
such as safety, security, reliability, and the cost of software
updates. For the full potential of remotely reprogrammable
systems to be unleashed, we must first innovate toward cost
effective solutions to these problems. We have seen that

without a formal definition of safety, formal verification of
the system is impossible. Working on the overall formalism
to address CPSs safety and performances is the way to go
for allowing more complex but provably safe capabilities of
these systems. If this process is already used at the software
level, it usually requires human intensive verification and
would need to be much more automated in order to make
the design and operation of aerospace systems more
efficient and affordable. As the role of the human in the
loop evolves, and the burden of safety shifts ever further
toward an active designer, the need grows for an efficient
and robust framework for formally guaranteeing the safety
of a system.

REFERENCES
1. Alexander, D. S., Arbaugh, W., Keromytis, A. D., &

Smith, J. M. (1998). Safety and security of
programmable network
infrastructures. Communications Magazine,
IEEE, 36(10), 84-92.

2. Alle, M., Varadarajan, K., Fell, A., Joseph, N., Das, S.,
Biswas, P., ... & Narayan, R. (2009). Redefine: Runtime
reconfigurable polymorphic asic. ACM Transactions on
Embedded Computing Systems (TECS), 9(2), 11.

3. Ames, A. D., Grizzle, J. W., & Tabuada, P. (2014,
December). Control barrier function based quadratic
programs with application to adaptive cruise control.
In Decision and Control (CDC), 2014 IEEE 53rd
Annual Conference on (pp. 6271-6278). IEEE.

4. ARP4754, S. A. E. (1996). Certification considerations
for highly-integrated or complex aircraft systems. SAE,
Warrendale, PA.

5. ARP, S. (1996). 4761. Guidelines and methods for
conducting the safety assessment process on civil
airborne systems and equipment, 12.

6. Boy, G. A. (2014). From automation to tangible
interactive objects. Annual Reviews in Control, 38(1),
1-11.

7. Fritz, Jason. "Satellite hacking: A guide for the
perplexed." Culture Mandala: The Bulletin of the Centre
for East-West Cultural and Economic Studies 10.1
(2013): 3.

8. Jeannin, J. B., et al. (2015). A formally verified hybrid
system for the next-generation airborne collision
avoidance system. In Tools and Algorithms for the
Construction and Analysis of Systems  (pp. 21-36).
Springer Berlin Heidelberg.

9. Lee, E. (2008, May). Cyber physical systems: Design
challenges. In Object Oriented Real-Time Distributed
Computing (ISORC), 2008 11th IEEE International
Symposium on (pp. 363-369). IEEE.

10. Leveson, N. G., & Weiss, K. A. (2004, October).
Making embedded software reuse practical and safe.
In ACM SIGSOFT Software Engineering Notes (Vol.
29, No. 6, pp. 171-178). ACM.

11. Leveson, N. G. (1998, April). Intent specifications: An
approach to building human-centered specifications.
In Requirements Engineering, 1998. Proceedings. 1998
Third International Conference on (pp. 204-213). IEEE.

12. Mirkovic, Jelena, and Terry Benzel. "Teaching
cybersecurity with DeterLab." Security & Privacy,
IEEE 10.1 (2012): 73-76.

13. Mitsch, S., & Platzer, A. (2014, January). ModelPlex:
Verified runtime validation of verified cyber-physical
system models. In Runtime Verification(pp. 199-214).
Springer International Publishing.

14. Miller, David, et al. "SPHERES: a testbed for long
duration satellite formation flying in micro-gravity
conditions." Proceedings of the AAS/AIAA Space
Flight Mechanics Meeting, Clearwater, FL, Paper No.
AAS 00-110. 2000.

15. Nancy G. Leveson The role of software in spacecraft
accidents. AIAA Journal of Spacecraft and Rockets, Vol
41, No. 4, July 2004.

16. Owre, S., Rushby, J. M., & Shankar, N. (1992). PVS: A
prototype verification system. In Automated
Deduction—CADE-11 (pp. 748-752). Springer Berlin
Heidelberg.

17. Roozbehani, Mardavij, Eric Feron, and Alexandre
Megrestki. "Modeling, optimization and computation
for software verification." Hybrid Systems:
Computation and Control. Springer Berlin Heidelberg,
2005. 606-622.

18. RTCA/DO-178B. Software Considerations in Airborne
Systems and Equipment Certification.

19. SAE committee developing standards to tackle
cybersecurity threat. 2015. Aviation week. Web. 29
January 2016.

20. Saenz-Otero, A. (2005). Design principles for the
development of space technology maturation
laboratories aboard the International Space
Station.Massachusetts Institute of Technology,
Department of Aeronautics and Astronatucis, Ph. D.
Thesis, Cambridge, MA.

21. Tomlin, C. J., Mitchell, I., Bayen, A. M., & Oishi, M.
(2003). Computational techniques for the verification of
hybrid systems. Proceedings of the IEEE, 91 (7), 986-
1001.

22. The 9/11 commission report: Final report of the national
commission on terrorist attacks upon the United States.
Government Printing Office, 2011.

23. Wang, T., Jobredeaux, R., Pantel, M., Garoche, P. L.,
Féron, É., & Henrion, D. (2014). Credible Autocoding
of Convex Optimization Algorithms. arXiv preprint
arXiv: 1403.1861.

24. Weiss, Kathryn Anne. "The Mars Science Laboratory:
Flight Software-A Platform for Science and Mobility."
(2012).

25. Wu, Y., & Wu, A. (2000). Taguchi methods for robust
design. American Society of Mechanical Engineers.

26. Xu, X., et al. (2015). Robustness of control barrier
functions for safety critical control. IFAC-
PapersOnLine, 48(27), 54-61.

27. Zimmerman, M., Rodriguez, M., Ingram, B., Katahira,
M., De Villepin, M., & Leveson, N. (2000). Making
formal methods practical. In Digital Avionics Systems
Conference, 2000. Proceedings. DASC. The 19th (Vol.
1, pp. 1B2-1). IEEE.

