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Abstract— Enforcing safety of robotic systems in the presence
of stochastic uncertainty is a challenging problem. Traditionally,
researchers have proposed safety in the statistical mean as a
safety measure in this case. However, ensuring safety in the
statistical mean is only reasonable if robot safe behavior in the
large number of runs is of interest, which precludes the use of
mean safety in practical scenarios. In this paper, we propose
a risk sensitive notion of safety called conditional-value-at-risk
(CVaR) safety, which is concerned with safe performance in the
worst case realizations. We introduce CVaR barrier functions as
a tool to enforce CVaR safety and propose conditions for their
Boolean compositions. Given a legacy controller, we show that
we can design a minimally interfering CVaR safe controller via
solving difference convex programs. We elucidate the proposed
method by applying it to a bipedal locomotion case study.

I. INTRODUCTION

With the rise of robotic systems being deployed in real-
world settings, the associated risk that stems from uncertain
and unforeseen circumstances is correspondingly on the
rise. There are several inherent sources of uncertainty in
robotics systems, such as modeling uncertainty, sensor range
and resolution limitations, highly dynamic and uncertain
environments, noise and wear-and-tear in robot actuation [1],
that lead to higher risk in robot deployment.

Mathematically speaking, risk can be quantified in nu-
merous ways, such as chance constraints [2], [3]. However,
applications in autonomy and robotics require more “nuanced
assessments of risk” [4]. Artzner et. al. [5] characterized
a set of natural properties that are desirable for a risk
measure, called a coherent risk measure, and have obtained
widespread acceptance in finance and operations research,
among other fields. An important example of a coherent
risk measure is the conditional value-at-risk (CVaR) that has
received significant attention in decision making problems,
such as Markov decision processes (MDPs) [6], [7], [8],
[9]. For stochastic discrete-time dynamical systems, a model
predictive control technique with coherent risk objectives
was proposed in [10], wherein the authors also proposed
Lyapunov condition for risk-sensitive exponential stability.
Moreover, a method based on stochastic reachability analysis
was proposed in [11] to estimate a CVaR-safe set of initial
conditions via the solution to an MDP.

In this work, we use a special class of barrier function
as a tool for enforcing risk-sensitive safety. Control barrier
functions have been proposed in [12] and have been used
for designing safe controllers (in the absence of a legacy
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Fig. 1. Risk-sensitive obstacle avoidance using CVaR barrier functions
(robot behavior and barrier function evolution). The shaded yellow area
denotes safe regions. (a) safety violation with no barrier function; (b)
safety violation with risk-neutral (statistical mean) barrier function; (c) safe
behavior with CVaR barrier function. Plots on the right side show the values
of the barrier functions.

controller, i.e., a desired controller that may be unsafe)
and safety filters (in the presence of a legacy controller)
for continuous-time dynamical systems, such as bipedal
robots [13] and trucks [14], with guaranteed robustness [15],
[16]. For discrete-time systems, discrete-time barrier func-
tions have been formulated in [17], [18] and applied to the
multi-robot coordination problem [19]. Recently, for a class
of stochastic (Ito) differential equations, safety in probability
and statistical mean was studied in [20], [21] via stochastic
barrier functions.

In this paper, we go beyond the conventional notions of
safety in probability and statistical mean for discrete-time
systems subject to stochastic uncertainty. To this end, we
define safety in the risk-sensitive CVaR sense, which is
concerned with safety in the worst possible scenarios. We
then propose CVaR barrier functions as a tool to enforce
CVaR safety and formulate conditions for their Boolean
compositions. We propose a computational method based
on difference convex programs (DCPs) to synthesize CVaR
safe controllers for stochastic linear discrete-time systems.
These CVaR safe controllers are designed such that they
minimally interfere with a given robot legacy controller.
We show the efficacy of our proposed method on collision
avoidance scenarios involving a bipedal robot subject to
modeling uncertainty (see Figure 1).

