
A Barrier-Based Scenario Approach to Verify Safety-Critical Systems

Prithvi Akella, Aaron D. Ames1

Abstract— In this letter, we detail our randomized approach
to safety-critical system verification. Our method requires lim-
ited system data to make a strong verification statement. Specif-
ically, our method first randomly samples initial conditions
and parameters for a controlled, continuous-time system and
records the ensuing state trajectory at discrete intervals. Then,
we evaluate these states under a candidate barrier function h
to determine the constraints for a randomized linear program.
The solution to this program then provides either a probabilistic
verification statement or a counterexample. To show the validity
of our results, we verify the robotarium simulator and identify
counterexamples for its hardware counterpart. We also provide
numerical evidence to validate our verification statements in the
same setting. Furthermore, we show that our method is system-
independent by performing the same verification method on a
quadrupedal system in a multi-agent setting as well.

I. INTRODUCTION

It is natural to question the validity of controllers for
safety-critical systems insofar as safety is of critical impor-
tance for these systems. Therefore, there has been a tremen-
dous amount of work in the controls literature concerning
both the development and verification of these controllers.
On the developmental side, some work aims at learning or
modifying existing control theoretic techniques, e.g. control
barrier and Lyapunov functions, to iteratively develop better
controllers that satisfy the desired safety objectives by de-
fault [1]–[6]. On a related note, there has also been interest
in developing controllers against formal system specifications
to ensure satisfactory operation as well [7]–[11]. For the sake
of completeness, we have mentioned these works, although
this paper will focus more on verification.

As controller verification typically does not restrict the
verification analysis to a single control form, there are
multiple ways this problem has been approached. One vein of
work attempts to determine a Lyapunov or barrier function
for the controlled system, to act as a certificate of system
stability/safety [3], [12]–[17]. Due to their exploitation of
existing control techniques to simplify the verification prob-
lem, works in this vein tend to be less sample complex than
works in the next paradigm. This second paradigm expresses
the verification question as an optimization problem whose
solution corresponds to a counterexample or a (probabilis-
tic) verification statement [18]–[23]. These works typically
associate satisfactory behavior to positive evaluations of
a robustness measure over system trajectories and aim to
minimize this measure over a set of parameters of interest.

Each paradigm has its benefits and shortcomings. In
the former case, the reduction in sample complexity arises
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Fig. 1. An overview of the approach detailed within the paper. By
collecting randomized state trajectory data of the system-to-be-verified and
evaluating all transitions under a candidate barrier function h, we determine
the constraints for a randomized linear program. Positivity of the solution to
this program corresponds to a probabilistic verification statement regarding
this system’s ability to render positive the candidate barrier function h over
its trajectories.

through apriori knowledge of the system dynamics and
controller. Except for [16], these dynamics tend to only be
functions of the system state and do not take into account
extraneous parameters of interest, e.g. user-defined control
objectives, human input through parameterization, etc. Addi-
tionally, apriori knowledge of the controller may not always
be provided, especially if the system’s controller is a com-
plex, layered controller, e.g. the controller for an autonomous
car, a quadruped, a bipedal exoskeleton, etc. The latter case
permits more flexibility in this vein. Specifically, they only
require the capacity to quantify system satisfaction of its
objective through a robustness measure with positive robust-
ness indicating objective satisfaction. Then, these methods
try to determine the minimum robustness over a given set
of parameters. However, they do not make as efficient use
of existing control techniques due to their black-box system
assumptions. As a result, these optimization problems suffer
from poor performance in higher dimensions. Therefore, we
aim to address both these shortcomings through our work at
the intersection of these paradigms.
Our Contribution: We aim to utilize the benefits of both
paradigms to address the shortcomings of the other. Our
approach will focus on those safety-critical systems whose
controllers vary with respect to a parameterized input, e.g.
varying goal locations, obstacle locations, different control
objectives, etc. For these systems, we will provide either a
counterexample or probabilistic verification guarantee. More
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specifically, our approach will use control barrier functions
evaluated over randomly sampled system trajectories to in-
form the constraints for a randomized linear program. The
solution to this program will identify a counterexample or
provide for that probabilistic guarantee. Finally, we show
the efficacy of validating our verification statements for a
system simulator and its hardware counterpart. To preface
our contribution, however, we will first introduce some
necessary background information in the next section.

II. PROBLEM FORMULATION

This section will be split into two parts. The first part
will detail some mathematical background information -
discrete control barrier functions and scenario optimization.
The second part will formally state the problem under study.
To preface both parts, however, we will define some notation.
Notation: Z+ is the set of all positive integers, and R+ =
{x ∈ R | x ≥ 0}. |A| is the cardinality of the set A.

A. Mathematical Preliminaries

Discrete Control Barrier Functions: First introduced by
Ames et al. in [24] and built upon by Agrawal et al. in [25],
discrete control barrier functions are a novel control tool
designed to enforce forward invariance of their 0-superlevel
sets for nonlinear discrete-time systems such as:

xk+1 = f(xk, uk), x ∈ X ⊂ Rn, u ∈ U ⊂ Rm.

Then, a discrete exponential control barrier function (DE-
CBF) h : Rn → R is designed to classify those control inputs
that maintain positivity of the same function in a specific
manner. More accurately, if we define the 0-superlevel set of
a candidate DE-CBF h as

C = {x ∈ X | h(x) ≥ 0},

then the definition of a DE-CBF is as follows:

Definition 1 (Adapted from Definition 4 in [25]). A function
h : Rn → R is a discrete exponential control barrier function
if the following inequality holds for some γ ∈ [0, 1):

∀ xk ∈ C, ∃ u ∈ U s. t. h (f(xk, uk)) ≥ γh(xk).

