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Abstract— This paper describes a torque control scheme
unifying feedback PD control and feed-forward impedance
control to realize human-inspired walking on a novel planar
footed bipedal robot: AMBER2. It starts with high fidelity
modeling of the robot including nonlinear dynamics, motor
model, and impact dynamics. Human data is used by an
optimization algorithm to develop a human-like gait for the
robot, which is represented in the form of canonical walking
functions. A PD controller is employed to track the optimized
trajectory initially. Next, impedance control parameters are
estimated from experimental data. Finally, the unified PD,
impedance torque control law is experimentally realized on the
bipedal robot AMBER2. Simulation results also verify that this
control results in robotic walking on the formal model. The
end result is sustainable unsupported walking that shows high
consistency with the simulated gait.

I. INTRODUCTION

Due to the complexity present in achieving bipedal robotic
walking, its study is often split between two extremes: the-
oretical results aimed at developing torque controllers (e.g.,
controlled symmetries [18], geometric reduction [6], [17],
inverted pendulum [15], [11]) that are provably correct, and
simulation/experimental results guided by heuristics (e.g.,
ZMP methods [21], [22], passivity based control [9], [12],
reinforcement learning [14] and the central pattern generators
[16]) that, often, provide better real world behavior than
complex nonlinear controllers can achieve. Both of these
extremes are important in the study of robotic walking, yet
to achieve truly human-like robotic walking it is necessary
to bridge the gap between these two methodologies. While
gains have been made toward this goal, most notably through
the application of hybrid zero dynamics to achieve robotic
walking and running [8], [19], [23], novel methods are
still needed to unify theoretical results with experimental
realization.

Aiming to make the first step toward bridging the gap
between theoretical and experimental results, this paper
introduces a novel control framework for a planar bipedal
robot with feet—AMBER2. We begin by introducing a high
fidelity model of AMBER2 in Sect. II. In order to ensure
agreement between the simulated behavior of this model and
the behavior observed experimentally; this model includes all
of the most relevant aspects of the robot: nonlinear dynamics,
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models of the motors and boom, and impact dynamics. The
end result is a hybrid system model for the bipedal robot,
for which the torque command of the motors is the input.
Utilizing this particular model, the human-inspired optimiza-
tion problem, subjected to certain physical constraints (Sect.
III) that provably guarantee robotic walking, is developed
(which has been successfully applied to other bipedal robots
including NAO [5] and AMBER [24] as well), which yields
parameters for canonical walking functions [3] that produce
human-like trajectories.

The torque controller for the physical robot is formed
by two elements: a feedback controller, which is a stan-
dard PD based torque controller using trajectories from
the partial hybrid zero dynamics (PHZD) reconstruction
obtained via human-inspired optimization reconstruction, and
a feed-forward controller, which is an impedance controller
obtained from fitting impedance parameters to the torque
profiles from an experimental walking gait. This formal uni-
fication of applying PD and Impedance control is what dif-
ferentiates this approach from others. Feed-forward control
is a widely used strategy in the field of locomotion controller
design. While it can improve the performance and reduce the
hysteresis of the system [7], it relies heavily on knowledge of
the system and thus is sensitive to modeling error. However,
in section IV, the utilization of a novel impedance control

(a) Sideview of AMBER2.

(b) Configuration angles.

(c) Outputs.

Fig. 1: The bipedal robot AMBER2 (a) Robot joint angles
(b) Robot outputs (c).



scheme avoids these shortages while keeping the benefits.
The main contribution of this paper is the implementation

of unified PD, impedance human-inspired control approach
on the physical robot and the experimental results achieved
with this implementation. With the detailed introduction
of the experiment design in SectV, the framework of the
AMBER2 walking strategy was verified in both theory and
practice. To highlight the advantage of the unified PD,
impedance controller, we compared these results to those of
AMBER2 walking only with a PD controller. The method
for achieving this walking is outlined through the presented
pseudo-code, block diagram of the low-level controller and
a state machine for the logic used. The end result is sus-
tained and unsupported bipedal robotic walking on AM-
BER2. These experimental results are compared against the
simulated walking and provide a bridge between the formal
methods and experimental implementation.

