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Abstract— Multi-agent partially observable Markov decision
processes (MPOMDPs) provide a framework to represent het-
erogeneous autonomous agents subject to uncertainty and partial
observation. In this paper, given a nominal policy provided
by a human operator or a conventional planning method, we
propose a technique based on barrier functions to design a
minimally interfering safety-shield ensuring satisfaction of high-
level specifications in terms of linear distribution temporal logic
(LDTL). To this end, we use sufficient and necessary conditions
for the invariance of a given set based on discrete-time barrier
functions (DTBFs) and formulate sufficient conditions for finite
time DTBF to study finite time convergence to a set. We then
show that different LDTL mission/safety specifications can be
cast as a set of invariance or finite time reachability problems.
We demonstrate that the proposed method for safety-shield
synthesis can be implemented online by a sequence of one-step
greedy algorithms. We demonstrate the efficacy of the proposed
method using experiments involving a team of robots.

I. INTRODUCTION

Decision making under uncertainty and partial observation
is an important branch of artificial intelligence (AI) and
probabilistic robotics that has received attention in the recent
years. A popular formalism that can capture the decision
making, uncertainty, and partial observation associated with
such systems is the partially observable Markov decision
process (POMDP). In a POMDP framework, an autonomous
agent is not aware of the exact state of the environment
and, through a sequence of actions and observations, it
updates its belief in the current state of the environment.
Decision making is then carried out based on the history
of the observations or the current belief. Despite the fact
that POMDPs provide a unique modeling paradigm, they are
notoriously hard to solve. In particular, it was shown that the
infinite-horizon total undiscounted/discounted/average reward
problem for a single agent is undecidable [24] and even the
finite-horizon problem for multiple agents with full commu-
nication is PSPACE-complete [26]. However, methods based
on discretization of the belief space (known as point-based
methods) [28], heuristics [7], finite-state controllers [4], [9],
[20], or abstractions [16] are shown to be successful to handle
relatively large problems.

However, for safety-critical systems, such as Mars rovers
and autonomous vehicles, safe operation is as (if not more)
important than optimality and it is often cumbersome to
design a policy to guarantee both safety and optimality.
In particular for high-level safety specifications in terms of
temporal logic, synthesizing a policy satisfying the specifica-
tion is undecidable [11] and requires heuristics and ad-hoc
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Fig. 1. Schematic diagram of the proposed Safety-Shield framework.

methods [10]. Run-time enforcement of linear temporal logic
(LTL) specifications in the absence of partial observability,
i.e., in Markov decision processes (MDPs), was considered
in [6], [17], [18], where the authors use automaton repre-
sentations of the LTL specifications. Though effective for
MDPs, the latter approach is not applicable to POMDPs
for two main reasons. First, given an LTL formula, the
automaton representation can introduce finite but arbitrary
large number of additional states. Therefore, model checking
of even abstraction-based methods [33] for POMDPs may
not be suitable for run-time enforcement. Second, LTL may
not be a suitable logic for describing safety specifications
for systems subject to unavoidable uncertainty and partial
observation [19]. Therefore, we use LDTL [19], [32], which
can be used for specifying tasks for stochastic systems with
partial state information.

In this paper, instead of automaton representations, we
employ discrete time barrier functions (DTBFs) to enforce
safety/mission specifications in terms of LDTL specifications
in Multi-agent POMDPs (plant) in run time with minimum
interference (see Fig. 1). To this end, we represent the joint
belief evolution of an MPOMDP as a discrete-time system [3].
The main contributions of this paper are then as follows: (i)
We enrich the DTBFs for enforcing invariance formulated
in our preliminary work [5] with finite-time DTBFs for
assuring finite time reachability and (ii) we propose Boolean
compositions of these finite-time DTBFs. (iii) We propose
a LDTL safety-shield method based on one-step greedy
algorithms [12, Chapter 16] to synthesize a safety-shield for
an MPOMDP given a nominal planning policy. We illustrate
the efficacy of the proposed approach by applying it to an
exploration scenario of a team of heterogeneous robots in
ROS simulation environment.

