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Hierarchical Feedback Control for Complex Hybrid
Models of Multiagent Legged Robotic Systems

Kaveh Akbari Hamed1, Wen-Loong Ma2, Vinay R. Kamidi1, and Aaron D. Ames2

Abstract—This paper presents a hierarchical feedback control
strategy for complex hybrid systems that represent collaborative
multiagent legged robotic systems with arms for manipulating an
object. We develop high-dimensional hybrid models, including
continuous- and discrete-time dynamics, for multiagent legged
systems. Each agent has its own baseline controller to produce
an exponentially stable legged locomotion pattern. For the ma-
nipulating purpose of the object, a two-level control strategy is
proposed. At the higher level, a model predictive control based
convex quadratic programming (QP) computes the required
forces to be generated by the end effectors (EEs). The lower-
level controllers are then set up based on convex QPs to refine
the baseline controllers while generating the prescribed forces
at the EEs. Two different strategies for the deployment of the
lower-level controllers, including centralized and decentralized
algorithms, are proposed. The power of the control algorithms
is finally illustrated on an extensive numerical simulation of two
quadruped agents (Vision 60 robots) with Kinova arms to steer
an object for which the complex hybrid model has 64 continuous-
time domains, 132 state variables, and 36 control inputs.

I. INTRODUCTION

The overarching goal of this paper is to present an analytical
foundation, based on hybrid systems theory, hierarchical cen-
tralized and decentralized control algorithms and convex op-
timization for enabling collaborative legged robots with arms
to manipulate objects and, specifically, steer an object (see
Fig. 1). Models of legged machines are described by hybrid
systems. This paper addresses complex and high-dimensional
hybrid models that describe multiagent legged robotic systems.
It further develops hierarchical centralized and decentralized
control algorithms, based on model predictive control (MPC)
and convex quadratic programming (QP), to manipulate an
object while having stable locomotion patterns. The proposed
framework can ameliorate specific challenges in the design
of controllers for multiagent legged robots arising from high
dimensionality as well as hybrid nature of models.

A. Related Work

Hybrid systems theory has become a powerful approach for
modeling legged locomotion [19, 15, 35, 36, 27, 17, 11, 33,
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Fig. 1: The complex mechanical system that consists of N ≥ 2
agents (Vision 60s) with arms to steer an object.

37, 16, 10, 39, 31, 23, 32, 26, 34]. State-of-the-art controller
design methods that address the hybrid nature of legged
locomotion models are developed based on hybrid reduction
[6], controlled symmetries [35], transverse linearization [27],
and hybrid zero dynamics (HZD) [40, 8]. HZD-based con-
trollers have been validated numerically and experimentally
for bipedal robots [14, 28, 23, 37, 5, 8], powered prosthetic
legs [18, 41], exoskeletons [3, 21], monopedal [33], and
quadrupedal robots [20, 12]. State-of-the-art nonlinear control
approaches for legged robots are tailored to path planning and
stabilization of dynamic gaits for these sophisticated machines.
However, they do not address path planning and control of
complex hybrid dynamical models that describe the evolution
of multiagent legged robotic systems working collaboratively.

B. Motivation, Objectives, and Contributions

More than half the Earth’s continent is unreachable to
wheeled vehicles which motivates the deployment of multi-
agent legged robotic systems to enable the accessibility of
these environments. Although enormous theoretical and tech-
nological advances have occurred for constructing hierarchical
controllers for complex robot systems, existing approaches are
tailored to the modeling and control of multiagent systems
composed of collaborative robotic arms [29], multifingered
robot hands [30], aerial vehicles [38], and ground vehicles
[13] but not collaborative legged agents. The objective of this
paper is to establish an analytical foundation to 1) develop
complex hybrid models of collaborative multiagent legged
robotics systems, and 2) create a hierarchical control scheme
for the network of these agents to steer an object. This
objective will be achieved through the following contributions:
1) Continuous-time dynamics for complex robotic systems
composed of N ≥ 2 multiagent legged robots are addressed
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Fig. 2: Illustration of the system under investigation in this
work. A commercially available six-DOF arm built by Kinova
is affixed on a quadrupedal platform, Vision 60, manufactured
by Ghost Robotics [1].