II. AMBER2 MODEL
AMBER2 is a 2D bipedal robot with seven links (two

calves, two thighs, two feet and a torso, see Fig. 1a). AM-
BER2 is a second generation bipedal robot and an expansion
upon its predecessor, the non-footed (point foot) bipedal
robot, AMBER (see [24]). Each joint is actuated by brushless
DC (BLDC) motors. In addition, with motion being restricted
to the sagittal plane via a boom shown in Fig. 2, which are
configured as parallel four-link mechanism, the boom support
structure (4) in Fig. 2 is always horizontal. The boom is
fixed rigidly to a rotating mechanism (see Fig. 2), which
allows the biped to walk in a circle with minimal friction. In
addition, counterweights are provided (see Fig. 2) to cancel
out the weight on the robot due to the boom. The motor
H-bridges are located close to the pivot of the boom along
with the other sensing and controller modules supplied by
National Instruments. The modules are remotely connected
to the stationary power supply with the help of slip rings
located below the pivot. The joint angles of the robot are
measured by PWM absolute MR encoders and single-ended
incremental quadrature encoders and sent into the FPGA in
the controller.

Let (θsa, θsk, θsh, θnsh, θnsk, θnsa) ∈Q⊂R6 be the angles
of the stance ankle (ankle of the stance leg), stance knee
(knee of the stance leg), stance hip, non-stance (of the swing
leg) hip, non-stance knee and non-stance ankle respectively
(see Fig. 1b). These variables form the configuration space
of the robot, and are shown in Fig. 1b. Let Lc, Lt be the
lengths of the calf and thigh respectively (values are given
in Table. I).
Continuous Dynamics: Given the configuration θ =
(θsa,θsk,θsh,θnsh,θnsk,θnsa )T ∈ Q, and calculating the mass
and inertia properties of each link of the robot through
a SolidWorks model allows for the construction of the
Lagrangian:

L(θ , θ̇) =
1
2

θ̇
T D(θ)θ̇ −V (θ). (1)

The AMBER2 model also contains the motors and the
boom. The way the inertias of these two elements are

Fig. 2: AMBER2 with the boom and electronics. The boom
restricts motion to the sagittal plane. As shown in the figure:
(1) Counterweight used to balance the boom around the
pivot, (2) Controller module where the walking algorithm
is running, (3) The boom, (4) Boom support structure which
keeps the torso horizontal, (5) The bipedal robot AMBER2.

included in the model is slightly different. This approach was
first considered in [24], and will be revisited here. Ir is the
rotational inertia of the rotor and Ig is the rotational inertia of
the gearbox. Due to the large gear ratio, Ig is small, and is
ignored in the calculation. Similarly, the distance between
the axis of rotation of the rotor and the corresponding
joint is small. In addition, the mass of the rotor is small,
resulting in the inertia of the motor w.r.t the joint axis can
be approximated to be the inertia w.r.t the rotor axis.

Since the biped end of the boom can move up-down and
forward-backward, it exhibits yaw and roll about the pivot.
This would correspond to the x component and z component
of the velocities of the torso. The CoM of the boom can be
approximated to be at the center of the pivot. If Iboom is the
inertia of the boom, then its mass matrix, Mboom ∈R6×6, is:

Mboom =

[
Iboom
L2

boom
03×3

03×3 03×3

]
,

where Lboom is the distance between CoM of the torso and
the pivot.

The new combined mass inertia matrix, Dcom, used in the
lagrangian will be:

Dcom(θ) = D(θ)+diag(0, Im,sk, Im,sh, Im,nsh, Im,nsk, Im,nsa)

+J(θ)T MboomJ(θ), (2)

Model Parameters
Parameter Mass Length Inertia x-axis Inertia z-axis

g mm ×103 g mm2 ×103 g mm2

Stance foot 204.42 0.07445 139.698 406.384
Stance calf 1119.43 0.34313 9343.395 22211.105
Stance knee 1172.57 0.29845 9004.044 22404.696

Torso 2154.79 0.10401 20342.192 64678.601
Non-stance knee 1172.57 0.29845 9004.044 22404.696
Non-stance calf 1119.43 0.34313 9343.395 22211.105
Non-stance foot 204.42 0.07445 139.698 406.384

TABLE I: The mass parameters for each link of the robot.



where Im,sk, Im,sh, Im,nsh, Im,nsk correspond to the motor inertia
of respective links and J(θ) is the body Jacobin of the
center of mass of the torso. Using the modeling techniques
presented, we can realize the Euler-Lagrange equations in
the following manner:

Dcom(θ)θ̈ +H(θ , θ̇) = B(θ)u,

where u is a vector of torque inputs. Converting the equations
of motion to a first order ODE yields the control system
( f ,g), which is in the form ẋ = f (x) + g(x)u, where x =
(θ , θ̇) Impact dynamics is also included in modeling (see
[23] for further details).