The rest of the paper is organized as follows. The next
section reviews some preliminary notions and definitions
used in the sequel. In Section III, we propose DTBFs for
invariance and finite-time reachability as well as their Boolean
compositions. In Section IV, we design a safety-shield based
on DTBFs for LDTL specifications. In Section V, we elu-
cidate our results with a multi-robot case study. Finally, in
Section VI, we conclude the paper.
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Notation: Rn denotes the n-dimensional Euclidean space.
Rě0 denotes the set r0,8q. Něl denotes the set of integers
greater that equal to l, i.e., Něl “ tl, l ` 1, . . .u. For a
finite-set A, |A| and 2A denote the number of elements in A
and the power set of A, respectively. A continuous function
α : r0, aq Ñ Rě0 is a class K function if αp0q “ 0 and
it is strictly increasing. Similarly, a continuous function β :
r0, aqˆRě0 Ñ Rě0 is a class KL function if βpr, ¨q P K and
if βp¨, sq is decreasing with respect to s and limsÑ8 βp¨, sq Ñ
0. For two functions f : G Ñ F and g : X Ñ G,
f ˝ g : X Ñ F denotes the composition of f and g and
Id : F Ñ F denotes the identity function satisfying Id˝f “ f
for all functions f : X Ñ F . The Boolean operators are
denote by  (negation), _ (conjunction), and ^ (disjunction).
The temporal operators are denoted by © (next), U (until),
l (always), and ♦ (eventuality).

II. PRELIMINARIES

In this section, we briefly review some notions and defini-
tions used throughout the paper.
A. Multi-Agent POMDPs

An MPOMDP [7], [25] provides a sequential decision-
making formalism for high-level planning of multiple au-
tonomous agents under partial observation and uncertainty.
At every time step, the agents take actions and receive obser-
vations. These observations are shared via (noise and delay
free) communication and the agents decide in a centralized
framework.

Definition 1: An MPOMDP is a tuple
`

I,Q, p0, tAiuiPI , T,R, tZiuiPI , O
˘

, wherein
‚ I denotes a index set of agents;
‚ Q is a finite set of states with indices t1, 2, . . . , nu;
‚ p0 : QÑ r0, 1s defines the initial state distribution;
‚ Ai is a finite set of actions for agent i and A “ ˆiPIAi

is the set of joint actions;
‚ T : Q ˆ A ˆ Q Ñ r0, 1s is the transition probability,

where T pq, a, q1q :“ P pqt “ q1|qt´1 “ q, at´1 “ aq,
@t P Ně1, q, q

1 P Q, a P A, i.e., the probability of moving
to state q1 from q when the joint actions a are taken;

‚ R : Q ˆ A Ñ R is the immediate reward function for
taking the joint action a at state q;

‚ Zi is the set of all possible observations for agent i and
Z “ ˆiPIZi, representing outputs of discrete sensors,
e.g. z P Z are incomplete projections of the world states
q, contaminated by sensor noise;

‚ O : Q ˆ A ˆ Z Ñ r0, 1s is the observation probability
(sensor model), where Opq1, a, zq :“ P pzt “ z|qt “
q1, at´1 “ aq,@t P Zě1, q P Q, a P A, z P Z, i.e.,
the probability of seeing joint observations z given joint
actions a were taken and resulting in state q1.

Since the states are not directly accessible in an MPOMDP,
decision making requires the history of joint actions and joint
observations. Therefore, we must define the notion of a joint
belief or the posterior as sufficient statistics for the history.
Given an MPOMDP, the joint belief at t “ 0 is defined as
b0pqq “ p0pqq and btpqq denotes the probability of the system

being in state q at time t. At time t ` 1, when joint action
a P A is taken and joint observation z P Z is observed, the
belief is updated via a Bayesian filter [21] as

btpq1q :“ BUpzt, at´1, bt´1q

“
Opq1, at´1, ztq

ř

qPQ T pq, a
t´1, q1qbt´1pqq

ř

q1PQOpq
1, at´1, ztq

ř

qPQ T pq, a
t´1, q1qbt´1pqq

(1)

where the beliefs belong to the belief unit simplex

B “

#

b P r0, 1s|Q| |
ÿ

qPQ

btpqq “ 1, @t

+

.