The rest of the paper is organized as follows. In the
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Fig. 2. Comparison of the mean, VaR, and CVaR for a given confidence
β ∈ (0, 1). The axes denote the values of the stochastic variable h and
its pdf p(h). The shaded area denotes the %β of the area under p(h). If
h ≥ 0 represents a safe behavior, using E(h) as a performance measure is
misleading (note that E(h) is positive). VaR gives the value of h at the β-
tail of the distribution. But, it ignores the values of h with probability below
β. CVaR is the average of the values of VaR with probability less than β
(average of the worst-case values of h in the β tail of the distribution). Note
that CVaRβ is negative indicating unsafe behavior.

next section, we introduce CVaR safety and formulate CVaR
barrier functions as a tool to synthesize risk-sensitive safe
controllers. In Section III, we discuss our bipedal locomotion
case study. In Section IV, we present the obtained results
from high fidelity simulations. Finally, in Section V, we
conclude the paper and give directions for future research.

Notation: We denote by Rn the n-dimensional Euclidean
space and N≥0 the set of non-negative integers. For a finite
set A, we denote by |A| the number of elements of A. For
a probability space (X ,F ,P) and a constant p ∈ [1,∞),
Lp(X ,F ,P) denotes the vector space of real valued random
variables X for which E|X|p < ∞. The Boolean operators
are denoted by ¬ (negation), ∨ (conjunction), and ∧ (dis-
junction). For a risk measure ρ, we denote ρt to show the
function composition of ρ with itself t times.

II. CVAR BARRIER FUNCTIONS FOR RISK-SENSITIVE
PATH PLANNING

In this section, we formulate the risk-sensitive safety
problem and propose a solution based on a special class of
barrier functions. We begin by defining our risk measure of
interest called CVaR.

A. Conditional Value-at-Risk

Let (Ω,F ,P) be a probability space, H = Lp(Ω,F ,P),
p ∈ [0,∞), and let h ∈ H be a stochastic variable for which
higher values are of interest (for example, greater values of
h indicate safer performance). For a given confidence level
β ∈ (0, 1), value-at-risk (VaRβ) denotes the β-quantile value
of a stochastic variable h ∈ H described as

VaRβ(h) = sup
ζ∈R
{ζ | P(h ≤ ζ) ≤ β}.

Unfortunately, working with VaR for non-normal stochastic
variables is numerically unstable, optimizing models involv-
ing VaR are intractable in high dimensions, and VaR ignores
the values of h with probability less than β [22].

In contrast, CVaR overcomes the shortcomings of VaR.
CVaR with confidence level β ∈ (0, 1) denoted CVaRβ

measures the expected loss in the β-tail given that the par-
ticular threshold VaRβ has been crossed, i.e., CVaRβ(h) =
E [h | h ≤ VaRβ(h)]. An optimization formulation for CVaR

was proposed in [22] that we use in this paper. That is,
CVaRβ is given by

CVaRβ(h) := inf
ζ∈R

E
[
ζ +

(h− ζ)+
β

]
, (1)

where (·)+ = max{·, 0}. A value of β → 1 corresponds to a
risk-neutral case, i.e., CVaR1(h) = E(h); whereas, a value
of β → 0 is rather a risk-averse case, i.e., CVaR0(h) =
VaR0(h) [23]. Figure 2 illustrates these notions for an
example h variable with distribution p(h).

Unlike VaR, CVaR is coherence is a coherent risk mea-
sure [24], [25], which satisfies the following properties.

Definition 1 (Coherent Risk Measure): We call a risk
measures ρ : H → R a coherent risk measure, if it satisfies
the following conditions
• Convexity: ρ(λh+ (1− λ)h′) ≤ λρ(h) + (1− λ)ρ(h′),

for all λ ∈ (0, 1) and for all h, h′ ∈ H;
• Monotonicity: If h ≤ h′ then ρ(h) ≤ ρ(h′) for all
h, h′ ∈ H;

• Translational Invariance: ρ(h + c) = ρ(h) + c for all
h ∈ H and c ∈ R;

• Positive Homogeneity: ρ(βh) = βρ(h) for all h ∈ H
and β ≥ 0.

In fact, we use the nice mathematical properties of CVaR
given in Definition 1 in the proofs of our main results in
Section II-C.