(see Fig. 1); 2) Discrete-time dynamics of these complex
systems are studied; 3) The higher-level control is developed
based on MPC and convex QPs to compute the required forces
to be generated by the end effectors (EEs) for steering the
object; 4) The lover-level controller is then developed based
on QPs to refine the HZD baseline controllers of agents while
generating the prescribed forces at the EEs; 5) Two different
strategies, including centralized and decentralized algorithms,
for the deployment of lower-level controllers are proposed;
and 6) To demonstrate the power of the analytical foundation
and control algorithms, an extensive numerical simulation of
two quadrupedal agents (Vision 60 robots) with Kinova arms
steering an object is finally presented (see Fig. 2). In this
simulation, the complex hybrid model has 64 continuous-time
domains, 132 state variables, and 36 control inputs.

II. HYBRID MODEL OF LOCOMOTION FOR ONE AGENT

A. Vision 60

Vision 60 is a mid-sized tele-op and autonomous all-terrain
ground drone manufactured by Ghost Robotics [1] (see Fig. 2).
It weighs approximately 20 kg and supports a total payload
of 14 kg. Vision 60 has 18 DOFs of which 12 leg DOFs
are actuated. In particular, each leg of the robot consists of a
1 DOF actuated knee joint with pitch motion and a 2 DOF
actuated hip joint with pitch and roll motions. The remaining
6 DOFs are associated with the translational and rotational
movements of the torso.

B. Robot Model

To describe the configuration variables of Vision 60, we
make use of the floating base model. For this purpose, we
rigidly attach a body coordinate frame to the torso of the robot.
The Cartesian coordinates of the origin of this frame with
respect to the ground can be given by pb ∈ R3. The orientation
of this frame with respect to the ground (i.e., inertial world
frame) is also described by φb ∈ SO(3). Next, let us suppose
that qbody ∈ Qbody ⊂ R12 denotes the body angles that describe
the shape of Vision 60. The generalized coordinates of the
robot are then expressed as q := col(pb, φb, qbody) ∈ Q :=
R3 × SO(3) × Qbody. The state vector of Vision 60 is also

taken as x := col(q, q̇) ∈ TQ ⊂ R2nq , where TQ denotes the
tangent bundle of Q and nq := dim(q) = 18.

C. Hybrid Systems Formulation

The open-loop model of quadruped locomotion can be
expressed as a hybrid control system given by the following
tuple [7]

H L ol = (Λ,X ,U ,D,S,∆, FG) , (1)

where Λ := (V, E) is a directed cycle with the vertices set
V and the edges set E ⊆ V × V . The vertices represent
the continuous-time dynamics of locomotion, referred to as
domains or phases, whereas edges denote the discrete-time
transitions among continuous-time dynamics. The evolution
of the system during continuous-time domains is described
by ordinary differential equations (ODEs) arsing from the
Euler-Lagrange equations. The evolution of the system dur-
ing discrete-time transitions is expressed by possible abrupt
changes in the state vector arising from the changes in physical
constraints (e.g., new contact is added to the existing set of
contact points with the ground or an existing contact breaks).
In our notation, X and U denote the set of state manifolds
and set of admissible controls, respectively, and are shown by
X := {Xv}v∈V and U := {Uv}v∈V . Here, Xv ⊆ R2nq and
Uv ⊆ Rm represent the state manifold and set of admissible
control inputs for the domain v ∈ V , where m = 12. D :=
{Dv}v∈V denotes the set of domains of admissibility, in which
Dv ⊆ Xv × Uv is a smooth submanifold of R2nq × Rm. The
continuous-time dynamics are given by FG := {(fv, gv)}v∈V ,
where (fv, gv) is a control system on Dv , that is, in coordinates
ẋ = fv(x) + gv(x)u. The set of guards for the hybrid system
is shown by S := {Se}e∈E on which the discrete transitions
e ∈ E occur when the state and control trajectories (x(t), u(t))
cross Se. Finally, ∆ := {∆e}e∈E represents the set of discrete-
time transitions, in which ∆e denotes the discrete-time dynam-
ics for the edge e ∈ E . In particular, x+ = ∆e(x

−), where
x−(t) := limτ↗t x(τ) and x+(t) := limτ↘t x(τ) represent
the state of the system right before and after the discrete
transition, respectively.