Then if we define the set of inputs that satisfy the CBF
inequality in Definition 1 as

K(x) = {u ∈ U | h(f(x, u)) ≥ γh(x)},

we have the following Theorem regarding forward invariance
of the 0-superlevel set C of the DE-CBF h.

Theorem 1 (Adapted from Proposition 3 in [25]). For a
discrete exponential control barrier function h : Rn → R
and it’s 0-superlevel set C, if x0 ∈ C and all inputs uk ∈
K(xk) ∀ k ∈ Z+, then xk ∈ C ∀ k ∈ Z+.

In what will follow, we will only reference discrete ex-
ponential control barrier functions and as such will simply
refer to such functions as control barrier functions. Then, the
overarching idea as to how we will utilize these functions for
verification is to construct a linear program whose constraints

are the inequalities mentioned in Definition 1. The decision
variable will be γ and the constraints will be randomly
sampled from robot trajectories. While solving such an
optimization problem will prove rather easy, guaranteeing
that the solution has meaning over all trajectories is the
subject of scenario optimization which will be detailed next.
Scenario Optimization: The brief description of scenario
optimization in this section will stem primarily from the
work done by Campi and Garrati in [26], [27]. Scenario
optimization tries to identify robust solutions to uncertain
convex optimization problems of the following form:

z∗ = argmin
z∈Z⊂Rd

cT z,

subject to z ∈ Zδ, δ ∈ ∆.
(UP)

Here, (UP) is the uncertain program as δ ∈ ∆ is an uncertain
parameter with probability measure P. Convexity is assured
via assumed convexity in the spaces Z and Zδ , and typically,
|∆| =∞. Hence, direct identification of a robust solution z∗

such that z∗ ∈ Zδ ∀ δ ∈ ∆ is usually infeasible.
To resolve this issue, the study of scenario optimization

solves a related optimization problem formed from an N -
sized sample of the constraints δ and provides a probabilistic
guarantee on the robustness of the corresponding solution
z∗N . Specifically, if we were to take an N -sized sample of δ,
{δi}Ni=1 - termed scenarios in the scenario optimization liter-
ature - we could construct the following scenario program:

z∗N = argmin
z∈Z⊂Rd

cT z,

subject to z ∈
⋂

i=1,2,...,N

Zδi .
(RP-N)

Then, we require the following assumption.

Assumption 1. The scenario program (RP-N) is solvable for
any N -sample set {δi}Ni=1 and has a unique solution z∗N .

For more information on why this assumption is made, we
direct the reader to [26], [27]. Assumption 1 then guarantees
existence of a scenario solution z∗N for (RP-N). As such, we
can define a set containing those constraints δ ∈ ∆ to which
the scenario solution z∗N is not robust, i.e.

F (z) = {δ ∈ ∆ | z 6∈ Zδ}.

With this set definition we can formally define the violation
probability of our solution.

Definition 2. The violation probability V (z) of a given z ∈
Z is defined as the probability of sampling a constraint δ to
which z is not robust, i.e. V (z) = P[δ ∈ F (z)] .

Then, the main theorem is as follows:

Theorem 2 (Adapted from Theorem 1 in [26]). Let Assump-
tion 1 hold. The following inequality is true:

PN [V (z∗N ) > ε] ≤
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i.

In Theorem 2 above, N is the number of sampled constraints
δ for the scenario program (RP-N); z∗N is the scenario



solution to the corresponding scenario program; V (z∗N ) is
the violation probability of that solution as per Definition 2;
d is the dimension in which z lies, i.e. z ∈ Rd; and PN is
the induced probability measure over sets of N -samples of δ
given the probability measure P for δ. For more information
on the intersection of scenario optimization and control more
generally, we direct the readers to [28], [29] and the citations
within. With this information, we can now formally state the
problem under study in the next section.

B. Problem Statement

We wish to verify safety properties for a given system
without knowledge of the controller and/or dynamics. As
such, we will assume our system is a continuous control
system whose dynamics f and controller U are unknown,
though U may depend on extraneous parameters θ.

ẋ = f(x, u), x ∈ X ⊂ Rn, u ∈ U ⊂ Rm,
u = U(x, θ), θ ∈ Θ ⊂ Rp,

ẋ(t, θ) = f (x(t, θ), U(x(t, θ), θ)) , (x0, θ) ∈ X ×Θ.

(1)

As is common, X is the state space, U is the feasible control
space, and Θ is the feasible parameter space. Furthermore,
x(t, θ) corresponds to the solution to the closed-loop system
at time t given the initial condition and parameter (x0, θ).
Notice that we do not allow the parameter θ to vary over the
system’s trajectory. Once chosen, the parameter θ is fixed.

To quantify our system’s safety objective then, we will
assume the capacity to measure system safety through eval-
uations of a candidate barrier function h at specific time
instances tk = k∆t where k ∈ Z+ and ∆t > 0.

Assumption 2. We have a barrier function h : X × Θ →
[−m,M ], m,M ∈ R+ with 0-superlevel set C = {(x, θ) ∈
X × Θ | h(x, θ) ≥ 0}. Furthermore, the system’s safety
objective is satisfied by ensuring continued positivity of h at
time intervals tk, i.e. by ensuring h(x(tk, θ), θ) ≥ 0, ∀ k ∈
Z+ and (x0, θ) ∈ C.