B. CVaR Safety

We assume the robot dynamics of interest is described by
a discrete-time stochastic system given by

xt+1 = f(xt, ut, wt), x0 = x0, (2)

where t ∈ N≥0 denotes the time index, x ∈ X ⊂ Rn
is the state, u ∈ U ⊂ Rm is the control input, w ∈ W
is the stochastic uncertainty/disturbance, and the function
f : Rn × U × W → Rn. We assume that the initial
condition x0 is deterministic and that |W| is finite, i.e.,
W = {w1, . . . , w|W|}. At every time-step t, for a state-
control pair (xt, ut), the process disturbance wt is drawn
from set W according to the probability density function
p(w) = [p(w1), . . . , p(w|W|)]

T , where p(wi) := P(wt =
wi), i = 1, 2, . . . , |W|. Note that the probability mass
function for the process disturbance is time-invariant, and
that the process disturbance is independent of the process
history and of the state-control pair (xt, ut).

We are interested in studying the properties of the solu-
tions to (2) with respect to the compact set S described as

S := {x ∈ X | h(x) ≥ 0}, (3a)
Int(S) := {x ∈ X | h(x) > 0}, (3b)

∂S := {x ∈ X | h(x) = 0}, (3c)

where h : X → R is a continuous function. For instance,
S can represent robot constraints, e.g. joint limits, safe
exploration region, and etc.



In the presence of stochastic uncertainty w, assuring al-
most sure (with probability one) invariance or safety may not
be feasible. Moreover, enforcing safety in expectation is only
meaningful if the law of large numbers can be invoked and
we are interested in the long term performance, independent
of the realization fluctuations. In this work, instead, we
propose safety in a dynamic coherent risk measure, namely,
CVaR, sense with conditional expectation (risk-neutral case)
as an special case β → 1.

Definition 2 (CVaR Safety): Given a safe set S as given
in (3) and a confidence level β ∈ (0, 1), we call the solutions
to (2) starting at x0 ∈ S CVaR safe if and only if

CVaRt
β

(
h(xt)

)
≥ 0, ∀t ≥ 0. (4)

Note that CVaRt
β a dynamic time-consistent risk mea-

sure [26, Definition 3], i.e., if for some two realizations
w and w′, hw(xθ) ≥ hw′(x

θ) at some future time θ, and
hw(xt) = hw′(x

t) for time t ∈ (τ, θ), then hw(xt) ≮
hw′(x

t) for t < τ . The time consistency property ensures
that contradictory evaluations of safety risk at different points
in time does not happen. In other words, if one realization
of w incurs higher safety risk at some point in time, then it
is a riskier in terms of safety at any prior point in time.

C. CVaR Barrier Functions

In order to check and enforce CVaR safety, we define
CVaR barrier functions.

Definition 3 (CVaR Barrier Function): For the discrete-
time system (2) and a confidence level β ∈ (0, 1), the
continuous function h : Rn → R is a CVaR barrier function
for the set S as defined in (3), if there exists a constant
α ∈ (0, 1) such that

CVaRβ(h(xt+1)) ≥ αh(xt), ∀xt ∈ X . (5)
In the next result, we demonstrate that the existence of a

CVaR barrier function indeed implies CVaR safety.
Theorem 1: Consider the discrete-time system (2) and

the set S as described in (3). Let β ∈ (0, 1) be a given
confidence level. Then, S is CVaR safe, if there exists an
CVaR barrier function as defined in Definition 3.

Proof: The proof is carried out by induction and using
the properties of CVaR as a coherent risk measure as outlined
in Definition 1. If (5) holds, for t = 0, we have

CVaRβ(h(x1)) ≥ αh(x0). (6)

Similarly, for t = 1, we have

CVaRβ(h(x2)) ≥ αh(x1). (7)

Since CVaRβ is monotone (because it is a coherent risk
measure), composing both sides of (7) with CVaRβ does
not change the inequality and we obtain

CVaR2
β(h(x2)) ≥ CVaRβ(α(h(x1))). (8)

Since α ∈ (0, 1), from positive homogeneity property of
CVaR, we obtain CVaRβ(α(h(x1))) = αCVaRβ(h(x1)).
Thus, (8) simplifies to CVaR2

β(h(x2)) ≥ αCVaRβ(h(x1)).

Then, using inequality (6), we have

CVaR2
β ≥ αCVaRβ(h(x1)) ≥ α2h(x0).

Therefore, by induction, at time t, we can show that

CVaRt
β(h(xt)) ≥ αth(x0). (9)

If x0 ∈ S, from the definition of the set S, we have h(x0) ≥
0. Since α ∈ (0, 1), then we can infer that (4) holds. Thus,
the system is CVaRβ-safe.