D. Continuous-Time Dynamics

During the continuous-time domain v ∈ V , we consider a
set of physical holonomic constraints to represent the contact
of the stance legs with the ground as ηv(q) = 0. The associated
velocity constraints are given by Jv(q) q̇ = 0, in which
Jv(q) := ∂ηv

∂q (q). The equations of motion for the domain
v can then be described by the Euler-Lagrange equations and
principle of virtual work as follows

D(q) q̈ + C (q, q̇) q̇ +G(q) = B u+ J>v (q)λ

Jv(q) q̈ +
∂

∂q
(Jv(q) q̇) q̇ = 0. (2)

Here, D(q) ∈ Rnq×nq represents the positive definite mass-
inertia matrix, H(q, q̇) := C(q, q̇) q̇+G(q) ∈ Rnq denotes the
Coriolis, centrifugal and gravitational terms, B ∈ Rnq×m is
the input distribution matrix with the property rank(B) = m,
and λ represents the Lagrange multipliers (i.e., ground reaction
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forces). If Jv is full-rank, one can eliminate the Lagrange
multipliers from (2) to express the state equation as ẋ =
fv(x) + gv(x)u.

E. Discrete-Time Dynamics

In this paper, we assume that the µ : V → V denotes the
index of the next domain function for the studied locomotion
pattern. Using this function, the set of edges can be expressed
as E = {e = (v → µ(v))}v∈V . If one of the existing contacts
breaks during the transition, the discrete-time dynamics are
taken as the identity map to preserve the continuity of position
and velocity, i.e., x+ = ∆e(x

−) := x−. However, if a new
contact point is added to the existing set of contact points,
the velocity components of the state vector would undergo an
abrupt change according to the instantaneous and rigid impact
model [24]. In particular, if δλ represents the intensity of the
impulsive Lagrange multipliers, the evolution of the system
during the infinitesimal period of the impact can be given by

D(q) q̇+ −D(q) q̇− = J>µ(v) δλ, Jµ(v)(q) q̇
+ = 0, (3)

where q̇− and q̇+ represent the generalized velocity vector
right before and after the impact, respectively. By assuming the
continuity of position (i.e., q+ = q−) and eliminating δλ from
(3), one can obtain a closed-form expression for the discrete-
time dynamics as x+ = ∆e(x

−).

F. Closed-Loop System and Periodic Orbit

We consider a family of nonlinear and HZD-based state
feedback laws for the hybrid model of locomotion in (1) as
Γ := {Γv}v∈V . In our notation, u = Γv(x) represents the state
feedback law during the continuous-time domain v ∈ V , where
Γv : Xv → Uv is a smooth mapping (i.e., C∞). In the HZD
method, we consider a set of output functions yv(x), referred
to as virtual constraints, to be regulated during each domain.
Then, Γv(x) is designed using the standard input-output (I-
O) linearization technique [25] to asymptotically derive the
outputs to zero (i.e., limt→∞ yv(t) = 0). Virtual constraints
represent holomomic or nonholonomic kinematic constraints
to coordinate the links of the robot within a stride and are
satisfied through the action of the state feedback Γv(x). We
assume that by employing the state feedback laws, there is
a periodic orbit for the hybrid model of locomotion that
describes steady-state locomotion. The periodic orbit can be
given by O := {Ov}v∈V , in which Ov denotes the projection
of the orbit onto the state manifold of the domain v. To design
the orbit O, we make use of FROST (Fast Robot Optimization
and Simulation Toolkit) – an open source toolkit for planning
of dynamic legged locomotion [22, 20, 23]. FROST provides
an efficient trajectory optimization framework for nonlinear
and hybrid models of legged machines. It uses the Hermite
Simpson collocation method to translate a trajectory planning
problem into a constrained nonlinear programming. We further
suppose that the periodic orbit O is locally orbitally exponen-
tially stable for the closed-loop system, i.e.,

dist (x(t),O) ≤ κ dist (x(0),O) exp(−γ t), ∀t ≥ 0, (4)

for some κ ≥ 1 and γ > 0 and every initial state x(0) in an
open neighborhood of O. Here, dist(x,O) := infz∈O ‖x− z‖

denotes the distance of the point x to the set O. A systematic
approach for synthesizing exponentially stabilizing virtual
constraint controllers Γv(x), based on an iterative sequence of
optimization problems involving linear and bilinear matrix in-
equalities (LMIs and BMIs), has been developed in [20, 5, 4].