A policy in an MPOMDP setting is then a mapping π :
B Ñ A, i.e., a mapping from the continuous joint beliefs
space into the discrete and finite joint action space. When I
is just a singleton (only one agent), we have a POMDP [30].

B. Linear Distribution Temporal Logic

We formally describe high-level mission specifications that
are defined in temporal logic. Temporal logic has been used as
a formal way to allow the user to intuitively specify high-level
specifications, in for example, robotics [22]. The temporal
logic we use in this paper can be used for specifying tasks for
stochastic systems with partial state information. This logic is
suitable for problems involving significant state uncertainty,
in which the state is estimated on-line. The syntactically co-
safe linear distribution temporal logic (scLDTL) describes
co-safe linear temporal logic properties of probabilistic sys-
tems [19]. We consider a modified version to scLDTL, the
linear distribution temporal logic (LDTL), which includes the
additional temporal operator l “always”. The latter operator
is important since it can be used to describe notions such as
safety, liveness, and invariance.

LDTL has predicates of the type ζ ă 0 with ζ P FQ “
tf | f : B Ñ Ru, i.e., FQ is the class of (nonlinear)
functions mapping from the belief simplex into reals, and
state predicates q P A with A P 2Q.

Definition 2 (LDTL Syntax): An LDTL formula over
predicates FQ and Q is inductively defined as

ϕ :“ A| A|ζ| ζ|ϕ_ ϕ|ϕ^ ϕ|ϕ U ϕ|© ϕ|♦ϕ|lϕ, (2)

where A P 2Q is a set of states, ζ P FQ is a belief predicate,
and ϕ is an LDTL formula.

Satisfaction over pairs of hidden state paths and sequences
of belief states can then be defined as follows.

Definition 3 (LDTL Semantics): The semantic of LDTL
formulae is defined over words ω P pQˆBq8. Let pqi, biq be
the ith letter in ω. The satisfaction of a LDTL formula ϕ at
position i in ω, denoted by ωi |ù ϕ is recursively defined as
follows
‚ ωi |ù A if qi P A,
‚ ωi |ù  A if qi R A,
‚ ωi |ù f if fpbiq ă 0,
‚ ωi |ù  f if fpbiq ě 0,
‚ ωi |ù ϕ1 ^ ϕ2 if ωi |ù ϕ1 and ωi |ù ϕ2,
‚ ωi |ù ϕ1 _ ϕ2 if ωi |ù ϕ1 or ωi |ù ϕ2,
‚ ωi |ù©ϕ if ωi`1 |ù ϕ,
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‚ ωi |ù ϕ1Uϕ2 if there exists a j ě i such that ωj |ù ϕ2

and for all i ď k ă j it holds that ωk |ù ϕ1,
‚ ωi |ù ♦ϕ if there exists j ě i such that ωj |ù ϕ, and
‚ ωi |ù lϕ if, for all j ě i, ωj |ù ϕ.

The word ω satisfies a formula ϕ, i.e., ω |ù ϕ, iff ω0 |ù ϕ.
Designing policies that guarantee LDTL formulas as de-

fined in Definition 1 can only be carried if the system is
linear and subject to Guassian noise [32]. We show later in
Section IV that DTBFs can be used to enforce LDTL formulas
for any finite POMDP.