In many practical robotics path planning scenarios, we
encounter multiple obstacles and safe sets composed of
Boolean compositions of several barrier functions [27], [19],
[28]. Next, we propose conditions for checking Boolean
compositions of CVaR barrier functions.

Proposition 1: Let Si = {x ∈ Rn | hi(x) ≥ 0}, i =
1, . . . , k denote a family of safe sets with the boundaries
and interior defined analogous to S in (3). Consider the
discrete-time system (2). If there exist a α ∈ (0, 1) such that

CVaRβ

(
min

i=1,...,k
hi(x

t+1)

)
≥ α min

i=1,...,k
hi(x

t) (10)

then the set {x ∈ Rn | ∧i=1,...,k (hi(x) ≥ 0)} is CVaR safe.
Similarly, if there exist a α ∈ (0, 1) such that

CVaRβ

(
max

i=1,...,k
hi(x

t+1)

)
≥ α max

i=1,...,k
hi(x

t) (11)

then the set {x ∈ Rn | ∨i=1,...,k (hi(x) ≥ 0)} is CVaR safe.

Proof: If (10) holds from the proof of Theorem 1, we
can infer that

CVaRt
β

(
min

i=1,...,k
hi(x

t)

)
≥ αt min

i=1,...,k
hi(x

0).

That is, if x0 ∈ {x ∈ Rn | mini=1,...,k hi(x) ≥ 0},
then CVaRt

β (mini=1,...,k hi(x
t)) ≥ 0 for all t ∈ N≥0. Let

hi∗(x
t) be the smallest among hi(xt), i = 1, 2, ..., k, i.e., it

satisfies hj(xt) ≥ · · · ≥ hi∗(x
t), ∀j 6= i∗. Because CVaR

is monotone (see Definition 1), the latter inequality implies
CVaRt

β(hj(x
t)) ≥ · · · ≥ CVaRt

β(hi∗(x
t)), ∀j 6= i∗. Since

CVaRt
β (mini=1,...,k hi(x

t)) = CVaRt
β (hi∗(x

t)) ≥ 0 for all
t ∈ N≥0, we have

CVaRt
β(hj(x

t)) ≥ · · · ≥ CVaRt
β(hi∗(x

t)) ≥ 0, j 6= i.

Thus, CVaRt
β(hi(x)) ≥ 0 for all i ∈ {1, . . . , k}.

Similarly, if (11) holds, we can infer that

CVaRt
β

(
max

i=1,...,k
hi(x

t)

)
≥ αt max

i=1,...,k
hi(x

0).

Hence, using similar arguments as the proof of the conjunc-
tion case, CVaRt

β (maxi=1,...,k hi(x
t)) ≥ 0 for all t ∈ N≥0.

That is, there exists at least an i ∈ {1, . . . , k} for which
CVaRt

β (maxi=1,...,k hi(x
t)) ≥ 0.

The negation operator is trivial and can be shown by
checking if −h satisfies inequality (5).

In the next section, we demonstrate how a sequence
{ut}t>0 can be designed such that system (2) becomes CVaR
safe based on optimization techniques.



D. CVaR-Safe Controller Synthesis
Inspired by the quadratic programming formulations of

conventional control barrier functions in the continuous-time
case [12], we pose the controller synthesis problem as an
optimization.

CVaR Control Barrier Function Optimization: At every
time step t, given xt, a set S as described in (3), a confidence
level β ∈ (0, 1), a parameter α ∈ (0, 1), control upper
bounds u, lower bounds u, and a legacy controller utlegacy,
solve

ut∗ = argmin
ut

(ut − utlegacy)T (ut − utlegacy)

subject to
u ≤ ut ≤ u, (12a)

CVaRβ

(
h(f(xt, ut, w))

)
≥ αh(xt). (12b)

Note that instantaneous controls ut are the only variables
in the optimization. The cost function (ut − utlegacy)T (ut −
utlegacy) = ‖ut − utlegacy‖2 ensures that ut remains as close
as possible to the legacy controller utlegacy in the Euclidean
2-norm; hence, it guarantees the minimally interference.

For general nonlinear h, optimization problem (12) is a
nonlinear program in the decision variable ut (note that
CVaR is a convex function in h since it is a coherent
risk measure). Indeed, this was the case for optimization
problems designed for synthesizing discrete control barrier
functions for discrete-time systems even without stochas-
tic uncertainty [18], as well. MATLAB functions such as
fmincon can be used to solve the nonlinear program.

