
Human-Inspired Multi-Contact Locomotion with AMBER2

Hui-Hua Zhao
Mechanical Engineering
Texas A & M University
College Station, USA

huihuazhao@tamu.edu

Wen-Loong Ma
Mechanical Engineering
Texas A & M University
College Station, USA

wenlongma@tamu.edu

Michael B. Zeagler
Mechanical Engineering
Texas A & M University
College Station, USA

wallowinginfun@tamu.edu
Aaron D. Ames

Mechanical Engineering
Texas A & M University
College Station, USA
aames@tamu.edu

ABSTRACT
This paper presents a methodology for translating a key fea-
ture encoded in human locomotion–multi-contact behavior–
to a physical 2D bipedal robot, AMBER2, by leveraging
novel controller design, optimization methods, and software
structures for the translation to hardware. This paper begins
with the analysis of human locomotion data and uses it to
motivate the construction of a hybrid system model repre-
senting a multi-contact robotic walking gait. By again look-
ing to human data for inspiration, human-inspired controllers
are developed and used in the formulation of an optimization
problem that yields stable human-like multi-domain walking
in simulation. These formal results are translated to hard-
ware implementation via a novel dynamic trajectory genera-
tion strategy. Finally, the specific software structures utilized
to translate these trajectories to hardware are presented. The
end result is experimentally realized stable robotic walking
with remarkably human-like multi-contact foot behaviors.

1. INTRODUCTION
Cyber-physical systems involve tight coupling between com-

putation and the physical world; as such, humans provide
a prime example of such a system. Nowhere is this more
prevalent than in the simple act of locomoting. During the
course of a step, humans undergo changes in phase [2, 6],
i.e., a change in contact points with the environment, in-
cluding a heel-lift and toe strike; for an instance, the heel
lift at the single support domain yields higher foot clear-
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Figure 1: The bipedal robot AMBER2 (left) is constructed
with the specific goal of multi-contact locomotion as indi-
cated by the design of the feet (right).

ance and lets the human utilize the rotation momentum effi-
ciently to save energy. In the process of progressing through
these phases, the physics of the system change along with
the degrees of actuation. While dealing with these dynamic
changes is seemingly effortless for a human, imbuing robotic
systems with these same capabilities is fraught with com-
plexity in terms of computation and control. The goal of this
paper is to take the first steps towards addressing these prob-
lems with the objective of human-like multi-contact bipedal
robotic walking.

Robotic walking has been studied from a variety of view-
points, most of which are aimed at the ultimate goal of achiev-
ing human-like locomotion capabilities on bipedal robots.
Most approaches try to reduce the complexity of the prob-
lem through simplifying assumptions revolving around the
ZMP point [13]; yet, by nature of the fact that these meth-
ods require the center of pressure to lie within the foot, they
require flat foot locomotion. As a result, their fundamen-



tal assumptions tend to preclude the human-like behavior
of multi-contact locomotion. On the other end of the spec-
trum, formal methods for achieving bipedal locomotion have
been presented in the case of underactuated walking robots
through the use of hybrid zero dynamics [11], some of which
have been adopted to multi-contact walking in simulation
[7]. Finally, recent work from the coauthors has looked to-
ward human-locomotion for inspiration for the synthesis of
walking controllers, both in the case of under [15] and full
actuation [3, 16]. Noticeably lacking from existing methods
from any of these perspectives is a formal way to generate
multi-contact locomotion in a manner that is both formally
correct, along with being physically realizable.

This objectives of this paper are twofold: (a) present a
formal means by which multi-contact robotic walking can
be achieved, and (b) realize this approach experimentally on
AMBER2 (see Fig. 1) through novel computational means.

For objective (a), we begin by noting that the multi-phase
behavior of human locomotion can be represented as a multi-
domain hybrid system (Sec. 2). In this fashion, we create a
hybrid system for a bipedal robot in Sec. 3 that has phases
of full, under and over actuation with transitions occurring
due to heel-strike, toe-strike and heel lift. Further motivated
by human walking, we then introduce human-inspired con-
trollers for the continuous dynamics in each of these discrete
domains (Sec. 4). To account for the hybrid nature of the sys-
tem, a novel multi-domain optimization is proposed in Sec. 5
that ensures invariance of the zero dynamics surfaces that are
a natural byproduct of human-inspired control. The end re-
sult is the generation controllers that yield multi-contact lo-
comotion as verified in simulation.

To achieve objective (b), it is necessary to address the
cyber-physical aspects of a robotic system, and specifically
AMBER2, through algorithms that will allow for the im-
plementation of the formal controllers. A novel method for
translating gaits to physical hardware is presented in Sec. 6;
importantly, these methods utilize the essential formal ele-
ments of the controllers and optimization which generated
these gaits. This is made explicit through the essential code
structures utilized for implementation (Sec. 7). The end re-
sult is the realization, on the bipedal robot AMBER2, of
human-inspired multi-contact bipedal locomotion. These re-
sults are discussed in Sec. 8. Importantly, the resulting wal-
ing on AMBER2 consists of all of the key behaviors present
in human walking: heel strike, toe strike and heel lift. Com-
parison between the experimental and simulation results shows
good agreement between the experimental results and the
theory from which they were derived.

2. MULTI-DOMAIN LOCOMOTION
This section reviews the multi-domain feature embedded

in human locomotion. Based on the experimental data of hu-
man kinematics, three domains are extracted to characterize
one step cycle of human walking.
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Figure 2: Diagram of a typical gait cycle.