III. DISCRETE-TIME BARRIER FUNCTIONS

In order to guarantee the satisfaction of the LDTL formulae
in MPOMDPs, we use barrier functions [8] rather than
automatons and model checking. Hence, our method does not
rely on automaton representations, discretizations of the belief
space, or finite memory controllers. These barrier functions
ensure that the solutions to the joint belief update equation
remain inside or reach subsets of the belief simplex that is
induced by the LDTL formula. Noting that the joint belief
evolution of an MPOMDP (1) can be described by a discrete-
time system [3], in this section, we propose conditions based
on DTBFs for verifying invariance and finite-time reachability
properties.

Given an MPOMDP as defined in Definition 1, at every
time-step t P Ně0, the joint belief update equation (1) can be
described by the following discrete-time system

bt`1 “ F pbtq, (3)

with F : B Ñ B Ă Rn given an observation and an action.
We consider subsets of the belief simplex defined as

S :“ tb P B | hpbq ě 0u, (4a)
IntpBq :“ tb P B | hpbq ą 0u, (4b)

BS :“ tb P B | hpbq “ 0u. (4c)

We then have the following definition of a DTBF.

Definition 4 (Discrete-Time Barrier Function): For the
discrete-time system (3), the continuous function h : Rn Ñ R
is a discrete-time barrier function for the set S as defined
in (4), if there exists α P K satisfying αprq ă r for all r ą 0
such that

hpbt`1q ´ hpbtq ě ´αphpbtqq, @bt P B. (5)

In fact, the DTBF defined above is a discrete-time zeroing
barrier function per the literature [8] (see also the reciprocal
DTBF proposed in [2]), but we drop the “zeroing” as it is the
only form of barrier function that will be considered in this
paper.

We can show that the existence of a DTBF is both necessary
and sufficient for invariance. We later show in Section V
that such DTBF can be used to verify a class of LDTL
specifications.

Theorem 1 ([5]): Consider the discrete-time system (3).
Let S Ď B Ă Rn with S as described in (4). Then, S is
invariant if and only if there exists a DTBF as defined in
Definition 4.

A. Finite Time DTBFs

Another class of problems we are interested in involve
checking whether the solution of a discrete time system can
reach a set in finite time. We will show in Section IV that such
problems arise when dealing with “eventuality” type LDTL
specifications. To this end, we define a finite time DTBF
(see [31] for the continuous time variant).

Definition 5 (Finite Time DTBF): For the discrete-time
system (3), the continuous function h̃ : B Ñ R is a finite time
DTBF for the set S as defined in (4), if there exist constants
0 ă ρ ă 1 and ε ą 0 such that

h̃pbt`1q ´ ρh̃pbtq ě εp1´ ρq, @bt P B. (6)

We then have the following result to check finite time
reachability of a set for a discrete-time system.

Theorem 2: Consider the discrete-time system (3). Let
S Ă B Ă Rn be as described in (4). If there exists a finite
time DTBF h̃ as in Definition 5, then for all b0 P BzS, there
exists a t˚ P Ně0 such that bt

˚

P S. Furthermore,

t˚ ď log

˜

ε´ h̃pb0q

ε

¸

{log

ˆ

1

ρ

˙

, (7)

where the constants ρ and ε are as defined in Definition 5.

Proof: We prove by induction. With some manipu-
lation inequality (6) can be modified to h̃pbt`1q ´ ε ě

ρh̃pbtq ´ ρε “ ρ
´

h̃pbtq ´ ε
¯

. Thus, for t “ 0, we have

h̃pb1q ´ ε ě ρ
´

h̃pb0q ´ ε
¯

. For t “ 1, we have h̃pb2q ´

ε ě ρ
´

h̃pb1q ´ ε
¯

ě ρ2
´

h̃pb0q ´ ε
¯

, where we used the
inequality for t “ 0 to obtain the last inequality above. Then,
by induction, we have h̃pbtq ´ ε ě ρt

´

h̃pb0q ´ ε
¯

. Hence,

h̃pbtq ě ρtph̃pb0q ´ εq ` ε. Since 0 ă ρ ă 1 and b0 P BzS ,
i.e., h̃pb0q ă 0, as t increases bt approaches S because by
definition hpbtq ě 0 implies bt P S. Re-arranging the terms
gives

