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Abstract— This paper presents a method for adding ro-
bustness to periodic orbits in hybrid dynamical systems by
shaping the energy. This energy shaping method is similar to
existing methods but improves upon them by utilizing control
Lyapunov functions which allow for formal results on stability.
The main theoretical result, Theorem 1, states that, given an
exponentially-stable limit cycle in a hybrid dynamical system,
application of the presented energy shaping controller results in
a closed-loop system which is exponentially stable. As illustrated
through simulation on the compass gait biped, this method
turns out to be useful in practice, providing an improvement
in robustness and convergence properties while maintaining
existing stability.

I. INTRODUCTION

Passive dynamic walking and passivity-based control

methods have been studied for arguably longer than most

other locomotion control strategies. Perhaps the most at-

tractive feature of these methods stems from the readily

observable intuition underlying their design. In the late

1980’s McGeer described experiments which demonstrated

that planar, passive bipeds could walk stably down shallow

slopes for designs like the compass gait biped [1] and the

kneed compass gait biped [2]. This work gave rise to the

term passive dynamic walking and spurred the creation of

additional robots with similar design principles as described

in, e.g., [3], whose operational procedures involved injecting

small amounts of energy to achieve passivity-based gaits.

This paper examines passive gaits which, in general, have

restrictive stability properties and proposes a method for

improving the robustness of these gaits through an under-

standing of energy. The method presented, styled energy

shaping, is similar in concept to the method of total energy

shaping as presented in [4], which acts to shape the energy

of the system but does so in a way which only guarantees

asymptotic stability with respect to an arbitrary energy level

and does not guarantee exponential stability of the overall

gait and may in fact destabilize gaits. The method of energy

shaping presented herein, in contrast, will stabilize the en-

ergy dynamics of a hybrid periodic orbit while maintaining

stability of the hybrid system.

Numerous methods currently exist for gait design but,

aside from specific methods which construct a zero dynamics

This work was supported by NSF grant CNS-0953823.
1Dept. Mechanical Engineering, Texas A&M University, 3123 TAMU,

College Station, TX 77843-3123, {rsinnet,aames}@tamu.edu

such as human-inspired control [5], many of these methods

do not have an intrinsic concept of stabilization to a specific

gait through gain adjustment. This is especially true of

passivity-based methods such as controlled symmetries [6]

and other controlled Lagrangian methods [7]. Energy shaping

owes its development to the observation that the total energy

of a system is conserved in the absence of non-conservative

forcing. For hybrid systems – systems which combine con-

tinuous dynamics such as leg swing with discrete dynamics

such as foot strike – the conservation of energy through

the continuous dynamics means that the change in energy

level occurs from the discrete events in the system – foot-

strike for bipeds – which exert non-conservative impulsive

forcing. By adding control to the continuous dynamics,

overall stability properties of a gait tend to improve as has

been observed in, e.g., [8], and as will be demonstrated

later in this paper through simulation. Formulation of the

control objective using a control Lyapunov function makes it

possible to achieve these improvements while simultaneously

guaranteeing the existence of a control law which does not

destabilize the system.

The rest of the paper is structured as follows: Section II

provides background information on hybrid systems which

are used for modeling in this paper. Section III presents

the main theoretical results of this paper in the form of

Theorem 1. Section IV shows how to reformulate a hybrid

system through a coordinate transformation that is later used

to prove the results of Theorem 1 in Section V. In Section VI,

simulation results demonstrating the effectiveness of energy

shaping are outlined. Finally, Section VII reflects on the ideas

presented in this paper and poses questions for future study.

II. HYBRID SYSTEMS

Consider a hybrid dynamical system (cf. [9]) with total

energy E(χ). The system has coordinates χ ∈ D which take

values in the domain of admissibility,

D = {χ ×R
n : h(χ)≥ 0} ,

where the discrete aspect comes from a guard constraint,

h : Rn → R≥0, which leads to a transverse plane, S ⊂ R
n,

called the switching surface,

S =
{

χ ∈R
n : h(χ) = 0 and ḣ(χ)< 0

}

. (1)



The uncontrolled hybrid system can be written

Σ =

{

χ̇ = F(χ), χ ∈ D\ S,
χ+ = ∆(χ−), χ ∈ S,

(2)

where F is a smooth vector field and ∆ is a smooth map

called the reset map (see, e.g., [10]). Under the action of

control effort u, the hybrid control system has the form

Σc =

{

χ̇ = F(χ)+G(χ)u, χ ∈ D\ S,
χ+ = ∆(χ−), χ ∈ S,

(3)

for control values U ⊆ R
m and smooth vector field G.