III. COMPLEX HYBRID MODEL FOR MULTIAGENT
LEGGED ROBOTIC SYSTEMS WITH ARMS AND AN OBJECT

In this section, we address the complex hybrid model that
describes the equations of motion for N agents manipulating
an object (see Fig. 1). The agents are augmented by robotic
arms for the steering purpose. To simplify the analysis, we
assume that the models of agents/arms are identical. In this
paper, we consider a 6 DOF Kionva manipulator for the arms.
To augment the agent model with that of the arm, we consider
a floating base model for the arm. This model has 12 DOFs
that include the internal 6 DOFs of the arm together with
additional 6 DOFs that describe the translational and rotational
motions of its base. The configuration variables of the floating
base model can then be given by qa ∈ Qa ⊂ Rna , where
na = 12. The equations of motion for the floating base model
is also described by

Da (qa) q̈a + Ca (qa, q̇a) q̇a +Ga (qa) = Ba ua, (5)

where Da(qa) ∈ Rna×na is the positive definite mass-inertia
matrix, Ha(qa, q̇a) := Ca(qa, q̇a) q̇a +Ga(qa) ∈ Rna denotes
the Coriolis, centrifugal, and gravitational terms, ua ∈ Rma

represents the control inputs, and Ba ∈ Rna×ma is the input
distribution matrix with the property rank(Ba) = ma = 6.
The object is also assumed to be rigid with no = 6 DOFs. Its
free motion can be described as follows

Do (qo) q̈o + Co (qo, q̇o) q̇o +Go (qo) = 0, (6)

in which qo ∈ Qo ⊂ Rno represents the translational and
rotational variables of the object with respect to the ground
frame, Do(qo) ∈ Rno×no is the mass-inertia matrix and
Ho(qo, q̇o) := Co(qo, q̇o)q̇o + Go(qo) ∈ Rno denotes the
Coriolis, centrifugal and gravitational terms. In what follows,
we will address the complex hybrid model that describes the
evolution of the augmented mechanical system consisting of
N agents with the arms while steering the object through their
end effectors (EEs).

A. Augmented Continuous-Time Dynamics

In order to rigidly connect the base of the arm to a specific
point on Vision 60’s torso, we consider the following physical
holonomic constraint (see Fig. 3)

pt(q)− pa(qa) = 0, (7)

where pt(q) ∈ R6 denotes the Cartesian coordinates and orien-
tation (e.g., roll-pitch-yaw angles) of the aforementioned point
on the robot torso and pa(qa) ∈ R6 represents the equivalent
quantities for the base of the arm. For later purposes, we
assume that ua = Γa(xa) is a state feedback controller that
regulates the arm joints to a desired configuration (e.g., as
shown in Fig. 2), where xa := col(qa, q̇a). This feedback law
can be a simple PD controller with gravitational compensation.
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Next, we study an alternative holonomoic constraint for the
EE and object connection. In this paper, it is assumed that the
EE and object connection is through a ball joint to simplify
the analysis. Consequently, we only consider holonomic con-
straints on the translational motions of the EE and object as
follows

pA(qo)− pe(qa) = 0, (8)

where pA(qo) ∈ R3 represents the Cartesian coordinates of the
point A on the object and pe(qa) ∈ R3 denotes the Cartesian
coordinates of the EE.

Now let us consider a team of collaborative N agents, where
i ∈ {1, 2, · · · , N} represents the agent number. The state
variables for the agent i can be given by x̄i := col(q̄i, ˙̄qi),
in which q̄i := col(qi, qa,i), and qi and qa,i represent the
configuration variables of the ith Vision 60 and corresponding
arm, respectively. The control input for the agent i with the
arm is also denoted by ūi := col(ui, ua,i). The continuous-
time domain index for the agent i is also shown by vi ∈ V .