Multi-Domain Structure of Human Walking. Understand-
ing the walking pattern of a normal leg is of obvious impor-
tance when attempting to reproduce it robotically. Normally,
a bipedal gait consists of two phases: stance phase, when
the foot is on the ground, and swing phase, when the foot
is in the air [4]. Specifically, sub-phases are usually dis-
integrated from each phase to describe human locomotion
more explicitly. For example, at the beginning of the stance
phase, for a portion of time both feet are in contact with the
ground, which we define as double support domain. For the
rest of the stance phase, only one foot is on ground, which
we term as single support domain as shown in Fig. 2 (see
[2]). Though different approaches break one step into dif-
ferent phases (for example, in impedance prosthetic control
[6], the swing phase is divided into two sub-phases based
on the knee angle), this work will focus only on the stance
phase (which is the most critical factor of bipedal walking)
by looking at the contact points between the feet and ground.
The domain breakdown scheme of experimental human data
is discussed in the following section.
Locomotion Domain Breakdown. With the goal of achiev-
ing human-like walking, we turn to the most prevalent source
—the human body—for inspiration. The human locomotion
data considered in this paper was obtained through a high
speed motion capture system, the setup details of which can
be found in [16]. Using the domain breakdown method dis-
cussed in [16], one step (only stance phase is considered) is
divided into four sub-phases as shown in Fig. 3.

However, one can note that there is one sub-phase that only
takes a small portion of one step (which is 3.1746% for the
example subject considered in this work). Omission of this
phase is possible without sacrificing the ability to capture the
essentials of multi-domain human locomotion. Therefore,
this work will focus on the other three domains of a single
step as shown in Fig. 3. In particular, we define the domains
explicitly as:

• Over-actuated Domain, oa: In this domain, only the
stance heel and swing toe are on the ground;
• Fully-actuated Domain, f a: In this domain, both the

toe and heel of stance foot are on the ground;



Figure 3: Domain breakdown of one step of one subject.
The numbers below each tile indicate the percentage of time
spent in that domain. The blue circle indicates that particular
point of the feet (toe or heel) is in contact with ground. The
red lines indicate the “non-stance” leg and the black lines
represent the “stance” leg.

• Under-actuated Domain, ua: In this domain, only the
stance toe is on the ground.

3. HYBRID MODEL OF AMBER2
This section presents the mathematical model of a footed

bipedal robot with multi-domain locomotion. Considering
the changes of foot contact points over a gait cycle (lifting
and striking of the heel and toe), a hybrid system model is
developed with both continuous dynamics and discrete dy-
namics. The physical planar robot AMBER2 is introduced
at the end with details.

3.1 Hybrid System Model
Formally, the multi-domain locomotion bipedal system can

be modeled as a hybrid control system [4], [12] as follows:

H C = (Γ,D,U,S,∆,FG), (1)

where

• Γ = (V,E) is a directed cycle, with vertices V = {oa,
fa,ua}; and edges E = {e1 = {oa→ fa},e2 = {fa→
ua},e2 = {ua→ oa}},
• D= {Doa,Dfa,Dua} is a set of domains of admissibility,
• U = {Uoa,Ufa,Uua} is the set of admissible controls,
• S = {Soa→fa,Sfa→ua,Sua→oa} is a set of guards,
• ∆ = {∆oa→fa,∆fa→ua,∆ua→oa} is a set of reset maps,
• FG = {( fv,gv)}v∈V with ( fv,gv) a control system on

Dv, i.e., ẋ = fv(x)+gv(x)uv for x ∈ Dv and uv ∈U .

The remainder of this section will devote to developing the
specific elements of this hybrid system in the context of the
multi-domain walking gait of interest.

3.2 Robot Dynamics
Due to the changes of contact points on the foot through-

out the course of the gait, generalized coordinates are natu-
rally used to characterize the robot. Specifically, the config-
uration space Q =R2×SO(2)×Qb is represented in coordi-
nates as θ = {px, py,ϕ0,θb}, where the extended coordinates

Figure 4: The directed graph of 3 domain walking.

{px, pz,ϕ0} represent the position and rotation angle of the
body fixed frame Rb with respect to a fixed inertial frame
R0; and θb = {θsa,θsk,θsh,θnsh,θnsk,θnsa} denotes the body
coordinates of the robot as shown in Fig. 5.
Continuous Dynamics. With the domain specification and
the generalized coordinates x = (θ , θ̇) in hand, we can now
construct the control system FG for each domain Dv with
v ∈V for hybrid system H C .

The dynamics on each domain will be obtained from gen-
eral “unpinned” dynamics through the use of holonomic con-
straints. Calculating the mass and inertia properties (as shown
in Table 1) of each link through a CAD model allows for the
construction of the Lagrangian:

L(θ , θ̇) =
1
2

θ̇
T D(θ)θ̇ −V (θ). (2)

Holonomic constraints are then added to enforce contact con-
ditions (the detailed construction can be referred to [8]). The
end result is a constrained dynamical system as follows,

M(θ)θ̈ +H(θ , θ̇) = B(θ)u+ Jv(θ)
T Fv(θ , θ̇), (3)

where M(θ) ∈ R9×9 is the inertial matrix, and H(θ , θ̇) ∈
R9×1 contains the terms resulting from the Coriolis effect
C(θ , θ̇)θ̇ and the gravity vector G(θ). B(θ) denotes the
torque distribution matrix. Fv(θ , θ̇), which are the reaction
forces due to the holonomic constraints, are defined for each
domain based on the contact conditions of the heel and toe.
Fv can be explicitly derived from the states x and the con-
troller u by differentiating the holonomic constraints twice.
The details are omitted here and can be referred to [10].
Discrete Dynamics. With a given vertex v ∈ V , the contin-
uous domain, Dv, describes the admissible configuration of
the system restricted by the guard Sv. In particular, we con-
sider two types of constraints: unilateral, denoted as hv, and
holonomic, denoted as ηv. The unilateral constraints deter-
mine the set of admissible configurations, i.e., the domains;
while holonomic constraints are used to dictate specific con-
tact points with the ground. With this setup, each domain
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Figure 5: Robot configuration (left) and outputs (right).

can be defined as:

Dv =
{
(θ , θ̇) ∈ T Q : hv(θ)≥ 0, ηv = 0

}
. (4)

with the constraints given by:

• For v = oa, hoa(θ) consists of the vertical height of
stance toe, while ηoa(θ) consists the vertical height of
stance heel and swing toe;
• For v = f a, h f a(θ , θ̇) is the vertical reaction force at

the stance heel, while η f a(θ) consists the vertical height
of stance heel and toe;
• For v= ua, hua(θ) is the non-stance heel vertical height,

while ηua(θ) is the vertical height of stance toe.