III. HUMAN-INSPIRED TRAJECTORY
CONSTRUCTION

This section reviews human-inspired optimization so as to
properly frame the formal results that are utilized to experi-
mentally achieve robotic walking. Specifically, we review the
formal results from [4] (also see [3], [5] for related results in
the case of full actuation) with a view toward torque control.

Human-Inspired Outputs. With the goal of achieving
human-like walking, we begin with seeking “outputs” of
the human locomotion data [3]. Six outputs are considered
for the 6-DOF robot considered in this paper: δ phip(θ), the
linearized position of the hip; θsk, the stance knee angle; θnsk,
the non-stance knee angle; mnsl , the linearized slope of the
non-stance leg; θtor(θ), the torso angle from vertical, and
θns f , the angle of the non-stance foot w.r.t the horizontal,
which are also denoted in Fig. 1b.

Analysis of the chosen outputs data indicates that, the lin-
earized hip position is a linear function of time δ pd

hip(t,v) =
vhipt, and the other outputs can be characterized by the
solution of a linear mass-spring-damper system, which we
term the canonical walking function (CWF):

yH(t,α) = e−α1t(α2 cos(α3t)+α4 sin(α3t))+α5, (3)

where the detail explanations can be referred to [3]. Based
on the linear fashion of the linearized hip position, we
parameterized the time as:

τ(θ) = (δ phip(θ)−δ phip(θ
+))/vhip, (4)

which removes the dependence of time in (3) and renders an
autonomous system [23]. Note that, θ+ represents the robot
configuration of the beginning of the step.

With the autonomous CWF in hand, we define the human-
inspired outputs:

yα(θ , θ̇) =

[
y1(θ , θ̇)

y2(θ)

]
=

[
ya,1(θ , θ̇)− vhip

ya,2(θ)− yd,2(τ(θ),α)

]
, (5)

where y1(θ , θ̇) is the relative degree one output, which is the
difference between the actual forward hip velocity ya,1(θ , θ̇)
and the desired hip velocity vhip. And y2(θ) are the relative
degree two human-inspired outputs which are the difference

between the actual relative degree two outputs ya,2(θ) and
desired relative degree two outputs yd,2(θ), defined as:

yd,2(t,α) =


yH(t,αsk)
yH(t,αnsk)
yH(t,αnsl)
yH(t,αtor)
yH(t,αns f )

 , ya,2(θ) =


θsk
θnsk

δmnsl(θ)
θtor(θ)

θns f

 , (6)

where α = (vhip,αsk,αnsk,αnsl ,αtor,αns f )∈R26 is the vector
of the grouped parameters. Note that ya,2(θ) is linear in joint
angles, θ , and can be written as ya,2(θ) = Hθ , which will
be used later in the paper.
Partial Hybrid Zero Dynamics. Of particular interest in
robotic walking are the relative degree 2 outputs, y2(θ) =
ya,2−yd,2. The surface for which these outputs agree for all
time is given by the partial zero dynamics surface

PZα = {(θ , θ̇) ∈ T Q : y2(θ) = 0, L f y2(θ , θ̇) = 0}. (7)

Importantly, a feedback linearization controller can easily
render this surface stable and invariant for continuous system,
however, this may not be true for a hybrid system with
impacts. The goal of partial hybrid zero dynamics (PHZD)
is to find parameters α that ensure that this surface remains
invariant through impact: ∆(S∩PZα)⊂ PZα . This constraint
motives the introduction of an optimization problem that
guarantees this condition.
Human-Inspired Optimization. Aiming at finding the con-
troller parameters, α , which deliver provably stable robotic
walking, an optimization problem subject to PHZD and other
physically realizable constrains is given by:

α
∗ = argmin

α∈R26
CostHD(α) (HIO)

s.t PHZD (C1)
Physical Constrains (C2)

where, the cost function (HIO) is the least squares fit between
the human experimental data and the CWF representations
[5]. Note that, despite the PHZD constraints which guaran-
tees exponentially stable orbits in hybrid systems [3], we
also need to consider several physical constraints such that
the optimized result can be used for the specific physical
robot. In particular, the following two physical constraints
are considered:

1) Torque Constrains. Torques acting on the joints are
limited by the capacity of the motors and the mod-
ules. Therefore, the optimized gait has to respect the
hardware torque bounds.

2) Foot Scuffing Conditions. The swing foot height
clearance and stride length during the swing phase
must be sufficient enough to avoid scuffing amidst
sensor noise, tracking error, uneven ground and even
imperfection in the mechanical design. Therefore, foot
scuffing conditions have to be imposed to insure sus-
tainable walking.

Above all, by solving this optimization problem, we can
obtain α parameters that best fit human-walking data while



enforcing the desired constraints. The end result of this
optimization is that the feedback linearization control law
results in provable stable robotic walking for the hybrid
system model of AMBER2 (see [3] for a proof which easily
extends to the case of AMBER2). More importantly, the
optimized parameters α will be shown to give human-like
robotic walking on the physical robot AMBER2.

IV. CONTRLLER DESIGN

Having constructed the human-inspired trajectory from
optimization, the objective of this section is to design the
appropriate controller, which delivers provable walking with
the robot. However, in order to realize robotic walking, State
based partial hybrid zero dynamics (PHZD) reconstruction
methodology needs to be introduced first, and then we will
present the human-inspired controller.

A. PHZD Reconstruction

PHZD Reconstruction. The idea is to find the desired joint
angle and angular velocities of the robot in every iteration
through inverse projection from the PHZD surface. Given
the PHZD surface, the coordinates can be defined as:

ξ1 = δ pR
hip(θ) := cθ (8)

ξ2 = ya
1(θ , θ̇) := δ ṗR

hip(θ) := cθ̇

where c is obtained from (4). Since ξ1 is the linearized
position of the hip, which is used to parameterize time as (4),
we can write the desired outputs yd,2(τ(θ),α) = yd,2(ξ1,α).
We can also write the actual outputs as:

η1 = y2,a = Hθ (9)

η2 = L f R y2,a(θ , θ̇) = Hθ̇

Then we can use PHZD dynamics to obtain an approximation
of the solution to the full-order system. On the partial
zero dynamics surface, the actual outputs are equal to the
desired outputs. Therefore we have the following relationship
between the desired joints angles and velocities and the
desired outputs of the robot:

θd(τ) = Ψ(ξ1,α) =

[
c
H

]−1(
ξ1

yd,2(ξ1,α)

)
(10)

θ̇d(τ) = Φ(ξ1,ξ2,α) =

[
c
H

]−1
(

vhip
∂yd,2(ξ1,α)

∂ξ1
ξ2

)
As a result of the fact that we have fully actuated and

completely linearized dynamics, it follows that the relative
degree 1 output evolves according to ẏ1 =−εy1. Therefore,
because of the definition of the partial zero dynamics, the
partial hybrid zero dynamics evolve according to the linear
ODE:

ξ̇1 = ξ2 (11)

ξ̇2 =−ε(ξ2− vhip)

Having known ξ1,ξ2, the desired angles and velocities are
obtained from (10). In other words, since θd , θ̇d are derived
from the outputs y1(θ , θ̇) and y2(τ,α), tracking these joint

angles and velocities in robot is equivalent with tracking the
outputs of the robot. Therefore, the restriction of the dynam-
ics to the partial zero dynamics surface still maintained.

B. Feedback PD control

Based upon the theoretic methods discussed so far, the PD
controller is employed to tracking joint trajectories obtained
from PHZD reconstruction:

τ
f

PD = Kp(θa−θd)+Kd(θ̇a− θ̇d) (12)

where Kp and Kd are proportional and derivative constant
matrices respectively. Note here, Kp and Kd matrices depend
specifically on corresponding motors.