Assumption 1 (Baseline Controllers): The baseline con-
troller for the agent i is defined as (Γvi(x̄i),Γa(x̄i)), where
Γvi(x̄i) and Γa(x̄i) denote the virtual constraint controller
and PD feedback law for the agent and arm, respectively. We
suppose that each agent with the arm can have an exponen-
tially stable locomotion pattern when employing the baseline
controller. The new orbit can be shown by Ō that is close to
O (i.e., the orbit without the arm) (see Fig. 4). This is not a
restrictive assumption as Vision 60 is much heavier than the
arm.

To develop the continuous-time dynamics of the complex
model, we assume that the EE of the agent i is rigidly
connected to the point Ai on the object. Using the principle
of virtual work, the equations of motion can then be described
as follows

D q̈i +H = B ui + J>t λt,i + J>viλi

Da q̈a,i +Ha = Ba ua,i − J>a λt,i − J>e λe,i

Jt q̈i +
∂

∂qi
(Jt q̇i) q̇i = Ja q̈a,i +

∂

∂qa,i
(Ja,i q̇a,i) q̇a,i

JA,i q̈o +
∂

∂qo
(JA,i q̇o) q̇o = Je q̈a,i +

∂

∂qa,i
(Je q̇a,i) q̇a,i

Jvi q̈i +
∂

∂qi
(Jvi q̇i) q̇i = 0, 1 ≤ i ≤ N

Do q̈o +Ho =

N∑
j=1

J>A,jλe,j , (9)

where λi, λt,i ∈ R6, and λe,i ∈ R3 for 1 ≤ i ≤ N
are the ground reaction forces, contact wrench between the
robot and arm, and forces between the EE and object, re-
spectively (see Fig. 3). Moreover, Jt(q) := ∂pt

∂q (q) ∈ R6×nq ,
Ja(qa) := ∂pa

∂qa
(qa) ∈ R6×na , Je(qa) := ∂pe

∂qa
(qa) ∈ R3×na ,

and JA(qo) := ∂pA
∂qo

(qo) ∈ R3×no . By defining

D̄i (q̄i) := block diag {D (qi) , Da (qa,i)}

J̄>i (q̄i) :=

[
−J>vi (qi) −J>t (qi) 0

0 J>a (qa,i) J>e (qa,i)

]
J̄>A,i (qo) :=

[
0 0 −J>A,i (qo)

]
(10)

Fig. 3: Illustration of the ground reaction forces λi, wrench
between the arm and Vision 60 λt,i, and EE forces λe,i for two
agents with the corresponding physical holonomic constraints.

for 1 ≤ i ≤ N , the equations of motion in (9) can be rewritten
in the following compact form[

Daug (qaug) J>aug (qaug)
Jaug (qaug) 0

] [
q̈aug
λaug

]
= Haug (qaug, q̇aug, uaug) ,

(11)
in which qaug := col(q̄1, · · · , q̄N , qo), uaug :=
col(ū1, · · · , ūN ), λaug := col(λ̄1, · · · , λ̄N ), λ̄i :=
col(λi, λt,i, λe,i) for 1 ≤ i ≤ N ,

Daug := block diag{D̄1, · · · , D̄N , Do} ∈ Rnaug×naug

J>aug :=


J̄>1 0 · · · 0
0 J̄>2 · · · 0
...

...
. . .

...
0 0 · · · J̄>N

J̄>A,1 J̄>A,2 · · · J̄>A,N

 , (12)

naug := N(nq + na) + no, and Haug is an appropriate vector
to include the remaining terms of (9) that are not included
in the left hand side of (11). For future purposes, it is worth
mentioning that Haug is an affine function in terms of uaug. This
property would help us to design the lower-level controllers
for steering the object in Section IV-B through convex QPs.

Remark 1: Note that if the agent i is in the continuous-
time domain vi ∈ V , the agent j 6= i ∈ {1, 2, · · · , N} can
take any domain vj ∈ V . As a consequence, there would be
MN different continuous-time domains for the complex hybrid
model of N agents, where M := |V| denotes the cardinality
of the vertices set V .

B. Augmented Discrete-Time Dynamics

In this section, we address the impact dynamics for the
complex hybrid system. If one of the agents has an impact
with the ground, the velocity components of the complex
mechanical system would undergo a possible abrupt change.
To make this concept more precise, we first define the extended
Jacobin matrix for the agent i as follows

Ĵi (qi):=

{
Jvi (qi) if the agent is in domain vi

Jµ(vi) (qi) if the agent is in transition vi → µ(vi).
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Fig. 4: Phase portraits for the torso roll motion during 150
consecutive steps of an amble gait of Vision 60 without (left)
and with (right) the Kinova arm. The figures illustrate the
convergence to exponentially stable periodic orbits.