Guards. The guards are defined when hv = 0 with the ad-
ditional assumption that hv is decreasing; therefore, resulting
the guard defined as:

Se =
{
(θ , θ̇) ∈ T Q : hv(θ) = 0 and ḣv(θ)< 0

}
, (5)

Reset Maps. The evolution of domains combines with con-
tact point leaves or impacts the ground. Reasonable reset that
maps from pre-switch state x−e to post-switch x+e state is re-
quired for stable walking.

When a specific contact point lifts from the ground, there
are no velocity changes. Therefore, the reset map can be de-
fined as identity. In particular, ∆e2 = I18 falls into this case,
i.e., x+e2

= x−e2
. When a specific point impacts the ground, we

assume no rebounding or slipping occurs1, thus resulting the
unchanged configuration (θ+

e = θ−e ). However, the veloci-
ties must be updated due to the impact. Reset maps ∆e1 and
∆e3 fall into this category. The perfectly plastic impact model
is considered to derive the reset map with impacts, which is
given as the following,

x+e = ∆e(θ , θ̇)x−e , with ∆e(θ , θ̇) =

[
∆θ ,e

∆
θ ,θ̇ ,e

]
, (6)

where e ∈ {e1,e3} 2 with ∆
θ ,θ̇ ,e determining the velocity

1These are common assumptions in bipedal robot literature [14].
2Note that as a result of considering “stance” and “non-stance” legs,
the labelling on the legs must be swapped at the end of a step (oth-
erwise, ∆θ ,e = I); in this paper, this switching occurs at heel strike,
i.e., e3 = ua→ oa. This is common practice in robotic walking to
reduce the number of discrete domains.

Figure 6: AMBER2 with the boom and electronics. The
boom restricts motion to the sagittal plane. As shown in the
figure: (1) Counterweight used to balance the boom around
the pivot, (2) Controller module where the walking algorithm
is running, (3) The boom, (4) Boom support structure which
keeps the torso horizontal, (5) The bipedal robot AMBER2.

changes due to impact. The detailed discussion on its com-
putation can be found in [8].

3.3 AMBER2 Model
AMBER2 is a 2D footed bipedal robot with seven links

(two calves, two thighs, two feet and a torso, see Fig. 1). Six
brushless DC (BLDC) motors actuate six joints. As a pla-
nar robot, the motion of AMBER2 has been restricted to the
sagittal plane via a boom shown in Fig. 6, which are con-
figured as parallel four-bar linkage such that no support in
the sagittal plan is provided by the boom. The boom is fixed
rigidly to a low friction rotating mechanism, allowing the
biped to walk in a circular fashion. In addition, counter-
weights are provided to negate the weight of the boom on
the robot.

The mathematical model of AMBER2 also contains the
motors and the boom. The inertias of these two elements are
included in the model differently. Details of this approach
were explained in [15]. Since the end of the boom can move
vertically and horizontally, it exhibits yaw and roll about the
pivot. This would correspond to the x component and z com-
ponent of the velocities of the torso. The CoM of the boom

Model Parameters
Parameter Mass Length Inertia x-axis Inertia z-axis

g m ×103 g mm2 ×103 g mm2

Stance foot 204.42 0.07445 139.698 406.384
Stance calf 1119.43 0.34313 9343.395 22211.105
Stance knee 1172.57 0.29845 9004.044 22404.696

Torso 2154.79 0.10401 20342.192 64678.601
Non-stance knee 1172.57 0.29845 9004.044 22404.696
Non-stance calf 1119.43 0.34313 9343.395 22211.105
Non-stance foot 204.42 0.07445 139.698 406.384

Table 1: The mass and length parameters of the robot.



can be approximated to be at the center of the pivot consid-
ering the counterweight mass. With Iboom being the inertia of
the boom, its mass matrix, Mboom ∈ R6×6, is:

Mboom =

[
Iboom
L2

boom
03×3

03×3 03×3

]
,

where Lboom is the distance between CoM of the torso and
the pivot.

The new combined mass inertia matrix, Mcom, used in the
lagrangian will be updated as:

Mcom(θ) = M(θ)+diag(0, Im,sk, Im,sh, Im,nsh, Im,nsk, Im,nsa)

+J(θ)T MboomJ(θ), (7)

where Im,sk, Im,sh, Im,nsh, Im,nsk, Im,nsa correspond to the motor
inertia of respective links and J(θ) is the body Jacobin of the
center of mass of the torso.

4. HUMAN-INSPIRED CONTROLLER
This section begins with the formal definition of human

outputs combination. A simple function is then introduced to
characterize these specifically selected outputs for tracking
purposes. The human-inspired outputs of the robot is defined
based on the human outputs and the representation function.
The control laws that leverage the robot to display human-
like multi-domain locomotion is constructed at the end.
Human Outputs Definition. We formally define the human
outputs combination as follows:

DEFINITION 1. A human output combination for v ∈ V
is a tuple Y H

v = (Qb,yH
1,v,y

H
2,v) consisting of a configuration

space Qb, a velocity-modulating output yH
1,v : Qb → R and

position-modulating outputs yH
2,v : Qb → Rnv−1 with nv the

degrees of freedom. Let Ov be an index set for yH
2,v whereby

yH
2,v(θ) = [yH

2,v(θ)o]o∈Ov .

A set of human outputs are independent if

rank(
[

yH
1,v(θ)

yH
2,v(θ)

]
) = nv, (8)

on Qb; and linear if

yH
1,v(θ) = cvθ , (9)

yH
2,v(θ) = Hvθ , (10)

for cv ∈ R1×nv and Hv ∈ R(nv−1)×nv .
By investigating experimental human locomotion data, se-

ven linear and independent output candidates are selected for
the robot in this paper: δ phip(θ), the linearized forward posi-
tion of the hip measured from the stance ankle joint; θsa, the
stance ankle angle; θsk, the stance knee angle; θnsk, the non-
stance knee angle; θhip, the hip angle between two thighs;
θtor(θ), the torso angle from vertical, and θns f (θ), the an-
gle of the non-stance foot w.r.t the horizontal, the details of
which are denoted in Fig. 5.

