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ABSTRACT 
Remote reprogrammability can serve as a powerful and 
enabling tool, allowing widespread and rapid evolution of 
cyber-physical systems. Together with the effects of ever 
increasing automation, this tool is redefining the 
relationship between the designer, user, and their methods 
of interaction with the system. The cost of these 
advancements is a series of new challenges in terms of 
safety and security. This paper describes the need for a 
formal framework in which safety, performance, and all 
operational modes of the system can be described and 
analyzed efficiently. An approach to establishing 
trustworthiness of cyber-physical systems that allows for 
automated and efficient verification of the system is 
considered in the context of a concrete implementation. 
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INTRODUCTION 
The emergence of new technologies for embedded systems, 
especially the miniaturization of electronics and the 
emergence of small and efficient sensors, have enabled a 
new realm of possibilities in the field of robotics. Machines 
can sense, they can act, and they are reaching the point 
where they can even think as we push the embedded 
computational power to levels never reached before. These 
robots are not just machines anymore, but truly interactive 
and aware systems where the “brain” and the “body” are 
becoming fundamentally entangled. Welcome the world of 
Cyber-physical Systems (CPS). 
Machine intelligence is changing the way that humans 
interact with CPSs. Increasing automation of low level 
decisions shifts the control, and thus the burden of safety 
assurance, from operator to designer. While this frees the 
user to interact with system in extraordinary new ways, it 

also introduces significant design challenges in regards to 
safety and security. Assuring successful integration of these 
systems requires extensive research in the context of usage 
and performance, but perhaps more importantly in terms of 
safety. If we cannot guarantee control integrity, then it is 
not realistic to expect a satisfactory level of performance. It 
is necessary that both fronts, safety and performance be 
pushed in parallel. 
Remotely reprogrammable systems - systems that allow 
some component of their software to be changed by an 
external entity - are enabling novel innovations in the field 
of CPS by allowing a component of adaptability in their 
design. Unfortunately, dynamic and evolving software adds 
significantly to the challenge of ensuring safety in the 
system. The already difficult task of verifying the behavior 
of a highly complex CPS is exacerbated by the need to 
repeat this verification process for each updated section of 
code. Traditionally, the flexibility of embedded software 
systems has been limited by the amount of reliability that 
can be compromised, however many safety critical systems 
such as aircraft or space probes do not allow themselves 
this luxury. New processes need to be developed to allow 
an expansion of the capabilities of these systems without 
sacrificing the critically important aspects of safety, 
performance, or cost.  
 

ENABLING INNOVATIONS 
Remotely reprogrammable systems are those whose 
software components are partially or fully open to external 
reconfiguration via some network connection. 
Reprogramming a system allows it to either evolve to a 
new purpose, or become more effective than the current 
one by replacing or complementing its existing software. 
The applications of this concept are far-reaching, extending 
from the simple act of updating a smartphone application, 
to the complete revision of an aerospace control system. 
Looking specifically at the case of aerospace systems, an 
expansion of capability is not only beneficial but often 
necessary to meet evolving legal standards, such as 
tightening security requirements [19].  
We can distinguish three unique architectures that arise 
with remotely accessible systems: (1) a central 
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“development hub” with access to multiple platforms; (2) a 
server with access to a single platform; and (3) “open 
access” of multiple nodes (users) to a central system. The 
first allows the efficient expansion of a program to multiple 
platforms, e.g. pushing a software update to an application 
shared by many users. The second architecture is typically 
used to access systems whose location makes direct 
connection infeasible; such is the case with space vehicle 
design (e.g. satellites, planetary exploration rovers) [24], 
where remote programming is an absolute necessity. 
Finally, enabling many users with open access to a central 
platform is the foundation for many open access research 
facilities such as DeterLab [12] or SPHERES Laboratory 
[14]. These laboratories have the potential to become 
extremely powerful research enablers in the future of 
robotics and CPS systems by extending valuable hardware 
resources to external users.  
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The potential of remotely reprogrammable systems is in 
general, limited by factors such as implementation cost and 
reliability. Introducing new software to engineering 
platforms can jeopardize the safety or functionality, and 
reliable software updates are often prohibitively expensive 
to implement. While reprogrammability may be 
compromising to the safety of the system, remote 
accessibility is compromising to the security. Specifically, 
open access opens a window of vulnerability through the 
possibility of hacking. For example, manipulating radio up-
links to satellite services might have significant damaging 
effects on our communication infrastructure [7]. 
Remoteness poses additional challenges in terms of time 
delay and communication integrity. 
Looking at the example of the open access laboratory, the 
addition of accessibility to the user makes the host more 
vulnerable. A possible solution to protect the local 
hardware may be to place the computational burden on the 
user’s server, and only allow for a very narrow band of 
communication to the equipment. The safety of the system 
would be reduced to the safety of its input communication 
channel. However, this may pose challenges regarding the 
restriction in bandwidth and lag time that would arise, 
making the system less suitable for time-critical 

applications. For the full potential of remotely 
reprogrammable systems to be unleashed, we must devise 
cost effective strategies to mitigate these issues.  
 