C. Feed-forward Impedance Control.

Impedance control is one of most popular approaches in
the prosthesis control field. Attracted by these advantages, we
demonstrate that impedance control can be also applied as a
feed forward term for bipedal robotic control. In this section,
we will introduce the impedance control first and then discuss
the algorithm for impedance parameters estimation.
Impedance Control. Based on the pioneering work of
impedance control by Hogan [10], the torque at each joint
during a single step can be represented in a piecewise fashion
by a series of passive impedance functions [20], which have
the following form:

τ = k(θ −θ
e)+bθ̇ . (13)

Inspired by the previous work [2], analysis of AMBER2
walking data (which is achieved by using PD control) shows
that one gait cycle can be divided into four phases based
on the knee joints, which are denoted as p = 1,2,3,4.
Specifically, each phase begins at time t p

0 and ends at t p
f .

The phase separation principle is similar as that in [2] but
with values specific to the gait of AMBER2. The impedance
torque for specific joint i during a phase p ∈ {1,2,3,4}, can
be represented by the following equation:

τ
f

i,p = ki,p(θi(t)−θ
e
i,p)+bi,pθ̇i(t), (14)

where θi(t) and θ̇i(t) denote angle and angular velocity of
the joint i. Impedance parameters ki,p, qe

i,p and bi,p repre-
sent the constant stiffness, equilibrium angle and damping
respectively, which are constant during a specific phase p.
Impedance Parameter Estimation. With the phase transi-
tions defined above, the remaining problem is to identify the
control parameters for each sub-phase. In the previous work
[2], the authors showed that the impedance parameters for
a lower-limb prosthesis can be learned by the observation
from the unimpaired human walkers. The results have been
validated both in the simulation and in the experiment with
a transfemoral prosthetic device. To extend these results,
we utilize a similar method to estimate the impedance
parameters by observing the data of good walking steps of
AMBER2 achieved by just using the PD controller.

We first define the impedance parameter set as βi,p =
{ki,p,bi,p,qe

i,p} for specific joint i and sub-phase p. With



the recorded walking data {θ a
i,p, θ̇

a
i,p} and torque data τa

i,p
obtained by utilizing the PD controller on AMBER2 in
experiment, we can form the least square errors minimization
problem as following:

β
∗
i,p = argmin

βi,p

∫ t p
f

t p
0

(τ f
i,p− τ

a
i,p)

2dt, (15)

where τ
f

i,p is defined as (14) and τa
i,p is the actual experimen-

tal input torque on the joint i at sub-phase p. By solving this
minimization problem for all the joints at different phases,
we can obtain the estimated impedance parameters for the
feed forward impedance controller.

D. Control Law Construction

Finally, a unified PD-Impedance control approach is pre-
sented, where the PD based feedback controller is used
to track the walking gait obtained formally through the
optimization; and impedance control forms the feed-forward
controller which compensates for the nonlinear dynamics of
the robot. This approach yields stable robotic walking in
both simulation and physical experiments. The control law
is defined as:

τ
f = τ

f
PD(θa,θd , θ̇a, θ̇d ,Kp,Kd)+ τ

f
i,p(θa, θ̇a,k,b,qe) (16)

Specifically, although there are 36 gains used by impedance
control and 12 gains for PD control, satisfactory tracking was
achieved without any further gain tuning. In addition, due to
the simplicity of the impedance controller, unlike other feed-
forward methodologies such as nonlinear polynomials, it did
not cause significant distortions in tracking.

V. EXPERIMENTAL REALIZATION

The controller for AMBER2 has two levels: high level
controller which is realized by Real-Time (RT) control, and
low level controller realized by Field-Programmable Gate
Array (FPGA). The objective of this section is to introduce
the control structure of AMBER2. However, experimental
setup is needed before robotic walking can be achieved:
the calibration of absolute encoders and auto-phasing BLDC
motors, which will determine the configuration of hall sen-
sors, index angles and step angle increment of incremental
encoders (see [13] for details).
High Level Controller. The Real Time control has the
following major functionality incorporated:

1) Interface with FPGA, read joint angles and angular ve-
locities, send torque command to low level controller,
enable/disable motors.