To construct these human outputs in a formal way, the lin-
earized hip velocity is considered as the velocity-modulating
output for all three domains and is characterized by:

cv =
[
0 0 −Lc−Lt −Lc−Lt −Lt 0 0 0 0

]
, (11)

where v ∈ V , Lc and Lt are the length of calf and thigh, re-
spectively. The remaining six position-modulating outputs
can be written in the matrix form as:

Hua =


0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 −1 0 0
0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 −1 −1 −1

 . (12)

The particular reason we write it as Hua is that this output
combination is also the outputs chosen for the under-actuated
domain. The position-modulating outputs for the over- and
fully- actuated domains are chosen to be sub-matrices of Hua
based upon the available degrees of actuation in these respec-
tive domains. In particular, Hoa = (Hua)1,2,5,6 and H f a =
(Hua)2−6, where here we use the notation (Hua)i to denote
the ith row of Hua.
Human-Inspired Outputs. With the goal to replicate hu-
man locomotion on a robot, specific functions have to be de-
fined to characterize those human outputs for tracking pur-
poses. Analysis of the chosen outputs data shows that, the
linearized hip position can be approximated by a linear func-
tion of time δ pd

hip(t) = vhipt for all three domains, and the
position-modulating outputs can be characterized by a sim-
ple function, which we term the extended canonical walking
function (ECWF):

yecw f (t) = e−α4t(α1 cos(α2t)+α3 sin(α2t))+ ...

α5 cos(α6t)+κ(α)sin(α6t)+α7, (13)

where κ(α)= (2α4α5α6/((α2)
2+(α4)

2+(α6)
2). It is found

that this simple function can seemingly fit human locomotion
data universally with high correlations. A detailed explana-
tion can be found in [16].

Based on the linear fashion of the linearized hip position,
we can parameterize the time as:

τ(θ) = (δ phip(θ)−δ phip(θ
+))/vhip, (14)

which removes the dependence of time in (13) and renders
an autonomous ECWF that only depends on the states [14].
Specifically, θ+ represents the robot configuration at the be-
ginning of one step which can be defined arbitrarily. In par-
ticular, the over-actuated double support domain is chosen as
the beginning domain of one step.

With the autonomous ECWF in hand, we formally define
the human-inspired outputs as:

yαv,v(θ , θ̇)=

[
y1,v(θ , θ̇)
y2,v(θ ,αv)

]
=

[
yH

1,v(θ , θ̇)− vhip

yH
2,v(θ)− yd

2,v(τ(θ),αv)

]
, (15)



where y1,v(θ , θ̇) is the velocity-modulating human-inspired
output that is the difference between the actual hip velocity
yH

1,v(θ , θ̇) and the desired hip velocity vhip. y2,v(θ ,α) are
the position-modulating human-inspired outputs, which are
the difference between the actual outputs yH

2,v(θ) and the de-
sired outputs yd

2,v(θ ,α). Particularly, we consider the under-
actuated domain as an example; in this case, yH

2,ua and yd
2,ua

can be configured as:

yH
2,ua = Huaθ , yd

2,ua(τ(θ),αua)=


yecw f (τ(θ),αsa)
yecw f (τ(θ),αsk)
yecw f (τ(θ),αnsk)
yecw f (τ(θ),αhip)
yecw f (τ(θ),αtor)
yecw f (τ(θ),αns f )

 . (16)

We will group all the output parameters consisting both the
velocity-modulating output and the position-modulating out-
puts to form the parameter set α = {vhip,αsa,αsk,αnsk,αhip,
αtor,αns f } ∈ R43. In particular, by defining αvhip = {vhip,0,
0,0,0,0,0} ∈R7, the vector components of α can be stacked
to a matrix form. Specifically, we have α ∈R7×7. Note that,
only one ECWF has been used to characterize a specific out-
put during a whole step including all three domains. Due to
the fact that the degrees of freedom of each domain is differ-
ent, the parameter set matrix for specific domain will be the
sub-row matrices of α . In particular, αoa =α([1−3,6,7], :),
α f a=α([1,3−7], :) and αua = α([2−7], :).
Control Law Construction. The goal of the controller is to
drive the outputs of robot to the outputs of human as repre-
sented by the ECWF in each domain. Considering the fact
that bipedal robots display highly nonlinear dynamics, we
naturally choose the Input/Output Linearization controller to
drive yαv,v → 0 in an exponential convergence fashion. In
particular, in the domain of full- and over- actuation, we de-
fine the human-inspired controller as:

uαv,ε
v (θ , θ̇)=−A−1

v (θ , θ̇)

([
0

L2
fv y2,v(θ , θ̇)

]
+

[
L fvy1,v(θ , θ̇)

2εL fvy2,v(θ , θ̇)

]
+

[
εy1,v(θ , θ̇)
ε2y2,v(θ , θ̇)

])
, (17)

with v ∈ {fa,oa} and L the Lie derivative. Note that, ε > 0 is
a user defined control gain that determines the convergence
rate of yαv,v→ 0. The decoupling matrix Av(θ , θ̇) is given:

Av(θ , θ̇) =

[
Lgvy1,v(θ , θ̇)

LgvL fvy2,v(θ , θ̇)

]
, (18)

which is nonsingular because of the specific selection of out-
puts combination. For the under-actuated domain ua, the
controller is defined as,

uαua,ε
ua (θ , θ̇) =−A−1

ua (θ , θ̇)
(
L2

fuay2,ua(θ , θ̇)

+2εL fuay2,ua(θ , θ̇)+ ε
2y2,ua(θ , θ̇)

)
, (19)

with Aua = LguaL fuay2,ua(θ , θ̇).