For context, this assumption is not too restrictive. Consider a
simple example where the system is to avoid static obstacles
that can be placed anywhere in a confined, 2-dimensional
space. Then, defining h to be a function of the system
state x and static obstacle location θ whose 0-superlevel
set does not coincide with the obstacle suffices. Also note
that we are not stating that the system objective is to ensure
continued positivity of h(x, θ). Rather, we only assume that
the system’s objective is satisfied if h(x, θ) is kept positive,
which is a significantly more relaxed assumption. In the latter
case, for example, over-approximations of obstacle regions
are valid. The former case would require specific knowledge
of the obstacle locations which is significantly harder.

With these definitions and assumptions, our formal prob-
lem statement will follow.

Problem 1. For the closed-loop system (1) and barrier
function h as per Assumption 2, devise a method to verify
whether h(x(tk, θ), θ) ≥ 0 ∀ k ≤ K ∈ Z+ and (x0, θ) ∈ C.

Ideally we would like to guarantee safety for all time indeces
k ∈ Z+. However, as we intend to use a sampling approach,
we require some finite time K by which to stop taking
samples of the system trajectory. However, K can be any
large positive integer. With our problem formally stated, we
will now move describe our approach.

III. MAIN CONTRIBUTIONS

This section will be split into three parts. The first part will
outline the overarching idea behind our approach; the second
part will state and prove our main result, two lemmas, and a
corollary; and the third part will provide numerical examples
indicating that we can sample from a distribution integral to
our approach. With that, our overarching idea will follow.

Overarching Idea: As stated, we want to verify whether a
given safety-critical system ensures continued positivity of a
candidate barrier function h at specific time instances tk as
per Assumption 2. To make this verification statement, if we
could identify a safety decay rate γ ∈ [0, 1) satisfying the
following inequality for this candidate barrier function h:

h(x(t1, θ), θ) ≥ γh(x0, θ), (x0, θ) ∈ C, (2)

then we could directly use Theorem 1 to make our desired
verification statement. However, checking the veracity of the
inequality in (2) would require checking this condition for
every possible trajectory emanating from initial conditions
(x0, θ) ∈ C. With there being a (potentially) infinite amount
of them, this is infeasible.

However, we note that we can rephrase the identification
of γ into an optimization problem with infinite constraints:

γ∗ = argmax
γ∈R

γ, (BASE-OPT)

subject to h(x(t1, θ), θ) ≥ γh(x0, θ),

∀ (x0, θ) ∈ C.

If the solution γ∗ to (BASE-OPT) were positive, then the
inequality in (2) would be true. To relax the number of con-
straints for (BASE-OPT) and yield a solvable optimization
problem, we will instead randomly sample the constraints
and generate a scenario program.

This transformation of (BASE-OPT) to an uncertain pro-
gram for which we can guarantee a scenario solution is
the crux of our approach. In doing so, we will randomly
sample over feasible robot trajectories and measure system
safety throughout. Every measurement will provide a new
constraint to the scenario program. Then, a positive scenario
solution γ∗N to the corresponding scenario program consti-
tutes successful maintenance of the inequality (2) with high
probability. A negative solution will identify a counterexam-
ple. With this overarching idea in mind, we will now be more
specific in our statement of our main contributions.

A. Main Results

As mentioned, our approach involves transform-
ing (BASE-OPT) to an uncertain program which we will



solve. In keeping with the notation for scenario optimization
utilized earlier, our uncertain program is as follows:

γ∗ = argmax
γ∈R

γ, (BASE-UP)

subject to γ ∈ Γδ, δ = (xk, xk+1, θ) ∈ ∆.

Here, ∆ and Γδ are as follows:

∆ = {(xk, xk+1, θ) ∈ X × X ×Θ | h(x0, θ) ≥ 0},

Γδ =

{
γ ∈ R

∣∣∣∣ h(xk+1, θ) ≥ γ |h(xk, θ)|
}

(3)

Specifically, ∆ is the set of transitions xk to xk+1 for
trajectories whose initial condition and parameter (x0, θ)
start in the 0-superlevel set of the candidate barrier function
h. Γδ is the set of all γ ∈ R that satisfy an inequality similar
to (2) for the specific transition xk to xk+1 encoded by δ.
The discrepancy with (2) is the absolute value over h(xk, θ) -
the reason for which will be elucidated in a lemma to follow.

Furthermore, for (BASE-UP) to be an uncertain program,
δ must be a random variable with an associated probability
distribution π. As such, we will define the probability of
sampling any δ , (xk, xk+1, θ) as the probability of sam-
pling an initial condition and parameter (x0, θ) ∈ C such
that the corresponding closed-loop trajectory to (1) contains
the transition encoded by δ. To formalize this distribution
π, we can define the indicator function 1δ for a given
transition δ = (xk, xk+1, θd). This function evaluates to 1
for any initial condition and parameter pair (x0, θ) such that
the corresponding closed-loop trajectory to (1) contains the
transition specified by δ within K timesteps.

1δ(x0, θ) =


1 if


θ = θd, and,

∃ k, k + 1 s. t. 0 ≤ k, k + 1 ≤ K,
x(tk, θ) = xk, x(tk+1, θ) = xk+1,

0 else.