SAFETY AT THE CORE OF CPS 
Though safety can be defined in a number of ways, it is at 
its core a characterization of the state of the system and its 
evolution. If the state space of the system and its subsets 
can be described easily, possibly at the price of abstraction, 
then characterizing system safety becomes more feasible. 
The essence of safety is the partition of the system behavior 
in a set of “unsafe” behaviors and a set of “safe” behaviors. 
The characterization itself is usually based on the states that 
are harmful to humans, but this definition is purely 
arbitrary and is highly contextual. It would usually be 
defined in the system specifications during the early stages 
of design [11].  
The difficulty arises when we try and combine the safety 
requirements with the performance requirements. Indeed, 
being in a safe state and not doing anything is certainly a 
way to assure safety, but it usually does not meet 
performance requirements either. Nevertheless, it is 
sometimes used as a last resort solution [22]. The 
difference between human operated and autonomous 
systems is that traditionally the responsibility of assuring 
safety was up to the operator, whereas for autonomous 
systems these safety requirements need to be infused into 
the system itself. A compromise between performance and 
safety must then be defined so as to maximize the end users 
freedom while assuring constant safety of the system. 
Another ambiguity arises when we start to consider the 
failure modes as states of the system. Failed states should 
definitely be characterized, but this task is not trivial. 
Where should one draw the line between a system 
functioning in a degraded mode of operation and a cloud of 
debris resulting from being struck by a missile? The 
definition of the system’s integrity should also be clearly 
stated in restricting the size of the state space. 
If the specifications are not complete in the sense that they 
don’t fully define the system and the safety properties we 
associate to that system, making formal statements about 
the safety aspect of the system becomes impossible. A 
formalism that encompasses these three aspects (system 
definition, performances and safety) needs to be developed 
in order to carry forward with formal analysis of CPSs. 
What makes our problem unique is the extent to which the 
state-space and the state-space transitions can be changed. 
Today, certification is only done for a fixed transition 
system but what we actually need are certifications for all 
possible transition systems. As these systems become more 
and more complex, a next generation of design tools, that 
intelligently guide designers, detect and mediate or even 
anticipate human error, needs to be created. 
 

ESTABLISHING TRUSTWORTHINESS 
Once we have defined our “safe” states, the goal is to 
design a system that stays in these safe regions. This can be 
done either mechanically through static measures of 



protection between the systems and their environment, or 
through feedback control of the systems. But for safety-
critical systems, we cannot blindly trust these algorithms 
without some kind of verification of what they produce in 
terms of the behavior of the system [13].  
How to establish trustworthiness of these CPSs is still an 
open question but we can distinguish two ways of 
addressing this fundamental problem. On one hand, we can 
either create a formalism that would capture the entire 
behavior of the system and prove safety properties about 
that system. On the other hand if we are not able to extract 
and exploit meaningful semantics out of the system, we can 
look at the problem from a probabilistic point of view. 
Obviously, staying formal from the specifications to the 
actual hardware would be preferable, but is difficult and we 
may have to compromise absolute guaranties for 
probabilistic ones. Also designing the system so as to 
minimize the impact of parameter uncertainty on the 
overall behavior of the system is definitely complementary 
to the verification work [25]. 
As we make progress toward the completeness of a formal 
verification framework [8], we must also put safeguards in 
the system. Ideally, we want this system to be totally robust 
to what happened upstream and to assure absolute safety of 
the hardware. A promising tool we are currently developing 
is Control Barrier Functions (CBF) [3]. The idea is to 
mathematically define the safe set for the system and to 
determine in real time the set of inputs that guarantee the 
forward invariance of that safe set. We then send to the 
robot an input that is as close as possible to the original 
command but that satisfies this Barrier Condition to 
guarantee safety. In practice, one just needs to solve a 
quadratic optimization problem with the proper inequality 
constraints for set invariance and input limits. However, 
this framework still needs to take actuator limits into 
consideration when synthesizing CBFs to assure set 
invariance in a realistic context, and still needs to fully 
characterize the robustness of these CBF based controllers 
[26]. A formal verification of the algorithms used for the 
barrier functions will still have to be performed, as these 
CBF based safety nets are based on complex real time 
optimization algorithms [17]. We would start with simple 
safeguard that would have been proven to be safe but that 
may substantially restrict the user, and then build on these 
to synthesize optimal safeguards.  
 

CONCLUSION 
Robotics has become one of the most fruitful areas of 
research of the beginning of this millennia, enabling the 
seamless integration of CPS into our everyday lives. 
Remotely Reprogrammable systems enable a new realm of 
possibilities within CPS by allowing systems to adapt. 
However, in spite of their many advantages, the potential of 
remotely reprogrammable systems is limited by factors 
such as safety, security, reliability, and the cost of software 
updates. For the full potential of remotely reprogrammable 
systems to be unleashed, we must first innovate toward cost 
effective solutions to these problems. We have seen that 

without a formal definition of safety, formal verification of 
the system is impossible. Working on the overall formalism 
to address CPSs safety and performances is the way to go 
for allowing more complex but provably safe capabilities of 
these systems. If this process is already used at the software 
level, it usually requires human intensive verification and 
would need to be much more automated in order to make 
the design and operation of aerospace systems more 
efficient and affordable. As the role of the human in the 
loop evolves, and the burden of safety shifts ever further 
toward an active designer, the need grows for an efficient 
and robust framework for formally guaranteeing the safety 
of a system.  
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