5. MULTI-DOMAIN OPTIMIZATION
This section will focus on developing the human-like multi-

domain optimization that yields the controller parameters α

that will result in human-inspired multi-domain walking on
AMBER2. Both mathematical constraints (for stable walk-
ing) and physical constraints (for implementation on a phys-
ical robot) are discussed in detail. Simulation results us-
ing the obtained parameters with human-inspired control are
presented at the end to show the stability of the walking.
Full and Partial Zero Dynamics. The human-inspired con-
troller can drive the human-inspired outputs yαv,v(θ , θ̇)→ 0
exponentially, which renders the full zero dynamics surface
for continuous dynamics:

FZαv={(θ , θ̇) ∈ T Q : yαv,v(θ , θ̇)=0, L fv y2,v(θ ,αv)=0}. (20)

The invariance of this surface does not extend to the case of
discrete dynamics with impacts, i.e., it does not necessarily
extend to the case of hybrid systems. With a view towards the
importance of the position-modulating outputs y2,v(θ ,αv),
we define the surface for which these outputs agree for all
time as partial zero dynamics surface3:

PZαv={(θ , θ̇) ∈ T Q :y2,v(θ ,αv)=0, L fvy2,v(θ ,αv)=0}. (21)

With the relaxation of the velocity-modulating output, the
PZαv surface can be specifically designed such that it is in-
variant even for a hybrid system with impact. That is to say,
the goal of partial hybrid zero dynamics (PHZD) is to find
parameters α ensuring that this surface remains invariant
through the major impact of the multi-domain walking as:
∆ f a→oa(Se2 ∩FZα f a) ⊂ PZαoa . Note that, the impact equa-
tion ∆ f a→oa includes both the impact due to the heel and toe,
along with numerical integration through the under actuated
domain. Therefore, all of the impacts of the system can be
represented through the single impact equation ∆fa→oa.
PHZD Reconstruction. The desired joint angles and an-
gular velocities of the robot are found through inverse pro-
jection from the PHZD surface. With the assumption that
the system evolves on the PHZD surface, a low dimensional
representation of the system can be obtained by defining the
zero dynamics coordinates of domain v ∈ {oa, f a}:

ξ1,v = δ pH
hip(θ) := cvθ ,

ξ2,v = yH
1,v(θ , θ̇) := δ ṗH

hip(θ) := cvθ̇ . (22)

Since ξ1 is the linearized position of the hip, which is used to
parameterize time as (14), we can write the desired outputs
yH

2,v(θ) = yd
2,v(ξ1,v,αv). Therefore, we have the following

relationship between the desired joint state and the desired

3Note that, domain v = ua only has position-modulating outputs,
therefore, the PZαv surface for under-actuated domain is actually
full zero dynamic surface, i.e., FZαua := PZαua . More importantly,
the PZαv will converge to the FZαv if the system is fully-actuated
or over-actuated.



outputs of the robot as:

θ
d
v = Ψ(ξ1,v,αv) =

[
cv
Hv

]−1(
ξ1,v

yd
2,v(ξ1,v,αv)

)
,

θ̇
d
v = Φ(ξ1,v,ξ2,v,αv) =

[
cv
Hv

]−1
(

vhip
∂yd

2,v(ξ1,v,αv)

∂ξ1,v
ξ2,v

)
. (23)

Multi-Domain Optimization. With the goal of finding the
controller parameters, α , which deliver stable multi-domain
robotic walking, a human-inspired optimization problem sub-
ject to PHZD is given by the following:

α
∗ = argmin

α∈R43
CostHD(α) (HIO)

s.t ∆ f a→oa(Se2 ∩PZα f a)⊂ PZαoa (PHZD)

where,

∆ f a→oa(θ , θ̇) = ∆e3(ϕ
ua
Tua(θ ,θ̇)

(θ , θ̇)) (24)

with ϕua the solution to the vector field ( fua,gua) with initial
condition (θ , θ̇) ∈ Se2 ∩FZα f a ; and Tua(θ , θ̇) is the time to
impact function that determines the first time when the solu-
tion intersects the guard (see [9]). Note that, the cost function
(HIO) is the least squares fit between the human experimen-
tal data and the ECWF representations [16]. In order to solve
this nonlinear optimization, the following sections will be
devoted to reformulating the constraints in an explicit man-
ner such that the optimization can be numerically solved.
Fully-actuated to Under-actuated Constraints. In order to
reframe PHZD in a way that can be numerically approached,
we use the PHZD reconstruction strategy to construct a point
(υ , υ̇)∈FZ f a∩Se3 , where, by definition, we know that ξ2, f a =
vhip. In order to get the hip position ξ1, f a, we add an addi-
tional parameter by defining ξ1, f a = α

f a
phip . Therefore, we ex-

pand our set of parameters with defining: β f a = {α f a
phip ,α f a}.

By doing so, we can explicitly solve the point (υ(β f a), υ̇(β f a))

as υ(β f a) =Ψ(α f a
phip ,α f a) and υ̇(β f a) =Φ(α f a

phip ,vhip,α f a)).
With this construction, we can specifically impose the con-

straint of domain f a that the reaction force on the heel has to
cross zero,

hfa(υ(β f a), υ̇(β f a) = 0 (PC1)

Note that, the fully-actuated domain f a will switch to the
under-actuated domain ua smoothly without requirement of
any further constraints except the guard condition. This is
benefit of the unique ECWF used through all three domains.
Particularly, by adding the addition parameter α

f a
phip , the time

of the switch Se2 can be optimized.
Under-actuated to Over-actuated Constraints. With the
point (υ(β f a), υ̇(β f a)) ∈ FZ f a ∩ Se2 constructed above, we
know this point is also the initial point of domain ua due to
the fact ∆θ ,e2 = I. With ϕua denoting the solution of to the

vector ( fua,gua), we can define the following point:

(ϕ(β f a), ϕ̇(β f a)) = ϕ
ua
Tua(υ(β f a),υ̇(β f a))

(υ(β f a), υ̇(β f a)). (25)

Clearly, (ϕ(β f a), ϕ̇(β f a))∈ Se3 . In order to satisfy the PHZD
constraints, the post impact state of (ϕ(β f a), ϕ̇(β f a)) has to
be on the surface of PZoa, which implies the following con-
straints:

y2,oa(∆θ ,e3ϕ(β f a)) = 0 (PC2)
dy2,oa(∆θ ,e3ϕ(β f a))∆θ ,θ̇ ,e3

ϕ̇(β f a) = 0 (PC3)