Then, if we sample initial conditions and parameters
(x0, θ) with a uniform distribution over C, we can implicitly
define the probability distribution function π for the random
variable δ. In what follows, s is a normalization constant to
ensure the total probability integrates to 1 and β = (x0, θ):

Pπ(δ)[A ⊂ ∆] =

∫
A

∫
C

1δ(β)

s
dβdδ. (4)

While it is currently unclear whether we can sample from this
distribution π, we will show we can through a few examples
in the section to follow. Intuitively though, if we uniformly
sample initial condition and parameter pairs (x0, θ) and
record the state trajectory at time-steps tk ∀ k ≤ K, the
corresponding transitions will be samples of δ from the
proposed distribution π.

Under the assumption that we can take N samples δ with
corresponding probability distribution π, we can generate a
scenario program for (BASE-UP) as follows:

γ∗N = argmax
γ∈R

γ, (BASE-RP-N)

subject to γ ∈ Γδi , ∀ δi ∈ {δi}Ni=1.

For a solution γ∗N to (BASE-RP-N) we can define an
associated violation set F (γ) and violation probability V (γ).

F (γ) = {δ ∈ ∆ | γ 6∈ Γδ}, V (γ) = Pπ(δ)[F (γ)]. (5)

Intuitively, F (γ̃) is the set of all transitions δ where the sys-
tem decays to an unsafe behavior quicker than the minimum
decay rate identified by γ̃ through inequality (2). V (γ̃) is the
probability of sampling such transitions from π.
Description and Statement of Results: This puts into
place all required notation for our main results to fol-
low. Succinctly, we will prove that we can always
solve (BASE-RP-N) for any N -sample set of transitions
{δi}Ni=1, and that any solution γ∗N will be unique. This
statement and proof will be formalized through Lemma 1.
Then, through Lemma 2 we will prove that the violation
probability of our solution V (γ∗N ) corresponds to the prob-
ability of sampling an unsafe trajectory when uniformly
sampling initial conditions and parameters (x0, θ) ∈ C. Then,
our main result will use both prior Lemmas and Theorem 2
to lower bound the probability of sampling safe trajectories
over all possible initial conditions and parameters (x0, θ) ∈ C
if the solution γ∗N to (BASE-RP-N) is positive. Finally,
Corollary 1 will extend Lemma 2 and state that any negative
solution to (BASE-RP-N) corresponds to a counterexample.
We will now state these results.

Lemma 1. Let Assumption 2 hold. The scenario pro-
gram (BASE-RP-N) is always solvable for any N -sample
set of transitions {δi}Ni=1, and the solution γ∗N is unique.

Lemma 2. The violation probability V (γ∗N ) for a solution
γ∗N to (BASE-RP-N) is equivalent to the probability of
uniformly sampling over C initial conditions and parameters
(x0, θ) whose corresponding trajectory evolves within K
time-steps to a transition with a faster safety decay rate than
γ∗N , i.e. with xθk = x(tk, θ),

V (γ∗N ) = PU[C]

(x0, θ)

∣∣∣∣∣
∃ k, k + 1 s. t.

0 ≤ k, k + 1 ≤ K, and,

h(xθk+1, θ), θ) < γ∗N
∣∣h(xθk, θ)

∣∣
 .

Theorem 3. Let Assumption 2 hold, let the scenario pro-
gram (BASE-RP-N) be composed from an N -sample set of
transitions {δi}Ni=1, and let ε ∈ [0, 1]. If γ∗N ≥ 0, then the
following statement is true, with xθk = x(tk, θ):

S(γ∗N ) , PU[C]
[
(x0, θ) | h(xθk, θ) ≥ 0, ∀ k = 0, 1, . . .K

]
,

PNπ(δ) [S(γ∗N ) ≥ 1− ε] ≥ 1− (1− ε)N .

Corollary 1. Let Assumption 2 hold and let the scenario
program (BASE-RP-N) be composed from an N -sample
set of transitions {δi}Ni=1. If γ∗N < 0, then there exists a
transition δ ∈ {δi}Ni=1 that corresponds to a safety violation,
i.e. ∃ δ ∈ {δi}Ni=1 s. t. h(xθk+1, θ) < 0 with xθk = x(tk, θ)
and δ = (xθk, x

θ
k+1, θ).

We can summarize Theorem 2 as follows. If Assumption 2
holds, the corresponding scenario program is formed from
N samples, and γ∗N ≥ 0, then the probability of uniformly



Fig. 2. Shown above is an overview of the process detailed in the paper. By recording state trajectory samples of randomly chosen trajectories and
evaluating the transitions under a candidate barrier function h, we inform the constraints for a randomized linear program that identifies the minimum
discrete-time decrement condition γ∗N . As per Theorem 3 if γ∗N ≥ 0, then we prove that the corresponding system renders the candidate barrier function
h a control barrier function with high probability. In other words, if γ∗N ≥ 0, then the system maintains positivity of h with high probability.

sampling over C initial conditions and parameters (x0, θ)
such that their corresponding trajectories remain safe for
at least K time-steps can be lower bounded with high
probability. We will now prove these results.