Then, the evolution of the augmented system during the
infinitesimal period of the impact can be given by

D (qi) q̇
+
i −D (qi) q̇

−
i = J>t (qi) δλt,i + Ĵ>i (qi) δλi

Da (qa) q̇+
a −Da (qa) q̇−a = −J>a (qa) δλt,i − J>e (qa) δλe,i

Jt (qi) q̇
+
i − Ja (qa,i) q̇

+
a,i = 0

JA,i (qo) q̇
+
o − Je (qa,i) q̇

+
a,i = 0

Ĵi (qi) q̇
+
i = 0, 1 ≤ i ≤ N, (13)

where δλi, δλt,i ∈ R6, and δλe,i ∈ R3 for 1 ≤ i ≤ N denote
the impulsive ground reaction forces, contact wrench between
the arm and robot, and forces between the EE and object.
Analogous to the analysis provided in Section III-A, one can
present a compact equation for the impact dynamics.

IV. HIERARCHICAL CONTROL SCHEME

In order to coordinate the action of the agents while steering
the object, we make use of a hierarchical control strategy. In
the proposed approach, the higher-level controller considers
the dynamics of the object and then utilizing MPC, it computes
the required forces to be generated by the EEs. The low-level
controllers that can be either centralized or decentralized are
then developed based on QPs to refine the baseline controllers
while generating the prescribed forces at the EEs.

A. Higher-Level MPC Control

In this section, we develop the higher-level MPC control
for steering the object. We consider the translational motion
of the object to simplify the analysis. In particular, if ro ∈
R3 represents the Cartesian coordinates of a specific point on
the object (e.g., center of mass), the equation of translational
motion can be given by

mo r̈o +mo

0
0
g

 =

N∑
i=1

λe,i =: λnet, (14)

where mo and g denote the known mass of the object
and gravitational constant, respectively. In addition, λnet :=∑N
i=1 λe,i ∈ R3 is the net force applied by the EEs. By taking

the state vector as xo := col(ro, ṙo) ∈ R6 and control input as
λnet while utilizing the zero-order hold (ZOH) approach, (14)
can be discretized as follows

xo[k + 1] = Φxo[k] + Ωλnet[k] + Ψ, k = 0, 1, · · · , (15)

where Φ ∈ R6×6, Ω ∈ R6×3 and Ψ ∈ R6 are appropriate
matrices/vectors, and k denotes the discrete time. We remark
that Ψ represents the gravitational force. Next, we set up the
following receding horizon control problem for every time
sample k

min
U
J (xo[0], U) := (xo[Nh]− xo,ref)

>
P (xo[Nh]− xo,ref)

+

Nh−1∑
`=0

(xo[`]− xo,ref)
>
Q (xo[`]− xo,ref)

+

Nh−1∑
`=0

λ>net[`]Rλnet[`]

s.t. xo[`+ 1] = Φxo[`] + Ωλnet[`] + Ψ

xo,min ≤ xo[`] ≤ xo,max

λnet,min ≤ λnet[`] ≤ λnet,max

xo[0] = xo[k], (16)

in which Nh ≥ 1 is the control horizon, xo,ref ∈ R6 represents
the reference state for the object, P � 0, Q � 0, R � 0,
and U := col(λnet[0], · · · , λnet[Nh − 1]) ∈ R3Nh . Furthermore,
xo,min, xo,max, λnet,min, and λnet,max are some bounds on
the state variables and control inputs. The higher-level MPC
control is then taken as the global solution of the QP (16) for
each time sample k, i.e., λnet(x[k]) := λnet[0]. It can be shown
that the problem (16) is indeed a QP in the presence of Ψ,
e.g., one can extend the Batch Approach of [9, Chap. 8] to
(16) to show this fact.

B. Lower-Level Centralized/Decentralized QP Controllers

This section develops the lower-level controllers to produce
the prescribed forces computed by the higher-level MPC at
EEs while being close to the baseline controllers for the de-
sired locomotion pattern. We develop these controllers through
centralized as well as decentralized algorithms.