Next, we show that under some assumptions the search
over CVaR safe controls ut can be carried out by solving
difference convex programs (DCPs).

For the remainder of this section, we restrict our attention
to the case when system (2) is a linear system. That is,

f(xt, ut, wt) = A(wt)xt +B(wt)ut +G(wt),

where A :W → Rn×n, B :W → Rn×m and G :W → Rn.
For such systems, we assume the CVaR barrier function

takes the form of a linear function

h(xt) = Hxt + l, (13)

where H ∈ R1×n and l ∈ R. Then, the
term CVaRβ (h(f(xt, ut, w))) in constraints (12b)
changes to

CVaRβ(HA(w)xt +HB(w)ut +HG(w) + l). (14)

Since CVaRβ is a convex function, the above term is a
convex function in ut, i.e., the control variable.

Re-writing optimization problem (12) for linear discrete
time systems with stochastic uncertainty and CVaR barrier
function (13) gives the following optimization problem

ut∗ = argmin
ut

(ut − utlegacy)T (ut − utlegacy)

subject to
u ≤ ut ≤ u, (15a)
(14) ≥ αh(xt), (15b)

Substituting the expression for CVaR (1) in (14) for
uncertainty w with finite |W| yields

inf
ζ∈R

{
ζ +

1

β

|W|∑
i=1

(
HA(wi)x

t

+HB(wi)u
t +HG(wi) + l − ζ

)
+
p(wi)

}
, (16)

which introduces the extra decision variable ζ ∈ R.
Hence, (15) can be rewritten in the standard DCP form

ut∗ = argmin
ut,ζ

q0(ut)

subject to
q1(ut) ≤ 0 and q2(ut) ≤ 0, (17a)
q3 − q̂4(ζ, ut) ≤ 0, (17b)

where wherein q0(ut) = (ut − utlegacy)T (ut − utlegacy) is a
convex (quadratic) function, q1(ut) = u − ut is a convex
(linear) function, q2(ut) = ut − u is a convex (linear)
function, and q3 = αHxt + αl is a convex (constant)
function. The expression for q̂4(ζ, ut) is given in (16) which
is a convex function in ut and ζ since q̂4(ζ, ut) is convex
in ζ [22, Theorem 1] because the function (·)+ is increasing
and convex [29, Lemma A.1.].

DCPs like (17) arise in many applications, such as feature
selection in machine learning [30] and inverse covariance
estimation in statistics [31]. In order to solve DCPs, we use
a variant of the convex-concave procedure [32], [33], wherein
the concave terms are replaced by a convex upper bound and
solved. In fact, the disciplined convex-concave programming
(DCCP) [33] technique linearizes DCP problems into a
(disciplined) convex program (carried out automatically via
the DCCP package [33]), which is then converted into an
equivalent cone program by replacing each function with its
graph implementation. Then, the cone program can be solved
readily by available convex programming solvers, such as
CVX [34] or YALMIP [35].

We should point out that solving (17) via the DCCP
method, finds the (local) saddle points to optimization prob-
lem (17). Nonetheless, every such local ut guarantees CVaR
safety.

III. APPLICATION TO BIPEDAL LOCOMOTION

In this section, we apply the risk-sensitive planning on
a bipedal walking robot. We first present the dynamics
model of the walking. Then, we briefly review a stepping
approach for realizing and stabilizing walking behaviors,
which produces a discrete linear dynamics for path planning.
Finally, we apply the risk-sensitive planning controller on
bipedal walking.

A. Hybrid Dynamics of Bipedal Walking

Bipedal walking is a hybrid dynamical phenomenon. The
dynamics description changes as the contact changes. For
instance, the dynamics with two feet on the ground is
different than that with one foot on the ground. The state
also undergoes a discrete change when the swing foot strikes



the ground. We consider the dynamics to be described by
two domains, i.e., the single support phase (SSP) and the
double support phase (DSP). The walking transits from the
SSP to DSP when the swing foot strikes the ground. It
transits from DSP to SSP when one of the feet lifts off from
the ground. Mathematically, the hybrid dynamical system
can be described by a combination of nonlinear continuous
dynamics and discrete transitions:

ẋv = fv(x) + gv(x)τ, (18)

x+v+1 = ∆v(x
−
v ), (19)

where x is the state of the robot, v denotes for the index
of the domain, τ is the actuation torque vector of the robot,
+/− denotes for the initial or final instant of the domain,
and ∆v represents for the transition between each domains.