B. Proofs of Main Results

We will start first with the proof for Lemma 1.
Proof: To start, by definition of the scenario pro-

gram (BASE-RP-N) and the constraint sets Γδ in equa-
tion (3), for any N -sized sample set of transitions {δi}Ni=1,
the scenario program (BASE-RP-N) is a linear program
maximizing the decision variable γ subject to a set of upper
bounds. It is for this reason we required the absolute value
over h(xk, θ) in (3). Without the absolute value, there could
exist a case where the system evolves to a state where
h(xk, θ) < 0, which has the potential of yielding an un-
satisfiable set of constraints. With the absolute value, proving
solvability of the associated program requires ensuring that
all upper bounds are strictly less than infinity.

This arises as evaluations of h are restricted to lie within
[−m,M ], M,m ∈ R+ by Assumption 2. As such, there is
guaranteed to be at least one such upper bound γ̃ <∞. This
guarantees a solution to the corresponding linear program
with the solution guaranteed to be unique as it is a solution to
a linear program. This neglects to consider those trajectories
that eventually end up in a state xk such that h(xk, θ) =
0. However, the set of all trajectories that land in the set
h(xk, θ) = 0 for some k = 0, 1, . . . ,K−1 is a set of measure
0 with respect to the probability distribution π. Therefore, we
can safely neglect such trajectories.

Lemma 1 effectively acts as a disclaimer permitting us to
utilize the results of Theorem 2 to bound the violation prob-
abilities of results to our scenario program (BASE-RP-N).
This will be useful, for as stated in Lemma 2, this vio-
lation probability is equivalent to the probability of sam-
pling marginally ”more unsafe” trajectories. The proof for
Lemma 2 will follow.

Proof: We will start with the definition of the violation
probability for our optimal solution V (γ∗N ) as per (5).

V (γ∗N ) = Pπ(δ)[δ ∈ ∆ | γ∗N 6∈ Γδ].

Here, Γδ is defined in equation (3). For this proof, it will be
useful to define the following indicator function:

¬1Γδ(γ) =

{
1 if γ 6∈ Γδ,

0 else.

Then we can rewrite the violation probability as follows:

V (γ∗N ) =

∫
∆

π(δ)¬1Γδ(γ
∗
N )dδ.

By definition of our probability distribution π in equation (4),
we can rewrite the above equation with β = (x0, θ):

V (γ∗N ) =

∫
∆

∫
C

1δ(β)¬1Γδ(γ
∗
N )

s
dβdδ.

However, the interior integrand only evaluates to 1 for
those initial condition and parameter pairs (x0, θ) such that
there exist time-steps k, k + 1 where 0 ≤ k, k + 1 ≤ K
and h(xθk+1, θ) < γ∗N

∣∣h(xθk, θ)
∣∣. Here, xθk = x(tk, θ). As

such, the above probability corresponds to the probability of
sampling such initial condition and parameter pairs from the
uniform distribution over C. This completes the proof.

Lemma 2 effectively states that the violation probability
for our scenario program (BASE-RP-N) corresponds to pick-
ing those trajectories that are marginally ”more unsafe” than
the worst-case sampled trajectory. In other words, one minus
the violation probability then corresponds to the probability
of picking those trajectories that are at least as safe as the
worst-case sampled trajectory. This notion is formalized in
Theorem 3 the proof for which will follow.

Proof: With the assumptions behind Theorem 3, we know
that Lemma 2 holds. This let’s us define the success prob-
ability S(γ∗N ) = 1 − V (γ∗N ). Mathematically this success
probability is defined as follows with xθk = x(k, θ):

S(γ∗N ) = PU[C]

[
(x0, θ)

∣∣∣∣∣ ∀ k = 0, 1, . . . ,K − 1

h(xθk+1, θ) ≥ γ∗N
∣∣h(xθk, θ)

∣∣
]
.

For all such sampled trajectories, h(xθ0, θ) ≥ 0 as the initial
condition and parameter (x0, θ) are sampled uniformly over
the 0-superlevel set of h C. As a result, in light of Theorem 1
we can rewrite the condition for the success probability:

S(γ∗N ) = PU[C]
[
(x0, θ) |h

(
xθk, θ

)
≥ 0, ∀ k = 0, 1, . . . ,K

]
.



This satisfies the first equality for Theorem 3.
For the inequality in Theorem 3, we first note that

Lemma 1 permits us to use the results of Theorem 2. This lets
us upper bound the violation probability to high confidence.
Note that for our problem d = 1 which lets us simplify the
right hand side of the inequality in Theorem 2. Specifically,
for some ε ∈ [0, 1],

PNπ(δ) [V (γ∗N ) ≤ ε] ≥ 1− (1− ε)N .

Then the final result holds due to definition of the success
probability S(γ∗N ).

PNπ(δ) [S(γ∗N ) ≥ 1− ε] ≥ 1− (1− ε)N .

This ends the proof for our main result - that if the solution
to our randomized linear program (BASE-RP-N) is positive,
i.e. γ∗N ≥ 0, then with high probability the system maintains
positivity of the candidate barrier function h for at least K
time-steps. What if γ∗N < 0, however? Corollary 1 indicates
that such a scenario corresponds to a counterexample and its
proof will follow.

Proof: The proof for this corollary stems primarily from
the definition of the constraint spaces Γδ in (3). Specifically,
by Lemma 1, we know a solution to (BASE-RP-N) must
exist for any sample set of transitions {δi}Ni=1. As mentioned
in the proof for Lemma 1 this is primarily due to the fact
that for any set of samples, (BASE-OPT) is a linear program
maximizing a scalar decision variable γ subject to a set of
upper bounds bi. If the solution γ∗N < 0 this implies that
at least one upper bound bi < 0. Based on definition of the
constraint space Γδ then, this implies that

∃ δ = (xθk, x
θ
k+1, θ) ∈ {δi}Ni=1 s. t.

h
(
xθk+1, θ

)∣∣h (xθk, θ)∣∣ < 0.