1) Centralized Algorithm: In the centralized scheme, we
assume that there is one lower-level controller unit that has
access to all of the agents’ state variables x̄i, 1 ≤ i ≤ N to
make the decision for them. To make the idea more precise,
let us define the desired (i.e., baseline) torques for the agent i
as ūdes

i (x̄i) (see Assumption 1). Next from (11), one can solve
for λaug in terms of (qaug, q̇aug, uaug). We remark that λaug is
affine in terms of uaug. In particular, the EE forces can be
computed as followsλe,1...
λe,N

=
Π11(xaug) · · · Π1N (xaug)

...
. . .

...
ΠN1(xaug) · · · ΠNN (xaug)


︸ ︷︷ ︸

Π(xaug)

 ū1

...
ūN

+
Υ1(xaug)

...
ΥN (xaug)


︸ ︷︷ ︸

Υ(xaug)

.

The net force applied to the object is then given by

λnet =

N∑
i=1

λe,i =

N∑
i=1

N∑
j=1

Πij(xaug) ūi +

N∑
i=1

Υi(xaug)

=: Π̄(xaug)uaug + Ῡ(xaug). (17)
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Next, we set up the following centralized and lower-level QP
algorithm to solve for uaug at every time sample

min
uaug

∥∥Π̄(xaug)uaug + Ῡ(xaug)− λMPC
net

∥∥2
+ w

∥∥uaug − udes
aug

∥∥2
,

s.t.uaug,min ≤ uaug ≤ uaug,max, (18)

where ‖.‖ is the Euclidean norm, udes
aug := col(ūdes

1 , · · · , ūdes
N ),

and λMPC
net represents the net force generated by the higher-level

MPC controller. In addition, w > 0 denotes the weighting
factor as a trade-off between 1) making λnet being close to
λMPC

net and 2) making uaug being close to the baseline controllers
of the agents udes

aug. Finally, uaug,min and uaug,max represent
lower and upper limits to include the torque limitations.

2) Decentralized Algorithm: In the decentralized scheme,
we set up local QPs for each individual agent. The local QP
for the agent i has access to its own state variables x̄i as well
as those of the object to make local decisions. In addition, for
each agent, we would need to approximate the state variables
of the other agents to be able to compute the net force through
(17). For this purpose, we make the following assumptions.

Assumption 2 (Phasing Variable): For every agent i ∈
{1, · · · , N}, there is a smooth, scalar, and strictly increasing
function of time during each domain vi ∈ V , referred to as the
phasing variable, that represents the progress of the machine
on the gait Ō. The phasing variable can be time- or state-
based. For the purpose of this paper, we shall make use of a
state-based phasing variable and denote it by τi(x̄i, vi).

Using Assumption 2, one can represent the desired evolution
of the state variables x̄i on the orbit Ō in terms of the
phasing variable τi rather than the time t [5, Assumption 3].
In particular, the desired evolution of x̄i on the orbit Ōvi can
be give by x̄i,d(τi, vi), where the subscript “d” stands for the
desired evolution. One can obtain x̄i,d(.) through polynomial
regression techniques.

Assumption 3 (Coordination Mechanism): We assume that
agent i does not have access to the state measurements of other
agents j 6= i ∈ {1, · · · , N}. However, it has access to their
phasing variables τj as well as their vertices index vj ∈ V .

From Assumptions 2 and 3, the agent i can approximate the
state variables of the other agents j 6= i through the knowledge
of their desired state trajectories in terms of the phasing
variable τj as well as the domain index vj . In particular, the
estimate of x̄j for the agent i, denoted by x̂j|i, is given by

x̂j|i = x̄j,d (τj , vj) . (19)

We further suppose that agent i approximates the control
inputs for the other agents as its own, that is ūi. Using these
assumptions, we can now approximate the net force in (17)
based on the agent i’s information, i.e.,

λ̂net = Π̂i

(
x̄i, x̂j|i

)
ūi + Υ̂i

(
x̄i, x̂j|i

)
, j 6= i. (20)

We then set up the following decentralized QP for the agent i

min
ūi

∥∥∥Π̂i ūi + Υ̂i − λMPC
net

∥∥∥2

+ w
∥∥ūi − ūdes

i

∥∥2
,

s.t. ūmin ≤ ūi ≤ ūmax, (21)

in which ūmin and ūmax represent the torque limitations for
the agent. We remark that in this scheme, each agent has its
own decentralized QP algorithm for local decision making.