Solutions to hybrid systems are defined in the traditional

manner; see, e.g., [5]. For an initial condition χ0 ∈ D, the

solution x(t) evolves according to the continuous dynamics

in (2) until it reaches the edge of D, intersecting the guard

S by assumption (tranversality). Then the reset map ∆ is

applied and the solution is again governed by the continuous

dynamics. Stability is defined in terms of the ω limit set. Let

φt(χ) represent the flow of the continuous dynamics. A set

O is a periodic orbit with period T > 0 if

O = {χ(t) ∈ D : χ(0) = φT (∆(χ(0)))} .

III. ENERGY SHAPING

The proposed controller relies on control Lyapunov func-

tions [11], [12]. To guarantee a stricter form of convergence,

a modified notion of these functions is used:

Definition 1: For the continuous dynamics of (3), a con-

tinuously differentiable function Vε : D →R≥0 is said to be a

rapidly exponentially stablizing control Lyapunov function

(RES–CLF) (see [13]) if there exist constants c1,c2,c3,c4 ∈
R>0 such that for all ε > 0 and for all χ ∈ D,

c1‖χ‖ ≤Vε(χ)≤
c2

ε2 ‖χ‖,

infu∈U

[

LΦVε(χ)+LΓVε(χ)u+ c3
ε Vε(χ)

]

≤ 0.

where L f h(χ) = ∂h(χ)
∂ χ · f (χ) is the Lie derivative represent-

ing the flow of h(χ) along the vector field χ̇ = f (χ).

For the continuous dynamics, define a candidate Lyapunov

function, V : D →R≥0, of the form

V (χ) =
1

2
(E(χ)−Eref)

2, (4)

with Eref the energy associated with the periodic orbit, and

use it to construct the energy shaping controller

µε(χ) = argmin
u(χ)∈Rm

u(χ)T u(χ) (5)

s.t. LFV (χ)+LGV (χ)u(χ)+
c3

ε
V (χ)≤ 0.

Applying this to the system (3) results in

Σ =

{

χ̇ = F(χ)+G(χ)µε(χ), χ ∈ D\ S,
χ+ = ∆(χ−), χ ∈ S.

(6)

As a result of the control law construction in (5), the closed-

loop dynamics of (6) is stabilized with respect to the zero

level set of the Lyapunov function (4) thus satisfying the

convergence guarantee specified in Definition 1.

With the preceding setup in mind, the main formal idea

behind energy shaping can now be stated:

Theorem 1: Given an exponentially-stable limit cycle in

a hybrid system of the form (2), application of the energy

shaping controller (5) to the control system (3) results in the

closed-loop hybrid system (6), which is exponentially stable.

A sketch of the proof is given later after some discussion.

IV. ZERO DYNAMICS FORMULATION

In order to understand the nature of energy shaping,

consider breaking up the system into two sets of coordinates,

ẋ = f (x,z)+ g(x,z)u, ż = q(x,z)+w(x,z)u, (7)

with states x ∈ X and z ∈ Z and control inputs u ∈ U .

The vector fields f , g, q, and w are assumed to be locally

Lipschitz continuous. To simplify notation, define

Φ(x,z) = ( f (x,z), q(x,z)), Γ(x,z) = (g(x,z), w(x,z)).