As the denominator for the associated fraction is always pos-
itive, this implies that ∃ δ ∈ {δi}Ni=1 such that h(xθk+1, θ) <
0, concluding the proof.

This concludes all proofs for our results. As mentioned,
however, these results hinge on the capacity to take samples
of the random variable δ with distribution π. The following
section will show a few examples indicating that we can
sample from our proposed distribution.

C. Sampling from our Proposed Distribution

As mentioned earlier, it is unclear whether we can sample
from our proposed distribution π as defined in equation (4).
However, we offered a method to take samples from this
distribution. Our method first uniformly randomly samples
the initial condition and parameter pair (x0, θ) from C and
records the resulting state trajectory at time-steps tk, ∀ k =
0, 1, . . . ,K. This section will show a few numerical exam-
ples indicating that this method does produce samples of δ
distributed by π.

We will first provide three simple systems to act as a
replacement for the continuous system we are trying to
verify. The first will be a system that continuously oscillates
around the perimeter of a circle with radius r = 1, the other
will be a system that exponentially decays to 0, and the third

will be a system that exponentially decays to a parameterized
point θ ∈ [−1.5, 0, 1.5]. We will not mention their ODEs for
motion and only mention their solutions.

x = [1, φ]T , x(t) = [1, φ0 + 0.1t], (a)

x = [x], x(t) = [e−0.5t]. (b)

x = [x], θ ∈ [−1.5, 0, 1.5], x(t) = [e−3t + θ]. (c)

For sampling purposes then, the respective sample spaces per
system are as follows:

for (a) C = X = [0, 2π],

for (b) C = X = [−1, 1],

for (c) C = X ×Θ = [−3, 3]× [−1.5, 0, 1.5].

(6)

Per our method then, we will take 500 trials of each sys-
tem, forward simulating each system K = 200 steps per trial
with ∆t = 0.05. For (c) we will increase the trial number
to 1000 trials as we are parameterizing the system via θ as
well. To generate these trials, we will uniformly randomly
sample an initial condition (and parameter θ for (c)) with the
spaces shown in equation (6). For data portrayal purposes, we
will show in Figure 3 the initial states xk for each sampled
transition δ = (xk, xk+1, θ), as they suffice to showcase our
method’s ability to capture the intended distribution π.

For system (a) if we uniformly sample initial conditions
and forward simulate the same number of steps for each
initial condition, we expect the initial states xk for each
transition to follow a uniform distribution. This is indeed the
case as seen in the left figure in Figure 3. For system (b), we
expect the initial states xk to be localized to and symmetric
about 0, with an exponentially higher rate of samples closer
to 0 than farther out. This harmonizes with the numerical
results shown in the center figure in Figure 3. Finally, for
system (c), we expect a response similar to that for system (b)
but for three different ”peaks” centered on the choice of
θ ∈ [−1.5, 1, 1.5]. As seen in the right figure in Figure 3,
this is indeed the case. Therefore, these examples show that
we can sample from our proposed distribution π with the
method we describe, and will now use this method to verify
a system simulator and its hardware counterpart.

IV. EXAMPLES

In this section, we will verify or find counterexamples
for systems with pre-existing controllers. Furthermore, we
will provide numerical evidence that the stated inequality
in Theorem 3 is true. We will start with verifying the
Robotarium simulator [30] which will provide numerical
results supporting the results of Lemma 2 and Theorem 3.

A. Verifying the Robotarium Simulator

The robots in the robotarium are modeled via unicycle
dynamics which are as follows:

x =

x,y,
θ

 , ẋ =

v cos(θ),
v sin(θ),
ω,

 , u = [v, ω]T ,

X = [−1.2, 1.2]× [−0.6, 0.6]× [0, 2π], P = [I2, 02x1]



Fig. 3. Relative sampling rates of the initial state xk for transitions recorded by our uncertain parameter δ = (xk, xk+1, θ). The systems for which
these transitions are sampled are given in equations (a)-(c). In each case, however, our proposed sampling method does produce numerical estimates for
the distribution of the initial states xk that align with our expectations based on definition of our proposed distribution π in equation (4).

Each robot in the robotarium has a Lyapunov-based con-
troller that drives it from its current position to a desired
orientation xd in its state space X . When multiple robotarium
robots are asked to ambulate in the same, confined space,
their control inputs are filtered in a barrier-based quadratic
program to ensure that the robots never collide [24]. As such,
given a nominal radius rs that the robots are to maintain, a
candidate barrier function h would be

h(x1, x2, . . . , xNR) = min
i 6=j, i,j∈[1,2,...,NR]

‖P (xi−xj)‖− rs.