B. Linear S2S Approximation for Step Planning

Planning and controlling of bipedal walking is a challeng-
ing problem, and there has been various related approaches
[36] in the literature. In this paper, we apply the approach in
[37] to realize walking via stepping, where a discrete linear
dynamics is utilized for approximating the actual dynamics
of the walking robot.

Consider the state x at the instant before the swing foot
strikes the ground (i.e., the impact event). We denote it as
the pre-impact state. Assuming an existing walking behavior,
the pre-impact state xt+1 of the next step is a function of
the pre-impact state xt at the current step and the actuation
τ during the step. Then, it is a discrete dynamical system at
the step level:

xt+1 = P(xt, τ(t)), (20)

where τ(t) denotes the applied torques during the step, which
is referred to as the step-to-step (S2S) dynamics of the
walking [37].

The, the horizontal state of the robot is critical for walking;
the horizontal position and velocity of the robot mainly
describe the walking w.r.t the world. Let xh = [c, p, v]T

denote the horizontal state, where c is the horizontal position
of the center of mass (COM) of the robot relative to the
inertia frame, p is the horizontal position of the COM relative
to its stance foot, and v is the horizontal velocities of the
COM. Thus the horizontal S2S dynamics can be denoted as:

xt+1
h = Ph(xt, τ(t)). (21)

Our previous work [37], [38] suggests that the S2S dynam-
ics of the walking of the Hybrid-Linear Inverted Pendulum
(H-LIP) [39] can be used to approximate the actual horizontal
S2S dynamics of the walking of the robot. The S2S dynamics
of the H-LIP [37] is:

xt+1
H-LIP = AxtH-LIP +ButH-LIP (22)

where xt+1
H-LIP = [cH-LIP, pH-LIP, vH-LIP]T is the discrete pre-

impact state of the H-LIP, and utH-LIP is the step size. The

Fig. 3. A schematic diagram of our proposed risk-sensitive path planning
method baaed on CVaR barrier functions for bipedal robots.

expressions of A,B can be found in [37]. By approximation,
Eq. (21) can be rewritten as:

xt+1
h = Axth +But + wt (23)

wt : = Ph(xt, τ(t))−Axth −But. (24)

where w ∈ W can be treated as the disturbance to the linear
S2S dynamical system in Eq. (22). Applying the H-LIP based
stepping [37]:

u = uH-LIP +K(xh − xH-LIP) (25)

on the robot yields the error e = xh − xH-LIP which evolves
according to the error dynamics et+1 = (A+BK)et +wt.
The error dynamics has an error (disturbance) invariant set
E if (A + BK) is stable. If ek ∈ E, then et+1 ∈ E. As a
result, this stepping controller drives the robot to behavior
approximately like the walking behavior of the H-LIP, the
difference between which is bound by E.

For application of 3D bipedal walking, the H-LIP is
applied in each plane of walking: the sagittal plane and the
lateral plane. The H-LIP based planning provides the desired
step sizes (step length and step width) for the robot, which
become the desired outputs for the low-level controller to
track [39].

C. Risk-Sensitive Path Planning

We apply the CVaR barrier function based risk-sensitive
planning presented in Section II to the 3D bipedal walking
as described in Figure 3. The uncertainty w is treated as
stochastic uncertainty and as a risk factor that can lead to
undesired behavior on the generated walking. For instance, in
order to avoid an obstacle, one first generates a collision-free
path on the H-LIP, and then apply the H-LIP based planning
on the robot to create approximately similar walking. Due to
the uncertainty w, the actual walking on the robot diverges
with a bounded error (inside E) from the H-LIP walking,
which potentially causes collision between the robot and the
obstacle.

To circumvent this issue, we synthesize CVaR barrier
functions based controllers to filter the H-LIP based stepping
controller on the robot. The barrier functions are designed
to represent the safe regions, where there are no obstacles.
We are then interested in keeping the robot inside the safe
(obstacle-free) regions during walking.