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-2

-1

0

1

2

-0.08 -0.06 -0.04 -0.02 0 0.02

-4

-3

-2

-1

0

1

2

-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15

-6

-4

-2

0

2

4

6

8

0 2 4 6 8

-0.1

0

0.1

0.2

0.3

0.4

Fig. 5: Phase portraits for the closed-loop complex system
composed of two agents with arms that steer an object
using the proposed centralized hierarchical control. The figure
depicts the time evolution of the object’s CoM Cartesian
coordinates with respect to the world frame.
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Fig. 6: Phase portraits for the closed-loop complex system
using the proposed decentralized hierarchical control.

V. NUMERICAL SIMULATIONS

The objective of this section is to numerically validate the
analytical foundation of the paper on a simulation model
of N = 2 Vision 60 robots with Kinova arms for steering
an object. We consider an amble gait for Vision 60 robots
that is designed through FROST [22] in [20]. The hybrid
model of locomotion for each agent has M = |V| = 8
continuous-time domains. The complex hybrid model of mul-
tiagent systems has consequently MN = 64 continuous-time
domains with N(2nq + 2na) + 2no = 132 state variables
and N(m+ma) = 36 control inputs. The baseline controller
for Vision 60 is designed through virtual constraints that are
optimized for stability through LMIs and BMIs [20, 5, 4]. The
stable limit cycles for the roll motion of the robot without and
with having the arm can be seen in Fig. 4. The sampling
time for the hierarchical control action is taken as 1 ms,
where the control horizon for the higher-level MPC is assumed
to be Nh = 3 with P = 108 I6×6, Q = 100 I6×6, and
R = I3×3. Furthermore, the weighting factor for the lower-
level centralized and decentralized QPs is chosen as w = 0.01.
Figure 5 depicts the phase portraits for one of the agents of
the complex hybrid system while steering an object using the
centralized hierarchical control strategy. It also illustrates the
time evolution of the object’s center of mass (CoM) Cartesian
coordinates. Here, the agents walk along the x-axis of the
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world frame and the reference command for the y and z co-
ordinates of the object are 0.1 (m) and 0.35 (m), respectively.
We remark that the oscillation in the object coordinates is
due to agents’ legged locomotion. However as seen in Fig.
5, the oscillation pattern (e.g., in the y coordinates) reaches
the steady state and occurs around the desired command. The
phase portraits using the proposed decentralized hierarchical
strategy are also depicted in Fig. 6. Figure 7 illustrates the
snapshots of locomotion of two agents generated in RViz. The
animation of this simulation can be found at [2].

VI. CONCLUSION

This paper introduced a hierarchical feedback control al-
gorithm for complex models of multiagent legged robotic
systems with arms that steer an object. We addressed the
continuous- and discrete-time dynamics for high-dimensional
and complex hybrid models of N legged agents. We con-
sidered HZD baseline controllers for each agent to have
an exponentially stable locomotion pattern. The higher-level
controller of the proposed strategy was developed based on
MPC and convex QPs to prescribe the required forces to be
generated by EEs for the steering purpose. The lower-level
controllers were developed based on QPs to refine the baseline
controllers while generating the prescribed forces. We also
presented two different strategies, including centralized and
decentralized QP algorithms, for the deployment of lower-
level controllers. The analytical results of the paper were
successfully validated through an extensive and full-order sim-
ulation model of two Vision 60 agents with Kinova arms that
collaboratively steer an object. The simulated complex hybrid
model has 64 continuous-time domains, 132 state variables,
and 36 control inputs. Both centralized and decentralized
hierarchical control strategies resulted in stable locomotion as
well as steering. Their application on real robots is dependent
on the availability of global state measurements. For future
research, we will experimentally investigate the hierarchical
control algorithms on two Vision 60 robots with Kinova
arms. Furthermore, we will study control and optimization
algorithms for autonomous multiagent legged systems that
steer an object while considering safety critical conditions and
avoiding obstacles in complex environments.
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