Concatenating all the state vectors of the NR robots in the
robotarium in xT = [x1T , x2T , . . . xNT ], we get the follow-
ing candidate barrier function required of Assumption 2:

h(x) = min
i6=j, i,j∈[1,2,...,NR]

‖P (xi − xj)‖ − rs. (7)

This results in the following verification problem. For the
closed-loop robotarium simulator, devise a method to deter-
mine whether h(x(tk,xd)) ≥ 0 ∀ k ≤ K = 100 ∈ Z+

and (x0,xd) ∈ C. Here, h is as per (7), our parameter
θT = [x1T

d , x2T
d , . . . xNRd ] ∈ Θ = XNR , xjd is the desired

pose for robot j, and NR = 3.
Numerical Results: To determine the safety of the robotar-
ium simulator, we sampled N0 = 100 initial conditions and
desired poses (x0,xd) from the uniform distribution over
the 0-superlevel set of the candidate barrier function h U[C].
Then, we simulated each closed-loop trajectory for K = 100
time-steps with ∆t = 0.03 and recorded all transitions
δ = (xk,xk+1,xd). Then, we calculated the minimum decay
constant γ∗N as per (BASE-RP-N) for the N = 10000
transition samples taken, resulting in γ∗N ≈ 0.953 ≥ 0.

As per Lemma 2 and Theorem 3 then, the probability
of sampling a violating initial condition and goal (x0,xd)
from U[C] can be upper bounded by some ε ∈ [0, 1]. More
accurately, Theorem 3 states that the probability that the
system maintains positivity of h for at least K = 100 time-
steps can be lower bounded as follows:

PNπ(δ) [S(γ∗N ) ≥ 1− ε] ≥ 1− (1− ε)N .

To determine the high probability lower bound 1− ε, we set
the right-hand side of the outer probability to be = 1−10−6

and calculate the corresponding violation probability upper
bound ε that satisfies this inequality with N = 10000, the

TABLE I
ROBOTARIUM SIMULATOR VERIFICATION DATA

N0 K N γ∗N ε V (γ∗N ) S(γ∗N )
100 100 10000 0.953 0.0014 ≈ 0 ≈ 1

number of samples taken. This results in an upper bound
ε = 0.0014. In other words, according to the results of
Theorem 3, the probability of sampling an initial condition
and goal pair (x0,xd) from U[C] such that the corresponding
trajectory does not maintain positivity of h for at least
K = 100 time-steps should be lower than ε = 0.0014 with
minimum probability 1− 10−6.

To verify this last statement, we sampled N0 = 50000
initial condition and goal pairs (x0,xd) from U[C], simulated
each trajectory for K = 100 timesteps, and recorded the
minimum barrier value ` for the sampled trajectory. We used
the fraction of trajectories with minimum barrier value ` < 0
to approximate the probability of sampling a trajectory that
does not maintain positivity of h for at least 100 time-steps.
The complete information for this verification process and
validation of our verification method can be found in Table I.
As shown in this information, the true violation probability
estimate is indeed lower than our calculated upper bound
ε. This serves as numerical validation of our verification
method, at least with respect to the Robotarium simulator.
Verifying our Scenario Approach: The aforementioned
results provide numerical evidence supporting the results of
Theorem 3 and Lemma 2. However, this does not show
repeatability of our results. Specifically, we state via use
of the scenario approach that the violation probability of
our calculated solution γ∗N can be upper bounded with
high probability with respect to the distribution π by which
transition samples δ are drawn, i.e.

PNπ(δ) [V (γ∗N ) ≤ ε] ≥ 1− (1− ε)N .

To show the above statement holds, we performed the
same verification procedure as prior 50 separate times and
recorded the calculated minimum safety decay rate γ∗N each
time. To show that our results are also system independent,
we performed the same procedure with a four-agent system
as well and extended the maximum number of time-steps to
K = 200 in the four-agent case. Then, for each verification
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Fig. 4. Compilation of results for each of the 50 trial runs of verifying the robotarium simulator with NR = 3, 4 robots. A complete explanation of the
results is in Section IV-A. Notably, however, over all 100 separate trials performed, the true violation probability of our calculated decay constant γ∗N is
always less than our theorized upper bound ε. Just to note, while it may seem like the true violation probability is equal to 0 in all cases, it is not. The
variance in the true violation probability is on the order of 10−5 and is just not visible at the scale shown.

attempt, we calculated the true violation probability of the
our solution γ∗N by uniformly sampling another Nv = 1000
initial condition and goal pairs and simulating the corre-
sponding trajectories for the appropriate number of time-
steps as well - K = 100 for the three-agent case NR = 3 and
K = 200 for the four-agent case NR = 4. Then, we recorded
the fraction of transitions δ that required decay constants
γ < γ∗N as an estimate of the true violation probability of
our solution γ∗N . Finally, we calculated the high probability
upper bound ε to our violation probability V (γ∗N ) by setting
1 − (1 − ε)N = 1 − 10−6 and calculated the ε satisfying
this condition. For NR = 3 ε = 0.0014 and for NR = 4
ε = 0.0007. This discrepancy in ε arises as we changed the
maximum simulation time-step from K = 100 to K = 200
from the three to four-agent case respectively.

All information for this procedure can be found in Fig-
ure 4. Notably, over all 100 trials performed, the calculated
minimum decay constant γ∗N ≥ 0. This acts as further
numerical support for the results of Lemma 2 and Theorem 3.
Specifically, our prior results indicated that with high prob-
ability, uniformly sampled trajectories should consistently
render positive the candidate barrier function h for at least
100 time-steps. Indeed, over all 100 trials performed wherein
each trial 100 trajectories were sampled, the candidate bar-
rier function h stayed positive for at least 100 time-steps.
Furthermore, for all 100 trials, the true violation probability
V (γ∗N ) < ε - our calculated upper bound. This shows the
repeatability and accuracy of our verification attempts at least
with respect to the Robotarium simulator. The next section
aims to show similar results on hardware systems as well.