The natural choice of transformation to convert the contin-

uous dynamics of (3) to (7) is through energy. Thus, for

mechanical systems where χ = (q, q̇) ∈ TQ, consider the

transformation

x = E(χ)−Eref, z = (q1, . . . , qn, q̇1, . . . , q̇n−1),

where n is the size of the configuration space, Q. By

construction, the fixed point of the hybrid system can be

chosen to occur at (x,z) = (0,z∗) such that ∆(0,z∗) = (0,0).
Moreover, because energy does not change by the natural

dynamics, f (x,z) = 0. The transformation is valid if it is

locally diffeomorphic. By examining the determinant of the

transformation, it becomes clear that the transformation is

valid almost everywhere.

A. Exponential Stability

Applying the control law (5), the dynamics (7) becomes

ẋ = f (x,z)+ g(x,z)µε (x,z),

ż = q(x,z)+w(x,z)µε (x,z).

By the construction of the control law (5), it is clear that

µε(0,z) = 0 and thus it follows that f (0,z) = 0. In other

words, the zero dynamics manifold Z is the restricted subset

of X such that x = 0. Rewrite (4) in the zero dynamics

coordinates, V (x) = 1
2
x2, and consider the following:



Proposition 1: Exponential stability of the continuous x

dynamics is guaranteed if a RES–CLF exists satisfying

c1 |x|
2 ≤V (x))≤ c2

ε2 |x|
2 , (8)

infu∈U

[

LΦV (x,z)+LΓV (x,z)u+ c3
ε V (x)

]

≤ 0,

for all (x,z) ∈ X ×Z.

Proof (Sketch): It is easy to see that the first inequality

is satisfied for c1 ≤
1
2

and c2 ≥
ε2

2
. Define the set

Kε =
{

u ∈ U : LΦV (x,z)+LΓV (x,z)u+
c3

ε
V (x)≤ 0

}

.

Examining this set in the context of mechanical systems

results in a locally Lipschitz solution for fully-actuated

systems. It follows that solutions satisfy

‖x(t)‖ ≤
1

ε

√

c2

c1

e−
c3
2ε t‖x(0)‖.

Combine (7) with the reset map to obtain the hybrid con-

trol system Σc (as in (3)). Applying a Lipschitz continuous

control law (which takes values in Kε ) results in

Σε =















ẋ = f (x,z)+ g(x,z)µε (x,z)
ż = q(x,z)+w(x,z)µε (x,z)

if (x,z) ∈ D\ S,

x+ = ∆X(x
−,z−)

z+ = ∆Z(x
−,z−)

if (x,z) ∈ S.

(9)

V. PROOF OF MAIN RESULT

In order to achieve the stated goal, it is necessary to

show that, given a system with a limit cycle representing

the desired behavior, energy shaping can be applied and

the resulting system will have an invariant orbit which is

equivalent to the nominal system. Simply put, the control

contribution from the energy shaping controller must be

identically zero on the orbit. Consider the following lemma:

Lemma 1: The shaped system (6) demonstrates a periodic

orbit which is identical to the unshaped system (2).

Proof: For states on the periodic orbit, i.e., χO ∈ O ,

the energy is a known constant, E(χO) = Eref. Therefore,

the limit cycle represents an invariant level set of the energy.

By construction of the Lyapunov function (4) used in the

controller (5), it is clear that V (χO) = 0 and, moreover, that

infχ∈DV (χ) = 0. The solution to the optimization problem

(5) has cost u(χ)T u(χ) = 0 (which implies that all elements

of u(χ) are zero when V (χ) = 0) and this satisfies the

stability condition of the control Lyapunov function; indeed

V̇ (χ∗) = 0 since the energy does not change without external

forcing. Thus, the periodic orbits are equivalent.

Let the Poincaré map of (6) be denoted Pε : S → S and

let φt(x,z) represent a flow of the vector field for time t

starting from state (x,z). The Poincaré map takes the form

Pε(x,z) = φ ε
T ε

I (x,z)
(∆(x,z)), where T ε

I (x,z) is the time to im-

pact. Before proving the main theorem, some bounds related

to the Poincaré map must be established using arguments

similar to those presented in [13], [10]. Note that the reset

map is locally Lipschitz continuous about the fixed point

(x,z) = (0,z∗) and ∆X(0,z
∗) = 0 thus

‖∆X(x,z)−∆X(0,z
∗)‖ ≤ L∆ ‖(x,z− z∗)‖ (10)

for some (x,z) ∈ Bγ(0,z
∗) with γ > 0 where L∆ is the

Lipschitz constant of ∆(x,z). Now, consider the following

bounds on the time-to-impact functions and Poincaré maps:

Lemma 2: For the control system (9),

|T ε
I (∆(x,z))−TI(∆(x,z))| ≤ ATI

(ε)‖(x,z− z∗)‖ ,

‖Pε(x,z)−P(x,z)‖ ≤ AP(ε)‖(x,z− z∗)‖ ,

where limεր+∞ ATI
(ε) = 0 and limεր+∞ AP(ε) = 0.

Proof (Sketch): Consider the Poincaré section P which

is the guard from (1). Using the change of coordinates

ρ(ε) := 1
ε , define the function

N(t,ρ ,x,z) = h(φ
ρ
t (∆(x,z))),

which is locally Lipschitz continuous in x, z, and ρ by con-

struction as a composition of Lipschitz continuous functions.

By the transversality assumption, it follows that

∂N(T,0,0,z∗)

∂ t
= ḣ(φ0

t (∆(0,z
∗)) 6= 0.

By the implicit function theorem [14], one can show that

there is a time-to-impact function T ε
I (x,z) satisfying

0.9T ∗ ≤ T ε
I (x,z)≤ 1.1T ∗.

The rest of the proof involves constructing an auxiliary

time-to-impact function that is locally Lipschitz continuous

and independent of ε and then relating it to T ε
I in a similar

way as was done in [13]. Next, µ must be bounded. The

explicit solution to the QP (5) is given by the min-norm

control law [11]:

µε(x,z) =−
ψ0(x,z)ψ1(x,z)

ψT
1 (x,z)ψ1(x,z)

,

with

ψ0(x,z) := LΦVε(x,z)+
c3

ε
, ψ1(x,z) := (LΓVε(x,z))

T ,

where LΦVε(x,z) ≡ 0 by the choice of Vε(x,z) as energy.

Since energy does not change by the natural dynamics,

µε(x,z) =−

c3
ε Vε(x,z)Γ

T (x,z)
(

∂Ve(x,z)
∂ (x,z)

)T

∂Ve(x,z)
∂ (x,z) Γ(x,z)ΓT (x,z)

(

∂Ve(x,z)
∂ (x,z)

)T
.



If Γ is full rank and takes values in a compact set for states

near the orbit, i.e., Γ(x,z) ∈ Ω and d1 ≤ ‖Γ(x,z)‖ ≤ d2, then

‖µε(x,z)‖ ≤
c2c3

ε3

λmax

λmin
|x| , (11)

with

λmax := sup{λmax Γ(x,z) : (x,z) ∈ Ω} ,

λmin := inf{λmin Γ(x,z) : (x,z) ∈ Ω} ,

where Ω ⊂ D is a stable tube around the periodic orbit

O . In addition, by the Lipschitz assumption Φ is bounded

around O , hence ϒ := sup{‖Φ(x,z)‖ : (x,z) ∈ Ω}. Using (11)

and Proposition 1 along with the auxiliary time-to-impact

function allows one to establish a bound of the form

|T ε
I (x,z)−TI(x,z)| ≤ LB θ (ε)‖(x,z− z∗)‖ .

Defining ATI
(ε) := LB θ (ε) establishes the first part of the

lemma. The proof is completed by showing that

‖Pε(x,z)−P(x,z)‖ ≤ AP(ε)‖(x,z− z∗)‖

with AP(ε) := (1 + LB)θ (ε)‖(x,z− z∗)‖. In establishing

the bounds, one can observe that limiting behavior is

limεր+∞ AP(ε) = 0.