The uncertainty w is numerically calculated in simulation
for a series of walking behaviors, which provided a polytopic
set that bounds w. We took |W| random samples from the
latter polytopic set. Since w is sparse in nature, we assumed
a uniform distribution of w inside W , i.e., p(w) = 1/|W|.
To design the risk-sensitive safe controllers, we then solve
DCP (17), where A, B, and G(w) = w are given by the
approximated S2S dynamics (23).

IV. DEMONSTRATION

We apply the proposed approach in high-fidelity simu-
lation on the underactuated bipedal robot Cassie [40]. The
dynamics is integrated using Matlab ODE 45 function with
event based function for detecting the domain transitions.
The CVaR barrier function based optimization DCP (17)
is solved in YALMIP using MOSEK solver at each step.
The optimization typically takes 100 ∼ 700 steps under
10 seconds to solve on a laptop with the processor intel(R)
Core(TM) i7-7700HQ@2.8GHz. The low-level controller on
the robot is solved at 1kHz. The legacy controller used in
our experiments is a model predictive controller.

Case 1: We consider a scenario, in which the robot is
walking to follow a straight path. However, an obstacle is
placed in the robot path. The results are shown in Fig. 1 (a)
and 4. The legacy controller is not aware of this wall, which
results in collision that in practice would cause collision and
hardware failure.

Then, we apply a CVaR barrier function to filter the output
of the legacy controller. The safe set is defined as

h(cx) = px − cx ≥ 0,

where px = 1 is the position of the obstacle, cx denotes the
position of the robot in the forward direction. We first apply
the CVaR barrier function with β = 0.999 (risk neutral)
based risk-sensitive controller. The result is shown in Fig. 1
(b): the robot walks and stop at the location of the obstacle.
However, due the stochastic uncertainty w, the risk-neutral
path planning violates the safety requirement.

Then, we apply the CVaR barrier function with β = 0.1
(risk-averse case), which generates the walking shown in
Fig. 1 (c). The legacy controller directs the robot forward,
but the CVaR safe controller keeps the robot away from the
obstacle.

Case 2: In this scenario, we consider the robot forward
reference path. However, there is a wall at an angle, which
does not completely prevent the robot from walking forward.
The safe set is defined as

h(cx, cy) = cy + k(cx − p) ≥ 0,

where k indicates the angle of the wall, p indicates the
location of the wall in forward direction, and cy is the
position of the robot in the lateral plane. Here k = −0.5
and p = 2. Fig. 5 (a) shows the generated walking behavior.
With the CVaR barrier function with β = 0.5, the robot keeps
a distance from the wall and maintains its original forward
walking behavior in its sagittal plane, which is similar to

Fig. 4. Case 1: Trajectories of the positions (blue is the desired trajectory)
and step length of the robot in the sagittal plane for (a) walking without
CVaR barrier function, where (a2) shows the legacy controller input, (b1)
walking with risk neutral CVaR barrier function with β = 0.999, where
(b2) shows the output of the CVaR safe controller with β = 0.999, (c)
walking with the risk-averse CVaR barrier function with β = 0.1, where
(c2) shows the output of the CVaR safe controller with β = 0.1. The red
shaded area indicates the safe region for the robot.

Fig. 5. The generated walking for Case 2 (a1, a2) and Case 3 (b).

the walking in Fig. 4 (a1). As a result, the robot also walks
laterally as well to keep safe.

Case 3: We consider a scenario with multiple barrier
functions. The robot is supposed to follow a sinusoidal path.
We add two walls on its way. The safe set is then defined as
min(h1, h2) ≥ 0, where

h1(cy) = cy + p1 ≥ 0,

h2(cy) = −cy + p2 ≥ 0,

with p1 = 2 and p2 = 0. Fig. 5 (b) illustrates the walking
with the CVaR barrier function β = 0.5, where the robot
successfully avoided the collision with the walls.

V. CONCLUSION

We proposed a method based on CVaR barrier func-
tions to verify and enforce CVaR safety for discrete-time
stochastic systems. We proposed a computational method
for synthesizing CVaR safe controllers in the case of linear
dynamics. The method was applied to enforce risk-sensitive
safety of a bipedal robot. Future work will extend the
CVaR barrier functions to general coherent risk measures,
continuous-time systems with stochastic uncertainty, and to
applications involving cooperative robot-human teams and
imperfect sensor measurements [41].
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