∂hua(ϕ(β f a))

∂ϕ(β f a)
ϕ̇(β f a)< 0 (PC4)

where constraint (PC4) implies that the impact is transverse
to the guard [3].
Over-actuated to Fully-actuated Constraints. Analogous
to the PHZD reconstruction at the end of domain f a, we
seek to construct a point (υ , υ̇) ∈ FZoa ∩ Se1 with an addi-
tional parameter αoa

phip
denoting the hip position at the end

of domain oa. Note that, with the assumption that the con-
troller gain ε is large enough to drive the dynamics to FZoa
with sufficient speed (before the end of domain oa), we have
ξ2,oa = vhip. Therefore, by defining the extended parameter
set to be βoa = {αoa

phip
,αoa}, we can solve for this point as

υ(βoa) = Ψ(αoa
phip

,αoa) and υ̇(βoa) = Φ(αoa
phip

,vhip,αoa)).
Finally, we can explicitly compute the point at the begin-

ning of the domain f a using the reset map ∆e1 with ∆θ ,e1 = I
and ∆

θ ,θ̇ ,e1
as discussed in (6). Thence, the PHZD condition

implies the following constraints:

y{hip,tor}, f a(υ(β f a)) = 0 (PC5)

|dy2, f a(υ(βoa))∆θ ,θ̇ ,e1
υ̇(βoa)|< σ (PC6)

∂hoa(υ(βoa))

∂υ(βoa)
υ̇(βoa)< 0 (PC7)

where (PC7) implies that the impact is transverse to the guard
and σ is a small positive user-defined value (which is chosen
to be 0.1 in our application). Note that, since only one ECWF
has been utilized to characterize the outputs of a whole gait
cycle, the PHZD surface can not be fully guaranteed through-
out the whole step which contains three domains and two
impacts. Therefore, the PHZD constraints for the switch be-
tween over-actuated domain oa and fully-actuated domain fa
have to be relaxed by only constraining the positions of the
outputs. In particular, the shared position modulating outputs
between domain oa and fa will be continuous by construction
due to the identity map. Constraints (PC5) enforce that the
outputs yhip,fa and ytor,fa that are not tracked during the do-
main oa should be on the surface of PZfa. Constraints (PC6)
make sure that the velocity changes due to the minor impact
of the toe strike are sufficiently smaller than a specific value.
As a result, the system will not be off the PHZD surface too
much and will converge back to the surface quickly.
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Figure 7: On the left is the phase plot for 8 steps of the de-
signed 3 domain walking gait. The joint angles and angular
velocities are shown in the plots in the top and bottom right.

Physical Constraints. Note that, despite the PHZD con-
straints which render stable periodic orbits in hybrid systems
[3], we also need to consider several physical constraints
such that the results of the optimization are in a form that
can be implemented on physical robots. In particular, the
following two physical constraints are considered:

Torque Constraints. Torques acting on the joints are limited
by the capacity of the motors and the modules. Therefore,
the optimized gait has to respect the hardware torque bounds,
which is stated as:

max
0≤τ(θ(α))

||u(θ(α), θ̇(α),ε)|| ≤MAXtorque. (PYSC1)

Foot Scuffing Conditions. The swing height clearance of toe
and heel, and stride length during the swing phase must be
sufficient to avoid scuffing amidst sensor noise, tracking er-
ror, uneven ground and even imperfections in the mechanical
design. Therefore, foot scuffing conditions must be imposed
to insure sustainable walking. Explicitly, we define:

max
0≤τ(θ(α))

(hnst(θ(α))−hquad(θ(α),hmax))> 0,

max
0≤τ(θ(α))

(hnsh(θ(α))−hquad(θ(α),hmax))> 0,

max
0≤τ(θ(α))

lns f (θ(α))−MINsteplength > 0, (PYSC2-4)

where hquad is a quadratic polynomial above which the height
of non-stance toe (hnst ) and heel (hnsh) must remain during
the course of a step. The stride length lns f is constrained to be
greater than a minimum specified stride length, MINsteplength.
Main Results. Utilizing all of the formal constructions above,
together with the constraints needed for practical implemen-
tation, the final optimization problem can be stated as:

β
∗ = argmin

β∈R45
CostHD(β ) (HIO)

s.t PHZD Constraints (PC1-7)
Physical Constraints (PYSC1-4)

where β = {αoa
phip

,α f a
phip ,α} is the final expanded parameter

set. By solving this optimization problem using the MAT-
LAB built-in function f mincon, we can obtain β ∗ param-
eters that best fit human-walking data while enforcing the
desired constraints to achieve multi-domain robotic walking.
The end result of this optimization is that by only using one
set of parameters β ∗, stable multi-domain robotic walking
(with the human-inspired controller) of AMBER2 has been
achieved in simulation. The phase portrait and the joint tra-
jectories for multi-steps can be seen in Fig 7. The Poincarè
map has been utilized to numerically prove the stability of
this gait with the maximum eigenvalue smaller than a unit
(−0.3422e−8). More importantly, the optimized parameters
β ∗ will be shown to give human-like multi-domain walking
on the physical robot of AMBER2.

6. TRAJECTORY RECONSTRUCTION
With the human-inspired outputs obtained from the opti-

mization problem, this section will introduce the PHZD re-
construction methodology for the reconstruction of the de-
sired state based joint trajectory for the physical robot.
Zero Dynamics. With the zero dynamics coordinates de-
fined in Sec. 5, we can explicitly construct the ODE of
the zero dynamics. Particularly, we have the fact that the
velocity-modulating output evolves according to ẏ1,v =−εy1,v
with v ∈ {oa, f a}. Therefore, with the definition of PHZD,
the zero dynamics evolve according to the linear ODE:

ξ̇1,v = ξ2,v,

ξ̇2,v =−ε(ξ2,v− vhip). (26)

Having known ξ1,v, ξ2,v, the desired angles and velocities
are obtained from (23). In other words, since (θd , θ̇d) are de-
rived from the outputs vhip and yd