Now Theorem 1 can be proven:

Proof (Sketch): [Theorem 1] By the discrete converse

Lyapunov theorem, exponential stability of O implies the

existence of a discrete Lyapunov function Vn : Bδ (0,z
∗)∩S→

R≥0 satisfying

r1 ‖(x,z)‖
2 ≤Vn(x,z)≤ r2 ‖(x,z− z∗)‖2 , (12)

Vn(P(x,z))−Vn(x,z)≤−r3 ‖(x,z− z∗)‖2 ,

|Vn(x,z)−Vn(x
′,z′)| ≤ r4‖(x,z− z∗)− (x′,z′− z∗)‖·

(‖(x,z− z∗)‖+
∥

∥(x′,z′− z∗)
∥

∥)

for some r1,r2,r3,r4 ∈ R>0. In addition, consider the CLF

associated with (5) which is Vε : X →R≥0. Denote by Vε,X =
Vε |S the restriction of the CLF Vε to the switching surface

S. Using these Lyapunov functions, define the candidate

Lyapunov function

VPε (x,z) =Vn(x,z)+σVε,X(x).

From (8) and (12), it is apparent that VPε (x,z) is bounded:

σc1 |x|
2 + r1‖(x,z− z∗)‖2

≤VPε (x,z) ≤ σ
c2

ε2
|x|2 + r2 ‖(x,z− z∗)‖2 .

Next, note that

VPε (Pε(x,z))−VPε (x,z) = (13)

Vn(Pε(x,z))−Vn(x,z)+σ(Vε,X(Pε(x,z))−Vε,X(x)).

M

m

q2

q1
ℓ/2

ℓ/2

γ

Fig. 1: Compass-gait biped with walking down a slope.

By construction of the control law (5) and as a consequence

of (10) and Lemma 2, one can establish that

Vε,X(P
x
ε (x,z))−Vε,X(x)≤ β1(ε)‖(x,z− z∗)‖2 −

c2

ε2
|x|2

with β1(ε) := c2

ε2 L2
∆e−

c3
ε .9T ∗

. Now the Lyapunov function

guaranteed by the converse theorem must be bounded. As

a result of Lemma 2 and the assumption of exponential

stability about the origin, it follows that

‖Pε(x,z)−P(x,z)‖ ≤ AP(ε)‖(x,z− z∗)‖ , (14)

‖Pε(x,z)‖ ≤ AP(ε)‖(x,z− z∗)‖+LP ‖(x,z− z∗)‖ ,

‖P(x,z)‖ ≤ Nα ‖(x,z− z∗)‖ ,

where LP is the Lipschitz constant for P. Using (12) and (14)

with (13) allows one to establish that

Vn(Pε(x,z))−Vn(x,z) ≤ (β2(ε)− r3)‖(x,z− z∗)‖2 .

where, for simplicity, β2(ε) := r4AP(ε)(Nα +AP(ε) +LP).
The above bounds can be used to establish

VPε (Pε(x,z))−VPε (x,z)≤

−
(

|x| ‖z− z∗‖
)

Λ(ε)

(

|x|
‖z− z∗‖

)

with

Λ(ε) =
(

r3 −β2(ε)−σ(β1(ε)−
c2

ε2 ) r3 −β2(ε)−σβ1(ε)

r3 −β2(ε)−σβ1(ε) r3 −β2(ε)−σβ1(ε)

)

.

By examining the determinant of Λ(ε), one can ascertain that

stability is achieved when β2(ε)+σβ1(ε) < r3. Examining

the limits, it becomes apparent that limεր+∞ β1(ε) = 0 and

limεր+∞ β2(ε) = 0, and thus for small enough values of σ >
0 and large enough values of ε , stability is maintained.

A more complete proof can be found in [15].

VI. SIMULATION RESULTS

Due to the analytical complexities of bipedal walkers, the

effectiveness of novel controllers is frequently demonstrated

through numerical simulation. Using the compass gait biped
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Fig. 2: Limit cycle of the passive compass gait biped.
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Fig. 3: The passive system cannot recover from distant states.