ε´ h̃pbtq ď ρt
´

ε´ h̃pb0q
¯

. (8)

Since b0 P BzS, i.e., h̃pb0q ă 0, ε ´ h̃pb0q is a positive
number. Dividing both sides of (8) with the positive quantity
ε´ h̃pb0q yields ε´h̃pbtq

ε´h̃pb0q
ď ρt. Taking the logarithm of both

sides of the above inequality gives log
´

h̃pbtq´ε

h̃pb0q´ε

¯

ď t logpρq,

or equivalently

´ log

˜

h̃pb0q ´ ε

h̃pbtq ´ ε

¸

ď ´t logp
1

ρ
q.

Since 0 ă ρ ă 1, logp 1ρ q is a positive number. Dividing
both sides of the inequality above with the negative num-
ber ´ logp 1ρ q obtains t ď log

´

ε´h̃pb0q

ε´h̃pbtq

¯

{log
´

1
ρ

¯

. Also, by
definition, bt reaches S at least at the boundary at t˚ when
h̃pbtq “ 0. Substituting h̃pbtq “ 0 in the last inequality for
t gives t˚ ď log

´

ε´h̃pb0q
ε

¯

{log
´

1
ρ

¯

, which gives an upper
bound for the first time bt P S .
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B. Boolean Composition of Finite Time DTBFs

In order to assure specifications involving conjunction or
disjunction of LDTL formulae in Definition 3, we need to
consider properties of sets defined by Boolean composition
of DTBFs. In this regard, in [14], the authors proposed non-
smooth barrier functions as a means to analyze composition
of barrier functions by Boolean logic, i.e., _, ^, and  .
Similarly, in this study, we propose non-smooth DTBFs. The
negation operator is trivial and can be shown by checking if
´h satisfies the corresponding property.

In the following, we propose conditions for checking
Boolean compositions of finite time DTBFs. Fortunately,
since we are concerned with discrete time systems, this
does not require non-smooth analysis (for a similar result
pertaining compositions of DTBFs see Proposition 1 in [5]).

Proposition 1: Let Si “ tb P B | h̃ipbq ě 0u, i “ 1, . . . , k
denote a family of sets defined analogous to S in (4). Consider
the discrete-time system (3). If there exist constants 0 ă ρ ă 1
and ε ą 0 such that

min
i“1,...,k

h̃ipb
t`1q ´ ρ min

i“1,...,k
h̃ipb

tq ě εp1´ ρq, @b P B, (9)

then there exists

t˚ ď log
´ε´mini“1,...,k h̃ipb

0q

ε

¯

{log
´1

ρ

¯

. (10)

such that if b0 P Bz
Ťk
i“1 Si then bt

˚

P
!

b P B | ^i“1,...,k

´

h̃ipbq ě 0
¯)

. Similarly, the disjunction
case follows by replacing min with max in (9) and (10).

Proof: We prove the conjunction case and the dis-
junction case follows the same lines. If (9) holds, from the
proof of Theorem 2, we can infer that mini“1,...,k h̃ipb

tq ´

ε ě ρt
´

mini“1,...,k h̃ipb
0q ´ ε

¯

, which implies that

t ď log
´

ε´mini“1,...,k h̃ipb
0
q

ε´mini“1,...,k h̃ipbtq

¯

{log
´

1
ρ

¯

. If b0 P Bz
Ťk
i“1 Si,

then by definition h̃ipb
0q ă 0, i “ 1, . . . , k. Hence,

mini“1,...,k h̃ipb
0q ă 0. Moreover, because t is a positive

integer, ε ´ mini“1,...,k h̃ipb
0q ě ε ´ mini“1,...,k h̃ipb

tq.
That is, mini“1,...,k h̃ipb

0q ď mini“1,...,k h̃ipb
tq along

the solutions bt of the discrete-time system (3). Fur-
thermore, bt P

!

b P B | ^i“1,...,k

´

h̃ipbq ě 0
¯)

when-

ever mini“1,...,k h̃ipb
tq ě 0. The upper-bound for this

t happens when mini“1,...,k h̃ipb
tq “ 0, i.e., when

all h̃ipb
tq are either positive or zero. This by defini-

tion implies that bt P

!

b P B | ^i“1,...,k

´

h̃ipbq ě 0
¯)

.