2,v(τ(θ(αv)),αv), tracking
these joint angles and velocities is equivalent with tracking
the robot’s outputs. Therefore, the restriction of the dynam-
ics to the PHZD surface is maintained.
Trajectory Reconstruction of AMBER2. As discussed ab-
ove, in order to obtain the desired trajectories (θd , θ̇d) for
AMBER2, both ξ1,v and ξ2,v for each domain must be com-
puted based on the current state. However, as the velocity
term ξ2,v is associated with multiple encoders, the actual ξ2,v
will accumulate the signal errors of all its contributing en-
coders. The end result will be inaccurate velocity data. To
bypass this shortcoming, we solve the ODE shown in (26)
explicitly as the following:

ξ1(t) = v∗hipt +
(1− exp(−εt))

ε
(v0

hip− v∗hip)+δ p0
hip, (27)

ξ2(t) = v∗hip + exp(−εt)(v0
hip− v∗hip), (28)

where δ p0
hip and v0

hip are the initial hip position and hip ve-
locity at the beginning of the step; v∗hip is the optimized de-
sired hip velocity.

Instead of using time t, we replace it with the parameter-
ized time τ(θ) to achieve state based tracking. The more de-
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(a) Joint angles with IO control in simulation
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(b) Joint angles with PD control in simulation
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(c) Joint angles with PD control in experiment

Figure 8: Comparison of actual joint angles between sim-
ulation results and experimental results logged during AM-
BER2 walking.

tailed implementation on the physical robot will be discussed
later with pseudo code. Note that, even though the velocity
modulating output is not tracked in the under-actuated do-
main, the use of this method is reasonable to achieve an ap-
proximation of the desired trajectory considering the short
duration of the domain 4.

For the other two domains oa and f a, the desired trajectory
are computed with minor modifications.
Over-actuated Domain. In the over-actuated domain, AM-
BER2 has 5 DOF but is actuated with 6 independent mo-
tors. In simulation, the redundant actuation is constrained
by the holonomic constraints. This technique, however, is
not applicable for a physical robot using pure PD control.
Therefore, instead of using all of the angles computed from
(23) directly, the geometric constraint is applied to update
the redundant joint angle. By tracking the updated desired
trajectory, both the stance heel and swing toe will remain on
the ground, therefore satisfying the holonomic constraints.
Fully-acutated Domain. In the fully-actuated domain, all
the extended coordinates should be 0 with the stance foot
being flat on the ground throughout the domain. More im-
4The reason is that the ankle joint motor can not provide enough
torque (hardware limitations) in the under-actuated domain to rotate
the weight of the robot around the pivot point at the toe.

portantly, the output θsa is not tracked. Therefore, the linear
form of the outputs can be reformulated as:

c f a =
[
−Lc−Lt −Lt 0 0 0 0

]
,

H f a =


0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 −1 0 0
1 1 1 0 0 0
1 1 1 −1 −1 −1

 .
Specifically, with this modification, the ψ0 term has been re-
moved from the output matrix and only the body coordinates
θb are considered. Importantly, removal of the output θsa
allows us to eliminate the control’s redundancy.

With the desired joint trajectory reconstructed above, the
following section will focus on the controller implementa-
tion on the physical robot AMBER2.

Figure 9: State machine showing the foot contact and the
logic used to determine the stance leg.

7. EXPERIMENTAL REALIZATION
AMBER2’s control infrastructure consists of two levels:

a high level controller which is realized by Real-Time (RT)
control, and a low level controller realized by Field-Progra-
-mmable Gate Array (FPGA). The objective of this section is
to introduce the control scheme of AMBER2 as it is realized
experimentally and in simulation.
High Level Controller. The Real Time control is in charge
of the following major functionalities incorporated as:

1. Interface with FPGA, including read joint angles and
angular velocities, send torque command to low level
controller, enable/disable motors.

2. Compute the time parameter τ , determine current sys-
tem domain.

3. PHZD reconstructon and geometric reconstructon to
find desired joint angles.

4. Compute torque command by applying PD control law
to corresponding motors, which is fed into the FPGA.



Algorithm 1 Real Time Module
Input: AMBER2 Parameters: Calf Length(Lc), Thigh Length(Lt );
Input: Optimizated trajectory parameters: δ pR

hip(θ
+),vhip,α;

Input: PD Controller Gain: Kp, Kd
Input: θLa,θLk,θLh,θRh,θRk,θRa, θ̇La, θ̇Lk, θ̇Lh, θ̇Rh, θ̇Rk, θ̇Ra ;
Input: Feet States; Encoder Status; Drive Status;
Output: Enable/Disable Motor Drives;
Output: Desired Torque for FOC;
1: Enable Motor Drives;
2: repeat
3: Wait till all motor drives are Enabled
4: until ( Drive-Status == Enable )
5: while ( ¬ Stop-RT ) do
6: Reform θ , θ̇ from Left/Right(θLR) to

Stance/nonStance(θSnS);
7: Calculate time threshold for different domians τ1, τ2, τ3;
8: Calculate actual time parameter τa ;
9: if real time≤ τ1 then

10: domain⇐ 1;
11: Desired τd = real time;
12: else
13: if τa > τ2 then
14: domain⇐ 2;
15: else
16: domain⇐ 3;
17: end if
18: Desired τd = τa +δT ;
19: end if
20: Calculate( ξ1, ξ2);
21: Calculate( yd , ẏd ) based on τd ;
22: if domain == 1 then
23: Calculate( θd , θ̇d ) via PHZD reconstruction and Geo-

metric Reconstruction;
24: else if domain == 2 then
25: Calculate( θd , θ̇d ) via PHZD reconstruction;
26: else
27: Calculate( θd , θ̇d ) via PHZD reconstruction;
28: end if
29: Apply PD Control law:

τ
f

PD = Kp(θa−θd)+Kd(θ̇a− θ̇d);
30: Reform τ

f
PD from Stance/nonStance to Left/Right;

31: Sending Torque Command to FPGA;
32: Log Data into Remote Desktop;
33: end while
34: Disable Motor Drives;
35: Report Errors and Stop the Real Time VI;

Note that for AMBER2, the sample rate and command rate
are both 200Hz. The high level controller is coded into shared
libraries to interface in C++ to improve the efficiency of ex-
ecution. The NI9144 EhterCAT Slave chassis is connected
to the cRIO to increase the capacity. For this configuration,
each chassis is in charge of one leg. The pseudo-code run-
ning in RT is shown in Algorithm 1.
Low Level Controller. The low level controller is coded
to the FPGA with on board clock 40MHz, which serves the
following major functionalities:

1. Measure angular velocity by the single-ended incre-
mental quadrature encoders attached to every rotor. Mea-
sure joint angle by integrating velocity data. In partic-
ular, the incremental encoders operate at 40MHz.