2) Compute the time parameter τ using (4).
3) Compute torque command by applying PD with

impedance control law to corresponding motors, the
desired torque input T f

in is fed into the FPGA.
Note that for AMBER2, the sample rate and command rate
are both 143Hz. The high level controller is coded into shared
libraries to interface with C++ so that the execution can
be more efficient. The NI9144 EhterCAT Slave chassis is
connected to the cRIO by EtherCAT to extend the capacity.
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(a) Outputs of the robot for the linearizing controller.
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(b) Outputs of the robot for the PD controller.
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(c) Limit cycles associated with the walking gaits for the feedback
linearizing controller (left) and the PD controller (right).

Fig. 3: Simulation results for the feedback linearizing and
PD voltage controllers.

Fig. 4: Field-oriented control block diagram

For this configuration, each chassis is in charge of one leg.
The pseudo-code running in RT is shown in Algorithm 1.

Low Level Controller. The low level controller is coded
in Field-programmable Gate Array (FPGA) with on board
clock 40MHz, which is in charge of the following major
functionality:

1) Measure Angular velocity by the single-ended incre-
mental quadrature encoders attached to every rotor.

2) Measure joint angle by using PWM absolute encoders
for home position and integrating velocity data for
angle increment. In particular, both absolute encoders
and incremental encoders operate at 40MHz.

3) Detect stance foot by the two switches placed on each
foot (one in front and the other one in back). Foot logic
is shown in the state machine Fig. 5.

4) Execute hardware protection logic when any joint is



Algorithm 1 Real Time Module
Input: AMBER2 Parameters: Calf Length(Lc), Thigh Length(Lt );
Input: Optimization Parameters: δ pR

hip(θ
+),vhip,α;

Input: Calibration Results: θabs
Input: PD Controller Gain: Kp, Kd
Input: Impedance Parameters: Ki, θi,e, bi, τ f lag
Input: θLa,θLk,θLh,θRh,θRk,θRa, θ̇La, θ̇Lk, θ̇Lh, θ̇Rh, θ̇Rk, θ̇Ra ;
Input: L/R stance; Encoder Status; Drive Status;
Output: Enable/Disable Motor Drives;
Output: Desired Torque for FOC;
1: Enable Motor Drives;
2: repeat
3: Wait till all motor drives are Enabled
4: until ( Drive-Status == Enable )
5: while ( ¬ Stop-RT ) do
6: Reform θ , θ̇ from Left/Right(θLR) to Stance/nonStance(θSnS);
7: Calculate actual time parameter τa ;
8: Desired τd = τa +δT ;
9: Calculate( ξ1, ξ2);

10: Calculate( yd , ẏd );
11: Calculate( θd , θ̇d );
12: Apply PD Controller:

τ
f

PD = Kp(θa−θd)+Kd(θ̇a− θ̇d);
13: Based on τa and τ f lag, determine Impedance Phase;
14: Apply Impedance Controller:

τ
f

imp = Impedance(θ , θ̇ , K, θe, bi);
15: Control Law Constructed:

τ f = τ
f

PD + τ
f

imp;
16: Change τ f from Stance/nonStance to Left/Right;
17: Sending Torque Command to FPGA;
18: Log Data into Remote Desktop;
19: end while
20: Disable Motor Drives;
21: Report Errors and Stop the Real Time VI;

Fig. 5: State machine showing the foot contact and the logic
used to determine the stance leg.

trying to go beyond its working space, which is done
by resetting torque command to zero.

5) Torque control. To realize torque control on the motor
level, field-oriented control (FOC) is employed to
control the 6 BLDC motors. As shown in the control
block diagram in Fig. 4, the torque is translated to
current first. Then the flux angle is computed from
the hall sensor and incremental encoder data, which
are initialized by auto-phasing. Finally, by applying a
PI controller on the quadrature and direct current, the
motors are actuated accordingly.

Pseudo-code running in FPGA is shown in Algorithm 2.