Then, setting mini“1,...,k h̃ipb
tq “ 0 gives t˚ ď

log
´

ε´mini“1,...,k h̃ipb
0
q

ε

¯

{log
´

1
ρ

¯

.

IV. SAFETY-SHIELD SYNTHESIS

Since the states are not directly observable in MPOMDPs,
we are interested in guaranteeing safety specifications in terms
of LDTL in a probabilistic setting in the joint belief space. We
denote by πn : B Ñ A a deterministic nominal joint policy
mapping each joint belief into a joint action (for example,
policies for infinite horizon discounted cost problems). At

LDTL Specification DTBF Implementation

ωi |ù A hpbiq “
ř

qPA b
ipqq ´ 1

ωi |ù  A hpbiq “
ř

qPQzA b
ipqq ´ 1

ωi |ù f hpbiq “ ´fpbiq ` δ
ωi |ù  f hpbiq “ fpbiq

ωi |ù ϕ1 ^ ϕ2 hpbiq “ minth1pbiq, h2pbiqu
ωi |ù ϕ1 _ ϕ2 hpbiq “ maxth1pbiq, h2pbiqu
ωi |ù©ϕ hpbi`1q “ hϕpbq
ωi |ù ϕ1Uϕ2 h2pbjq ă 0 ùñ h “ h1pbjq,@j ě i

ωi |ù ♦ϕ hpbjq “ h̃pbjq, @i ď j ď t˚

ωi |ù lϕ hpbjq “ hϕpbjq, @j ě i

TABLE I. LDTL specifications and the DTBF implementation.

every time step t, the nominal policy assigns a nominal action,
i.e., πnpbtq “ atn. The immediate reward at that time step can
then be computed as rtnpb

t, atnq “
ř

qPQ b
tpqqRpq, atnq.

We are interested in solving the following problem.
Problem 1 (Safety-Shield Synthesis): Given an

MPOMDP as defined in Definition 1, a corresponding
belief update equation (1), a safety LDTL formula ϕ, and a
nominal planning policy πn, determine a sequence of actions
at, t P Ně0 such that ω0 “ pq0, b0q |ù ϕ and the quantity
}rt ´ rtn}

2 is minimized for all t P Ně0, where rtn denotes
the nominal immediate reward at time step t.

Note that choice of the 2-norm squared of the error is
arbitrary and other metrics, such as `1-norm of error between
rt and rtn can be studied as well.

A. Enforcing LDTL via DTBFs

In this section, we describe how the semantics of LDTL as
given in Definition 3 can be represented as set invariance
and reachability conditions over the belief simplex. The
structure of the DTBFs for each specification are summarized
in Table I.

We describe each row of the table as follows. (1) ωi |ù
A Ă Q: can be encoded as verifying whether qi P A. In
the belief simplex, this is equivalent to checking whether
bi P Bs “ tbi P B |

ř

qPA b
ipqq ě 1u, which can be

checked by considering the DTBF hpbiq “
ř

qPA b
ipqq ´ 1.