B. Hardware Verification with Limited Data

In this section, we will verify two hardware systems, the
Robotarium, and the Unitree A1 Quadruped steered by a
variant of the controller presented in [31]. The robotarium
experiments will provide further numerical validation of our
scenario approach to verification. Namely, we will calculate a
minimum safety decay constant γ∗N based on 100 randomly
sampled hardware trajectories and show the true violation
probability of this solution V (γ∗N ) is indeed upper bounded
as stated via our approach. The quadruped examples show
how we can also make this verification statement with limited
data independent of the system-to-be-verified.
Robotarium: The setting for the hardware version of the

TABLE II
ROBOTARIUM HARDWARE VERIFICATION DATA

N0 K N γ∗N ε V (γ∗N ) S(γ∗N )
100 100 10000 -3.057 0.0014 ≈ 0 ≈ 1

robotarium is the same as mentioned in the simulation section
prior for the three-agent case. Our goal will be to verify the
same probabilistic statement as prior: PNπ(δ) [V (γ∗N ) ≤ ε] ≥
1− (1− ε)N . Here, π is now the unknown distribution from
which transitions δ of the hardware system are drawn. To
generate our minimum safety decay rate γ∗N , we sampled
N0 = 100 initial condition and goal pairs, recorded the
resulting trajectory for K = 100 time-steps, and calculated
γ∗N as per (BASE-RP-N) - this is the same procedure as we
followed in the simulation case. To verify our corresponding
probabilistic result, we also sampled Nv = 400 initial condi-
tion and goal pairs, recorded the resulting trajectory for K =
100 time-steps, and recorded the fraction ` of transitions δ
requiring a safety decay rate γ < γ∗N . We used this fraction
` as an approximation of the true violation probability. We
also calculated the violation probability upper bound ε by
setting the right-hand side of the earlier probability statement
to 1−10−6 as prior. This yields an upper bound ε = 0.0014.
All this information can be found in Table II.

Notice that in this case, the procedure identified a coun-
terexample as γ∗N < 0, and as per Corollary 1, there should
exist a transition δ in the sampled set whereby the system
evolves to make negative the candidate barrier h. This is
indeed the case as shown in Figure 5, as for one of the trials,
the minimum value of the barrier function h was negative.
That being said, over the other 400 trajectories sampled, none
exhibited a transition corresponding to a safety decay rate
γ < γ∗N . As a result, we estimate that the true violation
probability V (γ∗N ) < ε our calculated upper bound - a
statement which we expected to hold with high probability,
and it indeed does in this case.

Quadruped: In a similar fashion as prior, we hope to verify
the quadruped’s ability to maintain positivity of a simple,
2-norm barrier function:

h(x, θ1, θ2, θ3, θ4) = min
i=1,2,3,4

‖x− θi‖ − 0.35.

Here, we assume that our ”state” x is a projection of the true
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Fig. 5. Minimum barrier value for each of the 100 trials taken for the
verification process of the robotarium hardware as stated in subsection IV-
B. Notice that in one trial the system fails to keep positive the candidate
barrier h indicating a counterexample.

quadruped state onto the x− y plane and constrained to lie
within the state space X = [−1, 2]2. Also, θi is the location
in the x − y plane of one of the 4 stationary obstacles. As
such, our total parameter vector θ ∈ Θ = [−1, 2]8. Then,
our verification problem is very similar to that which we
had for the robotarium - see if the quadruped coupled with
the controller in [31] can keep positive this candidate barrier
function h for at least K = 150 time-steps with ∆t = 0.1.

To make a probabilistic verification statement in this vein,
we sampled N0 = 50 initial conditions and parameter pairs
(x0, θ) from the uniform distribution over the 0-superlevel set
for the candidate barrier function h U[C]. We recorded the
resulting trajectories for K = 150 time-steps and recorded
all transitions. To be more specific about this process, we
recorded state data at 1000 Hz and recorded as the state xk
the sampled state whose timestamp was nearest to the desired
time k∆t. This yielded N = 7500 transition samples and a
calculated safety decay constant γ∗N = 0.3931. Furthermore,
we expect the violation probability for our solution V (γ∗N ) to
be upper bounded by ε = 0.0019 with minimum probability
1 − 10−6. This entire procedure required 12.5 minutes of
system data. This is why we claim that we can verify
hardware systems to high minimum probability with limited
data and are confident in the validity of our approach based
on the repeatability and validity analyses carried out earlier.

V. CONCLUSION

In this paper, we detail a randomized verification method
for safety-critical systems with limited data via a scenario
approach based on barrier functions. We showed that by
uniformly sampling initial conditions and parameters and
recording the resulting state trajectory, we can determine
the constraints for a randomized linear program designed to
identify the minimum safety decay constant γ required by the
system in its attempt to maintain the positivity of a candidate
barrier function h. Given a sufficient number of trajectory
samples, the positivity or lack thereof of this constant γ
provides us either a probabilistic verification statement or
counterexample, respectively. Finally, we showed that this
procedure works across multiple systems, both simulated and
real ones, and verified our probabilistic verification state-
ments by taking copious samples of the same systems and
showing our results holds. As future work, we hope to extend
our analysis to the case where the system dynamics are

corrupted by additive noise and identify a similar approach
for continuous barrier functions as well.
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