Algorithm 2 FPGA Module
Input: PWM Pulses from Absolute Encoders ;
Input: Hall Sensor Signal, Incremental Encoder Signal;
Input: Status of Foot Contact Switches;
Input: Auto-phasing results: Hall Angle, Index Angle;
Input: Hardware Setup: Sample Rate, Torque Limitation, FOC Gains;
Input: Enable/Disable Motor Drives;
Input: Three Phase Current From BLDC motors;
Input: Torque Command from RT;
Output: Three Phase PWM Signals to Motor Drives;
Output: θabs, θ̇incremental ;
Output: L/R Stance Foot; Encoder Status; Drive Status;
1: loop
2: Absolute Encoder Reading logic(10MHz); // Refer to data sheet

of absolute encoder, US digital MAE3 kit
3: if ( Signal low for 2 periods of encoder pulse) then
4: Encoder Not Working ← 1;
5: else
6: Encoder Not Working ← 0;
7: end if
8: Incremental Quadrature Encoder Reading Logic(40MHz);
9: end loop

10: loop
11: Compute Desired Current from Torque Command from RT;
12: if (Joint Angle exceeds Workspace and Torque Command not trying

to stop it) then
13: Reset Desired Current to 0;
14: end if
15: Compute Three Phase Voltage through Field-oriented Control Logic;

(shown in Fig. 4) // Operation Frequency: 40MHz
16: PWM signal Generation logic;
17: end loop
18: loop
19: Guard and Stance Leg Detection Logic using foot contact switches

(shown in Fig. 5);
20: if ( Left Leg stance ) then
21: L/R stance ← 0;
22: else if ( Right Leg stance ) then
23: L/R stance ← 1;
24: end if
25: end loop

VI. RESULTS AND CONCLUSIONS

The proposed controller was first verified in simulation.
Comparing with the simulated results of using the human-
inspired controller as seen in Fig. 3a, we can see that
the unified PD-impedance controller has achieved similar
performance as seen in Fig. 3b. The phase portraits of using
both methods show that stable walking in simulation has
been achieved with both controllers.

When the suggested control methodology was then ap-
plied to the physical robot, it is shown that AMBER 2
was able to achieve sustainable walking (see [1] for the
video). The gait tiles, Fig. 8, show good agreement between
theory and simulation, and the comparison between actual
and desired values of different joints are shown in Fig. 7
and Fig. 10. The walking achieved experimentally agrees
with the walking predicted in simulation, with a maximum
tracking error of 0.12 rad. Experimental results of waking
only with PD controller are also included Fig. 6. Maximum
walking distance only with PD controller is 30 meters on
record, whereas AMBER2 can walk more than 100 meters
with the unified controller without any indication of falling.
That being said, the unified controller not only brought
better tracking performance but also robustness. It is very



Fig. 8: Comparison of walking tiles of simulated and experimental walking with the unified PD, impedance control.
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(c) Stance hip, e≤ 0.2rad
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(d) Non-stance hip, e≤ 0.6rad
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(e) Non-stance knee, e≤ 0.8rad
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Fig. 6: Actual vs. desired joint angles logged during AM-
BER2 walking with PD controller, with e the tracking error.

important to note that the system is developed with minimum
sensing requirements, foot contact switches, absolute and
incremental encoders. The inherent spring-damper responses
imbibed in the CWF and the methodology of design adopted
for the robot facilitated the ease of applying such simple
control laws to realize walking, which also results in low
torque consumption throughout the step. During continuous
walking, maximum torque input for ankle, knee and hip
motors are 5Nm, 5Nm, 10Nm accordingly (Fig. 9). In con-
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(b) Stance knee, e≤ 0.04rad
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(c) Stance hip, e≤ 0.04rad
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(d) Non-stance hip, e≤ 0.09rad
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(e) Non-stance knee, e≤ 0.12rad
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(f) Non-stance ankle, e≤ 0.09rad

Fig. 7: Actual vs. desired joint angles logged during AM-
BER2 walking with the unified control law, with e the
tracking error.

clusion, the synchronization between simulated walking and
implementation as shown in the video and the small tracking
error shows that the optimization algorithm and the unified
control approach suggested is correct and efficient. In other
words, AMBER2 has fulfilled an important step bridging the
gap between theory and real world implementation.
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(e) Non-stance knee
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(f) Non-stance ankle

Fig. 9: Joint torque inputs logged during AMBER2 walking
with PD, impedance control.
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(d) Non-stance hip
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(e) Non-stance knee
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Fig. 10: Actual vs. desired joint angular velocities logged
during AMBER2 walking with PD, impedance control.
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