(2) ωi |ù  A Ă Q: can be cast as checking whether
bi P Bs “ tbi P B |

ř

qPQzA b
ipqq ě 1u by considering

the DTBF hpbiq “
ř

qPQzA b
ipqq ´ 1. (3),(4) ωi |ù f and

ωi |ù  f : these formulas are defined in the belief space,
since ωi |ù f implies fpbiq ă 0 and ωi |ù  f implies
fpbiq ě 0. They can be checked by considering DTBFs
hpbiq “ ´fpbiq ` δ with 0 ă δ ăă 1 for ωi |ù f and
hpbiq “ fpbiq for ωi |ù  f . (5),(6) ωi |ù ϕ1 ^ ϕ2 and
ωi |ù ϕ1 _ϕ2: can be implemented by Boolean composition
of the barrier functions as discussed in Section III-B. (7)
ωi |ù ©ϕ: can be implemented by checking whether ϕ is
satisfied in the next step. (8) ωi |ù ϕ1Uϕ2: can be enforced
by checking whether formula ϕ1 is satisfied until ϕ2. To this
end, we can check whether formula ϕ2 is not satisfied at
every time step i by checking inequality h2pbq ă 0 where h2
is the DTBF for formula ϕ2. If ϕ2 is not satisfied, then ϕ1

is checked via a corresponding DTBF h1. (9) ωi |ù ♦ϕ: can
be checked using the finite time DTBF given by Theorem 2.
Note that the property is checked until t˚, since after t˚ the
formula ϕ is ensured to hold. (10) ωi |ù lϕ: can be simply
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Algorithm 1 The one-step greedy algorithm for safety-shield
synthesis given the nominal policy at every time-step t.
Input: System information I , Q, A, T , R, Z, O, nominal pol-

icy πn, safety specifications defined by LDTL formula ϕ,
current observation zt, the past belief bt´1

1: bt “ BUpzt, at´1
n , bt´1q

2: if hpbtq ´ hpbt´1q ě ´αphpbt´1qq and/or
h̃pbtq ´ ρh̃pbt´1q ě εp1´ ρq then

3: return a˚ “ atn
4: else
5: i “ 1
6: for i “ 1, 2, . . . , |A| do
7: bt “ BUpzt, apiq, bt´1q

8: if hpbtq ´ hpbt´1q ě ´αphpbt´1qq and/or
h̃pbtq ´ ρh̃pbt´1q ě εp1´ ρq then

9: rpiq “
´

ř

q1PQ bpq
1qRpq1, apiqq

¯

10: i˚ “ argmini“1,2,...,|A| }rpiq ´ r
t
n}

2

11: return a˚ “ api˚q.

enforced by checking whether ϕ is satisfied for all time using
the corresponding DTBF hϕ.

B. Safety-Shield Synthesis

Algorithm 1 illustrates how DTBFs can shield the agent
actions to ensure LDTL safety. Note that, depending on the
specification that needs to be enforced, either or both of (5)
and (6) should be checked at every time step as described
in Table I. The algorithm is described as follows. 1: At
every time step t, it first computes the next joint belief bt

given the nominal action an designed based on the nominal
policy πn. 2: It then checks whether that action leads to
a safe joint belief update. 3: If yes, the algorithm returns
an for implementation. 5: If no, the algorithm picks a joint
action apiq from |A| combinations of actions (recall that
ˆiPIAi “ A). 6-7: For each joint action apiq, it computes the
next joint belief and 8: checks whether the next joint belief
satisfies the LDTL specification. If the safety specification is
satisfied, 9: it computes the corresponding reward function
rpiq for the joint action apiq. 10: It then picks a safe joint
action that minimally changes the immediate reward from the
nominal immediate reward rtn in a least squares sense. This
ensures that the decision making remains as much faithful
as possible to the nominal policy (see [15] for analogous
formulations for systems described by nonlinear differential
equations).

V. CASE STUDY: MULTI-ROBOT EXPLORATION

To demonstrate our method, we consider high-fidelity simu-
lations of three heterogeneous ground-air robots [27], namely,
a drone and two ground vehicles (a Rover Robotics Flipper
and a modified Segway) exploring an unknown environment
in ROS (see Figure 2(a)). The drone can rapidly explore the
environment from above and it is used to locate a desired
sample (goal). The Flipper is a small, tracked vehicle capable
of traversing in rough terrain, whose job is to locate obstacles
in the area. The Segway is larger, wheeled robot without

external sensing capabilities, whose purpose is to retrieve the
sample without colliding any obstacles. For the MPOMDP
representation and more details on the setup, we refer the
interested reader to Section V in [5].