2. Detect stance foot by the heel and toe contact switches.

Algorithm 2 FPGA Module
Input: PWM Pulses from Absolute Encoders ;
Input: Hall Sensor Signal, Incremental Encoder Signal;
Input: Status of Foot Contact Switches;
Input: Auto-phasing results: Hall Angle, Index Angle;
Input: Hardware Setup: Sample Rate, Current Limitation, FOC

Gains;
Input: Enable/Disable Motor Drives;
Input: Three Phase Current From BLDC motors;
Input: Torque Command from RT;
Output: Three Phase PWM Signals to Motor Drives;
Output: θabs, θ̇incremental ;
Output: L/R Stance Foot; Encoder Status; Drive Status;
1: loop
2: Absolute Encoder Reading logic(10MHz); // Refer to data

sheet of absolute encoder, US digital MAE3 kit
3: if ( Signal low for 2 periods of encoder pulse) then
4: Encoder Not Working← 1;
5: else
6: Encoder Not Working← 0;
7: end if
8: Incremental Quadrature Encoder Reading Logic(40MHz);
9: end loop

10: loop
11: Compute Desired Current from Torque Command from RT;
12: if (Joint Angle exceeds Workspace and Torque Command

not trying to stop it) then
13: Reset Desired Current to 0;
14: end if
15: Compute Three Phase Voltage through Field-oriented Con-

trol Logic; (shown in Fig. 10) // Operation Frequency:
40MHz

16: PWM signal Generation logic;
17: end loop
18: loop
19: Guard and Stance Leg Detection Logic using foot contact

switches (shown in Fig. 9);
20: if ( Left Leg stance ) then
21: L/R stance← 0;
22: else if ( Right Leg stance ) then
23: L/R stance← 1;
24: end if
25: end loop

Foot logic is shown in the state machine Fig. 9.
3. Torque control. Field-oriented control (FOC) is em-

ployed at the motor level. As shown in the control
block diagram in Fig. 10, the torque is translated to
current command first. Then the flux angle is com-
puted from the hall sensor and incremental encoder
data, which are initialized by auto-phasing. Finally, the
motors are actuated by applying a PI controller on the
quadrature and direct current.

Pseudo-code running in FPGA is shown in Algorithm 2.

8. RESULTS AND CONCLUSIONS
Before implementing the controller on the physical robot,

the proposed controller was first verified in simulation. Com-
paring with the simulated results generated using the human-
inspired controller as seen in Fig. 8a, we can see that the PD
controller with the reconstruction strategy has achieved sim-
ilar performance as seen in Fig. 8b.



Figure 13: Comparison of walking tiles of simulated and experimental walking with PD control.

Figure 10: Field-oriented control block diagram

Experimental Results. By applying a PD controller to track
the reconstructed joint trajectories, AMBER2 has achieved
sustainable human-like multi-domain walking. From the at-
tached video [1], the multi-domain walking of AMBER2
displays all the key features of human-like locomotion: toe
strike, heel lift and heel strike. Particularly, AMBER2 has
continuously walked for 45min with an approximated 1100m
traveling distance. The test ended due to mechanical failure
of a chain. The comparison between experimental gait tiles
and simulated gait tiles is shown in Fig. 13, and the actual
joint angles of one step are shown in Fig. 8c to compare
with the simulated results. These two comparisons show
good agreement between theory and practice. Also of note is
that the system is developed with minimum sensing require-
ments by only using foot contact switches and incremental
encoders. The inherent advantages (simpler form and bet-
ter behavior outside of the nominal operation window, see
[16] for more details) imbibed in the ECWF, as well as the
robot’s design methodology, facilitated the ease of applying
such simple control laws to realize walking, which also result
in low torque consumption throughout the step. The actual
joint angles of multiple steps along with the reconstructed
desired joint trajectories are shown in Fig. 11. The corre-
sponding input torques are shown in Fig. 12.
Discussion. Readers may notice that the walking speed of
the physical robot (approximately 0.4m/s) is faster than the
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(b) Stance knee, rms = 0.0457rad
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(c) Stance hip, rms = 0.0206rad
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(d) Nonstance hip, rms = 0.0435rad
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(e) Nonstance knee, rms= 0.2033rad
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(f) Nonstance ankle, rms=0.0567rad

Figure 11: Actual vs. desired joint angles logged during
AMBER2 walking with the unified control law, with rms the
root mean square of tracking error.

speed of simulated walking (0.28m/s). It is also noted that
the experimental under-actuated domain is shorter than that
in simulation. These phenomena are caused by the ankle
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Figure 12: Joint torque inputs logged during AMBER2
walking with PD control.

joint’s requirement for higher torque input, which is needed
to both support and roll the entire mass of the robot for-
ward about the toe joint. Similar results can also be found
in the studies of human gait analysis [5]. This level of per-
formance, however, is beyond the hardware’s ability. This
further affects the speed of the robot, as the walking speed in
under-actuated domain is slower than that in fully-actuated
domain.

Despite the difference in walking speed, the robot displays
qualitatively human-like walking with distinct multi-contact
behaviors in a dynamic fashion. In comparison with the sim-
ulated walking with synchronized speed, the experimental
walking gesture (i.e., walking pattern) matches up perfectly
with the simulated walking, which can be seen in the video
[16]. In conclusion, by utilizing the PHZD based human
output reconstruction strategy with the optimized parameters
β ∗, AMBER2 has achieved human-like multi-domain loco-
motion, thus, fulfilling an important step of bridging the gap
between theory and real world implementation.
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