shown in Fig. 1 with model parameters M = 20 kg, m= 5 kg,

ℓ = 1 m, and γ = .05 rads, simulations were conducted to

demonstrate the effectiveness of the energy shaping proce-

dure. The limit cycle of the passive system is shown in Fig. 2

with the dotted lines representing discrete jumps from foot-

strike (and coordinate relabeling). This gait has a fixed point

(q∗, q̇∗) = (−0.2891, 0.5781, −1.4006, −0.2802) (15)

on the guard with eigenvalues |λ |=(0.5147, 0.5147, 0.0980)
corresponding to a linearization of the Poincaré map re-

stricted to the guard. Because these eigenvalues have mag-

nitudes below unity, the corresponding hybrid periodic is

locally exponentially stable. The impact map can be applied

to the fixed point (15) to compute the post-impact coordinates

∆(q∗, q̇∗) = (0.2891, −0.5781, −1.0681, 0.6797). (16)

To see the benefits of energy shaping, consider two sim-

ulations conducted from a perturbed post-impact state,

(q0, q̇0) = (0.2023, −0.4047, −0.7477, 0.4758), (17)
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Fig. 4: Energy shaping allows recovery from distant states.

which was naively obtained by multiplying the post-impact

fixed point (16) by 0.7 resulting in a relatively large pertur-

bation. For the passive walker, one can see from Fig. 3 that

the biped falls on the third step. Using energy shapping with
c3
ε = 1 (Fig. 4), the biped is able to recover from the initial

condition and quickly converges to the limit cycle.

In addition to the ostensible increase in robustness, en-

ergy shaping seems to improve convergence. To see this, a

simulation was conducted from the starting point

(q0, q̇0) = (0.2457, −0.4914, −0.9079, 0.5777),

which, in similarity to the previous simulation, was obtained

by multiplying (16) by 0.85. This point had to be closer than

(17) in order to fall within the domain of attraction (DOA)

of the passive biped. The difference in convergence for the

energy levels of the passive and shaped systems is shown in

Fig. 5. One can see that the shaped system converges more

quickly than the passive system. Whereas the passive system

changes energy only through impact, the shaped system also

converges during the continuous dynamics. Finally, stability

is maintained for large enough values of ε but smaller values

give better convergence so a trade-off naturally arises.

More comprehensive evidence for the expansion of the

domain of attraction can be seen in Fig. 6 which provides

a comparison of the stable region on the guard for both

the passive and shaped systems. Because the guard is a

tranverse hyperplane of the domain, it is a codimension-one

submanifold. In Fig. 6, coordinates (q1, q̇1, q̇2) were chosen

to parameterize the guard; q1 is determined by the constraint

that both feet are on the ground. It is interesting to note

that the domain of attraction expands most readily into the

region of low energy (small steps, small angular velocities)

for which states the passive biped would simply lack the

energy necessary to fall into a gait.
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VII. CONCLUDING REMARKS

By its nature, local exponential stability does not neces-

sarily provide much insight into stability of large regions

around the limit cycle. Yet this type of information can be

invaluable when investigating the practicality of a control

law. Often, when control theorists talk about the robustness

of controllers, there is some implication that this refers to

stability properties over a larger range of operating states,

or, in other words, the domain of attraction. It is notoriously

difficult to compute the DOA even for a simple system –

the simplest bipedal model, the compass gait biped, does

not even have a closed form solution – and researchers often

perform repeated simulations to create a visual representation

of the DOA and analyze robustness properties in this respect.

Thus it should be seen as unremarkable that claims about

increasing the DOA of a limit cycle generally remain un-

substantiated from a formal theoretical standpoint. However,

numerical simulations as in this paper can provide strong

evidence for the effectiveness of a controller. Despite the

fact that the energy shaping controller only guarantees local

(exponential) stability, the simulations presented demonstrate

that the region of stability is relatively large.

In addition to the expansion of the DOA, energy shaping

also seems to provide more desirable convergence properties.

Hence, when considered alongside the formal notion from

Theorem 1 that energy shaping does not destabilize a system

for proper gains, the numerical evidence presented provides

a persuasive argument for the practicality and utility of

energy shaping. As a final note, the formulation in this paper

considers passive systems, yet the method seems to work

with non-passive systems. But, a formal guarantee of stability

is seemingly more complex than the proof for conservative

systems and is, therefore, left as a question for future study.
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Fig. 6: The domain of attraction restricted to the guard for

both the shaped (blue ‘+’) and passive systems (black ‘×’).
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