The nominal policy used for the drone and the Flipper
is a simple implementation of A*, that tries to maximize
information gain by moving in new regions of the state
space [29], hence exploring the environment. The Segway,
on the other hand, is fed a constant action repeatedly, and
relies on the safety-shield to reach the sample.

The first mission objective given to the Segway (located
at qS) is to not collide with the Flipper (located at qF ) with
probability 0.9. This can be represented as l f1, for f1 “
0.1 ´ bpqSqbpqF q. The next requirement is that the Segway
must not collide with the three obstacles (located at qoi ,
i “ 1, 2, 3), again with probability 0.9. This can be enforced
with the formula l f2, for f2 “ 0.1´^3

i“1bpqSqbpqoiq. To
enforce these objectives as a single specification, the formula
is l pf1_f2q. Note that, if the agents meet this specification
at time t “ 0, then there always exists an action that meets
this specification, as the agents can stop or remain in place.

In order to enforce LDTL formula l pf1_f2q, we use the
DTBF hpbq “ minpf1, f2q, where we used De Morgan’s laws
to obtain  pf1_f2q “  f1^ f2, the fourth row of Table I,
and Proposition 1. Figure 2(b) illustrates the safety shield
enforcing this specification over the beliefs of the agents and
the obstacles. Despite the obstacle being one cell away from
the desired Segway position, the uncertainty stemming from
the Flipper measurements of the obstacles as well as the state
estimator of the Segway prevent the robot from moving into
the desired position.

While the safety shield is able to keep the robots safe
under this specification, there is no requirement of progression
towards the objective, to retrieve the sample (located at qG).
Retrieving the sample with probability 0.5 can be written as
♦f3, with f3 “ 0.5´ bpqSqbpqGq.

Combining all three objectives into one yields the final
mission specification, given by the formula:

ϕ “ l pf1 _ f2q ^♦f3, (11)

which ensures that the Segway always avoids the Flipper
and the three obstacles with more than 0.90 probability and
eventually reaches the goal with more than 0.5 probability.

The finite time DTBF h̃pbq “ bpqSqbpqGq ´ 0.5 where we
used the third and ninth rows of Table I to enforce ♦f3. For
the finite time DTBF condition (6), the parameters ρ and ε
must be set to tune how quickly the set must be reached. To
allow for more freedom of operation, we choose ρ “ 0.99
and ε “ 0.1.

Figure 2(c-d) shows the results in our high-fidelity sim-
ulation environment. In particular, Figure 2(d) depicts the
evolution of the DTBFs over the whole experiment. As it can
be seen, for the nominal policy, the Segway fails to satisfy
the mission specifications (since h becomes negative in many
instances). However, with the safety-shield the satisfaction of
mission specifications is guaranteed (h is always positive).
Furthermore, the finite time DTBF becomes positive at the
end of the experiment, which shows that the eventually
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Fig. 2. Simulation results of the multi-agent system. (a) The initial positions
of the three agents, obstacles (red), and sample (green). (b) Example of
the nominal action (blue) being overwritten by the safety shield (green). (c)
Updated costmaps reflected in grayscale after a longer period of exploration.
(d) The plots of the DTBFs for the experiment, as explained above.

specification in (11) is satisfied. More information on this
simulation can be found in the video here [1].

VI. CONCLUSIONS

We proposed a technique based on DTBFs to enforce
safety/mission specifications in terms of LDTL formulas.
Future research will explore policy synthesis for POMDPs
ensuring both safety and optimality. To this end, we use
receding horizon control with imperfects information [13] and
control invariant set estimation of MPOMDPs via Lyapunov
functions [3]. Multi-agent learning under partial observa-
tion [23] with safety guarantees is also a future direction.
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